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Reentrance of disorder in the anisotropic shuriken Ising model
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Frustration is often a key ingredient for reentrance mechanisms. Here we study the frustrated anisotropic
shuriken Ising model, where it is possible to extend the notion of reentrance between disordered phases, i.e., in
absence of phase transitions. By tuning the anisotropy of the lattice, we open a window in the phase diagram where
magnetic disorder prevails down to zero temperature, in a classical analogy with a quantum critical point. In this
region, the competition between multiple disordered ground states gives rise to a double crossover where both the
low- and high-temperature regimes are less correlated than the intervening classical spin liquid. This reentrance of
disorder is characterized by an entropy plateau and a multistep Curie law crossover. Our theory is developed based
on Monte Carlo simulations, analytical Husimi-tree calculations and an exact decoration-iteration transformation.
Its relevance to experiments, in particular, artificial lattices, is discussed.
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I. INTRODUCTION

Recent progress in frustrated magnetism has delivered
entire maps of long-range ordered and disordered phases,
obtained, for example, via the variation of bond anisotropy
[1–7] or further nearest-neighbor couplings [8–14]. Such phase
diagrams have allowed to put a series of frustrated materials
onto a global and connected map that can be experimentally
explored via, for example, physical or chemical pressure
[15–18]. On such phase diagrams, when two ordered
phases meet, an enhancement of the classical ground-state
degeneracy takes place [19]. This degeneracy can either be
lifted by thermal fluctuations, giving rise to multiple phase
transitions [20,21], or may destroy any kind of order down
to (theoretically) zero temperature. This is where spin liquids
appear. However, this picture is less clear at the frontier
between ordered and (possibly multiple) disordered ground
states. In particular, how do disordered phases compete with
each other at finite temperature?

The frustrated shuriken lattice [22]—also known as square-
kagome [23–30], squagome [31,32], squa-kagome [33], or
L4-L8 [33] lattice—provides an interesting model example
for such competition. Being made of corner-sharing triangles,
it is locally similar to the famous kagome lattice, but with
the important difference that the shuriken lattice is composed
of two inequivalent sublattices (see Fig. 1). Such asymmetry
offers a natural setup for lattice anisotropy. In the asymptotic
limits of this anisotropy, a promising zero-temperature phase
diagram has emerged for quantum spin − 1/2, ranging from
a bipartite long-range ordered phase to a highly degenerate
ground state made of tetramer clusters of spins [33]. However,
while the quantum ground states [22,26,30,33] and the
influence of a magnetic field [22,24–29,34] have been studied
to some extent, little is known about the finite-temperature
properties in zero field [23,31].

In this paper, our goal is to develop a comprehensive and
precise understanding of the frustrated phase diagram of the
Ising model on the anisotropic shuriken lattice, relying on
a combination of numerical and analytical methods (Monte
Carlo simulations, Husimi tree calculations, and decoration-

*rico.pohle@oist.jp

iteration transformation). Using the lattice anisotropy as a
tuning parameter, we find that this model supports two long-
range ordered phases (ferro- and ferrimagnetic), two classical
spin liquids and a zero-temperature paramagnet. This latter dis-
ordered phase is described by the coexistence of two different
sets of magnetic degrees of freedom: spins on the B sublattices
and “superspins” on the square plaquettes (Fig. 1). There is
rigorously no correlations between them at zero temperature.
As such, the ensemble of spins and superspins can be seen as
two independent lattice gases. In analogy with binary mixtures,
we shall refer to this phase as a binary paramagnet.

The phase diagram of the anisotropic shuriken model
provides an interesting classical analog of a quantum critical
point. Indeed, at zero temperature, the spin-liquid phases sit at
the frontiers between the disordered binary paramagnet and the
long-range ordered phases [Fig. 2(a)]. At finite temperature,
over an extended region of the phase diagram, the competition
between disordered phases gives rise to a double crossover
from the high-temperature paramagnet to the spin liquids
and finally into the low-temperature binary paramagnet. This
double crossover can be understood as a reentrant phenomena
between disordered phases, illustrated by the nonmonotonic
behavior of the correlation length. As a by-product, we
notice an essentially perfect agreement between Husimi-tree
analytics and Monte Carlo simulations in the disordered
regimes. Details on the methods are given in the appendices.

The paper is divided as follows. The model is introduced in
Sec. II, followed by its phase diagram in Sec. III. In Sec. IV,
we analyze in detail the double-crossover region between
disordered regimes. We conclude the paper by discussing
possible experimental realizations of the shuriken lattice and
summarizing our results, in Secs. V and VI, respectively. Most
technical details are given in the appendices.

II. ANISOTROPIC SHURIKEN MODEL

The shuriken lattice is made of corner-sharing triangles with
six sites per unit cell (see Fig. 1). As opposed to its kagome
parent where all spins belong to hexagonal loops, the shuriken
lattice forms two kinds of loops made of either four or eight
sites. As a consequence, 2/3 of the spins in the system belong
to the A sublattice, while the remaining 1/3 of the spins form
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FIG. 1. The shuriken lattice with six sites per unit cell and two
sublattices A and B. Interactions between A sites (red square pla-
quettes) are described with coupling constant JAA, while interactions
between A and B sites (black octagonal plaquettes) are described
with JAB . By convention, we chose the triangles to be equilateral.

the B sublattice. Let us define JAA and JAB as the coupling
constants between A sites on the square plaquettes and between
A and B sites on the octagonal plaquettes, respectively. The
Hamiltonian of the model can be written as

H = −JAA

∑
〈ij〉AA

σA
i σA

j − JAB

∑
〈ij〉AB

σA
i σB

j , (1)

where we consider Ising spins σi = ±1 with nearest-neighbor
coupling.

There is no frustration for ferromagnetic JAA = +1 where
the system undergoes a phase transition with spontaneous
Z2 symmetry breaking for JAB �= 0. We shall thus focus
on antiferromagnetic JAA = −1. The energy and temperature
scales in this paper are defined with respect to |JAA| = 1. The
thermodynamics will be discussed as a function of the coupling
ratio [25,33,30]

x = JAB

JAA

, (2)

with ferro- and antiferromagnetic JAB .

III. PHASE DIAGRAM

In this section, we discuss the various phases that appear
in the phase diagram of Fig. 2. The Hamiltonian of Eq. (1) is
invariant under the transformation

σA → −σA, JAB → −JAB. (3)

All quantities derived from the energy E, and especially the
specific heat Ch and entropy S, are thus the same for x and
−x. Their respective magnetic phases are related by reversing
all spins of the A sublattices.

A. Long-range order: |x| > 1

When the octagonal plaquettes are dominating (x → ±∞),
the shuriken lattice becomes a decorated square lattice, with
A sites sitting on the bonds between B sites. Being bipartite,
the decorated square lattice is not frustrated and orders via
a phase transition of the 2D Ising universality class [35] by
spontaneous Z2 symmetry breaking. Nonuniversal quantities
such as the transition temperature can be exactly computed
by using the decoration-iteration transformation [35–37] (see

FIG. 2. Phase diagram of the Ising model on the anisotropic shuriken lattice. (a) The circles (triangles) correspond to phase transitions
(crossovers), obtained by Monte Carlo simulations (Husimi-tree calculations) [see Appendix C for further details]. As a function of the coupling
ratio x = JAB

JAA
, the model supports a long-range ordered ferromagnet (FM) [see (b)], a long-range ordered ferrimagnet (FiM) [see (c)], a binary

paramagnet (BPM) [see (d)], and two classical spin liquids (SL1,2). The BPM illustrated in (d) is made of antiferromagnetically ordered square
plaquettes, decoupled from each other and from the intermediate spins sitting on the B sublattice. For |x| � 1, on cooling, the system undergoes

an evolution from “gas
crossover−−−−→ liquid

transition−−−−→ solid.” As for |x| � 1, it provides a remarkable example of reentrance from “gas
crossover−−−−→ liquid

crossover−−−−→ gas.” The spin liquids (x = ±1) can also be seen as classical analogues of quantum critical points: they sit at the zero-temperature
frontiers between extended regions of order and disorder, resulting in a persistence of the spin-liquid physics at finite temperature (the blue
regions). However, please note that the spin-spin correlations are not “critical” in the sense that they do not decay algebraically.

014429-2



REENTRANCE OF DISORDER IN THE ANISOTROPIC . . . PHYSICAL REVIEW B 94, 014429 (2016)

Appendix E 2)

Tc = 2JAB

ln(
√

2 + 1 +
√

2 + 2
√

2)
≈ 1.30841JAB. (4)

The low-temperature ordered phases, displayed in Figs. 2(b)
and 2(c), remain the ground states of the anisotropic shuriken
model for x < −1 and x > 1, respectively. The persistence
of the 2D Ising universality class down to |x| → 1+ is not
necessarily obvious, but is confirmed by finite-size scaling
from Monte Carlo simulations (see Appendix B).

These two ordered phases are respectively ferromagnetic
(FM, x < −1) and ferrimagnetic (FiM, x > 1) [see Figs. 2(b)
and 2(c)]. The staggering of the latter comes from all
spins on square plaquettes pointing in one direction, while
the remaining ones point the other way. This leads to the
rather uncommon consequence that fully antiferromagnetic
couplings—both JAA and JAB are negative for x > 1—induce
a finite magnetization, reminiscent of Lieb ferrimagnetism
[38] as pointed out in Ref. [33] for quantum spins. The
existence of ferromagnetic states among the set of ground
states of Ising antiferromagnets is not rare, with the triangular
and kagome lattices being two famous examples. However,
such ferromagnetic states are usually part of a degenerate
ensemble where no magnetic order prevails on average. Here
the lattice anisotropy is able to induce ferromagnetic order
in an antiferromagnetic model by lifting its ground-state
degeneracy at |x| = 1 (see below). This is interestingly quite
the opposite of what happens in the spin-ice model [39], where
frustration prevents magnetic order in a ferromagnetic model
by stabilizing a highly degenerate ground state.

B. Binary paramagnet: |x| < 1

The central part of the phase diagram is dominated by
the square plaquettes. The ground states are the same for
all |x| < 1. A sample configuration of these ground states
is given in Fig. 2(d), where antiferromagnetically ordered
square-plaquettes are separated from each other via spins on
sublattice B. The antiferromagnetic square-plaquettes locally
order in two different configurations equivalent to a superspin
� with Ising degree of freedom,

� = σA
1 − σA

2 + σA
3 − σA

4 = ±4, (5)

where the site indices are given in Fig. 1. These superspins
are the classical analog of the tetramer objects observed in the
spin − 1/2 model [33]. At zero temperature, the frustration of
the JAB bonds perfectly decouples the superspins � from the
B sites. The system can then be seen as two interpenetrating
square lattices: one made of superspins, the other one of B

sites. In analogy with binary mixtures of liquids and gases, we
shall refer to this phase as a binary paramagnet (BPM).

While the decomposition of the present ground-state en-
semble into two independent paramagnetic phases is rather
exotic, the cancellation of correlations between clusters of
spins fits in the more general picture of bond distortion
and further neighbor exchanges in frustrated models. It is,
for example, reminiscent of the decorrelation between one-
dimensional chains on the hollandite [40] and kagome lattices
[11,41,42], and between two-dimensional planes in breathing
pyrochlores [43].

The perfect absence of correlations beyond square pla-
quettes at T = 0 allows for a simple determination of the
thermodynamics. Let Nuc and N = 6 Nuc be respectively the
total number of unit cells and spins in the system, and 〈X〉 be
the statistical average of X. There are Nuc square plaquettes
and 2Nuc B sites, giving rise to an extensive ground-state
entropy

SBPM = kB ln
(
2Nuc 22Nuc

) = N

2
kB ln 2, (6)

which turns out to be half the entropy of an Ising paramagnet.
As for the magnetic susceptibility χ , it diverges as T → 0+.
However, the reduced susceptibility χ T , which is nothing less
than the normalized variance of the magnetization

χ T = 1

N

⎛
⎝∑

i,j

〈σiσj 〉 − 〈σi〉〈σj 〉
⎞
⎠,

= 1 + 1

N

∑
i �=j

〈σiσj 〉, (7)

converges to a finite value in the BPM:

χ T |BPM = 1
3 . (8)

This value should be compared to the infinite-temperature limit
χ T |PM = 1.

C. Classical spin liquid: |x| ∼ 1

There is a sharp increase of the ground-state degeneracy
at |x| = 1, when the binary paramagnet and the ordered
phases meet. As is common for isotropic triangle-based Ising
antiferromagnets, six out of eight possible configurations per
triangle minimize the energy of the system. As opposed to
the BPM one does not expect a cutoff of the correlations (see
Sec. IV C), making these phases cooperative paramagnets [44],
also known as classical spin liquids.

Due to the high entropy of these cooperative paramagnets,
the SL1,2 phases spread to the neighboring region of the phase
diagram for |x| ∼ 1 and T > 0, continuously connected to the
high-temperature paramagnet (see Fig. 2). Hence, for |x| � 1,
the anisotropic shuriken model stabilizes a cooperative para-
magnet above a nondegenerate1 long-range ordered phase.
This is a general property of classical spin liquids when
adiabatically tuned away from their high-degeneracy point, as
observed for example in Heisenberg antiferromagnets on the
kagome [45] or pyrochlore [46–48] lattice. Such phenomenon
has also been proposed to be potentially realized in the
pyrochlore material Er2Sn2O7 [19]. For |x| � 1 on the other
hand, multiple crossovers take place upon cooling which
deserves a dedicated discussion in the following Sec. IV.

IV. REENTRANCE OF DISORDER

A. Double crossover

First of all, panels (a) and (c) of Fig. 3 confirm that the
classical spin liquids and binary paramagnet persist down to

1Besides the trivial time-reversal symmetry.
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PMSL1,2 PMBPMBPM PMSL1,2

FIG. 3. Multiple crossovers between the paramagnetic, spin-liquid, and binary regimes as observed in the energy E, specific heat Ch,
entropy S and reduced magnetic susceptibility χ T . The models correspond to (a) x = ±1, (b) ±0.9, and (c) 0. There is no phase transition
for this set of parameters, which is why the Husimi tree calculations (lines) perfectly match the Monte Carlo simulations (circles) for all
temperatures. The double crossover is present for x = ±0.9, with the low-temperature regime being the same as for x = 0, as confirmed by
its entropy and susceptibility. The entropy is obtained by integration of Ch/T , setting S(T → +∞) = ln 2. The vertical dashed lines represent
estimates of the crossover temperatures determined by the local specific-heat maxima in Husimi-tree calculations. The temperature axis is on a
logarithmic scale. All quantities are given per number of spins and the Boltzmann constant kB is set to 1. Details on the Husimi-tree calculations
and Monte Carlo simulations are given in the appendices.

zero temperature for x = ±1 and 0, respectively, and that all
models for |x| ≤ 1 have extensively degenerate ground states.
For x = ±0.9, there is a double crossover indicated by the
double peaks in the specific heat Ch of Fig. 3(b). The height
and position of these broad peaks is perfectly independent
of the system size in Monte Carlo simulations (see Fig. 13 in
Appendix B), which confirms that these broad peaks are neither
phase transitions nor due to finite size effects. Furthermore,
the perfect match with Husimi-tree calculations supports the
absence of any singularity. The double crossover persists for
0.5 � |x| < 1. Upon cooling, the system first evolves from the
standard paramagnet to a spin liquid before entering the binary
paramagnet. The intervening spin liquid takes the form of an
entropy plateau for |x| = 0.9 [see Fig. 3(b)], at the same value
as the low-temperature regime for |x| = 1 [see Fig. 3(a)]. All
relevant thermodynamic quantities are summarized in Table I.

While the mapping of Eq. (3) ensures the invariance of
the energy, specific heat and entropy upon reversing x to −x,
it does not protect the magnetic susceptibility. The build up
of correlations in classical spin liquids is known to give rise
to a Curie-law crossover [49] between two 1/T asymptotic
regimes of the susceptibility, as observed in pyrochlore
[49–52], triangular [53] and kagome [41,53,54] systems. This
is also what is observed here on the anisotropic shuriken lattice

for x = {−1,0,1} (see Fig. 4). However, the double crossover
makes the reduced susceptibility nonmonotonic for models
with 0.5 < |x| < 1, as measured by Husimi-tree calculations.
χ T first evolves towards the values of the spin liquids
SL1 (respectively SL2) for x < 0 (respectively x > 0) before
converging to 1/3 in the binary paramagnet, as illustrated for
x = {−0.99, − 0.9, 0.9, 0.99} in Fig. 4.

TABLE I. Entropies S and reduced susceptibilities χT as
T → 0+ for the anisotropic shuriken lattice with coupling ratios
|x| ≤ 1. The results are obtained from Monte Carlo simulations,
Husimi tree analytics and the exact solution for the binary paramag-
net. All quantities are given per number of spins and the Boltzmann
constant kB is set to 1.

T → 0+ Monte Carlo Husimi tree Exact

S(|x| = 1) 0.504(1) 1
6 ln 41

2 ≈ 0.5034 n/a
χ T (x = 1) 0.203(1) 0.2028 n/a
χ T (x = −1) 1.77(1) 1.771 n/a
S(|x| < 1) 0.347(1) 1

2 ln 2 ≈ 0.3466 1
2 ln 2

χ T (|x| < 1) 0.333(1) 1
3

1
3
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FIG. 4. Reduced susceptibility χ T with coupling ratios of x =
±1, ± 0.99, ± 0.9 and 0, obtained from Husimi-tree calculations
(solid lines) and Monte Carlo simulations (circles). The Curie-law
crossover of classical spin liquids is standard, i.e., χ T is monotonic,
for x = ±1 and 0, and takes a multistep behavior for intermediate
values of x, due to the double crossover. The characteristic values
of the entropy and reduced susceptibility are given in Table I. The
temperature axis is on a logarithmic scale. Details on the Husimi-tree
calculations and Monte Carlo simulations are given in the appendices.

Beyond the present problem on the shuriken lattice, this
multistep Curie-law crossover underlines the usefulness of
the reduced susceptibility to spot intermediate regimes, and
thus the proximity of different phases. From the point of
view of renormalization group theory, the (x,T ) = (±1,0)
coordinates of the phase diagram are fixed points which deform
the renormalization flows passing in the vicinity.

B. Decoration-iteration transformation

The phase diagram of the anisotropic shuriken model and,
in particular, the double crossover observed for |x| < 1 (see
Fig. 2) can be further understood using an exact mapping
to an effective model on the checkerboard lattice, a method
known as decoration-iteration transformation (see Ref. [37] for
a review). In short, by summing over the degrees of freedom
of the A spins, one can arrive at an effective Hamiltonian
involving only the B spins, which form a checkerboard
lattice. The coupling constants of the effective Hamiltonian
are functions of the temperature T and for |x| < 1 they
vanish at both high and low temperatures, but are finite for
an intermediate regime. This intermediate regime may be
identified as the SL1,2 cooperative paramagnets of Fig. 2,
whereas the low-temperature region of vanishing effective
interaction corresponds to the binary paramagnet (BPM). This
mapping is able to predict a nonmonotonic behavior of the
correlation length.

In this section, we give a brief sketch of the derivation of
the effective model, before turning to its results. Details of the
effective model are given in Appendix E.

To begin, consider the partition function for the system,
with the Hamiltonian given by Eq. (1)

Z =
∑

{σA
i =±1}

∑
{σB

i =±1}
exp (−βH ), (9)

where β = 1
T

is the inverse temperature and the sums are over
all possible spin configurations. Since in the Hamiltonian of
Eq. (1) the square plaquettes of the A sites are only connected
to each other via their interaction with the intervening B sites,
it is possible to directly take the sum over configurations
of A spins in Eq. (9) for a fixed (but completely general)
configuration of B spins. Doing so, we arrive at

Z =
∑

{σB
i =±1}

∏
�

Z�
({

σB
i

})
, (10)

where the product is over all the square plaquettes of the lattice
and Z�({σB

i }) is a function of the four B spins immediately
neighboring a given square plaquette. The B spins form a
checkerboard lattice, and Eq. (10) can be exactly rewritten in
terms of an effective Hamiltonian H� on that lattice:

Z =
∑

{σB
i =±1}

exp(−β
∑
�

H�) (11)

H� = −J0(T ) − J1(T )
∑
〈ij〉

σB
i σB

j

−J2(T )
∑
〈〈ij〉〉

σB
i σB

j − Jring(T )
∏
i∈�

σB
i (12)

where
∑

� is a sum over checkerboard plaquettes of B spins.
The effective Hamiltonian H� contains a constant term J0,
a nearest-neighbor interaction J1, a second-nearest-neighbor
interaction J2, and a four-site ring interaction Jring. All
couplings are functions of temperature Ji = Ji(T ) and are
invariant under the transformation JAB �−→ −JAB because the
degrees of freedom of the A sites have been integrated out. Ex-
pressions for the dependence of the couplings on temperature
are given in Appendix E. The temperature dependence of the
effective couplings Ji = Ji(T ) can itself give rather a lot of
information about the behavior of the shuriken model.

First we consider the case |x| < 1. In this regime of
parameter space, all effective interactions J1,J2,Jring vanish
exponentially at low temperature T  1. For intermediate
temperatures T ∼ 1, the effective interactions in Eq. (12)
become appreciable before vanishing once more at high tem-
peratures. This is illustrated for the case x = −0.9 in the upper
panel of Fig. 5. Seeing the problem in terms of these effective
couplings gives some intuition into the double crossover
observed in simulations. As the temperature is decreased,
the effective couplings |Ji | increase in absolute value and
the system enters a short range correlated regime. However,
as the temperature decreases further, the antiferromagnetic
correlations on the square plaquettes of A spins become close
to perfect, and act to screen the effective interaction between
B spins. This is reflected in the exponential suppression of the
couplings J1, J2, and Jring.

In the case |x| = 1, the effective interactions Ji no longer
vanish exponentially at low temperature, but instead vanish
linearly:

J1,J2,Jring ∼ T . (13)

The ratio of effective couplings to the temperature βJi thus
tends to a constant below T ∼ 1, as shown in the lower panel
of Fig. 5. Thus the zero-temperature limit of the shuriken
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FIG. 5. Behavior of the coupling constants of the effective
checkerboard model as a function of temperature [Eq. (12)] for
x = −0.9 (top) and −1 (bottom). (Top) All couplings vanish at
both high and low temperatures with an intermediate regime at
T ∼ 1 where the effective interactions are stronger. The intermediate
regime corresponds to the spin liquid region of the phase diagram
Fig. 2, with the high- and low-temperature regimes corresponding
to the paramagnet and binary paramagnet respectively. (Bottom) For
all couplings Ji , βJi vanishes at high temperature and tends to a
finite constant of magnitude |βJi(T )|  1 at low temperature. The
short-range correlated, spin-liquid regime, thus extends all the way
down to T = 0.

model can be mapped to a finite temperature model on the
checkerboard lattice for |x| = 1 and to an infinite temperature
model for |x| < 1.

The behavior of the spin correlations in the shuriken model
can be captured by calculating the correlation length between
B spins in the checkerboard model. Since βJi is small for all
of the interactions Ji , at all temperatures T (see Fig. 5), this
can be estimated using a perturbative expansion in βJi . For
two B spins chosen such that the shortest path between them
is along nearest-neighbor J1 bonds, we obtain to leading order

〈
σB

i σB
j

〉 = exp

(
− rij

ξBB

)
, (14)

ξBB ≈ 1√
2 ln

(
T

J1(T )

) , (15)

where we choose units of length such that the linear size of a
unit cell is equal to 1. Details of the calculation are given in
Appendix E.

FIG. 6. Correlation lengths in the effective checkerboard model,
calculated from Eq. (15), for x = −0.9 and −1. The correlation
length is calculated to leading order in a perturbative expansion of the
effective model in powers of βJi . Such an expansion is reasonable
for |x| � 1 since βJi  1 for all T (see Fig. 5). For x = −0.9, the
behavior of the correlation length is nonmonotonic. The correlation
length is maximal in the spin liquid regime but correlations remain
short ranged at all temperatures. In the binary paramagnet regime, the
correlation length vanishes linearly at low temperature. For x = −1,
the correlation length enters a plateau at T ∼ 1, and short range
correlations remain down to T = 0.

The correlation length between B spins, calculated from
Eq. (15), is shown for the cases x = −0.9 and −1 in Fig. 6.
For x = −0.9, the correlation length shows a nonmonotonic
behavior, vanishing at both high and low temperatures with
a maximum at T ∼ 1. On the other hand, for x = −1, the
correlation length enters a plateau for temperatures below T ∼
1 and the system remains in a short-range correlated regime
down to T = 0. The extent of this plateau agrees with the
low-temperature plateau of the reduced susceptibility in Fig. 4.

C. Correlations and structure factors

The nonmonotonic behavior of the correlation length
estimated in the previous Sec. IV B can be measured by Monte
Carlo simulations. Let us consider the microscopic correlations
both in real (Cρ) and Fourier (Sq) space. The function Cρ

measures the correlation between a central spin σ0 and all spins
at distance ρ. Because of the nature of the binary paramagnet,
one needs to make a distinction between central spins on the A

and B sublattices. Let DX
ρ be the ensemble of sites at distance

ρ from a given spin σX
0 on the X = {A,B} sublattice. The

correlation function is defined as

CX
ρ =

∑
i∈DX

ρ

∣∣〈σX
0 σi

〉∣∣∑
i∈DX

ρ

, (16)

where the absolute value accounts for the antiferromagnetic
correlations. As for the static structure factor Sq , it is defined
as

Sq = 〈σ�q σ−�q〉 =
〈

1

Nuc

∣∣∣∣∣
∑

i

e−i �q·�ri σi

∣∣∣∣∣
2〉

. (17)
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FIG. 7. Spin-spin correlations in the vicinity of the spin liquid phases for x = −1.05 [(a) and (b)], −1 [(c) and (d)], and −0.9 [(e) and (f)],
obtained from Monte Carlo simulations. The temperatures considered are T = 0.01 ( ), 1 ( ), and 891.25 ( ). Because of the anisotropy of
the lattice, we want to separate the correlation functions that start on A sites [(a), (c), and (e)] and B sites [(b), (d), and (f)]. The radial distance
is given in units of the unit-cell length. The agglomeration of data points around C ∼ 2 × 10−5 is due to finite size effects. The blue data point
at ρ ≈ 0.4 and C ≈ 0.001 is due to the fact that the paramagnetic simulations were performed at high but not infinite temperatures. The y axis
is on a logarithmic scale.

CA
ρ and CB

ρ are respectively plotted on the left and right
of Fig. 7. Let us first consider what happens in absence
of reentrant behavior. For x = −1.05 [see panels (a) and
(b)], the system is ferromagnetic at low temperature with
C(ρ) ≈ 1 over long-length scales. Above the phase transition,
the correlations are exponentially decaying.

When x = 1 [see panels (c) and (d)], the correlations
remain exponentially decaying down to zero temperature. The
correlation length ξ reaches a maximum in the spin-liquid
regime with ξ ≈ 0.3. The quantitative superimposition of
data for T = 0.01 and T = 1 is in agreement with the
low-temperature plateau of the correlation length in Fig. 6.
The spin liquid remains essentially unchanged all the way
up to T ∼ 1, when defects are thermally excited. However,
even if the correlations are exponential, they should not
be confused with paramagnetic ones, as illustrated by their
strongly inhomogeneous structure factors (see Fig. 8 and
Ref. [55]).

Once one enters the double-crossover region [see Figs. 7(e)
and 7(f) for x = −0.9], the correlation function becomes
nonmonotonic with temperature, as predicted from the ana-
lytics of Fig. 6. In the binary paramagnet, the B sites are
perfectly uncorrelated, while the A sites have a finite cutoff
of the correlation that is the size of the square plaquettes
(superspins). This is why Sq takes the form of an array of
dots of scattering, whose width is inversely proportional to the
size of the superspins (see Fig. 8).

D. Reentrance between disordered phases

The intervening presence of the spin liquids between the
two crossovers is conceptually reminiscent of reentrant behav-
ior [56–60]. Not in the usual sense though, since reentrance is
usually considered to be a feature of ordered phases surrounded
by disordered ones. But the present scenario is a direct
extension of the concept of reentrance applied to disordered
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FIG. 8. Static structure factors of the anisotropic shuriken lattice for (a) x = −1, (b) 0, and (c) 1 at zero temperature, obtained from Monte
Carlo simulations. For x = ±1, the scattering is strongly inhomogeneous (as opposed to a standard paramagnet) and nondivergent (i.e., without
long-range order), confirming the spin liquid nature of these phases. The similarity between the structure factors for x = +1 and −1 comes
from the symmetry between models with positive and negative x [Eq. (3)]. For (b) x = 0, the black background underlines the absence of
correlations in the binary paramagnet beyond the size of the superspins (square plaquettes). The finite size of the superspins is responsible for
the finite extension of the dots of scattering. In order to restore ergodicity, a local update flipping the four spins of square plaquettes was used
in the simulations. A video showing the temperature dependence of the static structure factor for x = 0.9 is available in Ref. [55].

regimes. This reentrance is quantitatively characterized at the
macroscopic level by the double-peak in the specific heat,
the entropy plateau and the multistep Curie-law crossover of
Fig. 3(b), and microscopically by the nonmonotonic evolution
of the correlations (see Figs. 6–8). As such, it provides an
interesting mechanism to stabilize a gaslike phase “below” a
spin liquid, where (a fraction of) the spins form fully correlated
clusters, which (i) can then fluctuate independently of the
other degrees-of-freedom, while (ii) lowering the entropy of
the gaslike phase below the one of the spin liquids.

V. THE SHURIKEN LATTICE IN EXPERIMENTS

Finally, we would like to briefly address the experimental
situation. Unfortunately, we are not aware of an experimental
realization of the present model, but several directions are
possible, each of them with their advantages and drawbacks.

The shuriken topology has been observed, albeit quite
hidden, in the dysprosium aluminium garnet (DAG) [61,62]
(see Ref. [63] for a recent review). The DAG material has
attracted its share of attention in the 1970’s, but its microscopic
Hamiltonian does not respect the geometry of the shuriken
lattice—it is actually not frustrated—and is thus quite different
from the model presented in Eq. (1). However, it shows that
the shuriken topology can exist in solid state physics.

Cold atoms might offer an alternative. Indeed, the necessary
experimental setup for an optical shuriken lattice has been
proposed in Ref. [32]. The idea was developed in the context
of spin-ice physics, i.e., assuming an emergent Coulomb gauge
theory whose intrinsic Ising degrees of freedom are somewhat
different from the present model. Nonetheless, optical lattices
are promising, especially if one considers that the inclusion
of “proper” Ising spins might be available thanks to artificial
gauge fields [64].

However, the most promising possibility might be ar-
tificial frustrated lattices, where ferromagnetic nanoislands
effectively behave like Ising degrees of freedom. Since the
early days of artificial spin ice [65], many technological and
fundamental advances have been made [66]. In particular,
while the thermalization of the Ising-like nanoislands had
been a long-standing issue, this problem is now on the way
to be solved [67–73]. Furthermore, since the geometry of the
nanoarray can be engineered lithographically, a rich diversity
of lattices is available, and the shuriken geometry should not be
an issue. Concerning the Ising nature of the degrees of freedom,
nanoislands have recently been grown with a magnetization
axis �z perpendicular to the lattice [74–76].

To compute their interaction [74,75], let us define the Ising
magnetic moment of two different nanoislands: �S = σ �z and
�S ′ = σ ′�z. The interaction between them is dipolar of the form

D

( �S · �S ′

r3
− 3

(�S · �r)(�S ′ · �r)

r5

)
= D

r3
σ σ ′, (18)

where D is the strength of the dipolar interaction and �r is the
vector separating the two moments. The resulting coupling
is thus antiferromagnetic and quickly decays with distance.
Hence, at the nearest-neighbor level, a physical distortion
of the shuriken geometry – by elongating or shortening the
distance between A and B sites—would precisely reproduce
the anisotropy of Eq. (1) for x > 0. Interactions beyond
nearest neighbors are a priori expected to lift the extensive
ground-state degeneracy of the models for |x| ≤ 1, giving rise
to a low-temperature phase transition. Recent simulations in
the closely related kagome geometry show that this transition
occurs at T/|J | ≈ 0.03 [76], which offers an appreciable
temperature range for the observation of the phase diagram
of Fig. 2(a) in artificial lattices.
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VI. CONCLUSION

The anisotropic shuriken lattice with classical Ising spins
supports a variety of different phases as a function of the
anisotropy parameter x = JAB/JAA: two long-range ordered
ones for |x| > 1 (ferromagnet and ferrimagnet) and three
disordered ones (see Fig. 2). Among the latter ones, we make
the distinction, at zero temperature, between two cooperative
paramagnets SL1,2 for x = ±1, and a phase that we name a
binary paramagnet (BPM) for |x| < 1. The BPM is composed
of locally ordered square plaquettes separated by completely
uncorrelated single spins on the B sublattice [see Fig. 2(d)].

At finite temperature, the classical spin liquids SL1,2 spread
beyond the singular points x = ±1, giving rise to a double
crossover from paramagnet to spin liquid to binary paramagnet
for |x| � 1. The presence of an intervening spin-liquid
phase at finite temperature can be considered as a reentrant
behavior between disordered regimes, i.e., in absence of phase
transitions. This competition is quantitatively defined by a
double-peak feature in the specific heat, an entropy plateau, a
multistep Curie-law crossover and a nonmonotonic evolution
of the spin-spin correlation (see Figs. 3, 4, 6, and 7). The
reentrance can also be precisely defined by the resurgence of
the couplings in the effective checkerboard model (see Fig. 5).

Beyond the physics of the shuriken lattice, the present work,
and especially Fig. 3, confirms the Husimi-tree approach as a
versatile analytical method to investigate disordered phases
such as spin liquids. Regarding classical spin liquids, Fig. 4
illustrates the usefulness of the reduced susceptibility χ T

[49], whose temperature evolution quantitatively describes
the successive crossovers between disordered regimes. Last
but not least, we hope to bring to light an interesting facet
of distorted frustrated magnets, where extended regions of
magnetic disorders can be stabilized by anisotropy or further
neighbor exchange, such as on the Cairo [77,78], hollandite
[40], kagome [11,41,42], and pyrochlore [13,14,43] lattices.
Such connection is particularly promising since it expands
the possibilities of experimental realizations, for example, in
Volborthite kagome [79] or breathing pyrochlores [80,81].

Possible extensions of the present work can take different
directions. Motivated by the counter-intuitive emergence of
valence-bond-crystals made of resonating loops of size 6
[30], the combined influence of quantum dynamics, lattice
anisotropy x [30,33] and entropy selection presented here
should give rise to a plethora of new phases and reentrant
phenomena. As an intermediary step, classical Heisenberg
spins also present an extensive degeneracy at x = 1 [26,33],
where thermal order-by-disorder is expected to play an
important role in a similar way as for the parent kagome
lattice, especially when tuned by anisotropy x. The addition of
an external magnetic field [25,29] would provide a direct tool
to break the invariance by transformation of Eq. (3), making
the phase diagram of Fig. 2(a) asymmetric. Furthermore, the
diversity of spin textures presented here offers a promising
framework to be probed by itinerant electrons coupled to
localized spins via double exchange.
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APPENDIX A: APERIODICITY OF THE STRUCTURE
FACTOR

Following the definition of the shuriken lattice in Fig. 1, the
positions of the six sites within one unit cell are

�r1 = (−α, − α)a, �r2 = (α, − α)a,

�r3 = (α,α)a, �r4 = (−α,α)a, (A1)

�r5 = (1/2,0)a, �r6 = (0,1/2)a,

where a is the linear size of the unit cell and

α = 1
4 (

√
3 − 1). (A2)

The lattice structure factor is defined as

I (�q) = 1

Nuc

∣∣∣∣∣
∑

i

e−i �q·�ri

∣∣∣∣∣
2

. (A3)

Because the shuriken lattice corresponds to a Bravais square
lattice with a motif of six sites, its structure factor in the
thermodynamic limit forms a square lattice in the reciprocal
space. The Bragg peaks are located at

�q = (qx,qy) = 2π

a
(n,m), n,m ∈ Z. (A4)

As a function of n and m, the phase factor due to the six-site
motif defined in Eq. (A2) gives

I

(
�q = 2π

a
(n,m)

)
= Nuc

∣∣∣∣4 cos

(
π n

1 + √
3

)
cos

(
π m

1 + √
3

)

+ (−1)n + (−1)m
∣∣∣∣
2

. (A5)

Since the period of I (�q) is irrational and that n,m ∈ Z, the
intensity of the structure factor is therefore aperiodic (Fig. 9)
when restricted to the grid of allowed values of �q [Eq. (A4)].
Equation (A5) naturally respects the fourfold symmetry of the
shuriken lattice.

APPENDIX B: 2D ISING UNIVERSALITY
CLASS & CROSSOVERS

For |x| > 1, the anisotropic shuriken model orders at low
temperature via a spontaneous Z2 symmetry breaking (see
Fig. 2). We know that this finite-temperature phase transition
is a critical point of the 2D Ising universality class for large
|x| (see Sec. III A). In this appendix, our goal is to confirm
numerically that it remains in the same universality class as
|x| → 1+, by considering two different values of the coupling
ratio: x = −3 and x = −1.05. By symmetry of Eq. (3), the
results also directly apply to x > 1.

In Fig. 10, we analyze the specific heat Ch for five different
system sizes N = {600,2400,5400,9600,15000}. The transi-
tion temperature scales like N−1/3 to its thermodynamic limit
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FIG. 9. Distribution and intensity of Bragg peaks in reciprocal
space (qx,qy), as would be measured in an x-ray diffraction ex-
periment on the shuriken lattice. Its analytical formula is given in
Eq. (A5), where we set a = 1. The first Brillouin zone corresponds
to −π < qx, qy < +π . While the location of these peaks is periodic,
their intensities are not, because of the irrational relative positions of
sites within the unit cell [Eq. (A5)]. The apparent sixfold symmetry
is deceptive; it is only fourfold, as expected for the shuriken lattice.

found at

x = −3 ⇒ Tc = 2.788(5), (B1)

x = −1.05 ⇒ Tc = 0.0714(5). (B2)

Based on these values of the transition temperature, we can
define the reduced temperature ε = (T − Tc)/Tc. Following
standard finite size scaling [82], we confirm in Figs. 11 and 12
that the nature of the phase transition is consistent with the 2D
Ising universality class with critical exponents

β = 0.125, γ = 1.75, ν = 1. (B3)

On the other hand, for |x| < 1, we show in Fig. 13 that the
specific heat and susceptibility are independent of the system
size in Monte Carlo simulations, confirming the absence of a
phase transition and the presence of the crossovers.

APPENDIX C: METHODS: MONTE CARLO
SIMULATIONS

Classical Monte Carlo simulations have been performed
based on the single-spin-flip algorithm. Let a Monte Carlo
step (MCs) be the standard Monte Carlo unit of time made of
N attempts to flip a spin chosen at random. Typical simulations
in this paper consist of (1) between 107 and 108 MCs, including
106 MCs for equilibration, (2) 1 measurement every 20 MCs
for |x| > 1 and every 5 MCs for |x| ≤ 1, and (3) system sizes
varying from N = 600 to 15 000. Figure 2 has been obtained
for N = 2 400 sites.

FIG. 10. Finite size effects on the specific heat for x = −3
(top) and −1.05 (bottom). (Insets) The transition temperature is
scaled as a function of 1/L, where L is the linear system size. In
the thermodynamic limit, we find Tc = 2.788(5) for x = −3 and
Tc = 0.0714(5) for x = −1.05

APPENDIX D: METHODS: HUSIMI-TREE ANALYTICS

1. What is the Husimi tree?

The Husimi tree [83] is a recursive calculation on a Bethe
lattice [84,85] where all vertices are replaced by a given cluster
of spins (see Fig. 14). The clusters are connected to each other
via their external corners, without making any closed loops.
This allows to correctly take into account the interactions
within each cluster, where frustration can be encoded. This
method has been successfully used in a variety of frustrated
problems [49,86–88].

It is important to understand that there is no unique Husimi-
tree approach. It depends on the problem under consideration.
In the present case, the shuriken lattice is made of triangles.
If we had studied the isotropic shuriken lattice, it would have
been quite natural to use triangles as building blocks of the
Husimi tree. As we will see in Appendix D 3, this is actually
a very reasonable approximation for the entropy at x = ±1.
However, triangles do not correctly account for the anisotropy
between A and B sublattices. For example, the BPM phase
cannot be reproduced on a Husimi tree made of triangles. This
is why, in the same way as for a recent study of the 16-vertex
model [89,90], we chose a larger building block made of four
triangles, which corresponds to the unit cell of the shuriken
lattice (see Fig. 1).
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FIG. 11. Finite size scaling of the magnetization |M| [(a) and (c)] and susceptibility χ [(b) and (d)] for x = −3.

Our approach thus accounts for the square plaquettes,
but neglects the loops of size 8 and beyond. As such, the
Husimi tree remains a mean field approximation, which is
qualitative in the vicinity of a critical point below its upper
critical dimension. Since the 2D Ising universality class is
not mean field, the Husimi tree underestimates the transition
temperatures for |x| > 1 by a factor of ≈0.7. This is why the
boundaries of the FM and FiM phases have been determined
with Monte Carlo simulations [open circles in Fig. 2(a)].

However, as far as disordered phases are concerned, the
Husimi tree is quantitatively correct, as confirmed by Figs. 3
and 4 and Table I. The reason for such a remarkable fit between
simulations and analytics for |x| ≤ 1 comes from the relatively
small correlation length with respect to the loops of size
8. Furthermore, being analytical, the Husimi tree provides a
convenient way to determine the local maxima of the specific
heat during crossovers [open triangles in Fig. 2(a)].

2. Details of the Husimi-tree calculations

As illustrated in Fig. 14, the building block of our Husimi
tree is made of four triangles around a square plaquette.
For convenience, we shall refer to this frustrated unit as a
“shuriken.” The Husimi tree is made of successive layers of
shurikens (see Fig. 14). Because there is no loops of size 8
and beyond, any site on the B sublattice delimits a frontier
between two distinct parts of the tree: the part which does not
include the central shuriken is called a branch.

Let zn be the partition function of a branch delimited by a
site on the nth layer. The Husimi-tree approach relies on the
fact that it is possible to obtain the exact recursion relation
between the partition functions zn and zn+1. For the geometry
of Fig. 14, it reads

zn = κ z3
n+1 (D1)

with

κ = 16 e4β (1 + 6ψ2 + ψ4), (D2)

ψ = e−2β cosh(2βx), (D3)

and JAA = −1, x = JAB/JAA = −JAB . The total partition
function of the Husimi tree is then

Z = 2 κ z4
0. (D4)

A specificity of the Husimi tree is that the number of sites
on its external boundary is extensive. Strictly speaking, the
Husimi physics thus depends on the boundary conditions, even
in the thermodynamic limit. However, there is only one choice
of boundary conditions that respect the physical constraints on
the energy E and entropy S:

E −−−−→
T →+∞

0, (D5)

S −−−−→
T →+∞

ln 2, (D6)
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FIG. 12. Finite size scaling of the magnetization |M| [(a) and (c)] and susceptibility χ [(b) and (d)] for x = −1.05.

where we set kB = 1. Imposing the constraints (D5) and (D6)
into Eqs. (D1) and (D4), one finally obtains

E = −2

3

1 + 6ψφ + 2φψ3 − ψ4

1 + 6ψ2 + ψ4
, (D7)

S = 1

6
ln 8 + 1

6
ln(1 + 6ψ2 + ψ4)

+ 2β

3

2ψ(ψ − φ)(3 + ψ2)

1 + 6ψ2 + ψ4
(D8)

with

φ = e−2β x sinh(2βx). (D9)

The specific heat Ch is obtained by a derivation of the energy
with respect to the temperature at zero magnetic field. The
susceptibility χ is obtained by including a magnetic field in
the calculations followed by a linearization of these equations
for small field.

FIG. 13. Absence of finite size effects in the double crossover region for x = 0.9, as seen in Monte Carlo simulations of the specific heat
(left) and reduced susceptibility (right). The system sizes used here are substantially bigger than the correlation length for all temperatures
[Figs. 6 and 7], which is why the numerical results sit on top of each others for all system size.
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FIG. 14. Husimi tree made of shurikenlike building blocks. Here
the first three layers of the Husimi tree are shown, with one shuriken
in the central layer 0, four shurikens in layer 1, twelve shurikens in
layer 2, and so on. Two successive layers are connected by sites on
the B sublattice. Closed loops of size 8 and beyond do not exist. The
red part is a branch starting on a site of the zeroth layer.

3. Pauling entropy of the spin liquids

In the isotropic case (x = 1), and by symmetry for x = −1
as well [see Eq. (3)], a simple Pauling argument is possible
for the calculation of the entropy [91]. If N is the number of
Ising spins, then there are 2N/3 triangles in the system. Out
of the 2N possible configurations, the Pauling argument states
that approximately (6/8)2N/3 are allowed in the ground state,
giving a total number of ground states in the spin liquids SL1,2:

�SL−Pauling = 2N

(
6

8

)2N/3

=
(

9

2

)N/3

(D10)

giving an entropy

SSL−Pauling = N

3
kB ln

9

2
= N

6
kB ln

40.5

2
≈ N kB 0.50136. (D11)

The small difference between the Pauling estimate of
Eq. (D11) and Monte Carlo results (0.50366) is mostly
corrected by considering shurikens as building blocks in the
Husimi-tree calculations (0.50340) (see Table I). Please note
that the Pauling estimate corresponds to a Husimi-tree calcula-
tion based on triangular building blocks [92]. The Pauling and
Husimi-tree calculations are known to provide lower bounds
of the ground-state entropy [92,93], as confirmed here by our
Monte Carlo simulations for the shuriken antiferromagnet.

APPENDIX E: METHODS: DECORATION-ITERATION
TRANSFORMATION

In this Appendix we provide the details of the map to
the effective model on the checkerboard lattice derived in
Sec. IV B. We give the derivation in Appendix E 1 and then give
details of the calculation of the exact transition temperature and
correlation length in Appendix E 2 and E 3, respectively.

1. Exact derivation of the effective model on
the checkerboard lattice

Consider the partition function of the anisotropic shuriken
model

Z =
∑

{σB
i =±1}

∑
{σA

i =±1}
exp[−β(HAA + HAB)], (E1)

where HAA and HAB are, respectively, the Hamiltonian of the
square plaquettes of A spins and the Hamiltonian coupling the
intermediate B spins to the square plaquettes. Summing over
configurations of A spins, we obtain

Z =
∑

{σB
i =±1}

∏
�

Z�
({

σB
i

})
, (E2)

where the product is over all the square plaquettes of the lattice
andZ�({σB

i }) depends on the configuration of the four B spins
immediately neighboring a given square plaquette.

There are sixteen possible arrangements of the four B

spins surrounding a square plaquette of which only four are
inequivalent from the point of view of symmetry. These give
rise to four possible values for Z�:

Z++++ = 2(2 + 4 cosh(4βJAB ) + exp(−4βJAA)

+ exp(4βJAA) cosh(8βJAB)), (E3)

Z+++− = 2(3 + 3 cosh(4βJAB ) + exp(−4βJAA)

+ exp(4βJAA) cosh(4βJAB)), (E4)

Z++−− = 4(1 + 2 cosh(4βJAB) + cosh(4βJAA)), (E5)

Z+−+− = 4(3 + cosh(4βJAA)). (E6)

From these we can assign “free energies” Fi = −T ln(Zi)
to each of the four possible inequivalent configurations of B

spins around a square plaquette, i.e.,

F++++ = −T ln(Z++++), (E7)

F+++− = −T ln(Z+++−), (E8)

F++−− = −T ln(Z++−−), (E9)

F+−+− = −T ln(Z+−+−). (E10)

The B spins form a checkerboard lattice as illustrated in
Fig. 15. Using Eqs. (E3)–(E10), we can rewrite Eq. (E2) in
terms of an effective Hamiltonian on the checkerboard lattice:

Z =
∑

{σB
i =±1}

exp

(
−β

∑
�

H�

)
. (E11)
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FIG. 15. The checkerboard lattice formed by the set of B spins
on the shuriken lattice.

The sum
∑

� is a sum over the elementary units of the
checkerboard lattice. The function H� is a function only of
the four B spins around a checkerboard unit and returns one
of the four Fi defined in Eqs. (E7)–(E10) as appropriate to the
configuration of those four spins.

We can rewrite H� explicitly in terms of interactions
between the spins on the checkerboard lattice. The resultant
effective Hamiltonian for the spins on the checkerboard lattice
contains a constant term J0, a nearest-neighbor interaction J1,
a second nearest-neighbor interaction J2, and a four-site ring
interaction Jring,

H� = −J0(T ) − J1(T )
∑
〈ij〉

σB
i σB

j

−J2(T )
∑
〈〈ij〉〉

σB
i σB

j − Jring(T )
∏
i∈�

σB
i . (E12)

All couplings are functions of temperature Ji = Ji(T ).
The relationship between the temperature dependent cou-

plings Ji(T ) appearing in Eq. (E12) and the free energies Fj

defined in Eqs. (E7)–(E10) is

J0 = −1

8
(F++++ + F+−+− + 2F++−− + 4F+++−),

(E13)

J1 = −1

8
(F++++ − F+−+−), (E14)

J2 = −1

8
(F++++ + F+−+− − 2F++−−), (E15)

Jring = −1

8
(F++++ + F+−+− + 2F++−− − 4F+++−).

(E16)

We have thus succeeded in mapping the original model on the
shuriken lattice onto an effective model on the checkerboard
lattice [Eq. (E12)].

2. Exact transition temperature of the decorated square lattice

In the limit x → +∞, one obtains the decorated square
lattice. Applying JAA = 0 to Eqs. (E3)–(E10) and then
injecting the results into Eqs. (E14)–(E16), one obtains

J1 = 1

2β
ln (cosh(2βJAB )), (E17)

J2 = Jring = 0. (E18)

The term J0 does not cancel, but it only appears as a prefactor
in the partition function of Eq. (E11) and thus does not
influence the critical point.

Our effective model thereby becomes a square lattice with
a temperature dependent nearest-neighbor coupling J1(T ). It
is exactly soluble and the transition temperature Tc = 1/βc is
obtained by injecting Eq. (E17) into Onsager’s solution of the
Ising square lattice [94]

βcJ1(Tc) = 1
2 ln(cosh(2βcJAB))

= 1
2 ln(

√
2 + 1) (Onsager), (E19)

which gives the result of Eq. (4):

Tc = 2JAB

ln(
√

2 + 1 +
√

2 + 2
√

2)

≈ 1.30841 JAB. (E20)

3. Correlation length

We observed in Sec. IV B that for x � 1 the couplings of the
effective model are small compared to the temperature, for all
values of temperature. An expansion of the partition function
of the effective model in powers of βJi is thus justified. Where
|x| < 1 this expansion is asymptotically exact in both high- and
low-temperature regimes.

FIG. 16. A path (in red) between two spins on the checkerboard
lattice containing only nearest-neighbor J1 bonds. The correlation
function between two such spins in the disordered regime is calculated
in Appendix E 3.
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Here we show how to use this expansion to calculate
the correlation function 〈σB

0 σB
m 〉 for a pair of B spins. For

simplicity and concreteness, we will do the calculation for a
pair separated by a path such as that in Fig. 16, where the

shortest route between them traverses only J1 bonds and
contains m such bonds. However, there is no difficulty in
making the calculation for other cases.

We have

〈
σB

0 σB
m

〉 =
∑

{σi±1} σB
0 σB

m exp
[
β

∑
� J0(T ) + J1(T )

∑
〈ij〉 σ

B
i σB

j + J2(T )
∑

〈〈ij〉〉 σB
i σB

j + Jring(T )
∏

i∈� σB
i

]
∑

{σi±1} exp
[
β

∑
� J0(T ) + J1(T )

∑
〈ij〉 σ

B
i σB

j + J2(T )
∑
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]n , (E21)

where Nc is the total number of spin configurations of the
checkerboard model.

The leading nonzero term in Eq. (E21) comes from the n =
m part of the sum in the numerator, and corresponds to covering
the shortest path between σB

i and σB
j with J1 interactions.

There are m! ways of ordering the product of terms, which
cancels the 1

n! occurring in the denominator. We thus obtain

〈
σB

i σB
j

〉 ≈ (βJ1(T ))m = exp

[
−m ln

(
1

βJ1(T )

)]
. (E22)

In our choice of units of length, made such that the linear
size of a unit cell equals 1, the distance between the spins is

r = m√
2
. (E23)

We therefore have a correlation length

ξBB = 1√
2 ln

(
1

βJ1(T )

) . (E24)
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