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We formulate and apply a low-energy transport theory for hybrid quantum devices containing junctions of
topological superconductor (TS) wires and conventional normal (N) or superconducting (S) leads. We model TS
wires as spinless p-wave superconductors and derive their boundary Keldysh Green’s function, capturing both
the Majorana end state and continuum quasiparticle excitations in a unified manner. We also specify this Green’s
function for a finite-length TS wire. Junctions connecting different parts of the device are described by the
standard tunneling Hamiltonian. Using this Hamiltonian approach, one also has the option to include many-body
interactions in a systematic manner. For N-TS junctions, we provide the current-voltage (I -V ) characteristics
at arbitrary junction transparency and give exact results for the shot-noise power and the excess current. For
TS-TS junctions, analytical results for the thermal noise spectrum and for the I -V curve in the high-transparency
low-bias regime are presented. For S-TS junctions, we compute the entire I -V curve and clarify the conditions
for having a finite Josephson current.
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I. INTRODUCTION

The physics of topological superconductor (TS) wires,
featuring Majorana bound states at their ends, is presently
attracting a lot of attention in condensed-matter physics,
quantum information science, and related fields; for recent
reviews, see Refs. [1–5]. Much of this excitement has been
fueled by the tremendous experimental progress achieved over
the past few years. Strong evidence for Majorana fermions
has been reported from transport experiments using topolog-
ical nanowires proximitized by conventional superconductors
[6–9] and from scanning tunneling microscopy of magnetic
atom chains on superconducting substrates [10,11]. Apart from
demonstrating the non-Abelian Majorana braiding statistics, a
central goal for future experiments is to thoroughly understand
quantum transport in multiterminal hybrid devices containing
junctions of TS wires and topologically trivial normal (N) or
superconducting (S) materials.

Problems of this type call for a general and versatile theoret-
ical description capable of treating nonequilibrium transport
in such novel devices. One possibility is given by the well-
known scattering approach [12,13], which has been success-
fully applied to noninteracting devices containing TS wires
[1–5]. Here we adapt the Hamiltonian approach [14], which
provides a useful alternative by employing nonequilibrium
Green’s functions (GFs) to superconducting hybrid systems
containing TS wires. This approach starts from uncoupled
GFs describing the separate parts of the device, which are then
coupled together by tunneling processes. In a noninteracting
setting, by solving the Dyson equation, tunnel couplings
are taken into account in an exact manner. In addition, by
using diagrammatic expansions or related techniques, one
can also include many-body interactions. To give just a few
examples for successful nontopological applications of the
Hamiltonian approach, let us mention S-QD-S [15,16] and
N-QD-S [17] junctions containing an interacting quantum dot
(QD) sandwiched between S and/or N contacts, extensions to
diffusive and/or ferromagnetic systems [18], Coulomb block-

ade in voltage-biased superconducting quantum point contacts
[19,20], multiterminal hybrid structures [21], and junctions
of unconventional superconductors [22–24]. For Majorana
wires, similar calculations have been used to describe subgap
transport from effective low-energy models that only retain the
Majorana sector; see, e.g., Refs. [25–27].

Here we derive an explicit and simple expression for the
GF describing the boundary of a TS wire [see Eq. (6) below],
which captures the Majorana state as well as continuum
quasiparticles in a unified manner, and thereby allows for
systematic theoretical studies of nonequilibrium transport
in topological hybrid devices. We study both subgap and
above-gap transport, where detailed and mostly analytical
expressions are reported below. As concrete examples for this
approach, here we shall focus on the simplest case given by
tunnel junctions. In particular, we discuss the physics of N-TS,
TS-TS, and S-TS tunnel junctions involving TS wires with
broken time-reversal and spin-rotation symmetries. This “class
D” case is most relevant for present experiments [6–9] and
corresponds to a spinless p-wave superconductor at energies
close to the Fermi level [28]. In more refined descriptions,
one could also include high-energy band structure effects (see
Ref. [29]), order parameter self-consistency, and/or models
capturing the phase transition to the nontopological phase.
However, analytical results are then generally harder to obtain.
Our theory below allows for arbitrary junction transmission
probability τ (defined for the corresponding N-N junction),
bias voltage V , and temperature T . Let us now summarize our
main results, explaining also the structure of this paper.

In Sec. II, we present the model and the GF formalism
used in this work. We present the boundary GF both for a
semi-infinite and for a finite-length TS wire in Sec. II A. In
Sec. II B, we introduce the tunneling Hamiltonian, followed
by the calculation of transport observables in Sec. II C.

Next, in Sec. III, we study transport through a voltage-
biased N-TS tunnel junction. The current-voltage (I -V )
relation for such a junction can always be expressed in
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terms of a spectral current density J (ω), which we specify in
explicit form in Sec. III A. For ω = eV , this spectral density
directly determines the T = 0 differential conductance, for
which we arrive at a surprisingly simple result [see Eqs. (35)
and (39) below], valid for arbitrary τ and V . We thereby
reproduce, unify, and simplify previous results [23,25,30–32].
Furthermore, we address the zero-frequency shot-noise power
in the N-TS junction for voltages below and above the gap;
see Sec. III B. In the subgap regime, we recover the results of
Refs. [33–35] where applicable, while the above-gap results
have not been reported elsewhere. Moreover, we provide
closed expressions for the excess current in Sec. III C.

In Sec. IV, we discuss TS-TS junctions. The well-known
Josephson effect for this case [28,36,37] is briefly discussed
within our GF scheme in Sec. IV A. In Sec. IV B, we present
analytical expressions for the equilibrium finite-frequency
noise spectrum, thereby extending the results of Refs. [38,39]
to arbitrary parameters. Our results also determine the tran-
sition rates between Andreev bound states and continuum
quasiparticle states. In Sec. IV C, we study the nonequilibrium
multiple Andreev reflection (MAR) features in the time-
averaged I -V characteristics (cf. also Refs. [40–42]), where
we provide the excess current and report a closed analytical
solution in the large-transparency low-bias regime.

In Sec. V, we study S-TS junctions between a conventional
(with gap �s) and a topological (with gap �) superconductor,
again for arbitrary junction transparency and arbitrary voltage
V . In Sec. V A, we clarify a recent dispute about the
equilibrium Josephson current through such a junction, where
Ref. [43] found a vanishing supercurrent while Ref. [44]
reported a finite result. We show that tunneling processes have
to involve spin flips in order to allow for a finite supercurrent
in this system. In Sec. V B, we discuss the differential
conductance in the absence of spin-flip tunneling processes.
We thereby reproduce the recent prediction [45] of a universal
differential conductance peak of height GM = (4 − π )[2e2/h]
at eV = �s . Going beyond Ref. [45], we derive the entire I -V
curve covering also the above-gap region and parameters away
from the tunnel limit.

Finally, we offer some conclusions in Sec. VI. Details of
our calculations can be found in the three appendices, and we
often employ units with e = � = kB = vF = 1, where vF is
the Fermi velocity.

II. HAMILTONIAN APPROACH

A. Green’s-function formalism

A quantity of central interest for the approach used below
is the Keldysh Green’s function (GF) Ǧ, which is defined
for the entire system composed of several tunnel-coupled
(super)conductors. This GF affords a matrix representation
on the tensor product of four different spaces: (i) Keldysh
space, referring to the forward/backward parts (α = +/−) of
the Keldysh time contour needed to properly describe nonequi-
librium transport processes, (ii) Nambu space encoding the
particle/hole structure of the theory, (iii) the space labeling
different conductors, e.g., the left/right parts (j = 1,2) of a
single tunnel junction, and (iv) time (or frequency) space. The
structure of Ǧ in Keldysh space, with matrix elements Gαα′

,

can be fully expressed in terms of the retarded (GR), advanced
(GA), and Keldysh (GK ) GF components [13],

Ǧ =
(

G++ G+−
G−+ G−−

)
= Ľ

(
0 GA

GR GK

)
Ľ−1, (1)

with the Keldysh matrix Ľ = 1√
2
( 1 1
−1 1).

We shall describe the system as built from decoupled pieces
that are connected by a tunneling Hamiltonian; cf. Ref. [14].
In such an approach, one first determines the “uncoupled”
GF ǧ in the absence of tunnel couplings, which is diagonal
in lead space, ǧjj ′ = δjj ′ ǧj . We shall specify ǧj below for a
TS wire (j = TS), for a normal conductor (j = N ), and for
a topologically trivial s-wave superconductor (j = S). In all
three cases, it is convenient to use the frequency representation,
ǧj = ǧj (ω). The Keldysh component gK

j (ω) [see Eq. (1)] is
expressed by the retarded/advanced components in a standard
manner via the “local equilibrium” relation [13],

gK
j (ω) = f (ω)

[
gR

j (ω) − gA
j (ω)

]
, (2)

where the distribution function

f (ω) = 1 − 2nF (ω) = tanh(ω/2T ) (3)

is connected to the Fermi function nF (ω). In a gauge (termed
“gauge I” in what follows) commonly used in the description of
normal-conducting systems, tunnel couplings are represented
by time-independent matrix elements and one has to take
into account the respective chemical potential μj in Eq. (2);
see below for details. As is customary for superconducting
systems, in Eq. (2) we have instead assumed a different “gauge
II,” where chemical potential differences appear through time-
dependent phases in the tunnel couplings; cf. Eq. (14) below. In
any case, once the ǧj are known, in a second step the full GF Ǧ

is obtained by nonperturbatively taking into account tunneling
processes via the Dyson equation; see Eq. (22) below. From
the knowledge of the full GF, all transport quantities of interest
can subsequently be determined.

We begin with the case of a semi-infinite TS wire located
at x > 0, corresponding to lead index j = TS. We shall
determine the Keldysh GF ǧTS(ω) for electrons/holes near the
boundary at x = 0. The TS nanowire is described as a spinless
single-channel p-wave superconductor, corresponding to the
low-energy limit of a Kitaev chain [1,2,28]; cf. Appendix A.
The Hamiltonian reads

HTS =
∫ ∞

0
dx �

†
TS(x)(−ivF ∂xσz + �σy)�TS(x), (4)

where the proximity-induced pairing gap � can be chosen
real positive. The Nambu spinor �TS(x) = (cr ,c

†
l )T in Eq. (4)

contains right- and left-moving fermion operators cr,l(x), and
the Pauli matrices σx,y,z and σ0 = diag(1,1) act in Nambu
(particle-hole) space. It is well known that the Hamiltonian
(4) corresponds to the low-energy form of a generic class-D
single-channel TS in one spatial dimension [1–3].

We emphasize that corrections beyond the “universal”
class-D low-energy model in Eq. (4) can be significant for
realistic TS wires, where the detailed band structure is arguably
more complex [46]. However, as long as the system remains
in symmetry class D, we expect that predictions based on
Eq. (4) provide at least qualitatively useful answers. Relying on
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the topological character of the TS phase, one can expect that
corrections beyond Eq. (4) allow for a perturbative treatment.
In any case, below we will not discuss such corrections since a
decisive advantage of the universal GF [see Eq. (6) below]
comes from its simplicity and the possibility of obtaining
analytical results. Our main goal is not to explain all possible
details of experimental data but rather to provide a unified and
coherent theoretical framework, which will be applied here to
the simple and widely studied TS wire model (4).

The boundary GF ǧTS(ω) can be computed by taking the
wideband limit for a semi-infinite Kitaev chain, or directly
by starting from the low-energy Hamiltonian (4). We provide
a derivation along the first route in Appendix A, but one
can check that the same result also follows from the second
approach. The GF is defined as the Fourier transform of

ǧTS(t − t ′) = −i〈TC�(t)�†(t ′)〉, (5)

where the boundary Nambu spinor is � = (c,c†)T with c =
[cl + cr ](x → 0), and TC denotes the Keldysh time-ordering
prescription [13]. We note in passing that the relation � =
σx�

∗ (with ∗ denoting complex conjugation) imposes a reality
constraint on this spinor. Using Eqs. (1) and (2), ǧTS(ω) is
fully determined by specifying the Nambu representation of
the retarded/advanced GF components (cf. Appendix A),

g
R/A

TS (ω) =
√

�2 − (ω ± i0+)2 σ0 + �σx

ω ± i0+ , (6)

where R/A corresponds to +/−, and the branch cut is taken
along the negative axis,

√
�2 − (ω ± i0+)2 =

{ √
�2 − ω2, |ω| � �,

∓i sgn(ω)
√

ω2 − �2, |ω| > �.

(7)

Below, for retarded (advanced) quantities, the frequency will
tacitly be understood as ω + i0+ (ω − i0+). In fact, we shall
omit the R/A superscripts whenever the context permits.

From Eq. (6), the energy-dependent boundary density of
states (DOS), νTS(ω), is determined by the Nambu trace of

− 1

π
ImgR

TS(ω) = �[σ0 + σx]δ(ω)

+
√

ω2 − �2

π |ω| σ0�(|ω| − �), (8)

with the Heaviside step function �; see also Ref. [40].
Equation (8) features the celebrated Majorana zero-energy
peak due to the ω = 0 pole of the retarded GF in Eq. (6). In
addition, for |ω| > �, a continuum quasiparticle contribution
is present that vanishes as a square root for |ω| → �, unlike the
conventional BCS singularity; cf. Eq. (13) below. The Nambu
structure of these two contributions in Eq. (8) is different
and highlights the fact that the Majorana state represents an
equal-probability electron-hole superposition state.

We have assumed up to now that the wire is located at x > 0,
where ǧTS = ǧTS,x>0 is evaluated near x = 0. For a wire on
the opposite side (x < 0), the corresponding boundary GF
near x = 0, ǧTS,x<0 follows from Eq. (6) by spatial inversion.
In effect, due to the p-wave character of the superconducting

pairing, we need to reverse the sign of � in Eq. (6), leading to

ǧTS,x<0 = σyǧTS,x>0σy. (9)

Before we specify the corresponding expressions for
topologically trivial systems (with j = N,S), let us briefly
address the effect of a finite TS wire length L on the GF.
In that case, by repeating the analysis in Appendix A for a
finite-length Kitaev chain with −L/2 � x � L/2, we obtain
the retarded/advanced GF near x = ±L/2 as

gTS,±(ω) = ω tanh(ζωL)

ω2 − ε2
ω

[ζωσ0 ∓ tanh(ζωL)�σx], (10)

where ζω = √
�2 − ω2 and εω = �/ cosh(ζωL). Let us show

how Eq. (10) reduces to Eq. (6) in the limit L → ∞. For
the subgap part, this is seen in a straightforward manner,
but for the continuum spectrum (|ω| > �), one needs to take
into account a finite quasiparticle relaxation time τqp, such
that the infinitesimal 0+ shift into the complex ω plane is
effectively replaced by 1/τqp. Only then is Re(ζω) finite and one
has limL→∞ tanh(ζωL) = 1 for frequencies in the continuum
part of the spectrum. We note in passing that Eq. (10) is
also consistent with the spatial inversion rule in Eq. (9). On
low-energy scales, |ω| 
 �, and assuming a long wire with
L > ξ0, where ξ0 = �vF /� is the superconducting coherence
length, we conclude that the main finite-L effect in Eq. (10)
is to introduce the hybridization energy scale εω � 2�e−L/ξ0 .
This scale describes the exponentially small coupling between
the two Majorana end states of a finite-length TS wire. For
|ω| > �, on the other hand, ζω becomes imaginary and εω

slowly oscillates with L. In addition, we note that for finite
L, the off-diagonal (anomalous) part of the GF in Eq. (10) is
suppressed by the last tanh(ζωL) factor.

Consistent with the low-energy TS description, we shall
also employ the wideband approximation to describe topo-
logically trivial systems. In this standard approximation, the
normal density of states is assumed constant near the Fermi
level [13]. For a normal metal (j = N ), the N-TS tunnel
coupling effectively involves only one spin component in the
normal conductor [25], and therefore ǧN follows from Eq. (6)
by letting � → 0,

g
R/A

N (ω) = ∓iσ0. (11)

The corresponding DOS, νN (ω), is constant.
For a conventional s-wave superconductor (j = S) with

real positive gap �s , the retarded/advanced GF is given by
[14,24,47]

gS(ω) = −ωσ0 + �sσx√
�2

s − ω2
, (12)

resulting in the familiar DOS of a BCS superconductor. The
latter is proportional to

νS(ω) = |ω|√
ω2 − �2

s

�(|ω| − �s). (13)

In that case, Nambu spinors of the boundary fields are defined
as �S = (c↑,c

†
↓)T , where the spinful fermion operator c↑/↓ =

cl,↑/↓ + cr,↑/↓ is given by the sum of the left- and right-moving
components.

014502-3



A. ZAZUNOV, R. EGGER, AND A. LEVY YEYATI PHYSICAL REVIEW B 94, 014502 (2016)

B. Tunneling Hamiltonian

We now include the tunneling Hamiltonian HT connecting
different conductors. For the moment, we shall employ gauge
II (cf. Sec. II A), where chemical potential differences enter
through time-dependent phase factors in HT .

Let us start with a single tunnel junction, leaving aside
the j = S case discussed later on. Using operators cj=1,2 for
electrons close to the left/right side of the junction, the standard
tunneling Hamiltonian reads

HT (t) = λeiφ(t)/2c
†
1c2 + H.c. (14)

Without loss of generality, the hopping amplitude λ is assumed
to be real valued. The normal transmission probability τ of the
junction (with 0 � τ � 1) is then given by [13,14]

τ = 4λ2/(1 + λ2)2. (15)

An applied dc bias voltage, eV = μ1 − μ2, appears here
through the phase difference,

φ(t) = [φ1 − φ2](t) = φ0 + 2eV t/�. (16)

In the equilibrium case (V = 0), only the static phase φ0

is present. We note that with our unit conventions and
normalization of surface GFs, the tunnel coupling λ in Eq. (14)
implicitly includes density-of-state factors due to the leads,
containing in particular the different Fermi velocities of
the (super)conductors on both sides of the junction. (This
statement also applies to the S-TS case.)

It is convenient to express Eq. (14) in Nambu representation,
where we also generalize the formalism to an arbitrary number
M of conductors, j = 1, . . . ,M . For that purpose, we first
define the time-dependent tunneling matrix W (t). In lead
space, all diagonal elements of W vanish, Wjj = 0, while the
off-diagonal elements are given by the Nambu matrices (here,
j < j ′),

Wjj ′ (t) = λjj ′σze
iσz[φj (t)−φj ′ (t)]/2, Wj ′j (t) = W

†
jj ′(t). (17)

The tunneling Hamiltonian then follows in the form

HT (t) = 1

2

M∑
jj ′

�
†
jWjj ′(t)�j ′, �j =

(
cj

c
†
j

)
, (18)

and the Heisenberg operator describing the current flowing
through lead j is given by

Îj (t) = 2e

�

δHT (t)

δφj (t)
= i

∑
j ′ �=j

�
†
j (t)σzWjj ′(t)�j ′(t). (19)

We now discuss how to describe S-TS junctions, putting for
simplicity M = 2. The Nambu spinor on the left (j = S) BCS
superconducting side is �1 = (c1,↑,c

†
1,↓)T , and in the absence

of spin-flip tunneling, HT is given in general form as

HT (t) = λeiφ(t)/2[cos(θ )c†1,↑ + e−iχ sin(θ )c†1,↓]c2 + H.c.,

(20)

with two additional real-valued parameters χ and θ on top
of the gauge-invariant phase difference φ(t). The junction
transparency is again expressed in terms of λ by Eq. (15).
Performing the gauge transformation c1,↑/↓ → e±iχ/2c1,↑/↓,
the phase χ can be absorbed by renormalizing the static phase

difference φ0 → φ0 + χ in Eq. (16). We can therefore put
χ = 0 in what follows. In addition, by exploiting the SU(2)
spin symmetry of the s-wave BCS superconductor, we may
also put θ = 0, again without loss of generality [48]. Written
in Nambu notation, HT is then as in Eq. (18), where, instead
of Eq. (17), W (t) has the nonzero Nambu matrix element,

W12(t) = λeiφ(t)/2�↑, �↑ = σ0 + σz

2
, (21)

with W21(t) = W
†
12(t). In this basis, due to the presence of the

projection operator �↑ in Eq. (21), only spin-↑ electrons in
the BCS superconductor are tunnel coupled to the effectively
spinless fermions on the j = TS side. Such a spin-filtered
tunnel coupling is generic for junctions without spin-flip
tunneling. For example, if the junction contains magnetic
impurities, this property will be lost and the theory has to
be modified.

C. Transport observables

In the absence of many-body interactions, by using the
equations of motion for Heisenberg operators, we obtain the
“full” Keldysh GF as solution of the Dyson equation,

Ǧ = (ǧ−1 − W̌ )−1, (22)

with the Keldysh matrix W̌ = diag(W, − W ). From this solu-
tion, all nonequilibrium transport quantities of interest can be
deduced as described next. In addition, many-body interactions
can be included by well-established perturbative/diagrammatic
techniques [13].

Let us first discuss the mean current flowing through the j th
lead, Ij (t), which in general will be time dependent. Taking the
expectation value of the current operator (19), Ij is expressed
in terms of the Keldysh GF component (GK ) at coinciding
times,

Ij (t) = 1

2

∑
j ′ �=j

trN
[
σzWjj ′ (t)GK

j ′j (t,t)
]
, (23)

where the trace trN is over Nambu space, and current
conservation dictates the condition

∑
j Ij (t) = 0. In order to

evaluate GK , we now employ Eqs. (2) and (22). For arbitrary
gauge, we find

GK = GRF − FGA + GR(FW − WF )GA, (24)

where matrix products correspond to convolutions and Fjj ′ =
δjj ′Fj contains the distribution functions in the absence of
tunneling. Explicitly, in gauge II, Fj (ω) = f (ω)σ0 with f (ω)
in Eq. (3). In gauge I, on the other hand, for time-independent
chemical potential and a normal-conducting system, one
finds

Fj (ω) =
(

f (ω − μj ) 0
0 f (ω + μj )

)
, (25)

which can be rationalized by noting that the upper (lower)
entry describes electrons (holes).

Next, we turn to the current-current correlation function
(“noise”),

Sjj ′(t,t ′) = 〈δÎj (t)δÎj ′(t ′)〉, δÎj (t) = Îj (t) − Ij (t), (26)
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which can similarly be expressed in terms of the full GF. Using
the Keldysh GF components G+− and G−+ [cf. Eq. (1)], these
noise correlations follow as

Sjj ′(t,t ′) =
M∑

j1 �=j

M∑
j2 �=j ′

trN
{
σzWjj1 (t)

[
G−+

j1j2
(t,t ′)σzWj2j ′ (t ′)

×G+−
j ′j (t ′,t) − G−+

j1j ′ (t,t ′)σzWj ′j2 (t ′)G+−
j2j

(t ′,t)
]}

.

(27)

To give a first example for the above expressions, the time-
averaged current-voltage characteristics of a tunnel junction
(M = 2) between an arbitrary pair of the above systems
follows at low transparency, τ 
 1, from a lowest-order
perturbative solution of the Dyson equation (22). Equation
(23) thereby yields the current I = I1 = −I2 as

I (V ) = eτ

2h

∫
dω ν1(ω)ν2(ω − eV )[f (ω) − f (ω − eV )],

(28)

with the energy-dependent DOS ν1,2(ω) on the respective side,
and f (ω) in Eq. (3).

III. N-TS JUNCTION

In this section, we shall study a tunnel junction between
a normal conductor (j = 1) and a TS wire (j = 2). Going
beyond Eq. (28), we consider the case of arbitrary junction
transparency 0 � τ � 1. For an N-TS junction at constant
bias voltage, eV = μ1 − μ2, it is convenient to adopt gauge I
with time-independent tunneling matrix W12 = λσz.

A. Differential conductance

The current-voltage characteristics of the N-TS junction
follows from Eq. (23) as

I (V ) = λ

2

∫
dω

2π
trNGK

21(ω), (29)

where Eq. (24) determines the needed Keldysh GF component,

GK
21(ω) = GR

21F1 − F2G
A
21

+ λ
[
GR

21σz(F1 − F2)GA
21 − GR

22σz(F1 − F2)GA
11

]
,

(30)

with the distribution functions

F1(ω) = f (ω − V σz)σ0, F2(ω) = f (ω)σ0. (31)

The retarded/advanced GF components appearing in Eq. (30)
are obtained by solving the Dyson equation (22),

G11(ω) = {[g1(ω)]−1 − λ2σzg2(ω)σz}−1,

G22(ω) = {[g2(ω)]−1 − λ2σzg1(ω)σz}−1, (32)

G21(ω) = λg2(ω)σzG11(ω).

The uncoupled GF g1 for the normal part is given by Eq. (11)
and the TS counterpart g2 by Eq. (6).

Inserting Eq. (30) into Eq. (29), we obtain the current-
voltage characteristics,

I = e

h

∫
dω[nF (ω − eV ) − nF (ω + eV )]J (ω), (33)

and the differential conductance

G = dI

dV
= 2e2

h

∫ ∞

−∞
dω

J (ω)

4T cosh2[(ω − eV )/2T ]
. (34)

The spectral current density is symmetric, J (ω) = J (−ω), and
follows in remarkably simple form,

J (ω) =

⎧⎪⎨
⎪⎩

1/(1 + ω2/�2), |ω| < �,

τ
τ+(2−τ )

√
1−(�/ω)2

[2−τ+τ
√

1−(�/ω)2]2
, |ω| � �,

(35)

with the rate [49]

� = τ�

2
√

1 − τ
. (36)

Note that J (ω) remains continuous at ω → �, where J (�) =
τ 2/(2 − τ )2.

In the subgap regime |ω| < �, Eq. (35) yields a Lorentzian
peak of width � centered around ω = 0, which describes the
Majorana bound state leaking into the normal conductor with
hybridization �. For τ 
 1, the above-gap part of the spectral
density is given by

Jτ
1(|ω| > �) � τ

2

√
1 − �2/ω2, (37)

which provides only a subleading contribution to the conduc-
tance for low junction transparency. On the other hand, in the
limit of a fully transparent junction with τ = 1, the rate �

diverges and Eq. (35) reduces to

Jτ=1(ω) =
{

1, |ω| < �,

(1 +
√

1 − �2/ω2)−1, |ω| � �.
(38)

Let us now discuss the differential conductance [see
Eq. (34)] in the most interesting zero-temperature limit, where

G(V,T = 0) = 2e2

h
J (eV ) (39)

is directly expressed in terms of the spectral current density
J (ω) in Eq. (35). Equation (39) is equivalent to a more
complicated expression reported in Ref. [23]. It recovers
the celebrated Majorana zero-bias peak with quantized peak
height 2e2/h and width � due to resonant Andreev reflection
[25,30,33]. Near perfect transmission, τ → 1, although the
Majorana state is no longer well defined in view of the strong
N-TS hybridization, conductance quantization still remains
robust [23,31]. In fact, G = 2e2/h persists throughout the
entire subgap regime |eV | < �; see Eq. (38). For |eV | � �,
Eq. (39) approaches the ohmic conductance τe2/h expected
for a normal-conducting spinless tunnel junction in the
classical regime. These results are illustrated in the left panel
of Fig. 1.

The finite-temperature behavior of the conductance can
be analyzed in a similar manner. The subgap Lorentzian
peak in J (ω) [cf. Eq. (35)] causes the finite-T line shape of
a conventional resonant tunneling conductance peak [1,13],
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FIG. 1. Transport observables of the N-TS junction. Left panel:
The main part shows the differential conductance G = dI/dV vs
eV/� [see Eq. (39)] for several transmission probabilities τ and
T = 0. The left inset shows corresponding results for T = 0.1�, and
the right inset shows the Fano factor for the same temperature. Right
panel: Fano factor F = S/(2eI ) vs eV/� [see Eq. (41)] for the same
values of τ and T = 0.

featuring a temperature-induced decrease (increase) of the
peak conductance (width), as illustrated in the left inset in
Fig. 1.

B. Shot noise

In addition to the conductance, another transport property
of interest is the shot-noise power, i.e., the Fourier transformed
current-current correlation function,

S11(ω) = −S12(ω) =
∫

dteiω(t−t ′)S11(t,t ′), (40)

where S11(t,t ′) has been defined in Eq. (26). Representing
the correlation function by GFs [see Eq. (27)], one obtains
an integral representation for S11(ω). Here we study the shot-
noise power in the zero-frequency limit, S(V ) = 2S11(ω → 0),
which is compared to its Poissonian value 2eI (V ) [13].

Our results for the Fano factor F = S/(2eI ) at temperature
T = 0 are shown in the right panel of Fig. 1. We observe that
for τ 
 1, the Poissonian limit F = 1 as predicted in Ref. [33]
is approached. With increasing transparency and/or lower bias
voltage, however, F is reduced and ultimately vanishes in the
entire subgap regime at perfect transparency (τ = 1). In fact,
for |eV | < �, we reproduce the analytical T = 0 result of
Ref. [35],

S = 4e2�

h

[
tan−1(eV/�) − eV/�

1 + (eV/�)2

]
, (41)

with the rate � in Eq. (36). The corresponding Fano factor
F = S/(2eI ), with I = (2e�/h) tan−1(eV/�), perfectly fits
the subgap part of the results shown in the right panel of Fig. 1.

Beyond reproducing Eq. (41) for the subgap regime, the
GF approach also yields the shot-noise power for voltages
above the gap. For eV � �, the Fano factor approaches the
value F = 1 − τ , which is expected for the corresponding
spinless N-N junction [13]. We note that even in the limit of
ideal transparency (τ = 1), the above-gap T = 0 shot noise is

finite due to the simultaneous presence of both Andreev and
quasiparticle processes [50].

Finally, results for the finite-temperature Fano factor are
displayed in the right inset of the left panel in Fig. 1. The
strong thermal component in the noise power, S(V = 0) =
4T G(V = 0) = 8T e2/h, now completely dominates the V →
0 behavior and leads to an upturn of all curves as the voltage
is reduced.

C. Excess current

We conclude our study of the N-TS junction with a
discussion of the excess current, which can be directly
measured in experiments and is defined as

Iexc = lim
V →∞

[I (V ) − IN−N(V )], (42)

where IN−N = τe2V/h is the normal-state (� = 0) current
for the same junction. For eV > �, Eq. (33) gives the T = 0
current for the N-TS junction in the form

IN−TS(V ) = eτ�

h

tan−1(2
√

1 − τ/τ )√
1 − τ

+ 2ew�

h

∫ eV/�

1
dx

x(wx + √
x2 − 1)

(x + w
√

x2 − 1)2
, (43)

with w = τ/(2 − τ ). The first (voltage-independent) term is
a subgap contribution to the total current, while the second
term comes from quasiparticles with energies above the
superconducting gap.

The integral in Eq. (43) can be rationalized by Euler’s
substitution, t = x + √

x2 − 1. Performing the integration
over the new variable t and using an asymptotic expansion
in �/eV , the excess current follows in closed form as

Iexc,N−TS = eτ�

h

[
tan−1

( 2
√

1−τ
τ

)
√

1 − τ
+ (1 − τ )−3/2

{
τ
√

1 − τ

− [1 + (1 − τ )2]

[
π

2
− tan−1

(
1√

1 − τ

)]}]
.

(44)

The excess current (44) is always positive. In particular, for
τ = 1, one obtains Iexc,N−TS = (4/3)(e�/h), which is half
the value of the excess current, Iexc,N−S = (8/3)(e�/h), in a
conventional (topologically trivial) ballistic N-S contact with
full transparency [14,51]. For τ < 1, the relative suppression
factor is slightly less than 1/2.

IV. TS-TS JUNCTION

Next we turn to the case of a TS-TS junction. For clarity,
we shall assume identical absolute values of the pairing gap on
both sides, �1 = �2 = �. In Secs. IV A and IV B, we discuss
the equilibrium case (V = 0), where the Josephson junction is
biased by a static phase difference φ0, and the tunnel matrix W

in Eq. (17) has nonzero elements, W12 = W
†
21 = λσze

iφ0σz/2.
We subsequently turn to the voltage-biased case in Sec. IV C.
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A. Fractional Josephson effect

As detailed in Appendix B, using a similar calculation as
in the N-TS case, Eq. (23) yields the equilibrium Josephson
current-phase relation in the form

I (φ0) = −eτ

4�
�2 sin(φ0)

∫
dω

2πi
f (ω)

×
[

1

(ω + i0+)2 − E2
A

− 1

(ω − i0+)2 − E2
A

]
,

(45)
where f (ω) is given by Eq. (3) and we define the Andreev
bound-state energy,

EA(φ0) = √
τ� cos(φ0/2). (46)

The integral in Eq. (45) can be done by residues, with poles
at ω = ±EA infinitesimally shifted into the complex plane.
The ± sign corresponds to the conserved fermion parity
eigenvalue of the Josephson junction (cf. Ref. [1] for a detailed
discussion) and generates a pair of decoupled (i.e., crossing)
4π -periodic Andreev bound states with dispersion ±EA(φ0).
From Eq. (45), we obtain

I (φ0) = e
√

τ�

2�
sin(φ0/2) tanh(EA/T ), (47)

without contributions from continuum quasiparticles. Since
the GF formalism implicitly assumes a thermodynamic aver-
age, Eq. (47) represents an average over both parity states.
The resulting current-phase relation is therefore 2π periodic.
By restricting the integral in Eq. (47) to a specific parity
eigenvalue, one may arrive at the well-known “fractional”
Josephson effect with a 4π -periodic current-phase relation
[28,36,37] instead of Eq. (47). Parity conservation is more
directly visible in our study of noise properties in Sec. IV B,
where it is responsible for the absence of transitions within the
Andreev bound-state sector.

B. Thermal finite-frequency noise

Next we discuss the (unsymmetrized) current noise at
finite frequency, S+(ω) = S11(ω) [see Eq. (40)], where we
consider the equilibrium case allowing for analytical progress.
(Nonequilibrium aspects of quantum noise in TS-TS junctions
have been studied in Refs. [40,41].) Putting V = 0, Eq. (27)
yields the thermal noise correlations in the form (cf. Ap-
pendix B)

S+(ω) = e2

h

∫
dω1dω2δ(ω1 − ω2 + ω)

× nF (ω1)[1 − nF (ω2)]Q(ω1,ω2). (48)
Here, Q = QA−c + Qc−c is symmetric in the frequency
arguments, Q(ω1,ω2) = Q(ω2,ω1), and can be decomposed
into a part QA−c due to transitions between the Andreev bound-
state sector (with |ω| = |EA|) and continuum quasiparticle
states (with |ω| > �), plus a continuum contribution Qc−c.
However, there is no contribution from the Andreev sector
alone, i.e., QA−A = 0. This result should be contrasted to
the case of nontopological S-S junctions, where transitions
at frequency ω = 2EA are always present for τ < 1 [52] and
imply QA−A �= 0. The absence of direct transitions between
the two Andreev bound states in a TS-TS junction can be

understood as a manifestation of fermion parity conservation;
cf. Refs. [36,38–40]. Technically, in our approach, QA−A = 0
can be traced back to the orthogonality of different current
eigenstates. While current eigenstates always coincide with
Andreev bound states for TS-TS junctions, this holds true
only at perfect transmission (τ = 1) for the S-S case [53].

As is shown in Appendix B, Andreev-continuum transitions
yield

QA−c(ω1,ω2) = πτδ(|ω1| − |EA|)�(|ω2| − �)

×
√(

�2 − ω2
1

)(
ω2

2 − �2
)

|ω2| − sgn(ω1ω2)|ω1| + (ω1 ↔ ω2),

(49)

while the continuum part Qc−c involves both inter- and
intraband transitions,

Qc−c(ω1,ω2) = 2τ�(|ω1| − �)�(|ω2| − �)

×
√(

ω2
1 − �2

)(
ω2

2 − �2
)

(
ω2

1 − E2
A

)(
ω2

2 − E2
A

) [|ω1ω2|

+ sgn(ω1ω2)E2
A

]
. (50)

The finite-frequency noise (48) thus receives two contribu-
tions, S+(ω) = SA−c(ω) + Sc−c(ω). Let us now discuss these
two contributions to S+(ω) at T = 0; cf. Fig. 2.

In the zero-temperature limit, the Andreev-continuum
contribution follows from Eqs. (48) and (49) in the form

SA−c(ω) = e2τ

�

√
�2 − E2

A

×�(ω − |EA| − �)

√
(ω − |EA|)2 − �2

ω
,

(51)
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FIG. 2. Finite-frequency noise spectrum S+(ω) vs ω/� for T =
V = 0 with τ = 0.64 and φ0 = 2, where S+ is given in units of
e2�/�. The main panel is for the TS-TS case, where the blue dashed
curve gives SA−c in Eq. (51), the red dashed curve gives Sc−c from
Eq. (52), and the solid black curve shows S+ = SA−c + Sc−c. In the
shown frequency range, Sc−c is well approximated by Eq. (53). The
thin-dashed black curve gives the � = 0 result, i.e., the leading term
in Eq. (54). The inset shows S+(ω) for a topologically trivial S-S
junction with the same parameters (see Ref. [52]), where the ω = 2EA

peak with E
(S−S)
A (φ0) = �

√
1 − τ sin2(φ0/2) has been broadened by

replacing the infinitesimal shift 0+ → 0.001� in the GFs.
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and is finite only for ω > � + |EA|. The continuum contribu-
tion requires ω > 2�, where we find

Sc−c(ω) = 2e2τ

�
�(ω − 2�)

∫ −�

�−ω

dω1

×
√(

ω2
1 − �2

)
[(ω1 + ω)2 − �2]

× −ω1(ω1 + ω) − E2
A(

ω2
1 − E2

A

)[
(ω1 + ω)2 − E2

A

] . (52)

For frequencies near the threshold, ω − 2� 
 �, this gives

Sc−c(ω) � e2τ

4�

�(ω − 2�)2

�2 − E2
A

�(ω − 2�), (53)

while for ω � �, Eq. (52) yields

Sc−c(ω) � e2τ

π�

[
ω −

√
�2 − E2

A tan−1

(√
ω2 − �2

�2 − E2
A

)]
.

(54)

The above results are illustrated in Fig. 2. We note that
the fluctuation-dissipation theorem relates the frequency-
dependent admittance of the junction to S+(ω). In particular,
transition rates between Andreev and continuum states directly
follow from Eq. (51); cf. Eq. (14) in Ref. [54]. In the inset of
Fig. 2, we compare the above results to finite-frequency noise
in a topologically trivial S-S junction with otherwise identical
parameters [52]. Clearly, for the TS-TS junction, there is no
ω = 2EA peak, and the frequency dependence of S+(ω) for
ω > � + |EA| is rather different.

C. Current-voltage characteristics

We now turn to the case of a voltage-biased TS-TS junction,
where we shall discuss the time-averaged current-voltage
characteristics in the T = 0 limit. As is well known, subgap
transport is then governed by MAR processes. Here we briefly
show that our approach recovers previous results [40–42], and
then point out that the low-bias regime admits an analytical
solution.

For a numerical evaluation of the current-voltage charac-
teristics, it is convenient to adopt gauge II in the Hamiltonian
description. One can then follow the strategy discussed in
Ref. [14], where the corresponding problem has been solved
for voltage-biased S-S contacts. For the TS-TS case, we
can similarly expand the mean current as I (t) =∑n Ĩne

inω0t

with ω0 = 2eV/�, where we arrive at expressions relating
the current coefficients Ĩm to double Fourier GF components
(Ǧnm) formally identical to the expressions in Ref. [14]. The
recursive algorithm devised in Ref. [14] then directly applies
after replacing the uncoupled GFs by ǧTS [cf. Eq. (6)] and
yields the numerically exact solution for the time-dependent
current flowing through the junction.

In Fig. 3, we show the resulting dc component I = Ĩ0 as a
function of the bias voltage for several junction transparencies
τ . We find that the current exhibits subgap steps at eV =
2�/(2n) with integer n, which are more and more rounded as
τ increases. These steps correspond to the onset of even-order
Andreev reflection processes. We note that in a conventional
S-QD-S junction containing a resonant dot state, such subgap
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FIG. 3. Time-averaged current-voltage characteristics I vs V of a
TS-TS junction at zero temperature for several transparencies τ . Inset:
Same for the low-bias regime, eV 
 �, with high transparency. The
blue dashed curve shows the analytical prediction in Eq. (55), while
the solid curves follow from numerically exact calculations.

steps happen at eV = 2�/(2n + 1) [15], i.e., only odd-order
Andreev reflection processes contribute. For the TS-TS case
at hand, as explained in Ref. [42], the opposite situation is
encountered and only even orders are important. Eventually, at
perfect transmission (τ = 1), a practically linear dependence
on voltage is reached after an abrupt conductance jump to
2e2/h at zero bias. Our results in Fig. 3 agree with those
of Ref. [40] obtained by employing scattering theory for the
time-dependent Bogoliubov–de Gennes equation.

As has been discussed, e.g., in Ref. [14], the low-bias
behavior of a superconducting junction in the MAR regime
can be understood in terms of the dynamics of Andreev bound
states. Here we exploit the close relation between low-bias
transport in a TS-TS junction and for an S-QD-S contact,
where the tunnel junction contains an interacting quantum dot
at resonance. The latter problem has been analyzed in Ref. [19],
where the Andreev bound-state spectrum is well approximated
by EA � �̃ cos(φ0/2), with a renormalized amplitude �̃ < �.
The Andreev bound-state dispersion is formally identical to
the TS-TS junction case in Eq. (46) with the identification
�̃ = √

τ�. However, while the 4π periodicity of the Andreev
states is robust and protected by parity conservation for the
TS-TS junction, it is only accidental in the S-QD-S case, since
taking into account asymmetries in left/right tunnel couplings
and/or shifting the dot level slightly away from resonance, a
gap opens and 2π periodicity will be restored. In particular,
for the S-QD-S case, spin degeneracy results in four possible
states, with the “even” sector corresponding to the ±EA states
and the “odd” sector to a pair of spin-degenerate zero-energy
states. In spite of these subtleties, this correspondence yields an
analytical solution for the low-bias (eV 
 �) part of the I -V
curve in the TS-TS junction. With the rate �∗ = τ�/4

√
1 − τ ,

which is precisely one-half of the N-TS rate � in Eq. (36), we
obtain

I (V ) = 2e

�∗V �

∫ ∞

�

dxx2

√
x2 − �2

x2 − �̃2
e2x(tanh α−α)/V , (55)

where cosh α = x/�̃; see Ref. [19]. This analytical result is
shown as a dashed line in the inset of Fig. 3 and describes
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well our numerical results in the limit eV 
 � and τ � 0.8.
We mention in passing that Eq. (55) also agrees well with the
analytical approximation in Ref. [41] for sufficiently low-bias
voltage, even though their expression looks rather different.

We conclude this section by noting that the excess current
(42) for a TS-TS junction with gaps �1 and �2 is given by

Iexc,TS−TS = Iexc,N−TS(�1) + Iexc,N−TS(�2), (56)

where the T = 0 excess current of an N-TS junction with
the same transparency τ has been specified in Eq. (44).
Technically, this result follows by noting that only single
Andreev reflection processes survive for V → ∞ [14]. For
equal gaps, Eq. (56) predicts a doubling of the TS-TS excess
current relative to the corresponding N-TS value.

V. S-TS JUNCTION

In this section, we study the current I flowing through
an S-TS junction between a conventional s-wave BCS super-
conductor on the left side (j = 1) and a topological TS wire
on the right side (j = 2). The respective gaps are denoted
by �1 = �s and �2 = �. The noise properties can also be
determined using the present GF formalism [see Eq. (27)], but
we leave this question to future work.

As discussed in Sec. II B, here we consider spin-conserving
tunneling processes, where (after a suitable basis choice)
only spin-↑ fermions in the s-wave superconductor are tunnel
coupled to the effectively spinless TS wire. The tunneling
matrix W follows from W12 = λeiφ(t)/2�↑ [see Eq. (21)],
with the projection operator �↑ = (σ0 + σz)/2. The time-
dependent mean current flowing through the junction can be
computed from the general expression in Eq. (23). Working in
gauge II and using the Dyson equation (22), we find

I (t) = −λ2 Re
∫

dt ′e−i[φ(t)−φ(t ′)]/2

× trN
[
g̃R

1 (t − t ′)GK
22(t ′,t) + g̃K

1 (t − t ′)GA
22(t ′,t)

]
.

(57)

Here, projected GFs for the s-wave superconductor are defined
by

g̃
R/A/K

1 (t) = �↑g
R/A/K

S (t)�↑, (58)

with the Fourier transform ǧS(t) of ǧS(ω) in Eq. (12). For
details on the derivation of Eq. (57), see Appendix C.

A. Equilibrium S-TS Josephson current

The equilibrium Josephson current through a phase-biased
S-TS junction has previously been studied by two of us [43],
where we found that there are no Andreev bound states and
hence the Josephson current vanishes identically, I (φ0) = 0, as
long as tunneling remains spin conserving. This result finds a
simple explanation by noting the different pairing symmetries
on both sides of the junction: their orthogonality effectively
blocks the supercurrent. In fact, in the absence of spin flips
during tunneling events, the present GF approach confirms
this result explicitly from Eq. (57) after putting V = 0, as we
briefly demonstrate in Appendix C.

However, recent theoretical work [44] reported a finite
Josephson current through an S-TS junction, where the s-
wave superconductor has been represented by two (opposite-
spin) Kitaev chains in the continuum limit. Employing a
scattering approach under the assumption of full channel
mixing at the junction, which implicitly requires strong spin-
flip scattering, the Josephson current was then shown to be
finite. Our approach can easily handle spin-flip scattering
during tunneling [24], and we have reproduced the results
of Ref. [44] by such a generalization. However, here we
refrain from a detailed discussion of this issue, and instead
continue with the I -V characteristics of an S-TS junction under
the assumption of spin-conserving tunneling. This case is
encountered, for instance, when electrons/holes are tunneling
from a superconducting scanning tunneling microscope tip
through vacuum to the edge of a TS wire.

B. Voltage-biased S-TS junction

Next we turn to a discussion of the time-averaged current
through a voltage-biased S-TS junction. For a constant voltage
bias, we have φ(t) = 2eV t/�, and the dc current I (V ) through
the S-TS junction follows from Eq. (57) after some algebra
given in Appendix C. For the same reason that Andreev bound
states do not appear in the equilibrium case, MAR phenomena
are absent in this setup. We therefore do not need a double
Fourier representation of the GF. Despite this simplification,
the result given below is a bit lengthy, but at the same time
it is exact for arbitrary parameter values. We note in passing
that the conventional superconductor here is assumed to be
tunnel coupled to the edge of the TS wire. When the junction
is instead located some distance d away from the edge, one
has to evaluate the GF gTS(x,x ′; ω) at position x = x ′ = d; cf.
Ref. [45]. The latter GF can be computed using similar steps
as given in Appendix A.

Using ω± = ω ± eV and f (ω) = 1 − 2nF (ω) in Eq. (3),
Eq. (57) yields

I (V ) = λ2Re
∫

dω

2π

[
γ R

1 (ω−)GK
22;ee(ω)

+ 2if (ω−)ν1(ω−)GA
22;ee(ω)

]
, (59)

where G22;ee refers to the (1,1) entry of the corresponding
Nambu matrix with

G
R/A

22;ee(ω) = −γ2(ω)zh(ω)

ze(ω)zh(ω) − 1/(1 − ω2/�2)
(60)

and

GK
22;ee(ω) = −2i

∣∣γ R
2 (ω)

∣∣2∣∣zA
e (ω)zA

h (ω) − 1/[1 − (ω − i0+)2/�2]
∣∣2

×
[
fe(ω)

∣∣zR
h (ω)

∣∣2 + fh(ω)

|1 − ω2/�2|
]
. (61)

We use the DOS ν1(ω) of the BCS superconductor in Eq. (13),
and the continuum part of the DOS of the TS wire [cf. Eq. (8)],
ν2(ω) = �(|ω| − �)

√
1 − �2/ω2. In addition, we introduce

effective distribution functions fe/h(ω) for electrons (e) and
holes (h),

fe/h(ω) = f (ω)ν2(ω) + λ2f (ω∓)ν1(ω∓). (62)
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Since f (0) = 0, the Majorana peak in the DOS of the TS wire
does not contribute to fe/h(ω), and only the continuum part
of ν2(ω) matters here. Finally, in the above expressions, we
employ the retarded/advanced quantities,

γj (ω) = ω√
�2

j − ω2
,

(63)
ze/h(ω) = 1 − λ2γ1(ω∓)γ2(ω).

In the limit �s → 0, one finds after a short calculation
that Eq. (59) reduces to the current through an N-TS junction;
see Eq. (33). Furthermore, for τ 
 1, Eq. (59) reduces to
the I -V relation in Eq. (28) applicable in the deep tunneling
regime. An interesting recent study [45] for precisely the same
S-TS junction has reported a universal peak height of the
differential low-temperature conductance. This conductance
peak is asymmetric and sets in at eV = �s , where G jumps to
the value

GM = (4 − π )
2e2

h
. (64)

Such a feature may be useful for the detection of Majorana
bound states. Equation (64) has been derived by projecting
away the TS continuum quasiparticles, i.e., by formally
sending � → ∞ [45]. Indeed, in that case, Eq. (59) simplifies
to

I = 4e

h

∫
dω[nF (ω−) − nF (ω+)]

ν1(ω−)ν1(ω+)

[ν1(ω−) + ν1(ω+)]2 .

(65)

At low temperatures, T 
 �s , and for voltages eV = �s +
η with |η| 
 �s , where the BCS singularity in the s-wave
superconductor lines up with the Majorana zero-energy level
at η = 0, Eq. (65) yields

I = 8e

h
�(η)

∫ η

0
dω

1√
η2−ω2(

1√
η+ω

+ 1√
η−ω

)2
= (4 − π )

2e

h
(eV − �s)�(eV − �s), (66)

directly leading to Eq. (64). Note that no current flows for
eV < �s .

We illustrate the differential conductance G = dI/dV

obtained from Eq. (59) in Fig. 4, where GM is indicated by
the dashed blue line. The universal peak height (64) follows
for arbitrary τ as eV approaches �s from above. For τ 
 1,
Fig. 4 also confirms the subgap conductance line shape, i.e.,
the dependence on V for eV < � + �s , derived in Ref. [45].

Generally, we observe from Fig. 4 that the conductance first
increases with increasing voltage, and then strongly decreases
except for very high junction transparency. Note in particular
that the conductance can become negative; see Fig. 4. Such
a negative differential conductance is not surprising when
tunneling through a bound state; cf. Ref. [55]. For τ = 1, the
ideal resonant Andreev reflection value G = 2e2/h is (almost)
reached as eV → � + �s . For voltages eV > � + �s and
τ = 1, the conductance then drops in a continuous fashion.
However, for τ < 1, we find that the conductance exhibits
a finite jump to a smaller value as the voltage goes through

1 1.5 2 2.5 3

0

0.5

1.0

1.5

2.0

eV/Δ

G
 (

e2 /h
)

0.8

0.6

0.4

0.2

τ = 1

FIG. 4. Differential conductance G = dI/dV vs V at zero tem-
perature for an S-TS junction with �s = � and several transparencies
τ . For |eV | < �, the current vanishes. The dashed blue line gives GM

in Eq. (64).

this threshold value separating the subgap from the above-gap
regime. Furthermore, at very large voltage, the conductance
again approaches the ohmic value τe2/h of the corresponding
N-N junction. We emphasize that finite-temperature effects are
exponentially small due to the presence of a gap on both sides
of the junction.

VI. CONCLUSIONS AND OUTLOOK

To conclude, we have formulated a general nonequilibrium
Green’s-function framework to study transport in hybrid
devices containing Majorana wires. Our approach employs the
boundary Green’s function of such a Majorana wire, given in
Eq. (6), which is sufficiently simple to allow us to derive several
analytical results and/or provide expressions that can be treated
numerically in a straightforward manner. As applications, we
have discussed three elementary tunnel junctions involving
topologically nontrivial wires, where we take into account
both the Majorana sector and the continuum quasiparticles on
equal footing.

There are many interesting applications that could be
treated in the future by this Hamiltonian approach. For
instance, the approach should be suitable to study multiter-
minal junctions or networks containing TS wires [56–59],
the coupling of Majorana wires to (interacting) quantum dots
[26,27], and/or when a finite-length TS wire is contacted
by several electrodes [34,60]. Other possible directions are
to include ac voltages in order to study, e.g., fractional
Shapiro steps in TS-TS junctions [37,40,41,61], or to study
the interplay between Coulomb charging effects [62–65] and
the presence of continuum quasiparticles. Moreover, it will
be interesting to also extend the boundary GF given above
for the class-D wire to other symmetry classes as well as
to topological superconductors of dimensionality higher than
one. A related generalization may employ a GF for the p-wave
superconductor covering a wider parameter regime, such that
one can study the phase transition between the nontopological
and the topological phase. We leave those extensions for future
work.
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APPENDIX A: BOUNDARY GF OF SEMI-INFINITE TS
WIRE

Here we provide a derivation of the retarded/advanced GF
g

R/A

TS (ω) in Eq. (6), which describes the low-energy dynamics
of electrons and holes at the boundary of a semi-infinite TS
wire. Let us start from the standard Kitaev chain model [28] in
the topologically nontrivial phase, for simplicity with chemical
potential μ = 0. Using the pairing amplitude � (assumed real
positive), the hopping matrix element t0, and spinless fermion
operator cx for lattice site number x (with lattice spacing
a = 1), the “bulk” Hamiltonian is

H
(b)
K = 1

2

∑
x

(−t0c
†
xcx+1 + �cxcx+1) + H.c.

= 1

2

∑
k

�
†
khk�k, hk = −t0 cos(k)σz + � sin(k)σy,

(A1)

with Nambu spinors �k = (ψk,ψ
†
−k)T subject to the reality

constraint �k = σx�
∗
−k and Pauli matrices σx,y,z in Nambu

space. In Eq. (A1), we assume periodic boundary conditions,
cx+N = cx , and write

�(x) =
(

cx

c
†
x

)
= 1√

N

∑
k

eikx�k, (A2)

with the number of lattice sites N → ∞. We note in passing
that a linearization of the Hamiltonian (A1) around the two
Fermi points, kF = ±π/2 (half filling), obtains

H
(b)
K �

∑
q

�†
q(vF qσz + �σy)�q, �q =

(
ψπ/2+q

ψ
†
−π/2−q

)
,

(A3)

with Fermi velocity vF = t0; see Eq. (4).
The “bulk” retarded/advanced GF of �(x) for the trans-

lationally invariant Kitaev chain in Eq. (A1) is given by the
Nambu matrix

g
(b)
xx ′ (ω) = 1

N

∑
k

(ω − hk)−1eik(x−x ′). (A4)

Passing to the continuum representation in momentum space,
it is convenient to evaluate Eq. (A4) as a sum of residues in
the z = eik plane,

g
(b)
xx ′ (ω) =

∮
|z|=1

dz

2πi
(ω − hk)−1zx−x ′−1, (A5)

where we only need the result for lattice sites x,x ′ ∈ {0, ± 1}
below. From Eq. (A5), we find

g
(b)
00 (ω) = −2ωσ0√

(ω2 − �2)
(
ω2 − 4t2

0

) ,

g
(b)
±1,0(ω) = g

(b)
0,∓1(ω) = 2t0

(
z2

1 + 1
)
σz ± i�

(
z2

1 − 1
)
σy√

(ω2 − �2)
(
ω2 − 4t2

0

) ,

(A6)

where

z2
1 = 2ω2 − (4t2

0 + �2
)

4t2
0 − �2

− sgn
[
2ω2 − (4t2

0 + �2)]

×
√[

2ω2 − (4t2
0 + �2

)
4t2

0 − �2

]2

− 1.

In the wideband limit defined by t0 � max(�,|ω|) [13],
Eq. (A6) simplifies to

g
(b)
00 (ω) = −ω

t0
√

�2 − ω2
σ0,

(A7)

g
(b)
±1,0(ω) = g

(b)
0,∓1(ω) =

√
�2 − ω2σz ∓ i�σy

t0
√

�2 − ω2
.

In the next step, we add a local potential scatterer of strength
U at site x = 0, resulting in the Hamiltonian HK = H

(b)
K +

Uc
†
0c0. The “full” GF, gxx ′ (ω), then obeys the Dyson equation

g = g(b) + g(b)Uσzg. Letting the impurity strength U → ∞,
one effectively cuts the chain at site x = 0, and therefore the
boundary GF of the semi-infinite TS wire follows as gTS(ω) =
g11(ω). Solving the above Dyson equation for U → ∞, we
obtain (see also Ref. [66])

gTS(ω) = g
(b)
00 (ω) − g

(b)
10 (ω)

[
g

(b)
00 (ω)

]−1
g

(b)
01 (ω). (A8)

By inserting the wideband expression (A7) for g
(b)
xx ′ (ω) into

Eq. (A8), we finally arrive at g
R/A

TS (ω) as quoted in Eq. (6); see
Sec. II.

APPENDIX B: ON TS-TS JUNCTIONS

In this appendix, we provide derivations for several of our
results on TS-TS junctions in Sec. IV.

First, let us sketch how to obtain the Josephson current-
phase relation I (φ0) in Sec. IV A. By using Eq. (23) and
adapting the expressions in Secs. II and III from the N-TS
to the TS-TS case, we arrive at the integral representation

I (φ0) = 1

2

∫
dω

2π
f (ω)trN {σz[X

R(ω) − XA(ω)]}. (B1)

Here, we use the retarded/advanced Nambu matrix functions
X(ω) = [ω2/(1 + λ2)]M(ω)/detM(ω), where

M(ω) =
(

ω2 − α�e−iφ0/2 αeiφ0/2
√

�2 − ω2

αe−iφ0/2
√

�2 − ω2 ω2 − α�eiφ0/2

)
, (B2)

014502-11



A. ZAZUNOV, R. EGGER, AND A. LEVY YEYATI PHYSICAL REVIEW B 94, 014502 (2016)

with α = [2λ2/(1 + λ2)]� cos(φ0/2). Using the Andreev
bound-state energy EA in Eq. (46), we notice that detM =
ω2(ω2 − E2

A). As a consequence, Eq. (B1) leads to Eq. (45) in
the main text.

Next we discuss the function Q(ω1,ω2) determining the
finite-frequency noise S+(ω); see Sec. IV B. To that end, we
define the lead Nambu matrix A(ω) = [GR − GA](ω) with
GR/A in Eq. (32), which corresponds to the spectral function.

We then obtain Q(ω1,ω2) from Eq. (27) in the form

Q(ω1,ω2) = −1 − √
1 − τ

1 + √
1 − τ

trN [A11(ω1)eiσzφ0/2A22(ω2)

× e−iσzφ0/2 − eiσzφ0/2A21(ω1)eiσzφ0/2A21(ω2)].

(B3)

Using Eq. (32), the diagonal elements (j = j ′ = 1,2) of the
spectral function are given by the Nambu matrices,

Ajj (ω) = −i(1 + √
1 − τ )

⎧⎨
⎩π

2
[δ(ω − EA) + δ(ω + EA)]

⎛
⎝
√

�2 − E2
A eisj φ0/2βj

e−isj φ0/2β∗
j

√
�2 − E2

A

⎞
⎠+ �(|ω| − �)

|ω|√ω2 − �2

ω2 − E2
A

σ0

⎫⎬
⎭,

(B4)

while for the off-diagonal component needed in Eq. (B3), we obtain

A21(ω) = −i(1 + √
1 − τ )e−iσzφ0/2

⎧⎨
⎩π

2
[δ(ω − EA) − δ(ω + EA)]

⎛
⎝ β∗

1

√
�2 − E2

Aeiφ0/2

−
√

�2 − E2
Ae−iφ0/2 −β1

⎞
⎠

+ �(|ω| − �)sgn(ω)
EA

√
ω2 − �2

ω2 − E2
A

(
0 eiφ0/2

−e−iφ0/2 0

)⎫⎬
⎭, (B5)

where sj = (−1)j+1 and

βj = [sj

√
1 − τ cos(φ0/2) − i sin(φ0/2)]�. (B6)

Inserting these results into Eq. (B3), we arrive at the ex-
pressions for QA−c and Qc−c quoted in Eqs. (49) and (50),
respectively.

APPENDIX C: ON S-TS JUNCTIONS

In this appendix, we provide details about the calculation
of the current through an S-TS junction; see Sec. V. The
uncoupled GFs ǧ1,2 are then given by ǧ1 = ǧS and ǧ2 = ǧTS.

First, we derive the mean time-dependent current in
Eq. (57). Let us start from Eq. (23), which here takes the
form

I (t) = −Re trN
[
W

†
12(t)GK

12(t,t)
]
, (C1)

with W12 = λeiφ(t)/2�↑. According to the Dyson equation
(22), we have

Ǧ12(t,t) =
∫

dt ′ǧ1(t − t ′)W12(t ′)Ǧ22(t ′,t), (C2)

where Ǧ−1
22 = ǧ−1

2 − �̌ involves the self-energy due to the
tunnel coupling,

�̌(t,t ′) = λ2e−i[φ(t)−φ(t ′)]/2�̌eq(t − t ′). (C3)

Taking into account the reality constraint for the TS Nambu
spinors, � = σx�

∗ (see Sec. II A), and using the projected GF
g̃1 in Eq. (58), we find

�R/A
eq (ω) = g̃1(ω) − σxg̃

∗
1 (−ω)σx,

(C4)
�K

eq(ω) = f (ω)
[
�R

eq(ω) − �A
eq(ω)

]
.

Inserting the above expressions into Eq. (C1), we arrive at
Eq. (57) in Sec. V.

Next, let us show that the equilibrium S-TS Josephson
current for fixed phase difference φ0 vanishes identically in
the absence of spin-flip tunneling. For V = 0, by employing
the equilibrium relation for the Keldysh GF component (2),
the Josephson current follows from Eq. (57) as

I (φ0) = −Re
∫

dω

2π
f (ω)

[
XR

0 (ω) − XA
0 (ω)

]
,

(C5)

X0(ω) = − λ2ω√
�2

s − ω2
trN [�↑G22(ω)],

with

G22(ω) =
(

[g2(ω)]−1 + λ2ωσ0√
�2

s − ω2

)−1

. (C6)

As a result, we obtain

X0(ω) = λ2ω2K(ω)

K2(ω) − �2
(
�2

s − ω2
) , (C7)

with K(ω) = √(�2
s − ω2)(�2 − ω2) − λ2ω2. Importantly, the

φ0 dependence has dropped out completely, as can already be
seen from Eq. (57). By inserting Eq. (C7) into Eq. (C5), we
find I (φ0) = 0, in accordance with Ref. [43].

Finally, starting from Eq. (57), we sketch the derivation
of the expression (59) for the time-averaged (dc) current I

under a constant voltage bias. Due to the absence of MAR
features, one can effectively switch back to gauge I and work
in the frequency representation. Using ω± = ω ± V and the
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projected self-energy components,

�̃R/A(ω) = − λ2ω−√
�2

s − ω2−
�↑,

�̃K (ω) = −2iλ2f (ω−)ν1(ω−)�↑, (C8)

we obtain the dc current from Eq. (57) as

I = − e

h
Re trN

∫
dω
[
�̃R(ω)GK

22(ω) + �̃K (ω)GA
22(ω)

]
.

(C9)

The retarded/advanced GF components follow from the Dyson
equation,

G22(ω) = {[g2(ω)]−1 − �(ω)}−1, (C10)

with the self-energy Nambu matrix,

�(ω) = −λ2diag

⎛
⎝ ω−√

�2
s − ω2−

,
ω+√

�2
s − ω2+

⎞
⎠, (C11)

and

GK
22(ω) = GR

22(ω)
{
�K (ω) + [gR

2 (ω)
]−1

gK
2 (ω)

× [gA
2 (ω)

]−1}
GA

22(ω), (C12)

where

�K (ω) = −2iλ2diag[f (ω−)ν1(ω−),f (ω+)ν1(ω+)]. (C13)

The above expressions yield Eq. (59) quoted in the main text.

[1] J. Alicea, New directions in the pursuit of Majorana fermions in
solid state systems, Rep. Prog. Phys. 75, 076501 (2012).

[2] M. Leijnse and K. Flensberg, Introduction to topological super-
conductivity and Majorana fermions, Semicond. Sci. Techn. 27,
124003 (2012).

[3] C. W. J. Beenakker, Search for Majorana fermions in supercon-
ductors, Annu. Rev. Con. Mat. Phys. 4, 113 (2013).

[4] S. R. Elliott and M. Franz, Majorana fermions in nuclear,
particle, and solid-state physics, Rev. Mod. Phys. 87, 137 (2015).

[5] C. W. J. Beenakker, Random-matrix theory of Majorana
fermions and topological superconductors, Rev. Mod. Phys. 87,
1037 (2015).

[6] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A.
Bakkers, and L. P. Kouwenhoven, Signatures of Majorana
fermions in hybrid superconductor-semiconductor nanowire
devices, Science 336, 1003 (2012).

[7] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and
H. Shtrikman, Zero-bias peaks and splitting in an Al-InAs
nanowire topological superconductor as a signature of Majorana
fermions, Nat. Phys. 8, 887 (2012).

[8] H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen, M. T.
Deng, P. Caroff, H. Q. Xu, and C. M. Marcus, Superconductor-
nanowire devices from tunneling to the multichannel regime:
Zero-bias oscillations and magnetoconductance crossover, Phys.
Rev. B 87, 241401(R) (2013).

[9] S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth,
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