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Quantum phase slips (QPSs) generate voltage fluctuations in superconducting nanowires. Employing the
Keldysh technique and making use of the phase-charge duality arguments, we develop a theory of QPS-induced
voltage noise in such nanowires. We demonstrate that quantum tunneling of the magnetic flux quanta across the
wire yields quantum shot noise which obeys Poisson statistics and is characterized by a power-law dependence
of its spectrum S� on the external bias. In long wires, S� decreases with increasing frequency � and vanishes
beyond a threshold value of � at T → 0. The quantum coherent nature of QPS noise yields nonmonotonous
dependence of S� on T at small �.
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I. INTRODUCTION

Can a superconductor generate voltage fluctuations? More
specifically, if an external bias is applied to a superconductor,
could the latter produce shot noise? By posing these ques-
tions, we, of course, imply that temperature T , characteristic
frequencies and/or voltages, as well as all other relevant energy
parameters remain well below the superconducting gap, i.e.,
the superconductor is either in or sufficiently close to its
quantum ground state.

At first sight, positive answers to both of these questions
can be rejected on fundamental grounds. Indeed, a super-
conducting state is characterized by zero resistance, i.e., a
nondissipative current below some critical value can pass
through the system. Hence, neither the nonzero average voltage
nor voltage fluctuations can be expected.

These simple considerations—although applicable to bulk
superconductors—become insufficient in the case of ultrathin
superconducting wires because of the presence of quantum
phase slips (QPSs) [1–4]. In such wires, quantum fluctuations
of the superconducting order parameter field � = |�|eiϕ

play an important role, being responsible for temporal local
suppression of |�| inside the wire and, hence, for the phase
slippage process. Each quantum phase slip event corresponds
to the net phase jump by δϕ = ±2π , implying positive
or negative voltage pulse δV = ϕ̇/2e (here and below, we
set � = 1) and tunneling of one magnetic flux quantum
�0 ≡ π/e = ∫ |δV (t)|dt across the wire in the direction
perpendicular to its axis. Biasing the wire by an external
current I , one breaks the symmetry between positive and
negative voltage pulses, making the former more likely than
the latter. As a result, the net voltage drop V occurs across the
wire, also implying nonzero resistance R = V/I which may
not vanish down to lowest T [5,6], as it was indeed observed
in a number of experiments [7–9]. Hence, in the presence of
QPSs, the current flow becomes dissipative and—according,
e.g., to the fluctuation-dissipation theorem (FDT)—one should
also expect voltage fluctuations to occur in the system.

While these arguments suggest a positive answer to the first
of the above questions, they do not yet specifically address
shot noise. Two key prerequisites of shot noise are (i) the
presence of discrete charge carriers (e.g., electrons) in the

system and (ii) scattering of such carriers at disorder. Although
discrete charge carriers—Cooper pairs—are certainly present
in superconducting nanowires, they form a superconducting
condensate flowing along the wire without any scattering.
For this reason, the possibility for shot noise to occur in
superconducting nanowires appears by no means obvious.

In this paper, we will perform a detailed theoretical
analysis of QPS-induced voltage fluctuations in ultrathin
superconducting wires. In particular, we will demonstrate that
quantum tunneling of magnetic flux quanta �0 across the wire
causes shot noise which obeys Poisson statistics and shows a
nontrivial dependence on temperature, frequency, and external
current.

II. THE MODEL AND EFFECTIVE HAMILTONIAN

The system under consideration is displayed in Fig. 1. It
consists of an ultrathin superconducting wire of length L and
cross section s, and a capacitance C switched in parallel to this
wire. The right end of the wire (x = L) is grounded, as shown
in the figure (x is the coordinate along the wire ranging from
0 to L). The voltage V (t) at its left end x = 0 fluctuates and
such fluctuations can be measured by a detector. The whole
system is biased by an external current I = Vx/Rx .

An effective Hamiltonian for our system can be written in
the form

Ĥ = ĤCh − Iϕ/2e + Ĥwire. (1)

The first and the second terms in the right-hand side of Eq. (1)
account, respectively, for the charging energy [10],

ĤCh = 1

2C

[
−i

∂

∂(ϕ/2e)
+ Q

]2

, (2)

and for the potential energy tilt produced by an external current
I . The variable ϕ(t) ≡ ϕ(0,t) represents the phase of the
superconducting order parameter field �(x,t) at x = 0. Here
we also set ϕ(L,t) ≡ 0.

The last term Ĥwire in Eq. (1) describes the superconducting
wire. This part of the effective Hamiltonian can be expressed
in terms of both the modulus |�(x,t)| and the phase ϕ(x,t)
of the order parameter field [5,6,11]. Here, however, we will
proceed differently and employ the duality arguments.
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FIG. 1. The system under consideration. The figure also illus-
trates creation of two plasmons by a QPS.

The duality between the phase and the charge variables
was established and discussed in detail in the case of ultra-
small Josephson junctions [10,12–14]. Later the same duality
arguments were extended to short [15] and long [16–18]
superconducting wires. According to the results [18], the
dual representation for the Hamiltonian of a superconducting
nanowire is defined by an effective sine-Gordon model,

Ĥwire = ĤTL + ĤQPS. (3)

In the absence of quantum phase slips, such nanowire can be
described as a transmission line with

ĤTL =
∫ L

0
dx

[
�2

2Lkin
+ (∂xχ )2

2Cw�2
0

]
, (4)

where Lkin = 1/(πσN�0s) and Cw are, respectively, the
kinetic wire inductance (times length) and the geometric wire
capacitance (per length),

[�(x),χ (x ′)] = −i�0δ(x − x ′) (5)

defines the commutation relation between the canonically
conjugate flux (or phase) and charge operators, σN is the
normal-state Drude conductance of the wire, and �0 is the
superconducting gap. The term

ĤQPS = −γQPS

∫ L

0
dx cos χ (6)

accounts for the effect of quantum phase slips and

γQPS ∼ (gξ�0/ξ ) exp(−agξ ), a ∼ 1, (7)

is the QPS tunneling amplitude [6] per unit wire length, with
gξ = 2πσNs/(e2ξ ) � 1 being the dimensionless normal-state
conductance of the wire segment of length equal to the
coherence length ξ .

The physical meaning of the quantum field χ (x,t) is
transparent: It is proportional to the total charge q(x,t) that
has passed through the point x up to the time moment t , i.e.,
q(x,t) = χ (x,t)/�0. Accordingly, the local current I (x,t) and
the local charge density ρ(x,t) are defined as

I (x,t) = ∂tχ (x,t)/�0, ρ(x,t) = −∂xχ (x,t)/�0, (8)

thereby satisfying the continuity equation. The charge Q in
Eq. (2) is equal to Q(t) = χ (0,t)/�0.

III. KELDYSH TECHNIQUE AND PERTURBATION
THEORY

In order to proceed, we will make use of the Keldysh path-
integral technique. Accordingly, our variables of interest need
to be defined on the forward and backward time branches of
the Keldysh contour, i.e., we now have ϕF,B(t) and χF,B(x,t).
As usual, it is convenient to also introduce the “classical” and
“quantum” variables, respectively, ϕ+(t) = [ϕF (t) + ϕB(t)]/2
and ϕ−(t) = ϕF (t) − ϕB(t) (and similarly for the χ fields).
Making use of the Josephson relation between the voltage and
the phase, one can formally express the expectation value of
the voltage operator across the superconducting wire in the
form

〈V (t1)〉 = 1

2e
〈ϕ̇+(t1)eiSQPS〉0, (9)

where

SQPS = −2γQPS

∫
dt

∫ L

0
dx sin(χ+) sin(χ−/2), (10)

and

〈. . .〉0 =
∫

D2ϕ(t)D2χ (x,t)(. . .)eiS0[ϕ,χ ] (11)

implies averaging with the Keldysh effective action S0

corresponding to the Hamiltonian Ĥ0 = Ĥ − ĤQPS. Anal-
ogously, for the voltage-voltage correlator 〈V (t1)V (t2)〉 =
1
2 〈{V̂ (t1),V̂ (t2)}〉 (where curly brackets denote the anticom-
mutator), one has

〈V (t1)V (t2)〉 = 1

4e2
〈ϕ̇+(t1)ϕ̇+(t2)eiSQPS〉0. (12)

Higher-voltage correlators are defined similarly. Their analy-
sis, however, is beyond the scope of this work.

Equations (9) and (12) are formally exact expressions,
which we are now going to evaluate. To this end, we will
employ the regular perturbation theory in γQPS (7), which can
be regarded as a small parameter of our theory. In the zero order
in γQPS, the problem is described by the quadratic (in both ϕ

and χ ) Hamiltonian Ĥ0 and all averages can be handled exactly
with the aid of the Green functions,

GR
ab(X,X′) = −i〈a+(X)b−(X′)〉,

GK
ab(X,X′) = −i〈a+(X)b+(X′)〉, (13)

where a(X) and b(X) stand for one of the fields ϕ(t) and χ (x,t).
As both of these fields are real, the advanced and retarded
Green functions obey the condition GA

ab(ω) = GR
ba(−ω). With

this in mind, the Keldysh function GK can be expressed in the
form

GK
ab(ω) = 1

2
coth

(
ω

2T

)[
GR

ab(ω) − GR
ba(−ω)

]
. (14)

Expanding Eqs. (9) and (12) up to the second order in
γQPS and performing all necessary averages, we evaluate the
results in terms of the Green functions (13); see the Appendices
for further details. The result of our calculation both for the
average voltage (9) and for the voltage-voltage correlator (12)
can also be expressed in the form of “candy” diagrams,
displayed in Fig. 2. They involve four different propagators
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FIG. 2. Candylike diagrams which determine both average volt-
age (9) (upper diagram) and voltage noise (12) (six remaining
diagrams) in the second order in γQPS. The fields ϕ+, χ+, and χ−
in the propagators (13) are denoted, respectively by wavy, solid, and
dashed lines.

(GR,K
χχ and GR,K

ϕχ ) and plenty of vertices originating from
Taylor expansion of the cosine terms. Summing up all of the
diagrams in the same order in γQPS, one arrives at the final
expression containing the exponents of the Green functions.

IV. I − V CURVE AND VOLTAGE NOISE

To begin with, let us briefly rederive the results [5] for the
average voltage within the framework of our technique. We
obtain (see Appendix A)

〈V 〉 = iγ 2
QPS

4e

∫ L

0
dx

∫ L

0
dx ′[ lim

ω→0
ωGR

ϕχ (x; ω)
]

×[Px,x ′ (−�0I ) − Px,x ′ (�0I )], (15)

where Px,x ′ (ω) = Px,x ′ (ω) + P̄x,x ′ (ω) and

Px,x ′ (ω) =
∫ ∞

0
dteiωt eiG(x,x ′;t,0), (16)

G(x,x ′; t,0) = GK
χχ (x,x ′; t,0) − 1

2
GK

χχ (x,x; t,t)

−1

2
GK

χχ (x ′,x ′; 0,0) + 1

2
GR

χχ (x,x ′; t,0).

Bearing in mind that limω→0 ωGR
ϕχ (x; ω) = 2πi, Eq. (15) can

be cast in the form

〈V 〉 = �0[�QPS(I ) − �QPS(−I )], (17)

where we identify �QPS as

�QPS(I ) = γ 2
QPS

2

∫ L

0
dx

∫ L

0
dx ′Px,x ′ (�0I ). (18)

Comparing the result (17) with that found in Ref. [5],
we immediately conclude that �QPS(I ) defines the quantum
decay rate of the current state due to QPS. In [5], this rate
was evaluated from the imaginary part of the free energy,

�QPS(I ) = 2ImF . Here we derived the expression for �QPS by
means of the real-time technique without employing the ImF

method.
Making use of the above results, evaluating the Green

functions (13) (see Appendix C), and keeping in mind the
detailed balance condition (see Appendix B),

Px,x ′ (ω) = e
ω
T Px,x ′ (−ω), (19)

we obtain

〈V 〉 = �0Lvγ 2
QPS

2
ς2

(
�0I

2

)
sinh

(
�0I

2T

)
, (20)

where v = 1/
√
LkinCw is the plasmon velocity [19],

ς (ω) = τλ
0 (2πT )λ−1 �

(
λ
2 − iω

2πT

)
�

(
λ
2 + iω

2πT

)
�(λ)

, (21)

τ0 ∼ 1/�0 is the QPS core size in time, and �(x) is the Gamma
function. Here we also introduced the parameter [5] λ =
Rq/2Zw ∝ √

s, where Rq = π/2e2 is the “superconducting”
quantum resistance unit and Zw = √

Lkin/Cw is the wire
impedance. It is satisfactory to observe that the results (20)
and (21) match that found in Ref. [5] by means of a different
technique [20].

Let us now turn to voltage fluctuations. Our perturbative
analysis, which we describe in Appendix A, allows one
to recover three different contributions to the noise power
spectrum, i.e.,

S� =
∫

dtei�t 〈V (t)V (0)〉 = S
(0)
� + Sr

� + Sa
�. (22)

The first of these contributions S
(0)
� has nothing to do with QPS

and just defines equilibrium voltage noise for a transmission
line. It reads

S
(0)
� = i�2 coth

(
�
2T

)
16e2

[
GR

ϕϕ(�) − GR
ϕϕ(−�)

]
. (23)

The other two terms are due to QPS effects. The term Sr
� is

also proportional to coth ( �
2T

) and contains the products of two
retarded (advanced) Green functions:

Sr
� = γ 2

QPS�
2 coth

(
�
2T

)
8e2

∫ L

0
dx

∫ L

0
dx ′Re

{
GR

ϕχ (x; �)

×[
Fx,x ′ (�)GR

ϕχ (x ′; �) − Fx,x ′ (0)GR
ϕχ (x; �)

]}
. (24)

Here we denote

Fx,x ′ (�) = −Px,x ′ (� + �0I ) − Px,x ′ (� − �0I )

+P̄x,x ′ (−� + �0I ) + P̄x,x ′ (−� − �0I ). (25)

The remaining term Sa
�, in contrast, contains the product of

one retarded and one advanced Green function and scales with
the combinations C± = coth (�±�0I

2T
) − coth ( �

2T
) as

Sa
� = γ 2

QPS�
2

16e2

∫ L

0
dx

∫ L

0
dx ′GR

ϕχ (x; �)GR
ϕχ (x ′; −�)

×
{ ∑

±
C±

[
Px,x ′ (� ± �0I ) − Px,x ′ (−� ∓ �0I )

]}
.

(26)
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Equations (22)–(26) together with the expressions for the
Green functions [Eqs. (C1)–(C3)] fully determine the voltage
noise power spectrum of a superconducting nanowire in the
perturbative in QPS regime and represent the central result of
this work.

In the zero-bias limit I → 0, the term Sa
� vanishes, and

the equilibrium noise spectrum S� = S
(0)
� + Sr

� is deter-
mined from FDT; see also [18]. At nonzero-bias values, the
QPS noise turns nonequilibrium. In the zero-frequency limit
� → 0, the terms S

(0)
� and Sr

� tend to zero, and the voltage
noise S�→0 ≡ S0 is determined solely by Sa

�. Then, from
Eq. (26), we obtain

S0 = �2
0[�QPS(I ) + �QPS(−I )] = �0 coth

(
�0I

2T

)
〈V 〉, (27)

where 〈V 〉 is specified in Eqs. (17) and (20). Combining the
result (27) with Eqs. (20) and (21), we find

S0 ∝
{
T 2λ−2, T � �0I,

I 2λ−2, T  �0I.
(28)

At higher temperatures T � �0I (though still T  �0),
Eq. (28) just describes equilibrium voltage noise S0 = 2T R of
a linear ohmic resistor R = 〈V 〉/I ∝ T 2λ−3 [5]. In the opposite
low-temperature limit T  �0I , it accounts for QPS-induced
shot noise S0 = �0〈V 〉 obeying Poisson statistics with an
effective “charge” equal to the flux quantum �0.

This result sheds light on the physical origin of shot noise
in superconducting nanowires: It is produced by coherent
tunneling of magnetic flux quanta �0 across the wire. In the
dual picture [18], such flux quanta can be viewed as charged
quantum particles passing through (and being scattered at) an
effective spatially extended tunnel barrier.

Note that previously the result analogous to Eq. (27) was
derived for thermally activated phase slips (TAPSs) [21].
This similarity appears remarkable given a crucial physical
difference between TAPSs and QPSs: The former can be
regarded as classical (i.e., incoherent) and noninteracting
objects, whereas the latter are fully coherent [22], forming
an interacting quantum gas.

Another interesting limiting case is that of sufficiently high
frequencies and/or long wires, v/L  �  �0. In this limit,
we obtain

S
(0)
� = λ

8πe2

� coth
(

�
2T

)
(�/2EC)2 + (λ/π )2

. (29)

This contribution is independent of the wire length L. At low
T and �/λ � EC = e2/2C, we have S

(0)
� ∝ 1/�, i.e., the wire

may generate 1/f voltage noise. Evaluating the QPS terms Sr
�

and Sa
�, we observe that the latter scales linearly with the wire

length L, whereas the former does not. Hence, the term Sr
� can

be safely neglected in the long-wire limit. For the remaining
QPS term Sa

�, we get

Sa
� = Lλ2vγ 2

QPS

4e2

[
ς

(
�0I

2
− �

)
− ς

(
�0I

2
+ �

)]

× sinh
(

�0I

2T

)
ς
(

�0I

2

)
[
(�/2EC)2 + (λ/π )2

]
sinh

(
�
2T

) . (30)

FIG. 3. The frequency dependence of the QPS noise spectrum
S� (30) at λ = 2.7, large EC , and different T in the long-wire limit.
The inset shows S� as a function of T .

At T → 0, from Eq. (30), we find

Sa
� ∝

{
I λ−1(I − 2�/�0)λ−1, � < �0I/2
0, � > �0I/2.

(31)

This result can be interpreted as follows. At T = 0, each QPS
event excites (at least) two plasmons [23] (see Fig. 1) with total
envergy E = �0I propagating in the opposite directions along
the wire. One plasmon (with energy E/2) gets dissipated at the
grounded end of the wire, while another one (also with energy
E/2) reaches its opposite end causing voltage fluctuations
(emits a photon) with frequency � measured by a detector.
Clearly, at T = 0, this process is only possible at � < E/2, in
agreement with Eq. (31).

The result (30) is also illustrated in Fig. 3. At suffi-
ciently small � (we still keep � � v/L), one observes
a nonmonotonous dependence of S� on T , which is a
direct consequence of the quantum coherent nature of QPS
noise.

Finally, we point out that the perturbative in γQPS approach
employed here is fully justified for not-too-thin wires with λ >

λc � 2 [5]. In wires with λ < λc (characterized by unbound
QPS–anti-QPS pairs), γQPS gets effectively renormalized to
higher values and, hence, the perturbation theory eventually
becomes obsolete. However, even in this case, our results
may still remain applicable at sufficiently high temperature,
frequency, and/or current values. In the low-energy limit, long
wires with λ < λc show an insulating behavior, as follows
from the exact solution of the corresponding sine-Gordon
model [24]. This solution suggests that voltage fluctuations
also become large in this limit.

In summary, we demonstrated that quantum phase slips
generate voltage noise in superconducting nanowires. In the
presence of a current bias I , quantum tunneling of the magnetic
flux quanta �0 across the wire causes Poissonian shot noise
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with a nontrivial power-law dependence of its spectrum on both
I and frequency �. Our predictions can be directly verified in
future experiments and need to be observed while optimizing
the operation of QPS qubits [25].

ACKNOWLEDGMENTS

We acknowledge useful discussions with K. Yu. Arutyunov,
D. S. Golubev, and P. Hakonen. This work was supported in
part by RFBR Grant No. 15-02-08273.

APPENDIX A: PERTURBATION THEORY

Let us expand the general expressions (9) and (12) up to the second order in γQPS. It is easy to demonstrate that linear in γQPS

terms vanish identically in both expressions after averaging over the zero mode contained in the χ field. In order to evaluate
the terms ∼γ 2

QPS, it is convenient to make a shift χ+(t) → �0I t + χ+(t) and to decompose the averages by means of the Wick
theorem. As a result, we obtain

〈V (t1)〉 = −γ 2
QPS

e

∫
dt

∫ L

0
dx

∫
dt ′

∫ L

0
dx ′〈ϕ̇+(t1)χ−(x,t)〉0〈cos[�0I (t − t ′) + χ+(x,t) − χ+(x ′,t ′)]

× cos[χ−(x,t)/2] sin[χ−(x ′,t ′)/2]〉0, (A1)

and

〈V (t1)V (t2)〉 = 1

4e2
〈ϕ̇+(t1)ϕ̇+(t2)〉0 − γ 2

QPS

2e2

∫
dt

∫ L

0
dx

∫
dt ′

∫ L

0
dx ′〈ϕ̇+(t1)χ+(x,t)〉0〈ϕ̇+(t2)χ−(x,t)〉0

×〈sin[�0I (t ′ − t) + χ+(x ′,t ′) − χ+(x,t)] cos[χ−(x,t)/2] sin[χ−(x ′,t ′)/2]〉0

−γ 2
QPS

2e2

∫
dt

∫ L

0
dx

∫
dt ′

∫ L

0
dx ′〈ϕ̇+(t1)χ+(x,t)〉0〈ϕ̇+(t2)χ−(x ′,t ′)〉0

×〈sin[�0I (t ′ − t) + χ+(x ′,t ′) − χ+(x,t)] sin[χ−(x,t)/2] cos[χ−(x ′,t ′)/2]〉0

−γ 2
QPS

2e2

∫
dt

∫ L

0
dx

∫
dt ′

∫ L

0
dx ′〈ϕ̇+(t1)χ−(x,t)〉0〈ϕ̇+(t2)χ+(x,t)〉0

×〈sin[�0I (t ′ − t) + χ+(x ′,t ′) − χ+(x,t)] cos[χ−(x,t)/2] sin[χ−(x ′,t ′)/2]〉0

−γ 2
QPS

2e2

∫
dt

∫ L

0
dx

∫
dt ′

∫ L

0
dx ′〈ϕ̇+(t1)χ−(x,t)〉0〈ϕ̇+(t2)χ+(x ′,t ′)〉0

×〈sin[�0I (t − t ′) + χ+(x,t) − χ+(x ′,t ′)] cos[χ−(x,t)/2] sin[χ−(x ′,t ′)/2]〉0

−γ 2
QPS

4e2

∫
dt

∫ L

0
dx

∫
dt ′

∫ L

0
dx ′〈ϕ̇+(t1)χ−(x,t)〉0〈ϕ̇+(t2)χ−(x ′,t ′)〉0

×〈cos[�0I (t − t ′) + χ+(x,t) − χ+(x ′,t ′)] cos[χ−(x,t)/2] cos[χ−(x ′,t ′)/2]〉0. (A2)

The averages in Eqs. (A1) and (A2) are Gaussian and, hence, can be handled in a straightforward manner. After that, we
immediately arrive at our final results for the I − V curve (15), (16) and for the voltage noise spectrum (22)–(26). Both of these
results are expressed via the function Px,x ′ (ω) (16), which in turn contains the Green function G(x,x ′; t,0).

APPENDIX B: ANALYTIC STRUCTURE OF THE GREEN FUNCTIONS

Let us define a more general Green function Gχ (x,x ′; σ ), which depends on the complex time σ and obeys the condition
Gχ (x,x ′; t − i0) = G(x,x ′; t,0). With the aid of the Kubo-Martin-Schwinger condition, one can deduce that the Green function
Gχ is periodic in the imaginary-time direction, i.e.,

Gχ (x,x ′; σ ) = Gχ (x,x ′; σ − i/T ). (B1)

This function is analytic and has branch cuts at Im(σ ) = N/T for all integers N . The function exp[iGχ (x,x ′; σ )] has the same
analytic properties. One can write

Px,x ′ (ω) =
∫ ∞

−∞
dteiωt eiGχ (x,x ′;t−i0). (B2)

Distorting the integration path and utilizing the property Gχ (x,x ′; σ ) = −Ḡχ (x,x ′; −σ ) together with Eq. (B1), we arrive at the
detailed balance condition (19).
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APPENDIX C: GREEN FUNCTIONS

The Green functions for the system displayed in Fig. 1 can be evaluated directly with the following results:

GR
ϕϕ(ω) = 1

ω2

2EC
+ iω

4e2Rx
− ωλ

π
cot

(
ωL
v

) , (C1)

GR
χϕ(x; ω) = −GR

ϕχ (x; ω) = 2iλ cos
[

ω(L−x)
v

]
(

ω2

2EC
+ iω

4e2Rx

)
sin

(
ωL
v

) − ωλ
π

cos
(

ωL
v

) , (C2)

and

GR
χχ (x,x ′; ω) =

4πλ
{

cos
[

ω(L−x)
v

]
cos

(
ωx ′
v

)
θ (x − x ′) + cos

[
ω(L−x ′)

v

]
cos

(
ωx
v

)
θ (x ′ − x)

}
ω sin

(
ωL
v

)

+
4λ2 cos

[
ω(L−x)

v

]
cos

[
ω(L−x ′)

v

]

sin
(

ωL
v

)[(
ω2

2EC
+ iω

4e2Rx

)
sin

(
ωL
v

) − ωλ
π

cos
(

ωL
v

)] . (C3)

The last two expressions take a much simpler form in the long-wire limit, in which case all plasmon excitations moving towards
the grounded end of the wire eventually disappear and never pop up again, while excitations moving in the opposite direction
produce voltage fluctuations measured by a detector. In this limit, Eqs. (C1) and (C3) reduce to

GR
ϕχ (x; ω) � − 2λei ωx

v

(ω + i0)
(

ω
2EC

+ iλ
π

) , (C4)

GR
χχ (x,x ′; ω) � − 2πiλ

ω + i0
ei

ω|x−x′ |
v . (C5)

Here we also set Rx → ∞, as requested in the current bias limit.
In order to evaluate the general expressions for the I − V curve (15), (16) and for the voltage noise (22)–(26), it is necessary

to compute the integral

ϒ(ω,�) =
∫ L/2

−L/2
dx

∫ L/2

−L/2
dx ′ei �

v
(x−x ′)Px,x ′ (ω). (C6)

Separating the left movers and the right movers, making use of the explicit form of the Green function GR
χχ (x,x ′; ω), and

introducing the high-frequency cutoff ωc ∼ 1/τ0 in order to avoid unphysical divergencies, we obtain

ϒ(ω,�) � L

∫ ∞

−∞
dxei �

v
xPx,0(ω) = Lv

2
�

(
ω

2
+ �

2

)
�

(
ω

2
− �

2

)
, (C7)

where

� (z) =
∫ ∞

−∞
dteizt sinhλ(πT τ0)

sinhλ/2[πT (τ0 − t + i0)] sinhλ/2[πT (τ0 + t − i0)]
. (C8)

Performing the integration in Eq. (C8), we find

� (ω) = 2λ(πT τ0)λ

2πT

�
(

λ
2 − iω

2πT

)
�

(
λ
2 + iω

2πT

)
e

ω
2T

�(λ)
≡ ς (ω)e

ω
2T . (C9)

The function ς (ω) (21) is directly employed in our results, both for the I − V curve (20) and for the QPS noise spectrum (27), (30).

[1] K. Yu. Arutyunov, D. S. Golubev, and A. D. Zaikin, Phys. Rep.
464, 1 (2008).

[2] A. Bezryadin, J. Phys.: Condens. Matter 20, 043202 (2008).
[3] A. D. Zaikin, in Handbook of Nanophysics: Nanotubes and

Nanowires (CRC, Boca Raton, FL, 2010), p. 40-1.
[4] A. Bezryadin, Superconductivity in Nanowires (Wiley-VCH,

Weinheim, 2013).
[5] A. D. Zaikin, D. S. Golubev, A. van Otterlo, and G. T. Zimányi,
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