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Ground-state phases of a generalized XY model with magnetic and generalized nematic couplings on a
nonbipartite triangular lattice are investigated in the exchange interactions parameter space. We demonstrate
that the model displays a number of ordered and quasiordered phases as a result of geometrical frustration
and/or competition between the magnetic and the generalized nematic interactions. The nature and the extent
of the respective phases depend on the parameter q that characterizes the higher-order harmonics term in
the Hamiltonian. Motivated by a recent discovery of the experimental realization of the model with q = 2 in a
seemingly unrelated field of the system chemistry [ A. B. Cairns, M. J. Cliffe, J. A. M. Paddison, D. Daisenberger,
M. G. Tucker, F.-X. Coudert, and A. L. Goodwin, Nature Chemistry 8, 442 (2016)], the model with q � 2 is
discussed in the context of the prediction of structural phases of a class of bimetallic cyanides based on a mapping
between the two systems.
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I. INTRODUCTION

A standard two-dimensional continuous XY spin model is
known to exhibit a Kosterlitz-Thouless phase transition, due to
the vortex-antivortex (topological defects) pair unbinding [1],
to a quasi-long-range-order (LRO) phase characterized by a
power-law decaying correlation function.

The model with antiferromagnetic interactions on a non-
bipartite, such as triangular, lattice becomes geometrically
frustrated and it has been intensively studied in relation with
the possibility of separate phase transitions to the vector
chiral LRO and the magnetic quasi-LRO phases (spin-chirality
decoupling) and the corresponding universality classes [2–7].

The model can be generalized by including the higher-order
harmonics, leading to the Hamiltonian

H = −J1

∑
〈i,j〉

cos(φi − φj ) − Jq

∑
〈i,j〉

cos[q(φi − φj )], (1)

where φi ∈ [0,2π ] is an ith site spin angle, J1 and Jq are
exchange interaction parameters, and 〈i,j 〉 denotes the sum
over nearest-neighbor spins. The first term J1 is a usual
magnetic coupling, while the second term Jq represents a
generalized nematic interaction.

The model (1) with q = 2 has been studied for the
nonfrustrated both J1 and J2 positive, i.e., ferromagnetic (FM)
and nematic (N), interactions [8–12] and more recently also for
the frustrated both J1 and J2 negative, i.e., antiferromagnetic
(AFM) and antinematic (AN), interactions [13]. In both cases
the ground states have been shown to be not affected by
the presence of the nematic terms as long as the magnetic
interactions are nonzero, i.e., for any finite ratio J2/J1 the
ground state is FM in the former and AFM in the latter
case. The model with the mixed signs of J1 and J2 on
a bipartite (nonfrustrated) square lattice has been shown
to be applicable in modeling of high-temperature cuprate
superconductors [14,15]. However, as far as we are aware, the
nonbipartite triangular lattice model with the frustration and/or
competition inducing magnetic and nematic interactions of

*milan.zukovic@upjs.sk

mixed signs has not been studied yet. Notwithstanding, the
results obtained for a three-dimensional layered-triangular
lattice XY model with different types of intra- and interlayer
magnetic and nematic interactions, reported in a series of
papers [16–19], suggest the presence of some nontrivial com-
plex ground states resulting from the intralayer geometrical
frustration and competition between the magnetic and the
nematic couplings.

A recent study of the model with q > 2 and positive both
magnetic and generalized nematic interactions by Poderoso
et al. [20] has revealed that the increasing value of q can
drastically change the phase diagram topology by inducing
new phases belonging to a variety of universality classes. This
finding is rather surprising, as it points to a significant lack
of universality in systems showing the same φ → φ + 2π

symmetry and thus raises a more general question about the
credibility of the conclusions regarding the thermodynamic
behavior of the system drawn from a coarse-grained Hamil-
tonian. Besides this intriguing theoretical aspect, the above
generalized model with q = 2 and frustrated interactions has
been demonstrated to be applicable to modeling such diverse
phenomena as DNA packing [21] or very recently structural
phases of certain cyanide polymers [22,23]. It is interesting
that this frustrated spin model, studied theoretically over
decades basically as an unrealizable toy model in the field
of magnetism, found its first experimental realizations as
a structural analog of the systems in seemingly completely
unrelated fields.

Motivated by the above raised theoretical questions as
well as further possible experimental realizations, in the
present study we investigate ground-state and near-ground-
state properties of the generalized XY model in a wide space
of the parameters and discuss its application to the prediction
of structural phases of a class of bimetallic cyanides based on
an appropriate mapping between the two systems.

II. MODEL AND METHODS

In the following we consider the model (1) for general
q and the interaction parameters J1,Jq ∈ [−1,1] in the form
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J1 = cos(θ ), Jq = sin(θ ), with θ ∈ [0,2π ), in order to cover
all the possible signs and strength ratios of the interactions.

A. Global optimization

The ground states of the model can be obtained by finding
global minima of the energy functional (1) in the phase space.
Assuming spin uniformity on each of the three sublattices
of the triangular lattice, one basically needs to minimize the
objective function

F (�φ12,�φ23) = −
∑
k=1,q

Jk{cos(k�φ12) + cos(k�φ23)

+ cos[k(�φ12 + �φ23)]}, (2)

where �φij is the phase angle between the sublattices i and
j . One should keep in mind that the surface of the objective
function is generally complex and multimodal, particularly in
the case of the frustrated and/or the competing magnetic and
generalized nematic interactions. Therefore, care should be
taken in order to find a true global minimum which, moreover,
may not be unique. We note that this is the reason why we
opted for the global optimization of F , instead of solving the
set of equations ∂F/∂�φ12 = 0; ∂F/∂�φ23 = 0. In Fig. 1 we
show an example of such a case for q = 2 and θ = 7π/4, i.e.,
J1 > 0,Jq < 0, with six global (stable) solutions, marked by
the yellow circles. However, considering the symmetry under
sublattice exchange �φ12 ↔ �φ23, in fact, there are only four
different solutions.

B. Monte Carlo simulation

In our Monte Carlo (MC) simulations we consider spin
systems of a linear size L, with the periodic boundary
conditions to eliminate boundary effects. We use the standard
Metropolis algorithm and for thermal averaging we take NMC

MC sweeps after discarding another N0 = 0.2 × NMC MC

Δφ
12

Δφ
23

0 pi/2 pi 3*pi/2 2*pi
0

pi/2

pi

3*pi/2

2*pi

FIG. 1. The objective function (2), for q = 2 and θ = 7π/4. The
yellow circles denote global minima.

sweeps for thermalization. The simulations are performed
at sufficiently low temperature T = 0.05, to approximate
ground-state conditions, for θ ∈ [0,2π ), with the step �θ =
π/180, to cover the entire parameter plane J1 − Jq with
sufficient resolution. Considering such a low simulation
temperature, in order to secure equilibrium conditions we
chose relatively small but for the purpose sufficient lattice
sizes of L = 12–48 and used NMC = 104 MC sweeps. We
calculated the following quantities: the internal energy per spin
e = 〈H 〉/L2; the magnetic (m1) and the generalized nematic
(mq) order parameters, defined by

mk = 〈Mk〉/L2 =
˝√√√√3

3∑
α=1

M2
kα

˛/
L2,k = 1,q; α=1,2,3,

(3)

where Mkα is the αth sublattice order parameter vector, given
by

Mkα =
(∑

i∈α

cos(kφαi),
∑
i∈α

sin(kφαi)

)
; (4)

and the generalized (staggered) chiralities

κk=〈Kk〉/L2=
˝∣∣∣∣∣∣

∑
p+∈�

κkp+−
∑
p−∈∇

κkp−

∣∣∣∣∣∣
˛/

(2L2),k=1,q,

(5)

where κkp+ and κkp− are the local generalized chiralities for
each elementary plaquette of upward and downward triangles,
respectively, defined by

κkp = 2{sin[k(φ2 − φ1)] + sin[k(φ3 − φ2)]

+ sin[k(φ1 − φ3)]}/3
√

3, (6)

where the summation runs over the three directed bonds
surrounding each plaquette, p, and φi and i = 1,2,3 represent
the spin angles. κp is an Ising-like quantity representing the
sign of rotation of the spins along the three sides of each
plaquette (see Fig. 2, for q = 1 and θ = 3π/2). Finally, the
spin correlation function is obtained as

C(r) =
〈∑

i

cos(φi − φi+r )

〉/
L2, (7)

where φi and φi+r are the turn angles of the spins separated by
the distance r . For the standard XY model, C(r) is known to
decay as a power law with the temperature-dependent exponent
η(T ):

C(r) ∼ r−η(T ). (8)

MC simulations serve to complement the Hamiltonian
optimization results by providing additional information, such
as the order parameter values, spin snapshots, as well as a decay
of the spin correlation function, which are particularly helpful
in understanding the behavior of various nontrivial phases.
On the other hand, the global optimization results check the
consistency of the two approaches and also verify whether the
MC results have been obtained under equilibrium conditions
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θ=π/2 θ=3π/2

FIG. 2. Schematic representation of the possible spin orientations
for the models with purely positive, i.e., θ = π/2 (left column), and
purely negative, i.e., θ = 3π/2 (right column), magnetic (q = 1) and
generalized nematic (q = 2,3,4) interactions. Different colors, for
θ = 3π/2, represent the three sublattices of the triangular lattice and
the + and − signs, for q = 1, represent the local chirality values.

even in this generally difficult to equilibrate near-ground-state
region of frustrated systems.

III. RESULTS

A. Ground states

1. Purely magnetic or generalized nematic interactions

Ordering in the case of purely magnetic interactions, i.e.,
the case of Jq = 0 with θ = 0 (J1 > 0) or θ = π (J1 < 0), is
very well known. The ground state is FM in the former and
coexisting AFM and Ising-like staggered chiral in the latter
case. This is schematically shown in Fig. 2, for q = 1, as a
special case of the absent generalized nematic interactions.
Namely, for J1 > 0, there is a directional order among spins
on the entire lattice and, for J1 < 0, the directional order
among spins on the individual sublattices (the arrows of
different colors) coexists with the staggered chiral order among
triangular plaquettes with opposite handedness (+ and − signs
in the upward and downward triangles, respectively).

On the other hand, for the model with purely positive
generalized nematic (θ = π/2) interactions, it is easy to
verify that the number of possible spin orientations in the
ground state is equal to q, as demonstrated in the left column
of Fig. 2. A similar claim can be made also for the case
with purely generalized antinematic (θ = 3π/2) interactions
if one restricts the considerations to the separate sublattices.
However, due to the geometrical frustration originating in the
triangular lattice topology the minimum-energy condition is
satisfied when the spin angles on the respective sublattices are
uniformly shifted with respect to each other, as illustrated
in the right column of Fig. 2. Thus, the resulting number
of possible spin angles in the case of purely generalized

(a) (b)

(c) (d)

FIG. 3. Near-ground-state (T = 0.05) spin snapshots with purely
(a) FM and (b) AFM interactions and purely (c) N and (d) AN
interactions for q = 2.

antinematic interactions is equal to 3q, not taking into account
the rotational symmetry. Consequently, the relative turn angles
between the neighboring spins from different sublattices can
be defined as �φ ∈ {2iπ/3q,i = 1, . . . ,3q} \ {2jπ/q,j =
1, . . . ,q}. Notwithstanding, unlike in the case of purely
magnetic interactions, the minimum-energy condition does not
require any directional ordering among spins on the lattice for
the positive Jq or on the individual sublattices for the negative
Jq .

The situation is demonstrated in Fig. 3 on the MC
simulation snapshots close to the ground state for the systems
with purely FM and AFM interactions, on the one hand, and
purely N and AN with q = 2 interactions, on the other hand.
We note that in the respective snapshots, different colors of
the arrows represent different spin angles. However, due to
the rotational symmetry not the absolute but only the relative
values with respect to the neighboring spins are important.
Therefore, the color coding is only meant to serve to visually
distinguish areas on the lattice with similarly oriented spins,
instead of representing some particular angle values. In fact,
the same color may represent different angles in different
snapshots. We also note that the color coding of the sublattices
in all the snapshots in this figure as well as in the remainder of
the text is omitted for clarity. The sublattice structure is evident
for the cases in which all the spins on the same sublattice have
similar values and thus are represented by similar colors, such
as in Fig. 3(b). However, for more complex cases, such as that
in Fig. 3(d), the additional sublattice color coding would rather
obscure the spin ordering information. For the color coding of
the sublattices without spins the reader is referred to Fig. 6(a)
below.

2. Mixed magnetic and generalized nematic interactions

Below we present results covering the entire interaction pa-
rameters space J1,Jq ∈ [−1,1], corresponding to the variation
of θ ∈ [0,2π ). In particular, in Fig. 4 we show the phase angle
�φ; the order parameters m1, mq , κ1, κq ; and the energy e, as
functions of θ , for q = 2, . . . ,6. The phase angles (left column)
in the form of histograms obtained from MC simulations (areas
in blue) are complemented with the Hamiltonian minimization
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FIG. 4. The relative phase angle �φ; the order parameters m1, mq , κ1, κq ; and the energy e, as functions of the exchange interaction ratio
Jq/J1 = tan(θ ), for (a)–(c) q = 2, (d)–(f) q = 3, (g)–(i) q = 4, (j)–(l) q = 5, and (m)–(o) q = 6. In (a), (d), (g), (j), and (m), the blue bands
represent top-view histograms (densities) obtained from MC simulations and the superimposed red dots show the Hamiltonian optimization
values. In (c), (f), (i), (l), and (o), the blue circles represent the MC and the red dots represent the optimization results.
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TABLE I. Ranges of θ (in deg) defining four different phases in
the parameter plane J1 − Jq , for q = 2, . . . ,8.

q [θI,min,θI,max] [θII,min,θII,max] [θIII,min,θIII,max] [θIV,min,θIV,max]

2 [−14,90] [90,173] [174,270] [270,345]
3 [−6,90] [90,183] [184,270] [270,353]
4 [−3,90] [90,176] [177,270] [270,356]
5 [−2,90] [90,178] [179,270] [270,357]
6 [−1,90] [90,180] [180,270] [270,358]
7 [−1,90] [90,180] [180,270] [270,358]
8 [0,90] [90,180] [180,270] [270,359]

results (red curves). The order parameters (central column)
are calculated from MC simulations and the equilibrium
conditions are confirmed by comparing the internal energies
(right column) from MC simulations (thick blue curve) with
the residual values of the Hamiltonian minimization (thin red
curve), which are found to practically collapse on the same
curve.

For each q, four phases (intervals of θ ), corresponding
to different types of ordering, can be distinguished. The
extents of the respective phases slightly change with q and
are summarized in Table I, for q = 2, . . . ,8. We note that
the boundary values for q = 2 are consistent [24] with those
determined for the in-plane angles in the three-dimensional
model [19].

The first phase of the FM quasi-LRO corresponding to the
interval [θI,min,θI,max] covers the entire quadrant of J1 > 0,
Jq > 0. It also partially spreads to the quadrant of J1 > 0,
Jq < 0 but its extent is gradually diminished with increasing
q and eventually vanishes at q = 8. In the present calculations
we could not observe any significant differences between these
FM phases for different values of q. However, we note that the
finite-temperature calculations pointed to the change of the
phase diagram topology, giving different kinds of FM ordering
for q < 5 and for q � 5 [20].

The situation in the remaining intervals is more complex
due to the presence of the geometrical frustration and/or
the competition between the interactions J1 and Jq . To
better illustrate the nature of the ordering in those intervals
we additionally present in Fig. 5 spin snapshots and in
Fig. 6 the corresponding spin pair correlation functions.
Let us continue analyzing the situation when J1 remains
ferromagnetic but Jq is changed to negative values, i.e., the
interval IV. As evidenced from Fig. 4, for θ ∈ [θIV,min,θIV,max],
the ferromagnetic phase angle �φ = 0 splits at θIV,max to
some θ -dependent values ±�φ1(θ ), ±�φ2(θ ), which tend
to a subset of the phase angles �φ(θIV,min) ∈ {2iπ/3q,i =
1, . . . ,3q} \ {2jπ/q,j = 1, . . . ,q} of purely (θIV,min = 3π/2)
generalized nematic phase, for each value of q. Note that as
long as the ferromagnetic interactions are nonzero the realized
phase angles ±�φ1(θ ), ±�φ2(θ ) represent the angles which
for vanishing J1 tend to the subset of �φ(θIV,min) with the
smallest absolute values, i.e., ±2iπ/3q,i = 1,2. Such angles
enable the best possible collinear alignment between the
nearest neighbors, while the angles tending to the remaining
possible generalized nematic states �φ(θIV,min) are suppressed.
This phase is characterized by finite but unsaturated values of

the order parameters, except for mq and κq that saturate in the
limiting value of θIV,min (Fig. 4).

The corresponding snapshots in the right column of Fig. 5
indicate a certain degree of FM ordering that, however, does
not spread over the entire lattice but is rather contained within
smaller domains. Nevertheless, with increasing q the domain
sizes tend to increase, which is also reflected in increasing
values of the magnetic order parameter m1. This can be explain
in terms of a gradual relaxation of the frustration between
the conflicting interactions J1 > 0,Jq < 0 due to the increase
of the degrees of freedom of the generalized nematic order.
Therefore, in the limit of q → ∞ the phase angle �φ → 0 and
one can expect a full recovery of the standard FM quasi-LRO.
The increasing ferromagnetic correlations with increasing q

are also evident from the behavior of the spin-correlation
function, presented in Fig. 6(b). One can also notice that
the presence of the generalized nematic term with Jq < 0
decreases the correlation at the lags corresponding to distances
between different sublattices (empty symbols), such as at the
lags r1 and r3 shown in Fig. 6(a). Nevertheless, the nature
of the correlations remains algebraic, as for the standard XY
ferromagnet, albeit with increased values of the exponent
η(q,T ).

Let us now focus on the case of both negative interactions
or, more precisely, the case of θ ∈ [θIII,min,θIII,max]. The case
of J1 < 0,J2 < 0 has already been studied [13,19] and, in
line with the present results for q = 2, the ground state has
been confirmed to be chiral AFM, characterized by the phase
angles �φ = ±2π/3, for any ratio of J2/J1. However, for
q = 3 the picture changes drastically. The chiral AFM order
disappears and the neighboring spins align forming turn angles
with θ -dependent values ±�φ1(θ ), ±�φ2(θ ). This is similar
to the phase IV but since J1 is now AFM the preferred
phase angles are those which for vanishing J1 tend to the
subset of �φ(θIV,min) with the smallest absolute value, i.e.,
|φ1| = 2π/3q, and the largest absolute value complying with
the condition |φ2| � π . Such an arrangement corresponds to
the state in which on each triangular plaquette two neighbors
are oriented almost parallel with respect to each other and
almost antiparallel with respect to the third one [see snapshot in
Fig. 5(e)]. Thus, the correlation between spins belonging to the
same (different) sublattices is positive (negative) [Fig. 6(c)].
Like in the phase IV, the sublattice correlation function follows
the power law with η(q,T ) larger than for the standard XY
antiferromagnet, but decreasing with q. However, this is only
true in the instances when the turn angles between different
sublattices, preferred by the generalized nematic interactions
for a given q, do not include the chiral AFM phase angles
�φ = ±2π/3, as it is for q = 3 or 6. In all the other instances,
like for q = 2,4,5, there is no conflict between the magnetic
and generalized nematic interactions and the systems show the
chiral AFM ordering (see the central column in Fig. 5).

Finally, similar arguments can be made in order to explain
ordering in the phase corresponding to θ ∈ [θII,min,θII,max] but
the dependence on q is somehow reversed. Namely, the chiral
AFM order is preserved for any q divisible by 3, like for
q = 3,6 in our results, in which cases the spin alignments
dictated by the magnetic and generalized nematic interactions
are not antagonistic (see the left column in Fig. 5). Otherwise,
i.e., for q nondivisible by 3, there is a complex quasi-LRO, like
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(m) (n) (o)

FIG. 5. Near-ground-state (T = 0.05) spin snapshots in the frustrated phases taken at θII = 3π/4 (left column), θIII = 5π/4 (central
column), and θIV = 7π/4 (right column), for (a)–(c) q = 2, (d)–(f) q = 3, (g)–(i) q = 4, (j)–(l) q = 5, and (m)–(o) q = 6.

in the phase III for q = 3,6, with the algebraic correlations and
increased values of the exponent η(q,T ) [Fig. 6(d)].

B. Mapping between magnetic states and mixed-metal cyanide
structures

In the following, we establish a mapping between the
ground states of the above generalized frustrated XY model
on a triangular lattice and the structural chemistry of bimetal-

lic cyanides. By finding an analogy between the magnetic
interactions in the spin model and the supramolecular in-
teractions in the chemical compound, a mapping between
the XY model with q = 2 and the structural chemistry of
the compound Ag1/2Au1/2(CN) was recently established by
Cairns et al. [22] Here, we extend this approach for a
mapping between the model with q > 2 and the cyanide
compounds with appropriate mixing patterns of the metallic
cations.
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FIG. 6. (a) Three different color-coded sublattices of the triangular lattice with the distances r1,r2, and r3 between the first-, second-, and
third-nearest neighbors, respectively. Spin correlation functions for q = 2, . . . ,6; L = 48; and T = 0.05 on a log-log scale, for (b) θIV = 7π/4,
(c) θIII = 5π/4, and (d) θII = 3π/4. In (c),(d) the empty symbols correspond to negative values of C. The values on the lags corresponding to
the pairs of spins belonging to the same sublattice are denoted by the filled symbols and are fitted to a power-law function with the exponent η.

The pure AuCN and AgCN structures consist of linear
chains with a strictly repeating pattern −M − (CN) − M−,
where M=Au and Ag, respectively, packed on a triangular
lattice to form a three-dimensional solid [25]. In the former
case, the chains are aligned due to dominant metallophilic
(attractive) interactions between the Au+ cations in the
neighboring chains. On the other hand, in the latter case,
dominant electrostatic (repulsive) interactions between the
Ag+ cations in the neighboring chains make them shift with
respect to each other by 1/3 of the chain repeat length, owing to
the geometrical frustration resulting from the triangular lattice
geometry in the planes perpendicular to the chain direction.
Thus, a unique mapping can be established by relating the
relative chain shift �z of the cyanide structures with the phase
angle �φ of the XY model, through the relation �φ = 2π�z.
While in AuCN �z = 0 maps to the ground state of the
ferromagnetic �φ = 0 XY model, in AgCN �z = ±1/3 maps
to the noncollinear chiral ground state of the triangular AFM
XY model with �φ = ±2π/3.

Adding of Ag+ ions to a solution of [Au(CN)2]− in a
1:1 ratio results in a more complex bimetallic compound
Ag1/2Au1/2(CN) [26]. Such a mixed-metal system has been
shown to form a line phase with strictly alternating metallic

Au and Ag atoms along the chains. In spite of the existence
of the intrachain ordering the system lacks the long-range
interchain order due to the geometrical frustration arising from
the effort to align chains with the preference for heterometallic
(unlike) Au and Ag neighbors and the triangular geometry of
the planes perpendicular to the chain direction allowing only
two nearest neighbors on each elementary triangular plaquette.
Cairns et al. have shown [22] that the structure of such a
complex bimetallic compound can be modeled by the ground
states of a bilinear-biquadratic XY model [19], which is just a
special case of the present generalized XY model with q = 2.

The mapping between the structural phases of the bimetallic
compound M1/2M′

1/2(CN), with a 1:1 metal-mixing ratio, such
as Ag1/2Au1/2(CN), and the generalized XY model for q = 2
are schematically shown in Fig. 7(a). In particular, the cases of
the phase shifts �φ = 0 and π both correspond to dominant
metallophilic alignments; however, in the former case the
preferred alignment is homometallic while in the latter case it
is heterometallic. On the other hand, the case of �φ = π/2
corresponds to a dominant electrostatic alignment, favoring
a staggered arrangement of the metallic cations. The signs
of the interaction parameters, estimated for the compound
Ag1/2Au1/2(CN), suggest the preference for the heterometallic
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over homometallic [J1 = −2.3(3) kJ/mol] and metallophilic
over electrostatic [J2 = 1.3(5) kJ/mol] alignments. One can
easily check that the interaction ratio strength corresponds
to θ ∈ [θII,min,θII,max]. Consequently, the corresponding phase
angle in Fig. 4(a), the order parameters in Fig. 4(b), as well
as the snapshot in Fig. 5(a) and the correlation function in
Fig. 6(d) indicate a complex quasi-LRO state in which the
magnetic disorder is coupled with the (hidden) generalized
nematic order.

Considering other 1 : (x − 1) metal-mixing ratios and as-
suming the existence of the order in individual chains, such as
in the gold-containing compounds, e.g., Cu2/3Au1/3(CN) [26],
similar mappings can be established for more general bimetal-
lic compounds M1/xM′

(x−1)/x(CN), with x > 2. In Fig. 7(b),
we schematically present the mapping between the structure
of the M1/3M′

2/3(CN) compound, with the strictly alternating
chain patterns −M − M′ − M′ − M− and the generalized XY
model with q = 3. While for the q = 2 case the periodicity of
the metallophilic/electrostatic interactions was �φ = π , for
the q = 3 case it changes to �φ = 2π/3. The periodicity of
the homometallic/heterometallic interactions remains the same
�φ = 2π .

It is interesting to notice different roles of the geometrical
frustration for the q = 2 and 3 cases with negative mag-
netic and generalized nematic couplings. The heterometallic
pairwise interactions (J1 < 0) are minimized by staggering
neighboring chains by one-half of the chain repeat length
�φ = π . If only a pair of neighboring chains was considered
then for q = 2 one would see a tendency to align the metallic
atoms in an alternate fashion [see the situation for �φ = π in
Fig. 7(a)], which would maximize the electrostatic interaction
(J2 < 0) energy and, thus, induce a competition between J1 <

0 and J2 < 0 interactions. On the other hand, for q = 3 the

Δφ=0

Δφ=π/2

Δφ=π

(a) 1:1
Δφ=0

Δφ=π/3

Δφ=2π/3

Δφ=π

(b) 1:2

Δφ=0

Δφ=π/4

Δφ=π/2

Δφ=3π/4

Δφ=π

(c) 1:3

Δφ=0

Δφ=π/4

Δφ=π/2

Δφ=3π/4

Δφ=π

(d) 2:2

FIG. 7. States of two neighboring metal-cyanide chains in the
MxM′

1−x(CN) compound, consisting of strictly alternating linkages
of metallic atoms M (gray) and M’ (red) (CN− ions are omitted for
clarity), shown for the phase shifts �φ up to the half of the chain
repeat length and different mixing ratios of the metallic ions.

minimum of J1 < 0 interactions corresponds to the minimum
of the J3 < 0 interaction energy [see the situation for �φ = π

in Fig. 7(b)] and, thus, there is no competition between
the two interactions. Nevertheless, these local arrangements
cannot be propagated on the triangular lattice. For q =
2, the lowest-energy compromise is reached by staggering
neighboring chains by �φ = ±2π/3 and, thus, relaxing the
competition between J1 < 0 and J2 < 0, while for q = 3
the most energetically favorable arrangement is achieved
by shifting of neighboring chains by some nonuniversal
interaction-ratio-dependent phase angle and, thus, imposing
the competition between J1 < 0 and J3 < 0. This is also
evident from the behavior of the phase angles and the order
parameters for θ ∈ [θIII,min,θIII,max] in Figs. 4(a) and 4(b), for
q = 2, and Figs. 4(d) and 4(e), for q = 3, as well as the
corresponding snapshots in Figs. 5(b) and 5(e).

The compound with the metal-mixing ratio 1:3 can be
mapped to the q = 4 model, with the periodicity of the
metallophilic/electrostatic interactions �φ = π/2 and this
can be generalized to the claim that the binary mixed-metal
system with a 1 : (x − 1), x = 2,3, . . . mixing ratio can be
mapped to the generalized XY model with the magnetic J1

and the generalized nematic Jx interactions of the alignment
periodicity �φ = 2π and 2π/x, respectively.

Even for the same mixing ratio, one can also consider
structures of different repeat patterns, such as the one shown
in Fig. 7(d), in which the mixing ratio 1:1 is realized by the
repeat pattern of the metallic ions −M − M − M′ − M′− and
which will be referred to as a 2:2 mixing ratio. Following the
same line of arguments as in the previous paragraph, it is easy
to show that such a system can be mapped to the q = 4 model,
just like the one with the 1:3 mixing ratio, and a compound
with a x : x mixing ratio to the generalized XY model with the
magnetic J1 and the generalized nematic J2x interactions of
the alignment periodicity �φ = 2π and π/x, respectively.

IV. CONCLUSIONS

We have studied ground-state phases of a class of gen-
eralized XY models that include the standard magnetic as
well as the generalized nematic higher-order harmonics terms,
in the model parameter space. The most intriguing are the
cases when the magnetic and generalized nematic interactions
induce geometrical frustration and/or mutual competition,
which happens when at least one of the interactions J1 and Jq

is negative. Then, if they do not compete, which is the case
of J1 < 0,Jq > 0 for q divisible by three and the case of
J1 < 0,Jq < 0 for q nondivisible by three, the system shows
the chiral antiferromagnetic ordering, as already observed for
J1 < 0,J2 < 0 [13]. Otherwise, the competition between J1

and Jq leads to a complex noncollinear quasi-long-range-
ordered phases with still power-law decaying correlation
function, as in the case of the standard XY model, however,
with generally increased values of the q-dependent exponent η.

Furthermore, we have demonstrated that structural analogs
of the generalized XY models, that are obtained by an
appropriate mapping between the magnetic interactions in
the XY spin models and the supramolecular interactions in
the chemical systems, could be useful in structural chem-
istry of certain cyanide polymers. In particular, we have
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presented some examples of such mappings between the
binary mixed-metal compounds, consisting of chains of strictly
alternating patterns with different metal-mixing ratios, and
the corresponding generalized XY models. One should note
that in practice a perfect intrachain metal alternation and
desirable mixing ratios can be difficult to achieve but the
recent experiments [26] suggested that, for example, the gold-
containing systems of the type MpAu(1−p)(CN) might be good
candidates. Then structural properties of such compounds
could be predicted from the corresponding generalized XY
model, using the supramolecular interactions determined by
quantum-mechanical calculations as the parameters J1 and Jq .

It is evident that theoretical studies of the above models
go beyond the academic interest of understanding complexity
arising from the frustrated geometry and competing interac-
tions present in the system. They can also help predict and
control emergent phenomena in chemical and possibly other
systems that can be viewed as structural analogs. Further

extensions of the present study of the frustrated ground-state
phases could include effects of thermal fluctuations, that have
lead to novel phases and transitions belonging to a variety of
universality classes even in the nonfrustrated counterparts [20],
or other forms of stimuli, such as application of an external
field or introduction of nonmagnetic impurities, that have
produced the exotic “order by quenched disorder” effect in the
standard XY triangular-lattice antiferromagnet [27]. Looking
for parallels in the responses to such perturbations in the
magnetic systems and their chemical or other analogs can
open an interesting avenue of future research.
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[19] M. Žukovič and T. Idogaki, Physica B 329–333, 1055 (2003).
[20] F. C. Poderoso, J. J. Arenzon, and Y. Levin, Phys. Rev. Lett.

106, 067202 (2011).
[21] G. M. Grason, Europhysics Letters 83, 58003 (2008).
[22] A. B. Cairns, M. J. Cliffe, J. A. M. Paddison, D. Daisenberger,

M. G. Tucker, F.-X. Coudert, and A. L. Goodwin, Nature
Chemistry 8, 442 (2016).

[23] L. Clark and P. Lightfoot, Nature Chemistry 8, 402 (2016).
[24] One should take into account slightly different Hamiltonians

here and in Ref. [19].
[25] A. G. Sharpe, The Chemistry of Cyano Complexes of the

Transition Metals (Academic, London, 1976).
[26] A. M. Chippindale, S. J. Hibble, E. J. Bilbé, E. Marelli, A. C.
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