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Mechanical back-action of a spin-wave resonance in a magnetoelastic thin
film on a surface acoustic wave
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Surface acoustic waves (SAWs) traveling on the surface of a piezoelectric crystal can, through the
magnetoelastic interaction, excite traveling spin-wave resonance in a magnetic film deposited on the substrate.
This spin-wave resonance in the magnetic film creates a time-dynamic surface stress of magnetoelastic origin that
acts back on the surface of the piezoelectric and modifies the SAW propagation. Unlike previous analyses that treat
the excitation as a magnon-phonon polariton, here the magnetoelastic film is treated as a perturbation modifying
boundary conditions on the SAW. We use acoustical perturbation theory to find closed-form expressions for the
back-action surface stress and strain fields and the resultant SAW velocity shifts and attenuation. We demonstrate
that the shear stress fields associated with this spin-wave back-action also generate effective surface currents on
the piezoelectric both in phase and out of phase with the driving SAW potential. Characterization of these surface
currents and their applications in determination of the magnetoelastic coupling are discussed. The perturbative
calculation is carried out explicitly to first order (a regime corresponding to many experimental situations of
current interest) and we provide a sketch of the implications of the theory at higher order.
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A considerable amount of interest has developed in harness-
ing the interaction between gigahertz-frequency ultrasound
and thin film magnets with appreciable magnetoelastic cou-
pling for various technological applications. Among these
applications are the acoustic manipulation and readout of
magnetic memory elements [1–4], acoustic driving of mag-
netic domain walls [5], the acoustic generation of resonant
spin-wave excitations [6–14], and magnetic field detectors
[15,16]. Some of the interest rests on the point that acoustical
wavelengths range in the submicron to micron scale at the
gigahertz frequencies typical of spin-wave resonance. The
coupling of magnetic systems to various classes of lateral mode
acoustical resonators [e.g., surface acoustic waves (SAWs) or
contour mode resonators [17,18]) might prove useful in gen-
erating various two-dimensional magnetic excitation patterns
with submicron features. For many of these applications, a
clear physical picture and theoretical framework detailing how
a magnetic thin film undergoing spin-wave resonance affects
the acoustical fields pumping the spin-wave resonance might
be important.

In this paper, we calculate this magnetic back-action on
the acoustical fields using acoustical perturbation theory.
We specifically focus on traveling spin-wave resonance in a
magnetoelastic thin film on a piezoelectric substrate excited
by surface acoustic waves. The acoustical perturbation theory
technique and the basic physical picture developed here,
however, are applicable to thin magnetic films excited by bulk
acoustic waves (BAWs), contour mode resonators, acoustical
waveguides, etc. We treat the case of a magnetic thin film of
thickness h strained by a SAW of wavelength λSAW traveling
on the piezoelectric substrate as shown in Fig. 1. We restrict
ourselves to situations where h � λSAW where the penetration
depth of the SAW into the piezoelectric solid is ∼λSAW. To
the lowest order in the perturbation theory, the strain fields
are uniform through the thickness of the film and equal to the
SAW strain fields at the surface of the piezoelectric. These
strain fields then drive spin-wave resonance in the film. The
leading effect that this spin-wave resonance has on the driving

elastic field is to generate time-dynamic, thickness-dependent
shear and normal stresses of magnetoelastic origin within
the film that exert mechanical forces on the top boundary
of the piezoelectric. These forces are directly responsible for
measured velocity shifts and attenuation of the SAW elastic
field.

The physical picture developed here differs from previ-
ous analyses of acoustically driven resonance back-action
[9,19,20] which treat the spin-wave excitation and SAW as
a magnon-phonon polariton propagating in a magnetoelas-
tic semi-infinite solid with magnoelastic coupling Beff . An
ad hoc filling factor F = h/λSAW is used to modify the
effective coupling of the magnetic to elastic degrees of freedom
in the polariton excitation. This is meant to account for the fact
that approximately a fraction F of the entire film/substrate
volume excited by the SAW is occupied by the magnetoelastic
film. It is only this volume fraction that is responsible for
SAW attenuation and velocity shifts induced by spin-wave
resonance. This method essentially averages over the excited
volume of the film/substrate and is reasonable for an estimation
of the SAW wave-vector shifts caused by the elastically driven
spin-wave resonance. However, it can be shown that the
procedure maps to the propagation of a magnon-SAW phonon
polariton on the surface of a magnetoelastic semi-infinite
solid with weakened magnetoelastic coupling

√
FBeff and

thus neglects the details of the mechanics at the film/substrate
interface. We argue that it is precisely the back-action stress
and strain fields at the film-substrate interface responsible
for SAW attenuation and velocity shifts. These fields and
their effect on SAW propagation can be calculated using the
perturbation formalism without manually inserting a filling
factor F or additional fitting parameters (e.g., the ratio of shear
to longitudinal strain in the film that might become relevant in
thicker films) into the theory.

The formalism for acoustical perturbation theory is devel-
oped within the well-established treatises on physical acoustics
[21]. Here we go through only the relevant parts of the theory.
The starting point is the complex reciprocity relationship for
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FIG. 1. Coordinate system for SAW propagation and schematic
of magnetic film with thickness h on top of piezoelectric substrate.
The film is elastically strained by a SAW traveling in the substrate
with wavelength λSAW and with a penetration depth of order λSAW

into the piezoelectric.

an acoustical wave within a piezoelectric solid

∇ · {−v∗
2 · T1 − v1 · T∗

2 + �∗
2(iωD1) + �∗

1(iωD2)} = 0 (1)

where all free charges and external forces on the piezoelectric
solid are zero and where the electromagnetic quasi-static
approximation applies. The quasi-static approximation is
justified in SAW experiments as c/f � λSAW where c is
the speed of light. We then define v1 → v, T1 → T as the
particle velocity field, stress tensor, etc. arising from solid
deformations of the unperturbed SAW propagating on the

surface of the piezoelectric substrate (i.e., the velocity field
of the SAW substrate without the magnetic film on top).
The fields v2 → v′, T2 → T′, etc. are the perturbed fields
within the piezoelectric substrate due to the presence of the
magnetoelastic film at the surface. The complex reciprocity
theorem holds between the two field solutions and their source
terms (in this case source terms are zero) provided that the
piezoelectric substrate is considered lossless. The reciprocity
is correct even in the presence of a lossy perturbation at the
surface. The perturbed and unperturbed velocity field, stress
fields, etc of a SAW traveling in the z direction are

v = v(y)e−iβz+iωt

v′ = v′(y)e−iβ ′z+iωt (2)

. . .

In order to find the shift in the wave number β, Eq. (1) is
integrated over the thickness of the piezoelectric substrate and
we have assumed that there is no x dependence in the fields as
appropriate for plane-wave SAW propagation. It follows from
Eqs. (1) and (2) that the wave-vector shift can be expressed as

�β = β ′ − β = −i
{−v∗ · T′ − v′ · T∗ + �∗(iωD′) + �′(iωD)∗} · ŷ|b0∫ b

0 {−v∗ · T′ − v′ · T∗ + �∗(iωD′) + �′(iωD)∗} · ẑdy
(3)

Given that the perturbed solutions are assumed to be close to
the unperturbed solutions, it is reasonable to set the perturbed
field equal to the unperturbed fields in the denominator. The de-
nominator then becomes 2

∫ b

0 {−v∗ · T + �(iωD)∗} · ẑdy =
4PSAW where PSAW is the power flow of the SAW. The
numerator is additive in the contributions from mechanical and
electrical components. We are considering only contributions
from the elastic and magnetoelastic part of the dynamics and
thus exclude the wave-number shifts in Eq. (3) arising from the
electric displacement field and charge dynamics on the surface
of the ferromagnetic film that would be present if the magnetic
film were conductive. For SAW propagation, we need only
concern ourselves with the top surface at y = 0 where the
perturbing film is situated. Equation (3) then reduces to

�β = β ′ − β = −i
v∗ · T′ · ŷ|y=0

4PSAW
. (4)

The shift in the wave number of the SAW is thus directly
related to stress at the surface of the piezoelectric caused by the
perturbing magnetoelastic thin film (the unperturbed traction
force T · ŷ|y=0 = 0 due to stress-free boundary conditions at
the substrate surface).

A calculation of the traction force acting at the interface
requires a solution to the stress fields within the magnetoelastic
film. We express these stress fields in terms of the unperturbed
particle velocities of the SAW at y = 0 and solve for �β to
lowest order. The first field equation governing dynamics in
the magnetoelastic thin film is ρ dv′

dt
= ∇ · T′. Componentwise

this yields

iωρv′
x = ∂

∂y
T ′

yx − iβT ′
zx

iωρv′
y = ∂

∂y
T ′

yy − iβT ′
zy (5)

iωρv′
z = ∂

∂y
T ′

yz − iβT ′
zz

The second set of field equations define the stress tensor
T ′

ij = ( ∂F
∂εij

)T in the magnetoelastic thin film, where εij is
the mechanical strain tensor and F is the free energy of the
magnetoelastic solid, given by

F = E − T S = σ mech′
ij ε′

ij + Bijmimjε
′
ij + Kum

2
z

−MsmiH
app
i + (

2πM2
s − K⊥

)
m2

y (6)

The stress σ mech
ij = cijklεkl is the mechanical stress gener-

ated by linear elasticity, Bij is the magnetoelastic coupling, Ku

is the in-plane anisotropy energy density, Ms is the saturation
magnetization, mi and H

app
i are the components of the applied

field and components of the magnetization normalized to
the unit sphere, respectively, and K⊥ is the perpendicular
anisotropy energy density. We assume for the remainder of the
paper that the film is in-plane magnetized with K⊥ < 2πM2

s

and Happ in the film plane, and that Ku > 0, implying that
x is the film’s magnetic easy axis. The total stress tensor is
T ′

ij = c′
ijklε

′
kl + B ′

ijmimj . An inversion of this equation to

solve for εkl and using the relation ∂ε
∂t

= ∇v between the
strain and particle velocity fields yields the second set of field
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equations

1

iω

(
∂vl

∂xk

)
= sklij Tij − sklijBijmimj , (7)

where sklij are elements of the elastic compliance tensor. If the
magnetoelastic part of the free energy FME has symmetry in
the xz plane and the shear terms are all governed by the same
coupling term B2, then FME reduces to

FME = B11m
2
xεxx + B11m

2
zεzz + B12m

2
yεyy + B2mymzεyz

+B2mxmyεyx + B2mxmzεzx. (8)

Since none of the field quantities can have a dependence
on x, we use εxx = 0 to eliminate Txx − B11m

2
x from the

remaining equations. The resulting componentwise expression
for the second set of field equations is

−
(

β ′

ω

)
v′

z =
(

s ′
12s

′
11 − s ′

12
2

s ′
11

)(
T ′

yy − B12m
2
y

)

+
(

s ′
11

2 − s ′
12

2

s ′
11

)(
T ′

zz − B11m
2
z

)

−
(

β ′

ω

)
v′

x = s ′
44(T ′

zx − B2mxmz)

−
(

β ′

ω

)
v′

y = s ′
44(T ′

zy − B2mymz)

(
1

iω

)
∂v′

y

∂y
=

(
s ′

11
2 − s ′

12
2

s ′
11

)(
T ′

yy − B12m
2
y

)

+
(

s ′
12s

′
11 − s ′

12
2

s ′
11

)(
T ′

zz − B11m
2
z

)
(

1

iω

)
∂v′

x

∂y
= s ′

44(T ′
yx − B2mxmy)

(
1

iω

)
∂v′

z

∂y
= s ′

44(T ′
yz − B2mymz) (9)

We now use Eqs. (5) and (9) to solve for the stress fields to
first order and expand the velocity and stress tensor fields in a
power series in film thickness:

v′ = v′(0) + v′(1)(y + h) + v′(2)(y + h)2 + · · ·
T′ = T′(0) + T′(1)(y + h) + T′(2)(y + h)2 + · · · (10)

The stress tensor at y = −h (the top surface of the
film) is such that T′ · ŷ|y=−h = 0 due to stress-free boundary
conditions implying that the zeroth-order contribution to the
traction force at the film/substrate interface T′ · ŷ|y=0 = 0.
We thus solve for the stress tensor T′(1) · ŷ at first order.
Equation (5) and the first two formulas in Eq. (10) provide
the sufficient equations that can be used to solve for the three
components of T′(1) · ŷ. We drop the term of the magnetoe-
lastic stress going as B12m

2
y given that we are restricting

ourselves to in-plane magnetized films. The equations then

become

−
(

β ′

ω

)
v′

x

(0) = s ′
44T

′
zx

(0) − s ′
44B2mzmx

−
(

β ′

ω

)
v′

z

(0) =
(
s ′

11
2 − s ′

12
2

s ′
11

)
T ′

zz

(0) −
(
s ′

11
2 − s ′

12
2

s ′
11

)
B11m

2
z

iωρv′
x

(0) = T ′
yx

(1) − iβ ′T ′
zx

(0) (11)

iωρv′
y

(0) = T ′
yy

(1)

iωρv′
z

(0) = T ′
yz

(1) − iβ ′T ′
zz

(0)

The term T ′
zy

(0) = 0 vanishes as T(0) · ŷ|y=0 = 0 (i.e., at
lowest order surface shear stress vanishes) and the stress
tensor is symmetric. The components of the magnetoelastic

stresses s ′
44B2mzmx and ( s ′

11
2−s ′

12
2

s ′
11

)B11m
2
z of Eq. (11) caus-

ing back-action traction forces on the SAW at order T(1)

are s ′
44B2(m(0)

z δmx + m(0)
x δmz) and ( s ′

11
2−s ′

12
2

s ′
11

)2B11m
(0)
z δmz,

respectively. We define m(0)
x and δmx(m(0)

z and δmz) as the
x(z) component of the in-plane equilibrium magnetization
and the excited spin-wave amplitude, respectively. The xz

magnetoelastic shear back-action stresses are present at lowest
order for shear horizontal SAWs (SH-SAWs) and Love waves.
Here we focus on the Rayleigh SAW for the sake of comparison
with previous studies. The Rayleigh SAW contains particle
velocity components in the y and z directions only (v(0)

x = 0).
Rearranging of terms in Eq. (11) yields expressions for the
first-order stress tensor causing the perturbing surface traction
on the SAW:

T ′
yz

(1) = iω

[
ρ ′ − s ′

11

s ′
11

2 − s ′
12

2 · 1

V 2
SAW

]
v′

z

(0)+i2β ′B11m
(0)
z δmz

T ′
yy

(1) = iωρ ′v′
y

(0)

T ′
yx

(1) =
[
iωρ ′ − 1

s ′
44

· 1

V 2
SAW

]
v′

x

(0)

+ iβ ′B2
(
m(0)

z δmx + m(0)
x δmz

) = 0 (12)

The magnetoelastic terms in the expression for T ′
yx

(1) are
ignored as they can be shown to be proportional to v(0)

x . The
spin-wave amplitude δmz is excited by an internal RF field
arising from the dynamic strain in the film caused by the
Rayleigh SAW propagating on the piezoelectric substrate. To
lowest order in the perturbation theory, this internal effective
magnetoelastic pump field can be expressed in terms of the
unperturbed particle velocity field present at the surface of
the piezoelectric substrate. The driven spin-wave amplitude
can then be solved for in terms of these unperturbed SAW
velocity fields. This is accomplished by a linearization of
the Landau-Lifshitz-Gilbert (LLG) equations for spin-wave
dynamics about the equilibrium magnetization m0,
dδm(r)

dt
= −γ δm(r) × Heff(r) + �(β,m0)δm(r) × dδm(r)

dt
,

(13)

where γ is the effective gyromagetic ratio (for the remainder
of the paper taken to be the free-electron value appropriate to
metallic transition ferromagnets), �(β,m0) is the spin-wave
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FIG. 2. The ηζξ coordinate system used in LLG linearization
with +ξ defined to be along the equilibrium m0 direction. The angles
φ0 and φH that the equilibrium magnetization and applied field make
with respect to +z (the SAW propagation direction) have also been
defined.

damping at propagation vector β at equilibrium magnetization
orientation m0, and Heff(r) is the spatially varying effective
magnetic field acting on the magnetization. The effective
magnetic field contains terms arising from the applied field,
internal anisotropy fields, the magnetoelastic interaction, and
leading order spin-spin interactions (i.e., dipolar field and
exchange contributions). We define a new coordinate system
ηζξ specified in Fig. 2 where m0 lies along ξ making an angle
ϕ0 with respect to the z axis. The ζ axis is out of the film plane
and η defines the axis orthogonal to m0 in the film-plane.
The Rayleigh SAW creates a time-varying effective magnetic
pump field

hrf (r,t) = −(∂FME/∂m)/Ms

=
(

β

ω

)(
2B11

Ms

)
v(0)

z sin φ0 cos φ0e
−iβz+iωt η̂, (14)

where the only term in FME that is nonzero in the in-plane
magnetized case goes as B11m

2
zεzz. The final form of Eq. (14)

has been derived in other work [6,19] and the only difference
is that we have substituted the unperturbed strain field ε(0)

zz

for the unperturbed particle velocity field v(0)
z at the substrate

surface. The pump field then drives a spin-wave resonance
δm(z,t) = δme−iβz+iωt where δm = δmηη̂ + δmζ ζ̂ . A solu-
tion of the components of the spin-wave amplitude requires
a self-consistent solution of the LLG equation along with the
magnetostatic equations for long-range dipolar fields. We point
out that the amplitude δm is a thickness-averaged spin-wave
amplitude. Even under the influence of a magnetoelastic pump
field hrf (r,t) that is uniform in y, boundary conditions on
magnetostatic potentials and considerations of surface spin
pinning will create a spin-wave amplitude profile in the y

direction going as βh � 1 [22]. Effects of this y magnetization
profile will show up directly in the stress tensor at second order.

The relationship between these thickness-averaged spin-wave
amplitudes and the driving magnetoelastic pump field is given
by the Polder susceptibility χ :(

δmη

δmζ

)
=

{(
χ ′

ηη χ ′
ηζ

χ ′
ζη χ ′

ζ ζ

)
+ i

(
χ ′′

ηη χ ′′
ηζ

χ ′′
ζη χ ′′

ζ ζ

)}(
hRF

0

)
(15)

The susceptibility components χ ′ and χ ′′ are the relevant
real and imaginary components of the traveling spin-wave
susceptibility excited about equilibrium m0 with propagation
vector β. We emphasize that the y dependence of the spin-
wave amplitudes, while not directly affecting stress fields at
first order, will create appreciable modifications to χ and thus
impact T(1) through χ . The only component of the traveling
spin-wave that contributes to T′(1) · ŷ in Eq. (12) is δmz =
−δmη sin φ0 in the stress tensor component T ′

yz
(1). It can be

shown that Eqs. (12), (14), and (15) yield an expression for
T ′

yz
(1) in terms of the unperturbed SAW particle velocity field:

T ′
yz

(1) = iω

{[
ρ ′ − s ′

11

s ′
11

2 − s ′
12

2 · 1

V 2
SAW

]

− 4B2
11

Ms

· 1

V 2
SAW

sin2φ0cos2φ0

× [χ ′
ηη + iχ ′′

ηη]

}
v′

z

(0) (16)

where VSAW = β/ω and m(0)
z = cos φ0. The real part χ ′

ηη and
imaginary part χ ′′

ηη can be shown to be

χ ′
ηη = γ 2

[
ω2

res − ω2
]
ϒ + (�(β,m0)ω)2(� + ϒ)[

ω2
res − ω2

]2 + [�(β,m0)ωγ (� + ϒ)]2

χ ′′
ηη = γ

ω�(β,m0)(γ 2ϒ2 + ω2)[
ω2

res − ω2
]2 + [�(β,m0)ωγ (� + ϒ)]2

(17)

The traveling spin-wave resonance frequency ωres =
γ
√

�ϒ and the quantities � and ϒ are

� = −Hk cos(2φ0) + Happ cos(φ0 − φH )

+ 2Aex

Ms

β2 + 2πMsβhsin2φ0

ϒ = Hksin2φ0 + Happ cos(φ0 − φH )

+ 2Aex

Ms

β2 +
(

4πMs − 2K⊥
Ms

)
− 4πMs

(
βh

2

)
. (18)

where Aex is the magnetic exchange stiffness, and Hk =
2Ku/Ms is the in-plane anisotropy field with the in-plane
anisotropy along the x axis. The quantities 2πMsβhsin2φ0

and 4πMs(
βh

2 ) in � and ϒ are terms of long-range dipolar
origin and arise due to the y dependence of the spin-wave
profile. In the mid submicron (500 nm) to micron regime,
these quantities create appreciable corrections to χ [11].

The wave-number shift �β in Eq. (4) is then

�β = −i
v∗ · T′ · ŷ|y=0

4PSAW
= ωh

4PSAW

⎧⎨
⎩

ρ ′∣∣v(0)
y

∣∣2
y=0 + (

ρ ′ − s ′
11

s ′
11

2−s ′
12

2 · 1
V 2

SAW

)∣∣v(0)
z

∣∣2
y=0

− 4B2
11

Ms
· 1

V 2
SAW

sin2 φ0cos2φ0[χ ′
ηη + iχ ′′

ηη]
∣∣v(0)

z

∣∣2
y=0

⎫⎬
⎭ (19)
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TABLE I. Propagation characteristics for a few SAW substrates/cuts and propagation directions. Adapted from Auld [21].

SAW substrate and cut
(propagation direction) VSAW (105 cm/s) |cx |2 (10−13 cm/g) |cy |2 (10−13 cm/g) |cz|2 (10−13 cm/g)

YZ-Cut LiNbO3, Z-prop. 3.488 0 6.891 3.158
[001]-cut Bi12GeO20, [110]-prop. 1.680 0 17.331 6.436
Y -cut quartz, X-prop. 3.158 2.062 18.809 8.422

The quantities |v(0)
y |2y=0/PSAW, and |v(0)

z |2y=0/PSAW can be
expressed analytically as |cy |2ω and |cz|2ω where |cy |2 and
|cz|2 have units of [g/cm]−1 and depend on the electromechan-
ical properties of the substrate. Values for VSAW, |cx |2, |cy |2,
and |cz|2 for some SAW substrates are provided in Table I.

The first two terms in Eq. (19) are shifts due to the standard
mass loading of the SAW by a lossless isotropic thin film of
thickness h given a certain mass density ρ ′ and compliance
tensor s′. The last term is due to the mechanical back-action
of the elastically driven traveling spin-wave resonance on the
Rayleigh SAW and we isolate it from the rest of Eq. (19):

�β
Rayleigh
ME = −ω2h

B2
11

Ms

· 1

V 2
SAW

sin2 φ0

× cos2φ0[χ ′
ηη + iχ ′′

ηη]|cz|2

= Z
Rayleigh
ME |cz|2ω (20)

Z
Rayleigh
ME = −ωh

B2
11

Ms

· 1

V 2
SAW

sin2 φ0cos2φ0[χ ′
ηη + iχ ′′

ηη]

(21)

where Z
Rayleigh
ME is the SAW electromechanical transmission

line impedance due to spin-wave back-action. The wave-
number shift �β

Rayleigh
ME is complex and thus the elastic

excitation of the traveling spin-wave resonance modifies the
velocity of the SAW and cause an exponential attenuation.
The attenuation of the SAW has a rather simple physical
interpretation. The SAW, under the right external field con-
ditions, drives a spin-wave resonance via the magnetoelastic
interaction in the magnetic film. Part of this response will
be out of phase with the SAW elastic drive field due to the
spin-wave damping. Thus a thickness-dependent and time-
varying yz magnetoelastic shear stress develops in the film
and generates a back-action traction force at the surface of the
piezoelectric out of phase with the driving Rayleigh SAW field.
This out-of-phase traction force dampens the SAW. This also
implies, through Eq. (20), an electromechanical transmission
line current that is generated out of phase with the SAW surface
potential � due to the spin-wave back-action. The power of the
Rayleigh SAW per unit width attenuates under the magnetic
film due to magnetoelastic back-action as

P (z) = PSAW exp
[
2 Im

(
�β

Rayleigh
ME

)
z
]

= PSAW exp

(
−2ω2hB2

11

Ms

· 1

V 2
SAW

χ ′′
ηη

× sin2 φ0cos2φ0|cz|2z
)

(22)

and the power attenuation of the SAW per unit width and unit
length, as calculated by back-action, is given by

dP SAW
abs = −2ω2hB2

11

Ms

· 1

V 2
SAW

χ ′′
ηη sin2 φ0cos2φ0|cz|2PSAW

(23)

The magnetic oscillation power absorbed by the magnetic
damping during spin-wave resonance per unit volume, is
p

mag
abs = ω

2 Msh
†
RF · χ ′′ · hRF [19,23]. By energy conservation,

the power absorbed by the magnet should equal the SAW
power dissipation. The SAW power dissipation is often
calculated using this so-called effective field approach. Using
Eq. (14), we express the absorbed magnetic power explicitly as

p
mag
abs = ωχ ′′

ηη

(
β

ω

)2
(

2B2
11

Ms

)∣∣v(0)
z

∣∣2
sin2ϕ0cos2ϕ0

=
{

ω2χ ′′
ηη

(
1

V 2
SAW

)(
2B2

11

Ms

)
|cz|2sin2ϕ0cos2ϕ0

}
PSAW

(24)

The spin-wave power dissipated by the magnetic damping
per unit width and per unit length is dP

mag
abs = p

mag
abs h and thus

equals

dP
mag
abs = 2ω2hB2

11

Ms

· 1

V 2
SAW

χ ′′
ηηsin2ϕ0cos2ϕ0|cz|2PSAW (25)

Thus dP SAW
abs + dP

mag
abs = 0 as required by energy conver-

sation (which must be satisfied at all orders of the perturbation
theory). The effective field approach and the back-action
approach are, in fact, one and the same. The velocity shifts
arising from the spin-wave back-action are given by the real
part of �β

Rayleigh
ME and are the Hilbert transform of the imaginary

part of �β
Rayleigh
ME . This must be the case or else causality

is violated. There are, however, other field-dependent effects
that can become convolved with measured wave-number shifts
due to spin-wave back-action. These effects will be relevant
at lower SAW pump frequencies and at low fields below the
in-plane anisotropy field. In this regime there can be domain
wall motion and magnetization rotation as a function of Happ.
As a result, �E-effect-induced changes to the velocity [24]
and anisotropic-magnetoresistance- (AMR-) induced changes
to the attenuation [25] will not be negligible. At higher pump
frequencies and in films with low in-plane anisotropy, the
magnetization will be saturated along the field direction across
the spin-wave resonance field. In such cases, we expect that
field-dependent contributions to �β are due to �β

Rayleigh
ME
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Re[ΔβME]

Im[ΔβME]

FIG. 3. Calculated shifts in the wave number �β
Rayleigh
ME of a Z-

propagating Rayleigh SAW on YZ-cut LiNbO3 vs Happ due to the
magnetoelastic back-action of a spin-wave resonance in a 10-nm-
thick Ni film. The field is swept at φH = 45◦ with respect to the
Z axis.

and that the relation between the field-dependent part of the
velocity shift and attenuation is given by Eq. (20) at first order.

In order to get an estimate of the magnitude of these
back-action effects, we calculate both real and imaginary parts
of �β

Rayleigh
ME vs Happ for a Rayleigh SAW propagating in the Z

direction on a YZ-cut LiNbO3 substrate with VSAW = 3.488 ×
105cm/s and ω

2π
= 4.5GHz (implying β = 8.1 × 104 cm−1).

This is a regime where βh = 0.08 and perturbation solutions
to first order are often reasonable. The applied field is swept at
an angle φH = 45◦ with respect to the SAW propagation axis.
The magnetoelastic perturbation is a Ni film with h = 10 nm.
We have assumed that the properties of the Ni film are Hk = 0,
K⊥ = 5.5 × 105 ergs/cm3, Ms = 485 emu/cm3, an isotropic
and wave-vector-independent spin-wave damping � = 0.1,
B11 = +5 × 107 ergs/cm3, and Aex = 8 × 10−7 erg/cm. The
results of the calculation are shown in Fig. 3. The maximum
relative shifts due to spin-wave magnetoelastic back-action
are |Re�β

β
| ∼= |�VSAW

VSAW
| ∼.015% and Im�β

β
∼0.03%. In a 300-

μm-long Ni film, this implies a phase shift from one end to
the other of �ϕ ∼25◦ and a SAW attentuation ∼−6 dB (or a
power attenuation per unit length of ∼ − 20 dB/mm). These
numbers are in accord with various experiments [6,11,12]. It
is instructive to compare these wave-number shifts to those
that are associated with mass loading in the Ni film. We
have assumed ρ ′

Ni = 8.908 g/cm3, a Poisson ratio ν = 0.31,
and a Young’s modulus Y = 190 × 1010 dyn/cm2 and where

s ′
11

s ′
11

2−s ′
12

2 = Y
1−ν2 . Based on these values, mass loading predicts

wave-number shifts of ∼0.8%. The effects on the SAW due to
spin-wave back-action are thus typically an order of magnitude
lower than those of mass loading.

As film thickness h increases, Eq. (21) predicts that
�β

Rayleigh
ME increases linearly with h and depends only on the

z component of the particle velocity. But as the film becomes
thicker, we expect that yz shear strains and their impact on
the stress fields within the piezoelectric will become non-
negligible. Thus there will be y-dependent particle velocity
fields at order v′(1) in the film that can be expressed in terms
of the unperturbed particle fields v′(0)

y and v′(0)
z . These v′(1)

fields will generate y-dependent components of hRF (r,t) that
will then drive thickness dependent spin-wave amplitudes
δm(1). These spin-wave amplitudes δm(1) will contribute to
magnetoelastic traction forces on the SAW at second order
T′(2) · ŷ|y=0 arising from the term B2mzmy in the stress tensor.

Such stresses create back-action forces on the SAW that
reverse sign depending on whether the projection of m0 onto
the z axis is aligned or antialigned with the wave vector β.
Such effects have been observed clearly in angular-dependent
SAW attenuation measurements with thicker Ni films where
h = 50 nm and where βh > 0.15 [19]. Perturbation theory
predicts that, at least initially, these effects must scale as h2 as
they result from back-action forces of second order.

We do not go through the calculation of these second-order
effects here. Our main point is that the perturbation theory
enables one to programmatically calculate SAW attenuation
and velocity shifts arising from spin-wave magnetoelastic
back-action, determine at what order various effects appear,
how they scale with film thickness, and what their strength
is without resorting to various ad hoc fitting parameters.
Furthermore, the perturbation theory allows for a clear phys-
ical picture and realistic computational framework for how
spin-wave back-action modifies time-dynamic and thickness-
dependent stress/strain fields and electromechanical trans-
mission line currents/potentials at the thin film/piezoelectric
interface. Knowledge of the interfacial stress/strain fields and
currents/potentials allows for extraction of various physical
quantities such as the magnetoelastic coupling in the film
or the magnetoelectric coupling at the magnetic/piezoelectric
interface. For example, measurement of the transmission
line current out of phase with the SAW potential [related
by the imaginary part of Z

Rayleigh
ME in Eqn. (21)] along with

knowledge of Hk , Ms , and K⊥ enables extraction of the
magnetoelastic coupling Beff in a way that is separable from
other phenomena affecting the transmission line impedance
(e.g., mass/capacitive loading and �E effects).

The calculation of the various fields at the interface may also
be important for a matter that we have ignored throughout the
paper—the magnitude of the spin-wave damping �. Typical
values of damping in Ni under uniform-mode ferromagnetic
resonance are of order ∼0.04 [26]. However, values extracted
from SAW-driven spin-wave resonance experiments are con-
siderably larger with � ∼ 0.1–0.2 [6,11,19]. The spin-wave
damping � is, in fact, the only fitted quantity in the theory
and parametrizes all the irreversible energy transfer out of
the SAW/spin wave system to other degrees of freedom. It
is quite plausible that this enhanced spin-wave damping � is
related to the back-action stress and strain fields generated by
the elastically driven spin-wave resonance (with the typical
smaller magnetic damping of order �Ni

0 ∼ 0.04) and the
irreversible transfer of energy out of these fields into substrate
modes. Thus a perturbative calculation of the elastic back-
action fields and computation of the coupling of these surface
fields to bulk modes might lead to an explanation of how
the spin-wave damping �Ni

0 becomes dressed and leads to
the enhanced damping � as observed in experiment. This
could provide a framework for understanding dissipation of
elastically driven magnetic resonance processes and energy
transfer in magnetic thin film/acoustic actuator hybrids.
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