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Temperature dependence of viscosity in normal fluid 3He below 800 mK determined by a
microelectromechanical oscillator

M. González,1,* W. G. Jiang,1 P. Zheng,1 C. S. Barquist,1 H. B. Chan,2 and Y. Lee1,†
1Department of Physics, University of Florida, Gainesville, Florida 32611-8440, USA

2Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
(Received 28 April 2016; revised manuscript received 30 May 2016; published 7 July 2016)

A microelectromechanical system vibrating in its shear mode was used to study the viscosity of normal liquid
3He from 20 to 770 mK at 3, 21, and 29 bars. The damping coefficient of the oscillator was determined by
frequency sweeps through its resonance at each temperature. Using a slide film damping model, the viscosity
of the fluid was obtained. Our viscosity values are compared with previous measurements and with calculated
values from Fermi-liquid theory. The crossover from the classical to the Fermi-liquid regime is manifest in
the temperature dependence of viscosity. In the Fermi-liquid regime, the temperature dependence of viscosity
changes from T −1 to T −2 on cooling, indicating a transition from the Stokes flow to the Couette flow regime.
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I. INTRODUCTION

Liquid 3He has been one of the most important systems on
which the foundations of Fermi-liquid theory is studied. As
a highly pure Fermi system, the low-temperature behavior of
its transport properties is tied to the strong temperature depen-
dence in the inelastic quasiparticle scattering time [1,2]. In the
fully degenerate Fermi-liquid regime, approximate solutions
to the collision integral in the quasiparticle transport equation
were first proposed by Abrikosov and Khalatnikov [3] and
further extended by Hone [4]. Since then, it has been widely
established that the leading term in the viscous relaxation
time has a temperature dependence given by 1/τ ∝ T −2.
Extensions to these models to account for higher-temperature
corrections were later proposed by Emery and Cheng [5],
Rice [6,7], and others [8,9].

The viscosity of liquid 3He has been experimentally studied
using various measurement techniques from the zero sound
attenuation [10,11] to the damping on a moving object
immersed in the liquid, such as magnetic vibrating wires [12]
and torsional pendulum oscillators [13,14]. These mechanical
oscillators have proven instrumental in accurately determining
the transport coefficients of the normal liquid-3He system.
However, although an extended body of studies on its viscous
properties can be found in the literature, to date there has
not been one where a single viscometer is used to cover a
wide temperature and pressure range and where the crossover
between the classical to the quantum fluid behavior, i.e., the
onset of the Fermi-liquid behavior, is clearly observed.

Recently, miniature piezoelectric tuning fork oscillators
have become a very valuable tool in the study of liquid
helium [15,16]. Additionally, other miniature oscillators based
on microelectromechanical systems (MEMS) and nanoelec-
tromechanical systems have been recently developed by
various groups [17–20]. These devices allow the custom
engineering of mechanical structures capable of systematically
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probing quantum fluids at length scales determined by their
transport properties, topological structures, such as quantum
vortices, or, in the case of the different phases of superfluid
3He, their Cooper pair coherence length. For example, there
has been recent interest in the properties of both normal liquid
3He and superfluid 3He confined in a quasi-two-dimensional
(quasi-2D) film [21,22].

The MEMS oscillator used in this paper consists of
a plate suspended above the substrate by four serpentine
springs. The device is actuated by the electrostatic interaction
between interdigitated electrodes [17]. The gap between the
top oscillating plate and the substrate was designed to have
a fixed thickness. The MEMS device is functional without
a magnetic field. The unique yet simple geometry of the
oscillator ensures that all the electromechanical parameters can
be obtained analytically and the damping, experienced when
oscillating in a fluid, can be fully modeled. The gap between
the movable plate and the substrate facilitates the investigation
of the entrained liquid film and makes it possible to examine the
behavior of the fluid in a quasi-two-dimensional environment.
The large plate size and its one-dimensional movement induce
a uniform velocity profile of the moving object preventing
additional complications in the analysis often found in other
types of oscillators.

The data presented here are extracted from sweeping the
excitation frequency through the resonance of the MEMS
oscillator from 20 to 770 mK at 3, 21, and 29 bars. The data are
analyzed to give the leading term of the temperature-dependent
viscosity of liquid 3He and then compared with the viscosity
values measured in other works as well as the theoretical
predictions.

II. ANALYTICAL DESCRIPTION OF THE MEMS DEVICE

A. Device characteristics and slide film damping model

The movable part of the oscillator can be divided into six
types of structures as shown in Fig. 1. Each one contributes
differently to the damping due to their difference in size, aspect
ratio with respect to the oscillation direction, and different gap
distances from the substrate. A film of liquid 3He is formed
in the gap beneath these structures. Additional information
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FIG. 1. A computer-aided design (CAD) image of the movable
part on the MEMS oscillator. The oscillating direction of the plate
in the shear mode is marked by the double arrow in the middle.
The movable part is composed of six structures labeled on the
figure. Structure six is called the oscillating plate and has the
largest surface area. Colors show the amplitudes of displacement
of various structures. The red movable parts are oscillating with the
largest amplitude. The four blue squares are fixed on the substrate,
representing the anchors of the four serpentine springs.

about the device and the measurement scheme can be found
in Refs. [17,23]. In vacuum, at least four well-separated
eigenfrequencies were identified in the oscillator through
COMSOL multiphysics simulations. Each one corresponds to a
different oscillation mode of the movable plate: The trampoline
mode with vertical motions, two pivot modes with rotational
oscillations around the x axis and the y axis, respectively, and
the shear mode with horizontal oscillations along the x axis as
shown in Fig. 1. When the device is immersed in liquid, only
the shear mode can be observed due to the high damping in all
the other modes.

The steady flow of an incompressible fluid can be described
by the Navier-Stokes equation. It describes the most general
case of a steady flow of an incompressible fluid [24],

ρ

[
∂v

∂t
+ (v · ∇)v

]
= F − ∇p + η∇2v, (1)

where v is the velocity field, ρ is the fluid density, F is the
external force, p is the pressure of the liquid, and η is the
dynamic viscosity. In our experiment, the plate is submerged
in a fluid and in relative tangential motion to a fixed substrate.
The direction of the one-dimensional oscillation of the plate is
defined as the x direction. In the absence of F and ∇p, Eq. (1)
reduces to

∂vx

∂t
+ vx

∂vx

∂x
= η

ρ

∂2vx

∂z2
. (2)

Here, z is the direction perpendicular to the substrate surface
with the origin at the substrate. In the real experimental system,
the length scale of the plate is much larger than both the gap
size and the amplitude of oscillation. Therefore, the velocity
can be taken to be translationally invariant in the x direction,
and Eq. (2) can be further simplified by eliminating the ∂vx/∂x

term,

∂vx

∂t
= η

ρ

∂2vx

∂z2
. (3)

Equation (3) is a one-dimensional diffusion equation, which
can be solved in two different flow regimes: the Couette and
the Stokes flow regimes.

When the gap size d is much smaller than the viscous
penetration depth δ = √

2η/ρω, referred to as the Couette
regime, Eq. (3) can be approximated to

∂2vx

∂z2
= 0. (4)

If the boundary condition is nonslip, Eq. (4) has a simple
solution,

vx(z) = vp

z

d
, (5)

where vp is the velocity of the oscillating plate. The solution
represents a simple linear velocity profile inside the gap. From
this solution, the viscous force on the plate can be calculated
as F = Apηvp/d, where Ap is the contact surface area of the
plate to the liquid. The damping coefficient is then simply
γ = Apη/d.

On the other hand, in the Stokes limit where the condition
δ � d is not satisfied, no approximation can be made in Eq. (3).
By implementing the nonslip boundary conditions again, the
flow field is given by [25]

vx(z) = vp

sinh(qz)

sinh(qd)
, (6)

where q = √
iω/ν and ν = η/ρ. The damping admittance can

be calculated in a similar way as above,

γ̄ = F

vp

= Ap

η

vp

∂vx

∂z

∣∣∣∣
z=d

= Apqη

tanh(qd)
. (7)

The real part of this complex admittance gives the damping
coefficient,

Re(γ̄ ) = ηAp

δ

sinh(2d/δ) + sin(2d/δ)

cosh(2d/δ) − cos(2d/δ)
, (8)

and the imaginary part is responsible for the frequency shift
due to mass loading,

Im(γ̄ ) = ηAp

δ

sinh(2d/δ) − sin(2d/δ)

cosh(2d/δ) − cos(2d/δ)
. (9)

Taking into account all six structures of the movable part of
the MEMS oscillator (see Fig. 1), the dependence of damping
coefficient on the viscosity can be expressed as

γtot = η

δ

[
6∑

i=1

Ai

sinh
( 2di

δ

) + sin
( 2di

δ

) + k1i

cosh
( 2di

δ

) − cos
( 2di

δ

) + k2i

+ At

]
,

(10)

where γtot is the total damping coefficient on the moving plate,
di is the effective gap size and Ai is the area of the ith structure
of the movable part in contact with the confined liquid film
or the top/bottom side of the movable part, and k1i and k2i

are two parameters that arise when first-order slip boundary
conditions are considered. At = ∑6

i=1 Ai is the total area of
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TABLE I. Values of gap sizes and areas of various structures of
the movable part. The labels from 1 to 6 are the same as those in
Fig. 1

Structure i d̃i (μm) di (μm) Ai (μm2)

S1 2 0.90 2 × 398 × 14 = 11144
S2 2 1.39 2 × 39 × 24 = 1872
S3 2 0.90 2 × 400 × 14 = 11200
S4 2 1.60 4 × 67 × 22 = 5896
S5 2.75 1.27 4 × 20 × 13 = 1040
S6 0.75 0.72 178 × 178 = 31684

the movable part in contact with the bulk fluid, and this term
in Eq. (10) accounts for the damping contribution from the
bulk fluid above the movable part. The effective gap size di

accounts for the effect of the finite size of the structures on the
MEMS oscillator. It was calculated from the real gap size d̃i

and the length l of the corresponding structure in the direction
of oscillation [25],

di = d̃i

1 + 8.5 d̃i

l

. (11)

The di and Ai values are taken from the design with an error of
5%, listed in Table I. The value 8.5 is a phenomenological value
estimated in Ref. [25] through simulations and experiments for
the shear plate geometry.

The forms of k1i and k2i are [25]

k1i = 4r

[
(1 + r2) cosh

(
2d

δ

)
+ (1 − r2) cos

(
2d

δ

)]

+ 6r2

[
sinh

(
2d

δ

)
− sin

(
2d

δ

)]
, (12)

k2i = 4r

[
(1 + 2r2) sinh

(
2d

δ

)
+ (1 − 2r2) sin

(
2d

δ

)]

+ 4r2

[
(2 + r2) cosh

(
2d

δ

)
+ (2 − r2) cos

(
2d

δ

)]
.

(13)

Here, r = ζ/δ is the ratio of slip length to the penetration
depth. The slip length is a phenomenological parameter
introduced as a correction to the hydrodynamic boundary
condition and is on the order of the mean-free path [26,27].
Around 100 mK, the slip length is ∼10 nm, and the penetration
depth is ∼1 μm. Therefore in this experiment r ∼ 10−2 � 1
and k1i and k2i are at least two orders of magnitude smaller
than the other terms in Eq. (10), therefore negligible. In the
limit δ � d, Eq. (10) reduces to γ = Apη/δ, where Ap = 2At

now includes both the top and the bottom sides of the plate.

In this experiment, the thickness d of the gap and the
penetration depth δ are comparable. Therefore, the full
expression Eq. (10) should be applied. This then enables
us to study the temperature dependence of the viscosity in
normal fluid 3He by applying Khalatnikov’s prediction for the
viscosity at low temperatures [3],

1

ηT 2
= a, (14)

where a is a function of pressure. One can recast Eq. (10) in
a form more suitable for analysis by using P1 = √

1/a and
P2 = √

2/ρω,

γtot = P1

P2T

[
6∑

i=1

Ai

sinh
( 2 diT

P1P2

) + sin
( 2 diT

P1P2

)
cosh

( 2 diT

P1P2

) − cos
( 2 diT

P1P2

) + At

]
+ P3.

(15)

Here P3 is an unknown constant background term due to
intrinsic losses in the device [28]. P2 is a constant that can
be directly calculated. At a given pressure, one can use the
tabulated molar volume of liquid 3He to find its density ρ [29].
And ω can be taken as the averaged resonance frequency over
the whole temperature range since the shift is typically only
within 3%. Hence, we get the values of P2 as listed in Table II.

B. Resonance model

The pressure of the liquid was maintained at three different
values: 3, 21, and 29 bars. Frequency sweeps near 23 kHz were
carried out to obtain a resonance Lorentzian peak proportional
to the amplitude of displacement of the moving plate. The
MEMS device is driven by a periodic external force Fe =
F0e

−iωt . The experiment was performed in the hydrodynamic
limit ωτ � 1, where ω is the driving frequency and τ is the
quasiparticle relaxation time. The oscillation of the center plate
of the device can be described by

mẍ(t) + γ ẋ(t) + kx(t) = Fe. (16)

Here, m is the total mass of the movable part of the MEMS
device, γ is the damping coefficient, k is the total spring
constant of the system, and x(t) is the displacement of the
center plate measured from its rest position. The solution to
Eq. (16) gives the magnitude of displacement as

|x| = F0

m

1

4π2
√(

f 2
0 − f 2

)2 + w2f 2
, (17)

where w = γ /2πm. This solution establishes that |x| is a
peaked function of center frequency f and with a width w.

Given the knowledge of m and w, one can calculate the
damping coefficient γ = 2πmw. w is obtained from the fitting
of this function. Details about the measurement circuit and the
detection scheme can be found in Refs. [17,23]. |x| (R channel)
is usually measured through two components, the quadrature

TABLE II. Values of molar volumes, densities, and P2 at various pressures.

Pressure (bars) Molar volume (cm3/mol) ρ (kg/m3) f (Hz) P2 [×10−4(m−3 s−1 kg)1/2]

3 33.9 88.9 23103 3.93
21 27.5 110 22999 3.56
29 26.3 115 22958 3.48
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component (X channel),

xx = F0

m

wf

4π2
[(

f 2
0 − f 2

)2 + w2f 2
] , (18)

and the in-phase component (Y channel),

xy = F0

m

f 2
0 − f 2

4π2
[(

f 2
0 − f 2

)2 + w2f 2
] . (19)

The frequency dependence of |x|2 = x2
x + x2

y is fitted with
a background BG = a1f + a0 + c1/f + c2/f

2. This back-
ground originates from the measurement circuit.

One can combine F0 and m into one parameter A = F0/m

to obtain the finalized fitting model,

|x|2 = A2

16π4

1(
f 2

0 − f 2
)2 + (w2f 2)2

+ BG. (20)

There are seven fitting parameters in the model:
A, f0, w, a1, a0, c1, and c2. Typical fittings at high and low
temperatures are depicted in Fig. 2.

At a given temperature, we performed four frequency
sweeps. Their fitting results are averaged to give the fitted
parameters at this temperature. Due to the sensitivity of the
model to its initial input parameters, a regression fitting issue
arises where a set of four fitted parameters may have a variance
larger than expected. This happens even though all four sweeps
have very similar curve shapes. An outlier curve can be spotted
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FIG. 2. (a) Signal amplitude vs frequency at 25 mK, 21 bars. The
full fit is plotted along with the fitted Lorentzian component and the
background. (b) Signal amplitude vs frequency at 758 mK, 21 bars.
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FIG. 3. Another way of formulating the fitting model is to
introduce a complex damping coefficient γ = m(α2 + iα1) where
the imaginary term α1f/2π , explicitly represents the shift in the
resonance frequency from the natural frequency (fn). Both real
and imaginary damping coefficient methods are shown here. (a)
Frequency shift vs temperature from two models at 3 bars. The
frequency shift with a real damping is calculated as f0 − fn. The
frequency shift with a complex damping is calculated as α1/4π . (�):
Include the imaginary part of the damping coefficient. The shift for
this curve is α1/4π . (�): Only include the real damping coefficient.
The shift for this curve is f0 − fn. (b) Width vs temperature. (�):
Include the imaginary part of the damping coefficient. (�): Only
include the real damping coefficient. (©): The difference between
the widths fitted by including and excluding the imaginary part,
width(square)-width(diamond).

from the four fitted backgrounds. The problem is solved by
manually fixing the outlier’s background to be the average
of the others and fit the Lorentzian part of the curve after
subtracting the background. Figure 3 shows the obtained fitting
parameters for 3 bars.

It is worth mentioning that in our fitting model, f0 represents
the resonance frequency of the resonance peak and it is
different from the natural frequency of the center plate fn.
Another way of formulating the fitting model is to introduce a
complex damping coefficient γ = m(α2 + iα1). The solution
to Eq. (16) becomes

|x|2 = A2

16π4

1(
f 2

n − f 2 + α1
2π

f
)2 + (w′2f 2)2

+ BG. (21)
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FIG. 4. (a)–(c) The frequency spectra measured at different temperatures at 29 bars. Both the resonance frequency shift and the width
increase can be observed. (d) The Nyquist diagram: a plot of the Y -channel signal vs the X-channel signal. It shows a frequency-dependent
ellipse consistent with the model and can be utilized as a guide for phase adjustment.

Here, w′ = α2/2π = Re(γ )/2πm corresponds to the real part
of the damping coefficient. The imaginary damping coefficient
generates the term α1f/2π which contributes to the shift of
the resonance frequency from the natural frequency.

The two fitting models essentially produce the same fitting
results as shown in Fig. 3 for 3 bars. This verifies that the two
methods are indistinguishable. Therefore, applying the first
fitting model alone is sufficient.

III. MEASUREMENTS AND RESULTS

Four sweeps were performed at a given temperature: Two
sweeps were performed with increasing frequency and two
with decreasing frequency. Some of the measured frequency
spectra are plotted in Fig. 4. As the temperature is lowered, the
viscosity is expected to follow a 1/T 2 relation, increasing the
damping force. As a result, the Lorentzian peak broadens.
The R channel also shows that the resonance frequency
decreases. As temperature drops, the viscous penetration depth
increases, resulting in a larger effective mass of the oscillator
and a decrease in the resonance frequency.

The values of P1 are determined by fitting Eq. (15) in the
Fermi-liquid regime. The fit was performed below 100 mK at
all pressures. It was performed with an instrumental weight
κ = 1/σ 2 where σ is the standard deviation of the four
damping coefficients obtained at each temperature. Our data

1
T 2→

1
T

FIG. 5. Damping vs temperature at 3, 21, and 29 bars. The dashed
curves are fitted with the instrumental weight 1/σ 2, where σ is
the standard deviation of the width based on the four sweeps at
each temperature. The solid lines are 1/T and 1/T 2 guidelines.
There is a crossing point at 200 mK. At temperatures higher than
this point, higher pressures give larger damping. Below this point,
the order in pressure dependence is reversed. The damping values
correspond to the Lorentzian widths ranging from ∼600 Hz at the
highest temperature to ∼10 000 Hz at the lowest.
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TABLE III. Fitted values of P1, P3, and 1/a directly obtained
from P1. Results from Wheatley [30] are also presented. Note that
Wheatley’s third 1/a value 0.99 P mK2 was obtained at 30 bars
instead of 29 bars.

Wheatley’s
Pressure P1 P3 1/a result
(bars) [×10−4 (Pa s)1/2 K] [×10−6 (kg/s)] (P mK2) (P mK2)

3 4.40 1.38 1.93 1.73
21 3.45 1.57 1.19 1.22
29 3.05 1.42 0.93 0.99

and the fitted curves are plotted in Fig. 5. The fitted values of
P1, P3, and 1/a = P 2

1 are listed in Table III.
Our results for 1/a are comparable to the theoretical

estimation made by Abrikosov and Khalatnikov, which is
∼1–10 P mK2 and to previous results found in Ref. [30]. The
result from the zero-sound data of Ketterson et al. gives a
similar value of 1.04 P mK2 at 29.3 bars [31].

We can compare the damping contributions from different
structures of the oscillator. The temperature dependences of
the individual damping coefficients are plotted in Fig. 6. The
damping values are calculated using Eq. (15) with the fitted
P1 and calculated P2 values. The film damping dominates
at all pressures. The background damping coefficient P3 (see
Table III) is negligible at the lowest temperatures studied com-
pared with the damping from the film and bulk contributions.

In Fig. 5, the damping coefficient exhibits a clear crossover
from 1/T to 1/T 2 behavior as the liquid cools down. Much
like the Hagen-Poiseuille to Knudsen crossover observed in
nanoholes and aerogel [32,33], this phenomenon is closely
related to the length scales in the MEMS-liquid system [34].
In the high-temperature limit where δ � d, γ ∝ η/δ ∝ √

η ∝
1/T , and in the low-temperature limit where δ � d, γ ∝

FIG. 6. Damping contribution from the individual structures in
the MEMS device as a function of temperature at 3 bars. These were
calculated from Eq. (15) using fitted P1 and calculated P2 values. The
film contribution is the sum of the terms S1–S6. It shows that the
major damping contribution comes from the film and that the major
contribution to the film damping comes from the moving plate S6.
Data for the other two pressures behave very similarly.

η/d ∝ 1/T 2. Thus, the temperature dependence of the damp-
ing coefficient agrees with expectations.

It is interesting to observe that the damping curves for
the three pressures intersect at around 200 mK (see Fig. 5),
indicating a reversal in the pressure dependence of the
viscosity. This inversion of pressure dependence implies a
crossover from classical to quantum fluid. In the classi-
cal regime, the viscosity generally increases with pressure.
Whereas in the Fermi-liquid regime, the dominant pressure
dependence arises from the velocity, which is the Fermi
velocity that decreases with pressure. To our knowledge
there is no theoretical representation to fully describe the
crossover behavior.

IV. SUMMARY

The damping of a shear actuated MEMS oscillator sub-
merged in liquid 3He was studied. The device moves parallel
to the substrate and maintains a constant gap of 0.75 μm. The
parallel plate geometry of the device allows for a full analytical
description of its interaction with the fluid through the so-
called slide film damping model. The resonance properties
were studied through a wide range of temperatures from 20 to
800 mK and at three different pressures: 3, 21, and 29 bars. As
the liquid is cooled, a crossover in the pressure dependence
of the damping occurs around T = 200 mK. Below this
temperature, the damping decreases with pressure as opposed
to increasing with pressure. This indicates a transition from
a classical to a quantum fluid behavior, where the dominant
pressure dependence of the viscosity is determined by the
Fermi velocity. To the best of our knowledge this behavior
has not been directly observed before. Here, this transition is
discernibly captured with a single viscometer.

An extensive analysis was performed to determine the
different contributions to the damping from the different
structures of the device. Relative to the length scales set by
the viscous penetration depth and the gap size of the device,
transitions from a Couette to a Stokes flow regime were seen
as the viscosity changes from a 1/T to 1/T 2 behavior at
lower temperatures. Our findings show the potential of using
these devices to test fundamental fluid mechanical problems
by exploiting both the strong temperature dependence of
the transport properties of liquid 3He and the tunability
of the characteristic length scales through the engineering
of the device geometry. For instance, at temperatures lower
than the ones presented in this paper where the mean-free
path becomes comparable to the gap size, these devices could
be used to study the so-called Knudsen regime. Furthermore,
in the superfluid state of liquid 3He, the devices could be
used to study the effects of confining liquid 3He to a 2D
geometry where the thickness of the entrained fluid film is
comparable to the coherence length of the superfluid phase.
This would enable the exploration of novel phase transitions
and topological phenomena in unconventional superfluids.
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