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We propose a systematic magnetic-flux-free approach to detect, manipulate, and braid Majorana fermions
in a semiconductor-nanowire-based topological Josephson junction by utilizing the Majorana spin degree of
freedom. We find an intrinsic π -phase difference between spin-triplet pairings enforced by the Majorana zero
modes (MZMs) at the two ends of a one-dimensional spinful topological superconductor. This π phase is
identified to be a spin-dependent superconducting phase, referred to as the spin phase, which we show to be
tunable by controlling spin-orbit coupling strength via electric gates. This electric controllable spin phase not only
affects the coupling energy between MZMs but also leads to a fractional Josephson effect in the absence of any
applied magnetic flux, which enables the efficient topological qubit readout. We thus propose an all-electrically
controlled superconductor-semiconductor hybrid circuit to manipulate MZMs and to detect their non-Abelian
braiding statistics properties. Our work on spin properties of topological Josephson effects potentially opens up
a new thrust for spintronic applications with Majorana-based semiconductor quantum circuits.
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I. INTRODUCTION

Spin is the fundamental electronic quantum degree of
freedom in solid state materials. In superconductors, Cooper
pairs, as composed of two spin-1/2 particles, can have
spin-1 angular momentum, leading to spin-triplet pairings,
in contrast to the usual spin-singlet pairing of opposite
spins in the simplest s-wave superconductors. Recently, it
has been shown that Majorana zero modes (MZMs), which
may exist as stable localized zero-energy mid-gap excitations
in topological-superconductor interfaces, can only have s-
wave odd-frequency [1] spin-triplet correlations [2,3] at the
boundary of topological superconductors (TSCs) [4–21]. Since
the s-wave spin-triplet pairing is insensitive to nonmagnetic
impurity scattering, spin-triplet pairs can be stabilized at
the interface of a topological-superconductor/normal-metal
(TSC/NM) hybrid system. Consequently, MZMs can assist
the injection of pure stable spin-triplet Cooper pairs into the
normal-metal region of a TSC/NM/TSC junction. Thus, a
topological Josephson junction (JJ) is indeed a spin-triplet
JJ which makes it possible to utilize the Majorana spin degree
of freedom to detect and manipulate MZMs, and demonstrate
their non-Abelian braiding statistics.

In this work, we theoretically study the spin-dependent
current-phase relation and MZM coupling energy of topolog-
ical JJs. We show that the MZM-induced spin-triplet pairing
states [3] at the two ends of a realistic one-dimensional
(1D) TSC (specifically, the nanowire-superconductor hybrid
system of great current interest) have an intrinsic π -phase
difference. We demonstrate that this π phase, originating from
Majorana-enforced spin-triplet pairing, arises neither from a
magnetic-flux-induced phase, referred to as the charge phase
since magnetic flux is coupled to electrons’ charge degree
of freedom, nor from the Cooper pairs’ orbital (e.g., p or d

wave) effect, and can produce a fractional Josephson 0 junction

and π junction, which exhibit a Josephson phase of 0 and
π in its ground state in the absence of any applied magnetic
flux, respectively, in the N-shaped and U-shaped nanowires
[Figs. 1(a) and 1(b)]. From this result, we unambiguously
establish the presence of a spin-state-dependent phase, referred
to as the spin phase, in spin-triplet pairings in this system.
The spin phase difference across the topological JJ can be
continuously tuned by spin-orbit coupling (SOC) in the normal
part (black wire) of the JJ through a gate voltage [Fig. 2(a)]
so as to turn on and off the MZM coupling energy for both
time-reversal-invariant and time-reversal-symmetry-broken
topological JJs leading to experimentally testable 4π -periodic
Josephson current-phase relations in both charge phase and
spin phase. In particular, the SOC-tunable spin phase can
drive the time-reversal-symmetry-broken JJ to be a fractional
Josephson ϕ0 junction [22], which can exhibit a Josephson
phase of ϕ0 (neither 0 nor π ) and a finite Josephson current in
its ground state in the absence of any applied magnetic flux.
The observation of this SOC-induced Josephson current would
serve as a clear signal for topological superconductivity and
MZMs. In addition, we show that the direction of the fractional
Josephson current induced by the spin phase is locked to the
fermion parity of the topological JJ. It is noted that the SOC,
driving the nontrivial spin-phase–current relation, is inside the
normal nanowire [black wire in Fig. 2(a)], which is not coupled
to a superconductor, and thus readily tuned by an applied gate
with the well-developed spintronic technique [23–28]. We
thus combine Majorana physics and spintronics, and propose
an all-electrically controlled superconductor-semiconductor
hybrid circuit to manipulate and control MZMs, and detect
their non-Abelian braiding statistics [13,15,17,29,30].

Our work also shows the conceptual depth and complexity
of semiconductor-nanowire-based TSCs [8–11] being well
beyond the scope of the prototypical spinless p-wave TSC
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FIG. 1. (a) and (b) The Josephson junctions with N-shaped and
U-shaped geometries. The red wires are the semiconductor wires
attached to the s-wave superconductor. The yellow balls indicate the
locations of MZMs. The black wires represent the normal metal.
Panels (c) and (d) show the Andreev levels from the numerical
calculations of the eigenenergy of the Josephson junctions in (a) and
(b) with tso = �, M = 8�, μs = −2�, ts = tN = 10�, μN = 20�.

Panels (e) and (f) show the Andreev levels of the Josephson junctions
in (a) and (b) using the same set of parameters except changing M to
�/2.

models (e.g., the Kitaev 1D model [4]) since the spin degree of
freedom plays no role in the latter type of manifestly spinless
TSCs. The spintronic physics and the various spin-phase JJ
physics being described in the current work simply do not
exist within the 1D Kitaev (or for that matter, in any spinless
p-wave TSC) model, showing conclusively that the topolog-
ical superconductivity in the semiconductor-superconductor
hybrid systems predicted in Refs. [8,9] is much richer
than and goes far beyond the simple spinless p-wave TSC
model often used in the literature. The Majorana spintronic
physics described in the current work arises entirely from
the interplay among spin-orbit coupling, Zeeman splitting,
and s-wave superconductivity in the semiconductor-nanowire
model, which leads not only to MZMs and TSCs, but also
to very rich spin-phase JJ physics with manifest experimental
consequences not present at all in the Kitaev model of spinless
p-wave superconductivity. It is interesting that all of the rich
spin-phase JJ physics being discussed in the current work in
the context of TSC systems shows up only in the realistic
semiconductor-nanowire systems and not at all in the idealized
models of spinless p-wave TSCs, perhaps explaining why
this important subject has so far been mostly ignored in the
literature.
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FIG. 2. (a) TSC/SOC-semiconductor/TSC junction. There are N

sites (white dots) in the SOC wire (black wire). The red wires
represent two TSCs. The yellow balls represent MZMs. The applied
gate voltage can control the chemical potential and SOC inside the
normal wire through standard technologies of the semiconductor
spintronics. (b) The effective-coupling amplitude t̃ as a function of
energy E. Both horizontal and vertical axes are normalized by the
hopping constant t ′ ′ of the SOC wire. The red stars indicate the
eigenenergy εn = 2

√
t ′′2 + t2

so[1 − cos(knd)] in the horizontal axis.
The inset shows t̃ with the energy inside the semiconductor band gap.

We clarify here the notations for the various JJs to be used
throughout the article. We use the nomenclature 0 junction (i.e.,
conventional JJ), π junction, and ϕ0 junction throughout this
paper to refer to the JJs which exhibit the Josephson phase of 0
[31], π [32], and ϕ0 (neither 0 or π ) [22] in their ground states,
respectively, in the absence of any applied magnetic flux. We
use N junction and U junction to refer to the N-shaped and
U-shaped geometries of the JJs shown in Figs. 1(a) and 1(b),
respectively.

Our paper is organized as follows. In Sec. II, we demon-
strate an intrinsic π -phase difference between the spin-triplet
superconducting pairings enforced by MZMs localized at
the opposite ends of a 1D TSC. This π -phase difference
arises from neither a charge phase nor an orbital phase, and
only exists in the topological-superconducting regime at the
boundaries between topological and trivial phases (i.e., at
interfaces or wire ends). We further establish that this π phase
is indeed a spin phase and can lead to the implementation
of fractional Josephson 0 and π junctions with N-shaped and
U-shaped geometries [Figs. 1(a) and 1(b)]. In Sec. III, we show
that the Majorana coupling and spin-phase difference across
the topological JJ can be tuned by a gate-voltage controllable
SOC in the normal nanowire, connecting the two topological

014511-2



MAJORANA SPINTRONICS PHYSICAL REVIEW B 94, 014511 (2016)

superconductors [a U-shaped topological JJ as shown in
Fig. 2(a)], with exponential accuracy which leads to flux-free
control of the MZM coupling energy and Josephson current,
and gives rise to a fractional Josephson-junction. In particular,
the direction of the spin-phase-driven topological Josephson
current can measure the Fermion parity of a topological
JJ. In Sec. IV, we propose an all-electrically controllable
superconductor-semiconductor hybrid circuit to detect the
non-Abelian nature of MZMs and present a discussion of the
experimental feasibility of the proposed device. In Sec. V,
we conclude with a summary of our results. (Some of the
more complicated technical details are relegated to Appendices
A and B although the results and equations from these
Appendices are sometimes used in the main text.)

II. SPIN-STATE-DEPENDENT 0-π JOSEPHSON
JUNCTION TRANSITION

In a SC/NM junction, Cooper pairs can tunnel into the
NM which inherits certain superconducting properties such
as supercurrent. If the tunneling between the superconductor
and NM obeys spin rotation SU(2) symmetry, the phase of the
induced superconducting condensate in the NM is normally
expected to only depend on the superconducting charge phase
and orbital phase. However we find that the spin phase,
associated with the spin degree of freedom of Cooper pairs,
may also play an important role in certain JJs, to be elaborated
below.

We first consider the recently extensively studied time-
reversal-symmetry-broken 1D TSC tight-binding model (a
semiconductor nanowire with SOC coupling in the presence
of a bulk superconductor and Zeeman spin splitting) whose
Hamiltonian in the basis (c↑,c↓, − c

†
↓,c

†
↑)T has the form [8–11]

HTS = [−2ts cos(kd) − μs]τz ⊗ σ0 − Mτ0 ⊗ σz

+ 2tso sin(kd)τz ⊗ σy + �τx ⊗ σ0, (1)

where k and d are the wave vector and the lattice constant,
respectively, ts is the spin-independent hopping, tso is the SOC
strength, and μs is the chemical potential of the semiconductor
nanowire with M the Zeeman coupling strength and � the
proximity-induced superconducting gap. In the topological-
superconducting regime of the semiconductor nanowire
[8–11], there are two MZMs γ1 and γ2 located at the right
and left ends, respectively [Figs. 1(a) and 1(b)]. In the strong
Zeeman splitting limit, M � �, the spin polarization of
the two MZMs is almost antiparallel to the magnetization.
Besides, the Hamiltonian in Eq. (1) commutes with the
complex conjugation operator K so that MZMs should be
eigenfunctions of K. Thus, the two MZMs at the right and left
ends have the form

γ1↑ = (c↑ + c
†
↑), γ2↑ = i(c↑ − c

†
↑),

which are even and odd under complex conjugation, respec-
tively. Correspondingly, spin-triplet pairing coefficients [33]
are ψ↑↑,1 = −ψ↑↑,2 = 1 (see details in Appendix A). The
minus sign for ψ↑↑,2 is from the square of the i in γ2. According
to Eq. (A2) in our Appendix A, the anomalous density matrices

[3] for the MZMs at the two ends are

f1 =
(

0 1
0 0

)
, f2 =

(
0 −1
0 0

)
. (2)

If the TSC respects time-reversal symmetry, we will have
MZMs in the spin-down channel as well,

γ1↓ = T̂ γ1↑T̂ −1 = c↓ + c
†
↓,

γ2↓ = T̂ γ2↑T̂ −1 = i(c↓ − c
†
↓), (3)

with the time-reversal operator T̂ = −iσyK. The anomalous
density matrices in this case are

f1 =
(

0 1
1 0

)
, f2 = −

(
0 1
1 0

)
, (4)

with ψ↓↓,1 = −ψ↓↓,2 = 1. Based on Eqs. (2) and (4), the
MZM-induced spin-triplet superconducting condensates f1,2

have a π -phase difference, regardless of whether time-reversal
symmetry is broken or not. As MZM-induced pairing is odd-
frequency s-wave spin-triplet [1,3], the π -phase difference
arises from neither a charge phase nor an orbital phase. We
emphasize here that this π -phase difference is not just a
mathematical construct, but has observable physical effects
as shown below.

In the time-reversal-symmetry-broken TSC/NM/TSC JJs
[Figs. 1(a) and 1(b)], the two identical nanowires (red
wires) are proximity-induced topological superconductors.
The normal-metal wire (black wire) connects the two TSCs
in a different way which forms N and U junctions as shown in
Figs. 1(a) and 1(b), respectively. The two TSC nanowires (red
wires) are described in the minimal model by Eq. (1) and the
normal wire (black wire) is described by

HN = [−2tN cos(kd) − μN]τz ⊗ σ0, (5)

where tN and μN are the hopping energy and chemical potential
in the normal-metal wire, respectively. The MZMs γ a

1 and γ a
2

(γ b
1 and γ b

2 ) are located at the left and right ends of the a (b)
wires [Figs. 1(a) and 1(b)]. In the strong Zeeman splitting limit
M � �, the spin direction of these MZMs is antiparallel to the
magnetic field [2]. According to Eq. (2), the superconducting
condensates induced by these two MZMs have a π -phase
difference. It follows that the current-phase relation of the
N junction [Fig. 1(a)] has a π -phase shift as compared to
the coupling of γ a

2 and γ b
2 in the U junction [Fig. 1(b)].

To test this prediction, we set the Hamiltonian parameters
in Eq. (1) to be in the topological-superconducting regime
(M > �, μs = 0) and plot the eigenenergies as a function
of the charge-phase difference φ in Figs. 1(c) and 1(d), which
correspond to the N and U junctions, respectively. In Figs. 1(c)
and 1(d), the Andreev levels cross at φ = π and φ = 0,
which indicates the 4π -periodic 0 and π JJs, respectively.
The lines with constant E = 0 correspond to the MZMs at
other uncoupled ends [Figs. 1(a) and 1(b)]. Moreover, we tune
the superconductors into the topologically trivial regime by
choosing M = �/2 without changing other parameters and
plot the eigenenergies of the N and U junctions as a function
of φ in Figs. 1(e) and 1(f), respectively. The Andreev levels
in both of the two JJs behave like the normal Josephson
0 junction whose minimal ground state is at φ = 0 with
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2π periodicity. Besides, we also calculate the eigenenergies
for M = 2�,4�,6� (topologically nontrivial regime) and
M = 0,0.3�,0.6� (topologically trivial regime) in the two
JJs. We find that in the topological trivial regime, the N-shaped
and U-shaped junctions always have the same Andreev levels
with a normal Josephson 0 junction with 2π periodicity.
However, in the topologically nontrivial regime with MZMs
located at the interface of the TSC/NM interface, besides the
arising of the 4π periodicity of Andreev levels in both N and U
junctions, only the latter becomes a π junction. These results
confirm that the appearance of the π phase in the U junction
only depends on the presence of the MZM-induced spin-triplet
pairings. Thus this π phase is indeed a spin phase.

We also consider the time-reversal-invariant TSC/NM/
TSC junction whose TSC Hamiltonian is given as [15]

HTS = [−2ts cos(kd) − μs]τz ⊗ σ0

+ 2tso sin(kd)τz ⊗ σz + �(kd)τx ⊗ σ0, (6)

where �(kd) = [�0 − �1 cos(kd)]. This spin-singlet super-
conducting gap involves both s+ and s− channels, and it
vanishes at cos(k0d) = �0/�1. The SOC in the semiconductor
nanowire induces the spin splitting, and leads to two Fermi
wave vectors k1f and k2f with k1f < k2f . For k1f < k0 < k2f ,
the system is in a topological-superconducting regime [16],
and the associated Andreev levels of the N and U junction
are similar to those plotted in Figs. 1(c) and 1(d) except that
there is a Kramers degeneracy in this time-reversal-symmetric
case. Taking �1 = 0, the system is in the topologically trivial
regime and the Andreev levels for the two JJ configurations
are similar to those plotted in Figs. 1(e) and 1(f) except
for the Kramers degeneracy. We thus conclude that for the
time-reversal-symmetric topological JJ, the superconducting
condensates at the opposite ends have a π -phase difference
provided that there exist MZM-induced spin-triplet pairings.
The π phase is related to the Cooper pair spin-triplet states,
and thus belongs to the spin phase which is similar to the
time-reversal-symmetry-broken case.

In a real semiconductor nanowire, which has a finite width
in its transverse plane (x-y plane), the complex conjugation
symmetry is broken in general, for example, by considering a
SOC −i∂yσz. However, even in this case, we can still establish
the MZM-related spin-phase difference in topological JJs, by
theoretically treating the system as a multiband TSC, in the
presence of the following mirror reflection symmetry:

MzH (kx,ky,kz,σx,σy,σz)M−1
z

= H (kx,ky,−kz,−σx,−σy,σz).

In Appendix B, we show that the s-wave spin-triplet Cooper
pairs described by a d vector (which is a vector description
of spin-triplet superconducting condensates introduced in
Ref. [33] as defined in Eq. (A4) in our Appendix A) along the
x or y direction are odd under the mirror reflection, Mz. By
contrast, the s-wave Cooper pairs of spin-singlet or spin-triplet
with the d vector along the z direction are even. Thus, with a
d vector along the x or y direction, the MZM-induced Cooper
pairing at the two ends of the TSC are always opposite in sign,
and thus have a π -phase difference, provided that the system
respects the mirror reflection symmetry.

III. SOC-TUNABLE MAJORANA FERMION COUPLINGS
AND UNCONVENTIONAL JOSEPHSON EFFECTS

Inspired by the π spin phase and its induced topological
Josephson π junction, we expect to have a completely different
technique to manipulate the Majorana fermion (MF) coupling
in topological JJs from the method of using magnetic flux to
control the phase of charge origin [34]. Because SOC, with
the general form (∇V × σ ) · p, performs as a spin-dependent
vector potential and can rotate the d vector of spin-triplet
Cooper pairs [35–37], its effect on the spin phase will affect the
MF coupling and the current-phase relation in a topological JJ.

To explore the SOC effect in a topological JJ, we consider
the U junction with the SOC normal wire along the y direction
[Fig. 2(a)]. The Hamiltonian of this junction takes a general
form

H =

⎛
⎜⎝

H a
TSC 0 H a

t

0 H b
TSC H b

t(
H a

t

)† (
H b

t

)†
HSOC

⎞
⎟⎠. (7)

In this section, we consider both cases with and without time-
reversal symmetry in the Hamiltonian H

a,b
TSC.

The Hamiltonian of the normal SOC wire HSOC reads

HSOC =
∑
i,σ

μ′c†iσ ciσ +
∑
i,σ

−t ′c†i+1σ ciσ

+
∑
i,σ

i(−1)σ t ′soc
†
i+1σ ciσ + H.c.,

with μ′ the chemical potential, t ′ the spin-independent hop-
ping, and t ′so the strength of the experimentally accessible
pyσz-type SOC [23–28], which is tunable by a gate voltage as
shown in Fig. 2(a).

The couplings between the normal wire and superconduc-
tors in Eq. (7) are

Ha
t =

∑
σ

t ′′c†aσ c1σ + H.c., Hb
t =

∑
σ

t ′′c†bσ cNσ + H.c.

Here the indices 1 and N indicate the sites at the opposite
ends of the SOC wire [Fig. 2(a)], and the coupling t ′′ models
the electron tunneling across the normal and superconducting
wires. According to Eq. (7), the two TSCs are indirectly
coupled through the SOC in the normal wire. To analyze the
SOC effect in the TSC/SOC-semiconductor/TSC junctions,
we derive an effective coupling between the two TSCs. The
normal SOC wire contributes an effective self-energy

� = −HtGSOCH
†
t , (8)

with Ht = (Ha
t ,Hb

t )T and the Green’s function GSOC given by

GSOC(y,y ′) =
∑

n

|ψn(y)〉〈ψn(y ′)|
E − εn + iδ

. (9)

Here εn is the eigenenergy, and |ψn〉 is the eigenfunction
of HSOC, which satisfies the boundary conditions ψn(0) = 0
and ψn((N + 1)d) = 0 with d the lattice constant and N

the number of lattice sites in the normal SOC wire. Due to
the SOC, the two spin bands will be shifted oppositely in
the k axis [Fig. 2(a)] by δk = 2 arcsin(t ′so/

√
t2 + t

′2
so)/d. The
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FIG. 3. A schematic plot of the TSC/SOC-semiconductor/TSC
junction with misalignment between the spin quantization axis and
SOC field direction. The yellow and blue arrows indicate the MF
spin direction ẑ and SOC field direction n̂. Given ẑ along the z axis,
the SOC field direction can be described by the polar angle β and
azimuthal angle α.

eigenfunctions for the two spin channels take the form

ψk,↑(y) =
(

1
0

)
ei δk

2 y sin(ky),

ψk,↓(y) =
(

0
1

)
e−i δk

2 y sin(ky) (10)

with kn = nπ/(N + 1)d according to the boundary condition.
By integrating out the electron and hole degrees of freedom in
the normal nanowire, we obtain the off-diagonal term

�ab = �
†
ba = t̃ ei

δk(N−1)d
2 σz = t̃ ei θ

2 σz ,

t̃ = t ′′2
∑

k

sin(ka) sin(kNd)

E − 2
√

t ′′2 + t2
so[1 − cos(kd)]

, (11)

which gives rise to an effective spin-phase-dependent coupling
between two TSCs, t̃ ei θ

2 σz . In Eq. (11), we neglect the

contribution from the poles of Gsoc in Eq. (10) if there is no
eigenstate inside the superconducting gap. This is valid when
the chemical potential of the SOC wire is in its semiconductor
band gap, or the length of the SOC wire L = (N + 1)d is much
smaller than the coherence length ξ so that around the Fermi
surface, εn+1 − εn � �. We plot t̃ as a function of energy E in
Fig. 2(b). The effective-coupling amplitude changes sign with
the energy E across the quantized eigenenergy εn and becomes
a pure exponential decay inside the semiconductor band gap. If
we also consider the charge phase by adding a vector potential
(A,0,0)T in the SOC region, the tunneling Hamiltonian takes
the form

H̃t = t̃(c†ae
i
2 (φσ0+θσz)cb − cae

− i
2 (φσ0+θσz)c

†
b), (12)

where

φ/2 = eAL/�, θ = δkL (13)

correspond to the charge phase and spin phase, respectively,
for an electron traveling across the junction.

The effective-coupling Hamiltonian, Eq. (12), can be easily
generalized to the case for the arbitrary SOC field direction n̂
(Fig. 3) as

H̃t = t̃
(
c†ae

i
2 (φσ0+θ n̂·σ )cb − cae

− i
2 (φσ0+θ n̂·σ ∗)c

†
b

)
. (14)

As we are interested in the topological JJ, it is convenient to
write the tunneling Hamiltonian in the Majorana representa-
tion by a unitary transformation [38]

H̃t = t̃

4

(
γ a

1
γ a

2

)T(
e

i
2 (φσ0+θ n̂·σ ) − e− i

2 (φσ0+θ n̂·σ ∗) i(e
i
2 (φσ0+θ n̂·σ ) + e− i

2 (φσ0+θ n̂·σ ∗))
−i(e

i
2 (φσ0+θ n̂·σ ) + e− i

2 (φσ0+θ n̂·σ ∗)) e
i
2 (φσ0+θ n̂·σ ) − e− i

2 (φσ0+θ n̂·σ ∗)

)(
γ b

1

γ b
2

)
,

(
γ1

γ2

)
=

√
2U

(
c

c†

)
, U = 1√

2

(
σ0 σ0

−iσ0 iσ0

)
, (15)

with γ a
1 = (γ1↑,γ1↓)T, n̂ · σ = cos βσz + sin β cos ασx +

sin β sin ασy , β the polar angle, and α the azimuthal angle
[Fig. 2(b)]. Equation (15) provides a general form of coupling
between two TSCs through a SOC wire. In the following, we
use it to study unconventional Josephson effects in both time-
reversal-broken and time-reversal-invariant junctions. We refer
to this description as the MF representation.

A. Time-reversal-symmetry-broken topological
Josephson junction

For a time-reversal-symmetry-broken TSC/SOC-
semiconductor/TSC junction, we assume (without loss
of generality) that the MZMs at sites a and b are γ a

1↑ and
γ b

2↑, respectively [Fig. 2(a)]. Then according to Eq. (15), the
MF-coupling Hamiltonian reads

H̃t = it̃

2

(
cos

θ

2
cos

φ

2
− sin

θ

2
sin

φ

2
cos β

)
γ a

1↑γ b
2↑. (16)

The associated Andreev levels and Josephson currents are

E = ± t̃

2

(
cos

θ

2
cos

φ

2
− sin

θ

2
sin

φ

2
cos β

)
, (17a)

I = ∓ t̃ e

�

(
cos

θ

2
sin

φ

2
+ sin

θ

2
cos β cos

φ

2

)
. (17b)

For β = π
2 , the MF spins are perpendicular to the z axis

and the Andreev levels take the form

E = ± t̃

2
cos

θ

2
cos

φ

2
. (18)

This indicates that the Andreev level crossing is always at φ =
π , the minimal ground state energy is always at φ = 0, and the
topological JJ is always a Josephson 0 junction. However the
MF-coupling energy oscillates as a function of the spin phase
θ , which is consistent with our previous study [3].

When the SOC field direction n̂ in the normal region is
parallel to ẑ [along the two TSC wires (Fig. 3)] so that β = 0,

014511-5



LIU, LI, DENG, LIU, AND DAS SARMA PHYSICAL REVIEW B 94, 014511 (2016)

0.05

0.1

0

-0.05

-0.1
0 0.5 1 1.5 2

0 1 2
−0.5

0

0.5

0 1 2
−0.5

0

0.5

0 1 2
−0.5

0

0.5

0 1 2
−0.5

0

0.5

0 1 2
−0.5

0

0.5

0 1 2
−0.5

0

0.5

(a)

(b)

FIG. 4. (a) Andreev bound states with effective magnetic field of
SOC perpendicular to the d vector of the MF at the end of TSCs.
The horizontal axis is the phase difference of the two TSCs and the
vertical axis is energy. The panels correspond to θ = 0, π

4 , π

2 ,π, 5π

4 ,
and 2π , respectively. (b) Josephson currents with the spin phase
θ = π/2. The red dashed line represents the contribution from the
MF coupling. The blue dashed line represents the contribution from
the bulk superconducting ground state below the gap. The black solid
line is the net Josephson current.

the MF-coupling Hamiltonian is

H̃γ = t̃

2
iγ a

1↑γ b
2↑ cos

(
φ + θ

2

)
. (19)

The associated Andreev levels and Josephson currents have
the form

E = ± t̃

2
cos

(
φ + θ

2

)
,

I = ±|e|t̃
h

sin

(
φ + θ

2

)
, (20)

which exhibit 4π periodicity in both charge phase φ and
spin phase θ . Here + (−) indicates the fractional Josephson
current direction and is related to the fermion parity defined as
iγ a

1↑γ b
2↑ = 1 − 2c†c with c = γ a

1 − iγ b
2 . The minimal ground

state energy is shifted to φ = −θ . The obtained analytic results
for the fractional Josephson relation have been confirmed in
our numerical calculations (see Fig. 4). It is worth emphasizing
that even given charge phase φ = 0, we could have a finite spin-

0

0

0

(c)

(a)

0 1 2
1

0.5
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0.5 1 1.5 2 2.5

0
1

0.5

0
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1

0.5 1 1.52 2.51 2

0

(b)

(d)

FIG. 5. (a) and (c) The plot of Andreev levels and Josephson
currents as a function of charge phase φ with given spin phase θ =
π/2 and φ ∈ [−2π,0]. The red, blue, and black colors correspond
to the misaligned angle β = 0,π/3,π/2, respectively. Energy and
current are normalized by t̃/2 and et̃/h, respectively, with e the
electron charge and h the Plank constant. The solid (dashed) curves
represent the + (−) in Eq. (21). (b) and (d) The plot of Andreev levels
and Josephson currents as a function of spin phase θ with fixed φ = 0
and θ ∈ [π/2,5π/2]. In (b), the Andreev levels for β = 0,π/3,π/2
collapse into identical curves.

phase-driven fractional Josephson current whose direction
measures the fermion parity in the topological JJ.

For an arbitrary SOC field direction, we find that the
minimal ground state energy is generally shifted away from
φ = 0 due to the spin phase θ unless β = 0 as shown in
Fig. 5(a). Consequently, the corresponding Josephson current
has both cos(φ/2) and sin(φ/2) terms according to Eq. (17b)
and therefore can be finite even at φ = 0 [Fig. 5(c)]. In
Figs. 5(a) and 5(c), the spin phase is set to be π/2, for which
the SOC effect leads to two terms of equal weight on the
right-hand sides of Eqs. (17a) and (17b).

To explicitly illustrate this unusual Josephson current
phenomena, we focus on φ = 0 and study the spin-phase–
current relation. In this case, the Josephson current has the
form

I = ∓ t̃ e

�
sin

θ

2
cos β,

which remains the 4π periodicity for arbitrary SOC field
direction. We plot the above spin-phase-dependent Andreev
levels and Josephson currents in Figs. 5(b) and 5(d) for β =
0,π/3,π/2. The solid (dashed) lines correspond to the + (−)
sign in Eq. (21). At φ = 0, unless the polar angle β = π/2, the
Josephson current can be turned on and off by varying the spin
phase [Fig. 5(d)], and we have a ϕ0 junction as introduced in
Ref. [22] in a completely different context. To understand the
appearance of this ϕ0 junction in a time-reversal-symmetry-
broken topological JJ, we compare the charge phase with the
spin phase in the coupling Hamiltonian Eq. (14). For n̂ ‖ ẑ,
the Hamiltonian in Eq. (14) is diagonal in spin space. If we
focus on the spin-up channel, the spin phase plays exactly the
same role as the charge phase so that it can be used to control
the Josephson current. For n̂ ⊥ ẑ, the spin phase performs
like the Zeeman coupling which rotates the MF spin direction
without introducing a relative phase between the sites a and b
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FIG. 6. Josephson current as a function of the magnetization
with spin phase θ = π/2 and charge phase φ = 0. M/� = 1 is the
topological phase transition point.

[Fig. 2(a)]. In this case, the Josephson current cannot be turned
on solely by the spin phase. Thus, as long as the SOC field
has a finite component along the ẑ direction, this component
will turn on the supercurrent in the topological JJ even at
φ = 0. When the superconductor is in the topologically trivial
regime, say 0 � M < � for μ = 0, the magnetization-induced
bulk spin-triplet pairing has no spin polarization [39] and
thereby the spin-triplet Cooper pairs have the same amplitude
in both spin-up and spin-down channels. Consequently, the
Josephson current in the topologically trivial regime should
be zero at φ = 0. In Fig. 6, we plot the Josephson current as
a function of magnetization M with θ = π/2 and φ = 0 for
the topological Josephson junction illustrated in Fig. 2(a). The
Josephson current drops down to zero sharply at the topological
quantum phase transition point. Thus, the observation of this
SOC-induced Josephson current would serve as a clear signal
for topological superconductivity and MZMs. On the other
hand, as the direction of the SOC-induced fractional Josephson
current is solely determined by the fermion parity of the
topological Josephson junction if the sign of the coupling
amplitude t̃ is fixed, this property can be used to detect the
non-Abelian nature of MZMs which will be discussed in the
next section (Sec. IV).

B. Time-reversal-invariant topological Josephson junctions

In the low-energy limit, E � �, we consider the time-
reversal-invariant TSC/SOC-semiconductor/TSC JJ with a
pair of MZMs (γ a(b)

1(2)↑,γ
a(b)
1(2)↓)T located at site a (b) (Fig. 3).

For simplicity, we first assume that the SOC field direction
is parallel to the ẑ axis. According to Eq. (15), the tunneling
Hamiltonian can be projected to the Hilbert space expanded
by these four MZMs as

H̃γ = t̃

4
γ a

1 i
(
e

i
2 (φσ0+θσz) + e− i

2 (φσ0+θσz)
)
γ b

2

= t̃

2
iγ a

1↑γ b
2↑ cos

(
φ + θ

2

)
+ t̃

2
iγ a

1↓γ b
2↓ cos

(
φ − θ

2

)
.

(21)
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0

1
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FIG. 7. (a) Andreev bound states when the effective magnetic
field of SOC is parallel to the MF spins at the end of TSCs. The
horizontal axis is the phase difference of the two TSCs and the vertical
axis is energy. The panels correspond to θ = 0, π

4 , π

2 ,π, 5π

4 , and 2π ,
respectively. (b) The ground state energy Eg as a function of charge
phase φ given spin phase θ = 0,π/4,π/2,3π/4,π . The ground state
energy Eg is normalized by t̃/2.

According to Eq. (21), the MF coupling is not only determined
by the charge phase φ but also depends on the spin phase θ .
The associated Andreev levels and Josephson current have the
form

E = ± t̃

2
cos

(
φ ± θ

2

)
, (22a)

I = ∓2et̃

h
sin

φ

2
cos

θ

2
. (22b)

To confirm our analytical results, we numerically calculate
the eigenenergies of the time-reversal-invariant TSC/SOC-
semiconductor/TSC junction [see Fig. 7(a)]. The spin phase θ

shifts the two branches of Andreev levels oppositely in the φ

axis [Fig. 7(a)], which is consistent with our analytical results
in Eq. (22a). Based on Eq. (22a), the ground state energy takes
the form

Eg = − t̃

2

(∣∣∣∣ cos
φ + θ

2

∣∣∣∣ +
∣∣∣∣ cos

φ − θ

2

∣∣∣∣
)

, (23)

whose minimum is located at φ = 0 for θ ∈ (−π/2 +
2nπ,π/2 + 2nπ ) and at φ = π for θ ∈ (π/2 + 2nπ,3π/2 +
2nπ ). At the transition points θ = (2n + 1)π/2, the topo-
logical JJ has a double degeneracy at φ = 0 and φ = π .
Therefore, SOC can lead to a transition between the Josephson
0 and π junction in this case. In Fig. 7(b), given θ =
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0,π/4,π/2,3π/4,π , we plot the ground state energy as a
function of φ based on Eq. (23). The blue line for θ = π/2
shows the double degeneracy at φ = 0 and φ = π .

When the SOC field direction n̂ is perpendicular to the MF
spin (β = π/2), the MF-coupling Hamiltonian depends on the
azimuthal angle α, according to Eq. (15). With α = 0, the
Hamiltonian reads

H̃t = i
t̃

2
γ a

1

(
cos

φ

2
cos

θ

2
σ0 − sin

φ

2
sin

θ

2
σx

)
γ b

2 ,

whose eigenenergies are

E = ± t̃

2

(
cos

φ

2
cos

θ

2
± sin

φ

2
sin

θ

2

)
= ± t̃

2
cos

φ ± θ

2
,

(24)

the same as Eq. (22a) derived for the SOC field direction
parallel with the MF spin.

For α = π/2, the MF-coupling Hamiltonian is

H̃t = it̃

2
cos

φ

2

(
γ a

1↑γ b
2↗ + γ a

1↓γ b
2↙

)
, (25)

with

γ b
2↗ = cos

θ

2
γ b

2↑ + sin
θ

2
γ b

2↓,

γ b
2↙ = cos

θ

2
γ b

2↓ − sin
θ

2
γ b

2↑.

The associated Andreev levels and Josephson current are

E = ± t̃

2
cos

φ

2
, I = ∓et̃

�
sin

φ

2
,

which behave exactly in the same manner as those in the JJ
without SOC in the normal region. Moreover, the coupling
strength is completely independent of the SOC.

To better understand the MF-coupling Hamiltonian in the
three SOC field directions, we study the d vector of MZM-
induced superconducting condensates. In the normal region of
a JJ, the d vector of the spin-triplet pairing will experience
a torque λ�kfn̂ × d [35,36]. For the time-reversal-invariant
case, at site a, the two MZMs γ a

1↑,γ a
1↓ induce the spin-triplet

pairing amplitudes �↑↑ = �↓↓ = 1. According to Eq. (A5),
the corresponding d vector is (0,i,0), which is along the y axis.
When the SOC field direction n̂ is along the z or x axis, this d
vector will precess in the x-y or y-z plane, respectively, with
the same precession speed because of the same strength of the
SOC-induced torque. This gives similar Andreev level shift
in the φ axis due to the spin-phase θ [Fig. 7(a)]. When n̂ is
along the y direction, the SOC-induced torque is zero, and the
d vector being (0,i,0) will not precess so that the JJ behaves
like the ones without SOC in the normal region.

IV. ALL-ELECTRICAL CONTROL
AND MAJORANA BRAIDING

In this section, using the spin-phase physics developed in
the earlier sections of this paper, we construct a semiconductor
circuit to braid MZMs of time-reversal-symmetry-broken
TSCs by gate-voltage-tunable MF coupling with exponential
sensitivity and detect their non-Abelian statistics by measuring
the SOC-driven Josephson current (Fig. 8). We believe our

(a) (b)

(d) (c)

(a) (b)

(d) (c)

FIG. 8. Graphical representation of braiding MZMs and associ-
ated effective magnetic field. The three black wires labeled 1, 2, and
3 couple the four MZMs (yellow balls). Color white for the other two
MZMs is used to distinguish them from the four MZMs which are
involved in the braiding process. The solid (semitransparent) balls
indicate that the MZMs are uncoupled (coupled). The solid (dashed)
lines represent the “on” and “off” of the coupling through the wires.
The red arrows indicate the effective magnetic field direction of the
braiding Hamiltonian. The yellow arrows illustrate the trajectory of
the effective magnetic field during the braiding process.

suggested JJ-based braiding experiment to be both concep-
tually the most straightforward and experimentally the most
practical for semiconductor Majorana nanowire systems being
extensively studied in many laboratories all over the world.
The basic building block of this circuit is the topological
Josephson junction which connects two MZMs (Fig. 8).
The red wires represent semiconductor-wire-based topological
superconductors [8,9] which are coupled to the same s-wave
superconductor so that they have the same charge phase. The
three black wires couple the four MZMs (indicated by the
yellow balls in Fig. 8) and are used to braid γ a

2 and γ d
1 . The

solid (dashed) lines represent turning on (off) the MF coupling
which can be exponentially accurate if the gate-tunable chem-
ical potential of these wires is inside the semiconductor band
gap as shown in the inset of Fig. 2(b). The green line, coupling
γ d

1 with γ e
1 (Fig. 8), is turned on before and after braiding

to detect the non-Abelian statistics as being illustrated below
(Fig. 9).

During the braiding process [Figs. 8(a)–8(d)] finite SOC
is necessary to couple γ b

2 with γ a
2 and γ c

2 (wires 1 and 3
in Fig. 8) which form topological π JJs with the associated
Hamiltonian

H1(3) = it̃1(3)γ
a(c)
2 γ b

2 sin
θ

2
. (26)

Here t̃1(3) is the tunneling amplitude which is exponentially
sensitive to the wire chemical potential inside the semicon-
ductor band gap [inset of Fig. 2(b)] and θ is the spin phase
defined in Eq. (13). For simplicity, θ is assumed to be the same
in these two wires without loss of generality. The Zeeman
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FIG. 9. Reading out the fermion parity by measuring the Joseph-
son current direction. The green wire couples the MZMs γ d

1 and
γ e

1 and is labeled “0”. The blue and red arrows illustrate that the
Josephson current changes its direction before and after the braiding
process due to the non-Abelian nature of MZMs.

term is parallel to the SOC direction in wires 0, 1, and 3,
and thereby only effectively shifts the chemical potential of

electrons in the same spin channel without affecting the spin-
phase across these wires. The coupling between γ b

2 and γ d
1

forms a topological 0 junction and SOC is not necessary for
having a finite MZM coupling strength in wire 2 (Fig. 8).
Accordingly, the Hamiltonian of wire 2 has the form

H2 = it̃2γ
b
2 γ d

1 . (27)

During the braiding process, the states corresponding to the
four MZMs γ a

2 , γ b
2 , γ c

2 , and γ d
1 (yellow balls in Fig. 8) can be

written in the Fock basis as

|00〉,|11〉 = c
†
2c

†
1|00〉, |01〉 = c

†
2|00〉, |10〉 = c

†
1|00〉

with the occupation numbers of the two fermionic operators
c1 = (γ a

2 − iγ d
1 )/2 and c2 = (γ c

2 − iγ b
2 )/2. Here |0〉 and |1〉

correspond to the + and − of the fermion parity 1 − 2c†c,
respectively. The total fermion parity of these four MZMs
is P(t) = 〈t |iγ a

2 γ d
1 iγ b

2 γ c
2 |t〉 with 〈t | · · · |t〉 the average of the

state at time t . The MF-coupling Hamiltonians through the
three black wires (Fig. 8) in the Fock basis have the form

Hbr = H1 + H2 + H3 =
(

(t̃2sy − t̃1sx) sin θ
2 − t̃3sz 0

0 (t̃2sy − t̃1sx) sin θ
2 + t̃3sz

)
, (28)

where sx,y,z are the three Pauli matrices acting on the subspace
spanned by (|00〉, |11〉) with even total fermion parity or (|01〉,
|10〉) with odd total fermion parity. The Hamiltonian Hbr in
Eq. (28) is block diagonal which indicates the conservation
of the total fermion parity during the braiding process. In
each block, the Hamiltonian is exactly the same as that of
a spin- 1

2 particle in a magnetic field (red arrows in Fig. 8).
For simplicity, we assume t̃1,2,3 are positive and θ ∈ (0,π ).
The red arrows in Fig. 8 illustrate the effective magnetic
field in the block of the even total fermion parity with basis
|00〉 and |11〉. The coupling of the four MZMs through the
Hamiltonian Eq. (28) is equivalent to the tri-junction discussed
extensively in the semiconductor Majorana circuit literature
[40–42]. Accordingly, the braiding operation can be realized
by turning on and off the coupling in wires 1, 2, and 3
sequentially as shown in Fig. 8.

In the beginning, only the coupling in wire 3 is on so that the
effective magnetic field is along the z direction [Fig. 8(a)]. We
first turn off the coupling in wire 3 and in the meantime turn
on the coupling in wire 1 so that the MZM γ a

2 is transported
to γ c

2 and the effective magnetic field is along the x direction
[Fig. 8(b)]. Then we turn off the coupling in wire 1 and in the
meantime turn on the coupling in wire 2. The MZM γ d

1 is then
transported to γ a

2 and the effective magnetic field is along the
−y direction [Fig. 8(c)]. At last, we turn off the coupling in
wire 2 and at the same time turn on the coupling in wire 3 so
that the MZM is transported from γ c

2 to γ d
1 and the effective

magnetic field comes back to its original direction [Fig. 8(d)].
During the braiding operation, the effective field encloses a
solid angle π/2 as illustrated in Fig. 8. Consequently, the
evolution operator takes the form [43]

U =
(

exp
(−i π

4 sz

)
0

0 exp
(−i π

4 sz

)), (29)

and the MZMs γ a
2 and γ d

1 in the Heisenberg representation are
transformed as

γ a
2 (T ) = Uγ a

2 U † = −γ d
1 ,

γ d
1 (T ) = Uγ d

1 U † = γ a
2 , (30)

with T the braiding time.
To detect the non-Abelian braiding statistics, we connect γ d

1
with γ e

1 through the wire 0 (green wire in Fig. 9). According
to the discussion in Sec. III A, given a finite spin phase,
the fermion parity P0 is locked to the sign of the fractional
Josephson current through the wire 0. As the braiding is
operated in the absence of charge phase, we expect the normal
Cooper pair tunneling with 2π periodicity will not contribute to
the Josephson current. Thus, the initial fermion parity in wire
0, P0(t = 0) = 〈0|iγ a

1 γ b
1 |0〉, can be detected by measuring

the Josephson current through the wire 0. We then turn off
the coupling in wire 0 and start to braid the MZMs γ a

2 and
γ d

1 following the procedure in Fig. 8. After braiding the
MZMs twice, according to Eq. (30), the evolution of MZMs
in Heisenberg representation satisfies

γ d
1 (2T ) = U 2γ d

1 (U †)2 = −γ d
1 .

At the same time, as the coupling in wire 0 is turned off during
the process, the MZM γ b

1 commutes with the Hamiltonian Hbr

so that γ b
1 (2T ) = γ b

1 . The fermion parity in wire 0 in this case is

P0(2T ) = 〈2T |iγ d
1 γ e

1 |2T 〉 = 〈0|(U †)2iγ d
1 γ e

1 U 2|0〉
= 〈0|iγ d

1 (2T )γ e
1 (2T )|0〉 = −〈0|iγ d

1 γ e
1 |0〉 = −P0(0),

which is opposite to its initial value. Consequently, when we
turn on the coupling in wire 0 after braiding twice, the Joseph-
son current direction should also be opposite to that before
braiding. Therefore, the non-Abelian braiding statistics can
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be directly probed simply by measuring the spin-phase-driven
Josephson current direction in wire 0 before and after braiding.

Experimental feasibility. We note here that the U junction
is the building block of our proposed braiding devices. Since
the single-crystalline InSb nanowire networks [44] have been
fabricated and semiconductor nanowires with SOC coupling,
proximity-induced superconducting gap, and Zeeman spin
splitting have been realized experimentally [45–48], there
should be no significant technical obstacle to realize the
proposed devices in Fig. 8 and Fig. 9. For the braiding process,
our proposal only needs to tune the spin-orbit coupling through
the gate voltages inside the normal nanowire region (black
and green wires in Fig. 8 and Fig. 9) rather than the region
of Majorana wires (red wires) in proximity to the supercon-
ductors. Thus the proposed gate control of spin-orbit coupling
in our work can be achieved by standard technologies of the
semiconductor spintronics [23–28]. The measured Josephson
current, according to our calculation shown in Fig. 6, is about
0.07(2e�/�) with � the proximity-induced superconductor
gap in the topological-superconducting nanowires (red wires
in Figs. 8 and 9). By taking the proximity-induced hard gap in
InAs as 0.2 meV [49], the maximal SOC current in our model is
about 2 nA within the experimentally detectable regime. Thus
our proposal has the advantage of experimental feasibility.

V. CONCLUSION

In conclusion, we have established the emergence of spin
phase for MFs and demonstrated that it can be tuned by SOC in
the normal region of the topological JJ. This spin phase has an
important topological origin in the sense that it arises from
an intrinsic Majorana-induced π -phase difference between
opposite ends of a spinful one-dimensional TSC, which we
have shown to exhibit crucial spin dependence. The spin-
phase-based Majorana spin physics is not only conceptually
novel, but also implies innovative applications in making
robust gate-voltage-tunable fractional π and ϕ0 junctions.
We thus provide an all-electrically controlled semiconductor
circuit to braid MZMs and to read out the topological
information encoded by their non-Abelian statistical features
without tuning any external magnetic flux, which opens the
way to electrically controlled Majorana spintronics studies.
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APPENDIX A: SPIN-TRIPLET COOPER PAIRS

Considering a Cooper pair composed of two electrons, the
wave function can be heuristically written as

� = ψ↑↑|↑↑〉 + ψ↑↓|↑↓〉 + ψ↓↑|↓↑〉 + ψ↓↓|↓↓〉, (A1)

where ψ↑↑(↑↓,↓↑,↓↓) are the coefficients of the correspond-
ing spin states. However, Eq. (A1) is not convenient or

precise in describing superconductors lacking spin rota-
tion symmetry. To get a more general and concise de-
scription of the spin-triplet Cooper pairs, we introduce
a four-component spinor field C(x̂+) = [c↑(x̂+),c↓(x̂+), −
c
†
↓(x̂−),c†↑(x̂−)]T, where x̂± = (±ε,r) with ε and r the energy

and spatial coordinates, respectively. Then the density matrix
in the second quantization language can be defined as

Dij (x̂+) = −iG<
ij (x̂+) = 〈C†

j (x̂+) ⊗ Ci(x̂+)〉,
where G< is the lessor Green’s function [50]. The anomalous
density matrix [with elements taken from the upright 2 × 2
block of the 4 × 4 density matrix D(x̂+)] that corresponds to
the pairing amplitudes can be written as

f (x̂+) =
(−〈c↓(x̂−)c↑(x̂+)〉 〈c↑(x̂−)c↑(x̂+)〉

−〈c↓(x̂−)c↓(x̂+)〉 〈c↑(x̂−)c↓(x̂+)〉
)

=
(−ψ↓↑ ψ↑↑

−ψ↓↓ ψ↑↓

)
. (A2)

Here 〈. . . 〉 represents the thermal average. When electrons are
coupled to a magnetic flux, as spin-up and spin-down electrons
have the same charge e, they will acquire the same charge phase
φ(r)/2 as (

c↑(r)
c↓(r)

)
−→

(
c↑(r)
c↓(r)

)
eiφ(r)/2.

According to Eq. (A2), the anomalous density matrix is
transformed as(−ψ↓↑ ψ↑↑

−ψ↓↓ ψ↑↓

)
−→

(−ψ↓↑ ψ↑↑
−ψ↓↓ ψ↑↓

)
eiφ(r), (A3)

which indicates that all pairing states must have the same
charge phase.

By using the anomalous density matrix, we can define a
complex vector,

d = Tr

[
1

2
σ f

]
, (A4)

with σ = (σx,σy,σz) the Pauli matrices in spin space. From
Eq. (A4), we have

dx = ψ↑↑−ψ↓↓
2

, dy = i
ψ↑↑+ψ↓↓

2
, dz = −ψ↑↓ − ψ↓↑

2
.

(A5)

With the d-vector representation, it is instructive to consider
a spin-triplet state with coefficients ψ↑↑ = e−iθ ,ψ↑↓ = ψ↓↑ =
0,ψ↓↓ = eiθ . The corresponding anomalous part of the density
matrix is

f =
(

0 e−iθ

−eiθ 0

)
= i(cos θσy − sin θσx), (A6)

with (dx,dy,dz)T = i(− sin θ, cos θ,0)T. We find that the rel-
ative phase between the states |↑↑〉 and |↓↓〉 corresponds to
the azimuthal angle of the d vector in the x-y plane. It is
worthwhile to note that this state has no spin polarization
although it is a spin-triplet state. This type of spin-triplet state
is called the unitary state [33]. For any unitary spin-triplet state,
its d vector is always real up to an overall U (1) phase [33] and
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therefore it satisfies |d · d| = |dx |2 + |dy |2 + |dz|2. There is
yet another type of spin-triplet state whose pairing is restricted
in one spin channel, and such states are fully spin polarized.
For a state of this type, we can always choose a spin basis
with ψ↑↑ = 1 and ψ↑↓ = ψ↓↑ = ψ↓↓ = 0. The corresponding
anomalous density matrix reads

f =
(

0 1
0 0

)
= 1

2
σx + i

2
σy, (A7)

and we have (dx,dy,dz) = (1/2,i/2,0). The d vector of this
state satisfies the condition d · d = 0.

APPENDIX B: 0-π TOPOLOGICAL JJ TRANSITION
BEYOND THE STRONG ZEEMAN SPLITTING LIMIT

In this section, we consider the transformation of Cooper
pairs under the mirror operation Mz. Cooper pairs can be
described by a block off-diagonal density matrix,

Doff(r)

=
(

0 f (r)
f̄ (r) 0

)

=
(

0 [d0(r)σ0 + di(r)σi]iσy

−iσy[d0(r)∗σ0 + d∗
i (r)σi] 0

)
,

(B1)

with r = (x,y,z) and d0(r) and di=x,y,z(r) the amplitudes of
s-wave spin-singlet Cooper pairs and spin-triplet triplet ones
with the d vector along the x, y, and z directions, respectively.
Here, we assume that the spin-triplet pairs are induced by
MZMs and are thereby s wave [1,3]. The mirror operator Mz

in electron-hole and spin spaces is

Mz =
(

iσz 0
0 −iσz

)
.

For a mirror (Mz) symmetric system we have

MzD
off(r)M−1

z =
(

0 iσzf (x,y,z)iσz

iσzf̄ (x,y,z)iσz 0

)

=
(

0 f (x,y,−z)
f̄ (x,y,−z) 0

)
, (B2)

with

iσzf (r)iσz = [d0(r)σ0 + dz(r)σz − dx(r)σx − dy(r)σy]iσy

= f (x,y,−z) = [d0(x,y,−z)σ0+dz(x,y,−z)σz

+ dx(x,y,−z)σx + dy(x,y,−z)σy]iσy.

As the magnetic flux does not distinguish spin-up or spin-
down, all of the four Cooper pairs should have the same
flux-induced charge phase. However according to Eq. (B2),
only those spin-triplet pairs with the d vector along the x

or y direction are opposite in sign at z and −z. In other
words, they have a π -phase difference. Besides, the s-wave
spin-singlet bulk superconducting gap in the semiconductor
nanowire models [Eqs. (1) and (6)] is uniform in the entire
wire. We therefore conclude here that this π -phase difference
for the dx and dy spin-triplet Cooper pairs is not a charge phase
but a spin phase.

We have demonstrated topological 0 and π JJs in the
strong Zeeman splitting limit of a 1D BDI class topological
superconductor model in Sec. II. Actually the conclusion of
topological 0 and π JJs for the setups in Figs. 1(a) and 1(b) is
valid for any multichannel D class topological superconductor
model as long as it has mirror symmetry with mirror plane
perpendicular to the wire direction.

We first consider the 1D BDI class topological supercon-
ductor model beyond the strong Zeeman splitting limit. The
tight-binding model described by Eq. (1) in the continuous
limit takes the form

H =
[(

− �
2

2m
∂2
z − μ

)
σ0 + Mzσz + λi∂zσy

]
τz − �σyτy.

(B3)

For the realistic semiconductor nanowire, the chemical poten-
tial μ ≈ 0 and the SOC energy λkf is much smaller than the
superconducting gap � and Zeeman energy Mz [45,51]. In this
case, the right MZM of Eq. (B3) is [2,52]

γ1(z) = (ĉ ĉ†)

(
u1(z)
u1(z)

)
, (B4)

where

ĉ =
(

c↑
c↓

)
, u1(z) = u∗

1(z) = ewz

(
� + wλ

Mz − μ − w2

)

+ jevz

(
� + vλ

Mz − μ − v2

)
+ j ∗ev∗z

(
� + v∗λ

Mz − μ − v∗2

)
,

v ≈ ikf,eff + δ, and w ≈ kf,eff + δ with kf,eff ≈ √
2m(M2

z −
�2)1/4 and δ ≈ λ�m/

√
V 2

z − �2. To satisfy the boundary
condition γ1(z = 0) = 0, we have j = −1/2 − i/2.

As ewz decays much faster than evz or ev∗z, by neglecting
the term containing ewz in Eq. (B4), the MZM wave function
inside the TSC can be simplified as

u1(z) = cos(kf,effz)eδz

(
�

Mz + √
M2

z − �2

)

= s(z)

(
cos

(
η

2

)
sin

(
η

2

)
)

, (B5)

where its spin direction only depends on � and Mz with
tan η = �/(Mz + √

M2
z − �2). Here, because SOC energy is

much smaller than the Zeeman energy and superconducting
gap, we also neglect the terms containing SOC strength λ. As
the system is invariant under the mirror operation Mz, the left
MZM γ2 takes the form

γ2(z) = (ĉ ĉ†)

(
iu2(z)

−iu2(z)

)
,

u2(z) = iσzu1(−z) = s(−z)

(
cos

(
η

2

)
− sin

(
η

2

)
)

.

For the topological JJ in Fig. 1(a), the Hamiltonian in
Eq. (14) can be rewritten in the spin quantization basis of
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γ a
1 and γ b

2 as

H̃ (t) = t̃

⎛
⎜⎜⎜⎜⎝

cos
(

η

2

)
c
†
a,↑

sin
(

η

2

)
c
†
a,↓

cos
(

η

2

)
ca,↑

sin
(

η

2

)
ca,↓

⎞
⎟⎟⎟⎟⎠

T

(
e

i
2 (φσ0) 0
0 −e− i

2 (φσ0)

)⎛
⎜⎜⎜⎝

i cos
(

η

2

)
cb,↑

−i sin
(

η

2

)
cb,↓

i cos
(

η

2

)
cb,↑

−i sin
(

η

2

)
cb,↓

⎞
⎟⎟⎟⎠

= t̃

⎛
⎜⎜⎜⎜⎝

cos
(

η

2

)
ca,↑

sin
(

η

2

)
ca,↓

cos
(

η

2

)
c
†
a,↑

sin
(

η

2

)
c
†
a,↓

⎞
⎟⎟⎟⎟⎠

T

R̂
†
1R̂1

(
e

i
2 (φσ0) 0
0 −e− i

2 (φσ0)

)
R̂

†
2R̂2

⎛
⎜⎜⎜⎝

i cos
(

η

2

)
cb,↑

−i sin
(

η

2

)
cb,↓

−i cos
(

η

2

)
cb,↑

i sin
(

η

2

)
cb,↓

⎞
⎟⎟⎟⎠

= t̃

⎛
⎜⎜⎝

c
†
a,↗
0

ca,↗
0

⎞
⎟⎟⎠

T(
e

i
2 (φσ0+2ησy ) 0

0 −e− i
2 (φσ0−2ησy )

)⎛
⎜⎜⎝

icb,↖
0

−ic
†
b,↖

0

⎞
⎟⎟⎠

= t̃

⎛
⎜⎜⎝

c
†
↗
0

c↗
0

⎞
⎟⎟⎠

T

U †U

(
e

i
2 (φσ0+2ησy ) 0

0 −e− i
2 (φσ0−2ησy )

)
U †U

⎛
⎜⎜⎝

icb,↖
0

−ic
†
b,↖

0

⎞
⎟⎟⎠

= t̃

⎛
⎜⎜⎝

γ a
1,↗
0
0
0

⎞
⎟⎟⎠

T(
eiησy i sin φ0

2 ieiησy cos φ0

2
−ieiησy cos φ0

2 ieiησy sin φ0

2

)⎛
⎜⎜⎝

0
0

γ b
2,↖
0

⎞
⎟⎟⎠ = it̃ cos η cos

φ0

2
γ a

1↗γ b
2↖, (B6)

where

R̂1 = exp

(
i

2
ησy

)
τ0, R̂2 = exp

(
− i

2
ησy

)
τ0

rotate the spin quantization axis of γ1 and γ2 to the z axis,
respectively, and

γ1↗ = [cos(η/2)c↑ + sin(η/2)c↓] + [cos(η/2)c†↑

+ sin(η/2)c†↓],

γ2↖ = −i[cos(η/2)c↑ − sin(η/2)c↓] + i[cos(η/2)c↑
− sin(η/2)c↓].

For the multichannel semiconductor wire, there is an
additional SOC hopping term λp̂yσz which breaks the complex
symmetry but respects the mirror symmetry with the mirror
plane perpendicular to the wire direction. Thus the spin
wave function of MZM γ1 and γ2 can be generally written
as ( cos(η/2), sin(η)e−iζ )T and (i cos(η/2),−i sin(η)e−iζ )T,

respectively, with ζ the azimuthal angle of γ1 spin polarization.
Correspondingly, the rotation operators R̂1 and R̂2 are general-
ized to R̂1(2) = exp(±in · σ ) with n = − sin(ζ )ex + cos(ζ )ey .
By inserting the new spin wave functions and rotation
operators into Eq. (B6), we find that the coupling Hamiltonian
form is not affected by the azimuthal angle ζ and is thus valid
for multichannel D class TSCs which are invariant under the
mirror operation Mz.

It is noted that effective coupling Hamiltonian [Eq. (B6)]
is always a topological Josephson 0 junction and cos η is the
inner product of the spin wave functions of γ a

1↗ and γ b
2↖. When

η = 0, Eq. (B6) returns to the MZM coupling Hamiltonian
for the strong Zeeman splitting limit. For the topological JJ
in Fig. 1(b), the two MZMs γ a

1 and γ b
1 have the same spin

polarization so that their coupling Hamiltonian is always

Ht = i sin
φ0

2
γ a

1↗γ b
1↗,

which corresponds to a topological Josephson π junction.
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Krogstrup, J. Nygård, and C. M. Marcus, Nat. Nano. 10, 232
(2015).

[50] J. Rammer, Quantum Field Theory of Non-equilibrium States
(Cambridge University Press, New York, 2007).

[51] S. D. Sarma, M. Freedman, and C. Nayak, npj Quantum Info. 1,
15001 (2015).

[52] S. Das Sarma, J. D. Sau, and T. D. Stanescu, Phys. Rev. B 86,
220506 (2012).

014511-13

http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevB.82.214509
http://dx.doi.org/10.1103/PhysRevB.82.214509
http://dx.doi.org/10.1103/PhysRevB.82.214509
http://dx.doi.org/10.1103/PhysRevB.82.214509
http://dx.doi.org/10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1038/nphys1915
http://dx.doi.org/10.1038/nphys1915
http://dx.doi.org/10.1038/nphys1915
http://dx.doi.org/10.1038/nphys1915
http://dx.doi.org/10.1103/PhysRevB.87.060504
http://dx.doi.org/10.1103/PhysRevB.87.060504
http://dx.doi.org/10.1103/PhysRevB.87.060504
http://dx.doi.org/10.1103/PhysRevB.87.060504
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184337
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184337
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184337
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184337
http://dx.doi.org/10.1103/PhysRevLett.111.056402
http://dx.doi.org/10.1103/PhysRevLett.111.056402
http://dx.doi.org/10.1103/PhysRevLett.111.056402
http://dx.doi.org/10.1103/PhysRevLett.111.056402
http://dx.doi.org/10.1103/PhysRevX.4.021018
http://dx.doi.org/10.1103/PhysRevX.4.021018
http://dx.doi.org/10.1103/PhysRevX.4.021018
http://dx.doi.org/10.1103/PhysRevX.4.021018
http://dx.doi.org/10.1088/0953-2048/28/1/014001
http://dx.doi.org/10.1088/0953-2048/28/1/014001
http://dx.doi.org/10.1088/0953-2048/28/1/014001
http://dx.doi.org/10.1088/0953-2048/28/1/014001
http://dx.doi.org/10.1103/PhysRevB.89.104519
http://dx.doi.org/10.1103/PhysRevB.89.104519
http://dx.doi.org/10.1103/PhysRevB.89.104519
http://dx.doi.org/10.1103/PhysRevB.89.104519
http://dx.doi.org/10.1038/srep08880
http://dx.doi.org/10.1038/srep08880
http://dx.doi.org/10.1038/srep08880
http://dx.doi.org/10.1038/srep08880
http://dx.doi.org/10.1103/PhysRevB.91.064505
http://dx.doi.org/10.1103/PhysRevB.91.064505
http://dx.doi.org/10.1103/PhysRevB.91.064505
http://dx.doi.org/10.1103/PhysRevB.91.064505
http://dx.doi.org/10.1103/PhysRevB.67.220504
http://dx.doi.org/10.1103/PhysRevB.67.220504
http://dx.doi.org/10.1103/PhysRevB.67.220504
http://dx.doi.org/10.1103/PhysRevB.67.220504
http://dx.doi.org/10.1103/PhysRevLett.98.076604
http://dx.doi.org/10.1103/PhysRevLett.98.076604
http://dx.doi.org/10.1103/PhysRevLett.98.076604
http://dx.doi.org/10.1103/PhysRevLett.98.076604
http://dx.doi.org/10.1038/nature07871
http://dx.doi.org/10.1038/nature07871
http://dx.doi.org/10.1038/nature07871
http://dx.doi.org/10.1038/nature07871
http://dx.doi.org/10.1126/science.1195816
http://dx.doi.org/10.1126/science.1195816
http://dx.doi.org/10.1126/science.1195816
http://dx.doi.org/10.1126/science.1195816
http://dx.doi.org/10.1103/PhysRevLett.109.246603
http://dx.doi.org/10.1103/PhysRevLett.109.246603
http://dx.doi.org/10.1103/PhysRevLett.109.246603
http://dx.doi.org/10.1103/PhysRevLett.109.246603
http://dx.doi.org/10.1038/nphys2383
http://dx.doi.org/10.1038/nphys2383
http://dx.doi.org/10.1038/nphys2383
http://dx.doi.org/10.1038/nphys2383
http://arxiv.org/abs/arXiv:1403.3518
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/PhysRevB.91.094513
http://dx.doi.org/10.1103/PhysRevB.91.094513
http://dx.doi.org/10.1103/PhysRevB.91.094513
http://dx.doi.org/10.1103/PhysRevB.91.094513
http://dx.doi.org/10.1016/0031-9163(62)91369-0
http://dx.doi.org/10.1016/0031-9163(62)91369-0
http://dx.doi.org/10.1016/0031-9163(62)91369-0
http://dx.doi.org/10.1016/0031-9163(62)91369-0
http://dx.doi.org/10.1143/JPSJ.61.4283
http://dx.doi.org/10.1143/JPSJ.61.4283
http://dx.doi.org/10.1143/JPSJ.61.4283
http://dx.doi.org/10.1143/JPSJ.61.4283
http://dx.doi.org/10.1103/RevModPhys.47.331
http://dx.doi.org/10.1103/RevModPhys.47.331
http://dx.doi.org/10.1103/RevModPhys.47.331
http://dx.doi.org/10.1103/RevModPhys.47.331
http://dx.doi.org/10.1103/RevModPhys.76.411
http://dx.doi.org/10.1103/RevModPhys.76.411
http://dx.doi.org/10.1103/RevModPhys.76.411
http://dx.doi.org/10.1103/RevModPhys.76.411
http://dx.doi.org/10.1103/PhysRevLett.110.117003
http://dx.doi.org/10.1103/PhysRevLett.110.117003
http://dx.doi.org/10.1103/PhysRevLett.110.117003
http://dx.doi.org/10.1103/PhysRevLett.110.117003
http://dx.doi.org/10.1103/PhysRevLett.113.227002
http://dx.doi.org/10.1103/PhysRevLett.113.227002
http://dx.doi.org/10.1103/PhysRevLett.113.227002
http://dx.doi.org/10.1103/PhysRevLett.113.227002
http://dx.doi.org/10.1103/PhysRevB.89.134517
http://dx.doi.org/10.1103/PhysRevB.89.134517
http://dx.doi.org/10.1103/PhysRevB.89.134517
http://dx.doi.org/10.1103/PhysRevB.89.134517
http://dx.doi.org/10.1103/RevModPhys.87.1037
http://dx.doi.org/10.1103/RevModPhys.87.1037
http://dx.doi.org/10.1103/RevModPhys.87.1037
http://dx.doi.org/10.1103/RevModPhys.87.1037
http://dx.doi.org/10.1038/nphys3242
http://dx.doi.org/10.1038/nphys3242
http://dx.doi.org/10.1038/nphys3242
http://dx.doi.org/10.1038/nphys3242
http://dx.doi.org/10.1103/PhysRevB.84.094505
http://dx.doi.org/10.1103/PhysRevB.84.094505
http://dx.doi.org/10.1103/PhysRevB.84.094505
http://dx.doi.org/10.1103/PhysRevB.84.094505
http://dx.doi.org/10.1088/1367-2630/14/3/035019
http://dx.doi.org/10.1088/1367-2630/14/3/035019
http://dx.doi.org/10.1088/1367-2630/14/3/035019
http://dx.doi.org/10.1088/1367-2630/14/3/035019
http://dx.doi.org/10.1103/PhysRevB.88.035121
http://dx.doi.org/10.1103/PhysRevB.88.035121
http://dx.doi.org/10.1103/PhysRevB.88.035121
http://dx.doi.org/10.1103/PhysRevB.88.035121
http://dx.doi.org/10.1002/adma.201470194
http://dx.doi.org/10.1002/adma.201470194
http://dx.doi.org/10.1002/adma.201470194
http://dx.doi.org/10.1002/adma.201470194
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1021/nl303758w
http://dx.doi.org/10.1021/nl303758w
http://dx.doi.org/10.1021/nl303758w
http://dx.doi.org/10.1021/nl303758w
http://dx.doi.org/10.1038/nphys2429
http://dx.doi.org/10.1038/nphys2429
http://dx.doi.org/10.1038/nphys2429
http://dx.doi.org/10.1038/nphys2429
http://dx.doi.org/10.1103/PhysRevLett.112.217001
http://dx.doi.org/10.1103/PhysRevLett.112.217001
http://dx.doi.org/10.1103/PhysRevLett.112.217001
http://dx.doi.org/10.1103/PhysRevLett.112.217001
http://dx.doi.org/10.1038/nnano.2014.306
http://dx.doi.org/10.1038/nnano.2014.306
http://dx.doi.org/10.1038/nnano.2014.306
http://dx.doi.org/10.1038/nnano.2014.306
http://dx.doi.org/10.1038/npjqi.2015.1
http://dx.doi.org/10.1038/npjqi.2015.1
http://dx.doi.org/10.1038/npjqi.2015.1
http://dx.doi.org/10.1038/npjqi.2015.1
http://dx.doi.org/10.1103/PhysRevB.86.220506
http://dx.doi.org/10.1103/PhysRevB.86.220506
http://dx.doi.org/10.1103/PhysRevB.86.220506
http://dx.doi.org/10.1103/PhysRevB.86.220506



