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Theory of light-induced effective magnetic field in Rashba ferromagnets
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Motivated by recent experiments on all-optical magnetization reversal in conductive ferromagnetic thin films
we use nonequilibrium formalism to calculate the effective magnetic field induced in a Rashba ferromagnet by a
short laser pulse. The main contribution to the effect originates in the direct optical transitions between spin-split
subbands. The resulting effective magnetic field is inversely proportional to the impurity scattering rate and can
reach the amplitude of a few Tesla in the systems like Co/Pt bilayers. We show that the total light-induced effective
magnetic field in ferromagnetic systems is the sum of two contributions: a helicity dependent term, which is an
even function of magnetization, and a helicity independent term, which is an odd function of magnetization. The
primary role of the spin-orbit interaction is to widen the frequency range for direct optical transitions.
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I. INTRODUCTION

The discovery of all-optical magnetization reversal [1,2]
has been broadly recognized as an important step forward
to ultrafast optomagnetic data recording and processing. The
phenomenon has opened up a topic in the field of spintronics
that is challenging from both experimental and theoretical
points of view [3–5].

Ultrafast spin dynamics in ferromagnetic nickel has been
demonstrated by Beaurepaire et al. in 1996 [6]. The experiment
triggered a lot of interest to the possibility of controlling
magnetization by optical means. A decade later, Rasing and
co-workers [1–3] have indeed demonstrated that a subpi-
cosecond laser pulse of circularly polarized light may reverse
magnetization direction in metallic ferrimagnets such as
GdFeCo [7–9], TbCo [10], as well as in synthetic ferrimagnet
compounds [11]. Despite the experimental significance of the
effect, its microscopic origin is still debated [12–21].

Very recently all-optical switching in ferromagnetic Co/Pt
bilayer irradiated by a 100 fs laser pulse has been reported [22].
Motivated by this experiment we analyze the effective mag-
netic field induced by polarized light in a two-dimensional
(2D) ferromagnet with Rashba spin-orbit coupling. We find
that the strong spin-orbit interaction in the system [23,24]
opens up a wide frequency window for direct optical transitions
that induce the effective magnetic fields up to few Tesla. We,
therefore, argue that the effect described can be central for
understanding magnetization switching in Co/Pt bilayers and
similar heterostructures.

Below we consider a 2D ferromagnet subject to a polarized
light propagating along the magnetization direction that is
normal to the xy plane of the ferromagnet. For the case of
a circularly polarized light there is no anisotropy in the xy

plane, hence the effective magnetic field may only be induced
in the z direction. We distinguish odd and even components
of the effective magnetic field with respect to the helicity of
light that are regarded as inverse Faraday (IF) and inverse
Cotton-Mouton (ICM) contributions, respectively [4,13]. A
linearly polarized light leads in addition to a small magnetic
field component in the direction of light polarization.

We calculate the largest, so-called kinematic, contribution
to the effective magnetic field that is facilitated by the direct

optical transitions between spin-split subbands. The stronger
the spin-orbit interaction the wider the frequency window
for such direct optical transitions. Modeling the dynamics of
magnetization switching remains, however, beyond the scope
of the paper.

The rest of the paper is organized as follows. In Sec. II we
introduce the theoretical model and the technique. In Sec. III
we calculate the effective magnetic field induced by polarized
light up to second order with respect to the light intensity.
In Sec. IV the optical conductivity and its relation to the
absorption in this system is discussed. We conclude in Sec. V.

II. MODEL HAMILTONIAN AND FORMALISM

A. System Hamiltonian

Rashba spin-orbit interaction originates in inversion sym-
metry breaking due to the electron 2D confinement. In
heavy-metal/ferromagnet bilayers such as Co/Pt the spin-
orbit coupling is particularly strong [23,25–28]. Conduction
electrons in such systems can be qualitatively described by the
Bychkov-Rashba Hamiltonian [29],

Ĥ = Ĥ0 + V̂ (r), Ĥ0 = p̂2

2m
+ αR( p̂ × σ )z + Mσz, (1)

where V̂ (r) is a disorder potential, p̂ is the momentum
operator in two dimensions, m is the effective electron mass,
αR quantifies the strength of spin-orbit interaction, σ is the
vector of Pauli matrices representing spin operators of itinerant
electrons, and M is the ferromagnetic exchange energy for
magnetization along the z direction that is normal to the 2D
plane.

The effect of light is introduced by the Peierls substitution
p̂ → p̂ − eA(t), where A(t) is the time-dependent vector po-
tential and e is the electron charge. The corresponding electric
field is given by E(t) = −∂ A(t)/∂t . Then the total Hamil-
tonian is replaced by Ĥ → Ĥ + ĵ ( p̂) · A(t) + e2A(t)2/2m,
where ĵ ( p̂) = e( p̂/m + αR ẑ × σ ) is the current operator.
Throughout the paper we use the units with c = � = 1.

In the case of light propagating in z direction, i.e.,
perpendicular to the 2D plane of electron gas, the electric
field component of laser pulse can be described by a spatially
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FIG. 1. The spectrum of model (1) and the direct optical transition
corresponding to the frequency � that fulfills the condition of Eq. (2).

uniform electric field E(t) = E0eλe
−i�t , where E0 is the ampli-

tude of the electric field and � is the frequency of light. The unit
vector eλ = (x̂ + iλ ŷ)/

√
1 + λ2 defines the light polarization

vector: λ = ±1 for left (right) circularly polarized light and
λ = 0 for light polarized in the x direction. In what follows we
regard the parameter λ as the light helicity. The corresponding
vector potential is given by A(t) = E0eλe

−i�t/i�.
The spectrum of the free Hamiltonian Ĥ0 consists of

two spin-split subbands ε±
p = p2/2m ±

√
α2

Rp2 + M2 that are
depicted schematically in Fig. 1. The direct optical transitions
between the subbands correspond to � = ε+

p − ε−
p provided

that the state with ε = ε+ is empty while the state with ε = ε−
is filled, i.e., ε−

p < εF < ε+
p , where εF stands for the Fermi

energy. This purely kinematic condition can be rewritten as

ω0 − 	 < �/2 < ω0 + 	, (2)

where 	 = mα2
R and ω0 =

√
	2 + 2	εF + M2. Throughout

this paper we focus on the situation when all electronic states
involved in optical transition correspond to the energies in
the upper part of the spectrum, εp > M , as shown in Fig. 1.
This is the typical situation in ferromagnetic metals. In the
model considered, the condition corresponds to the additional
constraint εF > M + � for the applicability of our results,
which is equivalent to � > 2(M + 2	).

In the absence of spin-orbit interaction, 	 = 0, condi-
tion (2) is limited to � = 2M which is the consequence of the
fact that the subband splitting is equal to 2M for all momenta.
For strong spin-orbit interaction condition (2) is, however,
not that restrictive. For example, for the following material
parameters εF = 3.2 eV, M = 0.4 eV, and 	 = 100 meV,
condition (2) is fulfilled for 1.6 < � < 2 eV. This is indeed a
sufficiently large interval within optical frequency range.

In model (1) we consider a spin dependent and short range
disorder potential as [30]

V̂ (r) = V
∑

i

δ(r − Ri), V =
(

V+ 0
0 V−

)
, (3)

where the points Ri specify random impurity positions and
V± is the characteristic impurity strength for the spin along (or
opposite to) the magnetization direction.

FIG. 2. (a) Feynman diagrams illustrating Born approximation
that is used to derive the expression for the averaged Green’s function
in Eq. (12). (b) Diagrammatic representation of Eq. (13) on the vertex
� that describes the electron diffusion. (c) Representation of the dc
nonequilibrium spin polarization due to direct optical transitions as
given by Eq. (10).

For electrons with energies in the upper subband, εp > M ,
we define the corresponding scattering rates γ± = πnimpνV 2

±,
γ = (γ+ + γ−)/2 = 1/2τ , where nimp is the 2D impurity
concentration, and ν = m/2π is the density of states per
spin. We consider the limit of weak Gaussian disorder that
formally corresponds to V± → 0 and nimp → ∞ such that
γ � (εF − M). In this limit the averaging over disorder
realizations is expressed in terms of the single correlator

〈V (r)V (r ′)〉 − 〈V (r)〉2 = nimpV
2 δ(r − r ′), (4)

which is depicted by the impurity line (dashed) in Fig. 2(b).

B. Expression for the effective magnetic field

The effective magnetic field is calculated to second order
with respect to the electric field component of light E . The
contribution of the second order perturbing potential in the
total Hamiltonian e2A(t)2/2m to the effective magnetic field is
negligible as explained in the next section. Thus, it is sufficient
to construct the second order perturbation theory with respect
to the linear perturbing potential Û ( p̂,t) = ĵ ( p̂) · A(t). The
calculation is performed with the help of nonequilibrium
perturbation theory using Keldysh formalism.

In the nonequilibrium quantum theory the effective mag-
netic H-field induced by light can be written as [31–33]

H = −gμB

d
s, sa = − i

2
Tr〈σaG<(r,t ; r,t)〉, (5)

where μB is the Bohr magneton, g is the electron effective
Landé g factor, and d is the effective sample thickness
(given by the light penetration depth for thick samples). The
brackets 〈· · · 〉 stand for disorder averaging, a = {x,y,z}, and
s quantifies the nonequilibrium spin polarization per sample
area. The nonequilibrium lesser Green’s functionG< is defined
on the Keldysh contour [34,35]. In our case, the external field
depends on time but does not depend on the coordinate, hence
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G<(r,t ; r ′,t ′) is a function of three variables: r − r ′, t , and
t ′. In the absence of light G< is reduced to the equilibrium
Green’s function G<(t − t ′) which in frequency domain takes
the form

G<(ω) = −f (ω)[GR(ω) − GA(ω)], (6)

where f (ω) = {1 + exp [(ω − εF)/T ]}−1 is the Fermi dis-
tribution function with the chemical potential εF and the
temperature T .

The Green’s function G< is calculated perturbatively in Û

with the help of the Dyson equation in the Keldysh space. The
first and second order contributions to G< are given by

δ(1)G< = GRÛG< + G<ÛGA, (7a)

δ(2)G< = GRÛGRÛG< + GAÛG<ÛGR

+G<ÛGAÛGA, (7b)

where all products assume integral convolution in space and
time arguments.

The Fourier transform of the perturbing potential reads

U ( p,ω) = u pδ(ω − �) + u†
pδ(ω + �), (8)

where the momentum-dependent quantity u p takes the form
of the following matrix in the spin space:

u p = eE0

i�
√

1 + λ2

(
p

m
eiλφp −iαR(1 + λ)

iαR(1 − λ) p

m
eiλφp

)
, (9)

with the 2D momentum p = p(cos φp, sin φp).
In what follows we are interested in the time-independent

(dc) contribution from conduction electrons to the magnetic
field H. To obtain this contribution we average the induced
spin polarization over time on the scale of the inverse
frequency. The resulting dc contribution is absent in first order
with respect to the amplitude of light, Eq. (7a). In the second
order perturbation theory of Eq. (7b) the nonequilibrium spin
polarization is given by the general formula

sa = − 1

2i

∫
d2 p

(2π )2

∫
dω

2π

〈
Tr

{
σaG

R
p (ω)û p

[
GR

p (ω − �) − GA
p(ω − �)

]
û†

pG
A
p(ω)

}
[f (ω − �) − f (ω)]

− Tr
{
σaG

R
p (ω)û†

p

[
GR

p (ω + �) − GA
p (ω + �)

]
û pG

A
p(ω)

}
[f (ω) − f (ω + �)]

− 2i Im Tr
[
σaG

R
p (ω)û pG

R
p (ω − �)û†

pG
R
p (ω) + σaG

R
p (ω)û†

pG
R
p (ω + �)û pG

R
p (ω)

]
f (ω)

〉
, (10)

that we analyze in the next section in the diffusive approxima-
tion.

III. LIGHT-INDUCED EFFECTIVE MAGNETIC FIELD

A. Born approximation

The effective magnetic field given by Eq. (10) is calculated
in the limit of weak disorder γ = (γ+ + γ−)/2 � M,�. We
also require γ � αRp−

F , where p−
F is the Fermi momentum of

the smaller of the two Fermi surfaces. The latter condition is
equivalent to γ � √

2	(εF − M). We perform the calculation
in the leading order with respect to the small parameter γ /M .
For circularly polarized light, the symmetry of the problem
dictates that sx = sy = 0. The result for sz is, however, of the
order of M/γ , that is formally diverging in the clean limit
γ → 0. For linearly polarized light we can expect finite in-
plane components of the effective magnetic field. We estimate,
however, that for x-polarized light sx ∝ O(γ 0) and does not
depend on the scattering rate while sy ∝ O(γ 1) is vanishingly
small.

Below we focus on the largest component of the nonequi-
librium spin polarization sz that is of the order of O(γ −1). In
this order we can completely disregard the contribution of the
third line of Eq. (10) given by the product of retarded Green’s
functions, since it only contributes in the order O(γ 1). Simi-
larly, we can completely disregard the contributions resulting
from the diamagnetic term e2A(t)2/2m in the Hamiltonian.

Thus, we are dealing with the calculation of sz from the
first two lines of Eq. (10) that is schematically represented
by the diagrams depicted in Fig. 2(c). In order to perform
the calculation we employ the self-consistent Born approxi-

mation with respect to disorder potential that amounts to the
calculation of two quantities: the disorder-averaged Green’s
function ḠR

p (ω) = [ω − H0( p) + �]−1, where � is a matrix
self-energy, and the vertex �z depicted in the Fig. 2(b). We
note that such ladder approximation remains valid as far as the
resulting effective field is of the order of M/γ . To compute,
for example, the x component of the field that appears in the
next order (for the linearly polarized light) one needs to add the
diagrams with a single crossing of impurity lines [36,37]. Due
to the condition � 
 γ we do not need to consider diffusion
corrections (vertex corrections) to electron-photon interaction
vertices.

To compute the leading order result it is sufficient to take
the self-energy � in the first Born approximation illustrated
diagrammatically in Fig. 2(a). For ω > M the straightforward
calculation gives

Im � = γ + σzδ, γ± = 1
2m nimpV

2
± = γ ± δ, (11)

where δ is the imbalance between the spin up and the spin down
scattering rates. Here we ignore the real part of the self-energy
since it only renormalizes the exchange term. The averaged
Green’s function is, then, obtained as

ḠR
p (ω) = ε + iγ − ξ + (M − iδ)σz + √

2	ξσφ

(ε − x+)(ε − x−)
, (12)

where ξ = p2/2m, x± = ξ − iγ ±
√

M2 + 2ξ	 − 2iMδ,
and σφ = σy cos φp − σx sin φp.
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Thus, the equation on the vertex �z, see Fig. 2(b), takes the
form

�z = σz + nimp

∫
d2 p

(2π )2

[
V̂ ḠA

p�zḠ
R
p V̂

]
. (13)

This equation is solved by noting that

nimp

∫
d2 p

(2π )2

[
V̂ ḠA

p(ω)σzḠ
R
p (ω)V̂

]

= 2M2σz[
γ+
γ−

(ω + M) + γ−
γ+

(ω − M)
]
	 + 2(ω	 + M2)

, (14)

where ω > M and the integral over momentum p is calculated
to the leading order in γ /M . The resulting solution of Eq. (13)
reads

�z =
[

1 + M2(1 − δ2/γ 2)

2	(ω + Mδ/γ )

]
σz, (15)

where the formal divergency at ω = −Mδ/γ lays outside the
applicability range (ω > M) of the expression. It is worth
noting that the corresponding vertex corrections for the other
two spin-operators σx and σy are negligible for 	 � M [38]
in contrast to the vertex �z.

In order to average sz over disorder in the diffusive
approximation we have to replace the Pauli matrix σz in
Eq. (10) by the full vertex �z and the Green’s function GR,A

by the corresponding averaged Green’s functions ḠR,A from
Eq. (12). As was already noted the contribution of the last
term given by the third line of Eq. (10) is negligible. The rest
of the calculation amounts to the averaging over the angle
φp and two integrations over ω and ξ . These integrations are
straightforward in the limit γ � M . In this limit, the product
ḠR(ω)ḠA(ω) and the difference ḠR(ω ± �) − ḠA(ω ± �)
are proportional to the corresponding delta functions that make
the calculation trivial.

B. The main result

The result of the calculation in the leading order with respect
to the small parameter γ /M reads

sz = (eE0)2

8�2

M

γ

[
�2

4M2
+ λ�

M
+ 1

]
R�(f− − f+), (16a)

R� = M2
1
4�2 − M2 − 4	2 + 4M	δ/γ(

1
4�2 − M2 + 2M	δ/γ

)2 − (�	)2
, (16b)

f± = f

( 1
4�2 − M2

2	
± 1

2
�

)
, (16c)

where the difference of the Fermi functions (f− − f+) singles
out the frequency window that, at zero temperature, corre-
sponds precisely to the kinematic condition of Eq. (2). Thus
we see that the result for sz in the order M/γ is only due to the
direct resonant optical transitions between spin-split subbands.

The expression for R� defined by Eq. (16b) is diverging
at the frequency � = 2(	 +

√
M2 + 	2 − 2M	δ/γ ). This

divergence lays outside the applicability range of the formula
[which is � > 2(M + 2	)] and corresponds to the formal
divergence in the vertex correction (15). Since R� > 0 in the
entire applicability range of Eq. (16) we conclude from Eq. (5)

that the effective field is opposite to magnetization direction
irrespective of light polarization for g > 0 while it is in the
direction of magnetization for g < 0. Thus, both linearly as
well as circularly polarized laser pulses can, in principle, lead
to magnetization dynamics [39]. It is, however, evident from
Eqs. (16) that in our geometry the total nonequilibrium spin
polarization sz is always larger for the case of M and λ having
the same sign.

C. ICM and IF contributions

The total nonequilibrium spin polarization induced by
polarized light from Eq. (16) can be decomposed into the
sum of helicity-independent, ICM, and helicity-dependent, IF,
contributions sz = sICM + sIF, where

sICM = (eE0)2

8�2

M

γ

(
�2

4M2
+ 1

)
R�, (17a)

sIF = λ
(eE0)2

8�γ
R�. (17b)

Here we replaced (f− − f+) by 1 assuming that � yields the
constraint of Eq. (2). The helicity dependent part of the effect
sIF is an even function of M , while the the helicity-independent
contribution sICM is an odd function of the magnetization.
Thus, in the absence of magnetization, M = 0, the ICM
contribution to the effective field vanish identically. The IF
contribution in this limit is still finite but negligible and can be
estimated as

sIF

∣∣
M=0 = λγ

(eE0)2

2�3
(18)

for frequencies within the window of Eq. (2). We would like
to stress that the resonant IF and ICM fields given by Eqs. (17)
are orders of magnitude larger than the IF field described
previously by Edelstein in the absence of magnetization [33].
We find that the effective magnetic field in ferromagnetic
systems due to direct optical transitions is proportional to
the scattering time τ in the high frequency regime �τ 
 1,
while in paramagnetic systems the effective field is inversely
proportional to the scattering time. As a result the value of the
effective field in ferromagnetic metals is large and can reach
several Tesla.

Quite generally the IF component of the field, which is
also referred to as the inverse Faraday effect, is parallel to
the propagation direction of the circularly polarized light. The
ICM field component is, however, parallel to the magnetization
direction of the sample. In our setup these two directions
are equivalent and the in-plane components of the effective
field are vanishing by symmetry, sx = sy = 0, for the case of
circularly polarized light.

From Eqs. (17) we immediately obtain the ratio

sIF

sICM
= λ

�M
1
4�2 + M2

, (19)

which depends solely on the sample magnetization and the
frequency of light. The prediction of Eq. (19) can be, therefore,
tested in the experiment. We stress that the ratio sIF/sICM

decays monotonously as the function of � in the frequency
range set by Eq. (2), since the latter always assumes � > 2M .
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FIG. 3. The results for z component of the effective magnetic field
in the units of Tesla calculated from Eqs. (5) and (16) for circularly
polarized light with the helicity λ and for two values of the parameter
	 = mα2

R. We choose here E0 = 109 V m, εF = 3.3 eV, M = 0.3 eV,
γ+ = 2γ−, γ− = 1 meV, d = 0.4 nm. The effect is restricted to a finite
frequency window of Eq. (2) that essentially depends on 	.

Thus, the maximal value of the total nonequilibrium spin
polarization sz is achieved for the smallest frequency allowed
by the constraint (2) and for λ = sgn[M] (see also Fig. 3).

It is worth noting that the calculation of the vertex correction
in Eq. (15) corresponds to the electron diffusion that is a
relatively slow process. Thus, the results of Eqs. (16) and (17)
are qualitatively accurate only for the light pluses that last
longer than the electron transport time, which is typically of
the order of a picosecond in clean systems. However, the effect
of light described by Eq. (10) is effective already on very short
time scales. For an estimate of the effect for femtosecond light
pulses in dirty samples one should simply consider �z = σz

which corresponds to R� → R′
� with

R
′
� = 2M2

(
1
4�2 − M2 − 4	2

)
�

(
1
2� − 2	

)(
1
4�2 + �	 − M2

) , (20)

where we have taken δ = 0 for compactness. It is easy to see
that the expression for R′

� is of the same order as R� hence
we may expect equally strong effective magnetic field on the
short time scales.

IV. OPTICAL CONDUCTIVITY

A. The Kubo formula

The resonant optical transition between spin-split subbands
leads naturally to an energy dissipation in the system. This
may limit the applicability of our results on long time scales
due to heating effects. However, if the duration of the light
pulse is shorter or comparable to the electron scattering time,
the effect described in the previous section must play an
important role while the energy absorbed by the system is
still small. Subpicosecond light pulses may definitely fulfill
these constraints.

In order to quantify the light absorption we analyze the
optical conductivity tensor σab(�) at the frequency � [40].
The real part of the conductivity, Re σxx , represents in-phase
current which induces a resistive joule heating, while the
imaginary part, Im σxx , represents π/2 out-of-phase inductive

current. If the inductive current is dominant, the energy
absorption and the related joule heating are negligible.

To simplify the further analysis we let δ = 0, i.e., consider
the spin-independent disorder scattering rate. We also assume
the high frequency limit γ � �. The latter condition allows us
to ignore vertex corrections and use disorder-averaged Green’s
functions of Eq. (12) in the Kubo formula for conductivity. In
the imaginary time representation the conductivity tensor taken
at imaginary frequencies is given by

σab(iνm) = T

νm

∑
n

∫
d2 p

(2π )2
Tr[jaḠ p,njbḠ p,n+m], (21)

where T is the temperature, νm = 2πT m is the bosonic
Matsubara frequency, and m,n are the integers. It is conve-
nient to represent the disorder-averaged Matsubara Green’s
function as a sum of two terms that are related to different
subbands,

Ḡ p,n = 1

2

∑
s=±

(
1 − s

σ · B p

B p

)
1

i(ωn + γ ) − εs
p
, (22)

where ωn = πT (2n + 1) is the fermionic Matsubara fre-
quency and B p = (−αRpy,αRpx,M). It is easy to see from
symmetry properties of our model that σxx = σyy and σxy =
−σyx . The conductivity at a real frequency � is obtained from
Eq. (21) by the analytic continuation.

B. Longitudinal conductivity

We focus first on the longitudinal optical conductivity
σxx(�). With the help of Eq. (22) we decompose the latter
into the sum of intraband and interband contributions, σxx =
σ intra

xx + σ inter
xx . The intraband component of the conductivity

does not involve any direct optical transitions and can be
evaluated at zero temperature as

σ intra
xx (�) = e2

γ − i�

∫
d2 p

(2π )2

∑
s=±

p2
x(	 − sB p)2

m2B2
p

∂f
(
εs

p

)
∂εF

= 2e2

π

εF + 	

γ − i�
, (23)

which can be recognized as the Drude conductivity. For � 
 γ

the imaginary part of the intraband conductivity is proportional
to (εF + 	)/�, while the real part is suppressed by the large
factor �/γ . Thus the contribution of the intraband term to the
energy absorption is negligible.

The interband contribution to the longitudinal conductivity
is given by

σ inter
xx (�) = e2α2

R

i�

∫
d2 p

(2π )2

α2
Rp2

y + M2

B2
p

[f (ε+
p ) − f (ε−

p )]

×
(

1

� − 2B p + i0
− 1

� + 2B p + i0

)
, (24)

where we have taken the limit γ → 0.
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At zero temperature the integrals in Eq. (24) are easily taken
with the result

Re σ inter
xx = e2

2

(
1 + 4M2

�2

)
�(1 − η2), (25a)

Im σ inter
xx = e2

2π

[
1

8

(
1 + 4M2

�2

)
ln

∣∣∣∣η − 1

η + 1

∣∣∣∣ − 	

�

]
, (25b)

where �(x) stands for the Heaviside step function and we
introduce the parameter

η = 1

�	

(
1

4
�2 − 2εF	 − M2

)
. (26)

We see that in the limit γ → 0 the real part of the interband
conductivity (25a) is finite only for |η| < 1. This condition
is identical to the kinematic condition of Eq. (2) for the
direct optical transitions. In this frequency range the imaginary
part of the conductivity is generally smaller than the real
one.

Thus, the absorption of light is indeed associated with the
direct optical transitions. In the absence of magnetization M =
0, we naturally reproduce the well-known results for optical
conductivity of 2DEG-Rashba systems [40–43].

C. Anomalous Hall conductivity

For the completeness we also provide the expression for the
transverse component of the optical conductivity, the so-called
ac anomalous Hall conductivity, in the limit γ → 0, given
by

σxy(�) = e2M

2π�
ln

∣∣∣∣η − 1

η + 1

∣∣∣∣ + i
e2M

2�
�(1 − η2). (27)

The real part of the ac anomalous Hall conductivity defines
the so-called Faraday rotation angle, the rotation of the plane
of light polarization traveled through a magnetic medium,
which is zero in the absence of magnetization [44–48]. At
zero frequency � = 0 we naturally recover the intrinsic
value of the dc anomalous Hall conductivity σ int

xy [e2/2π ] =
2M	/(M2 + 2εF 	) [37,49].

V. CONCLUSION AND DISCUSSION

We analyzed the effective magnetic field induced by
polarized light in a 2D ferromagnet with Rashba spin-orbit
coupling. We assumed that the light propagates along the
magnetization direction that is perpendicular to the plane
of the ferromagnet. In an interval of frequencies set by the
kinematic condition (2) we predict a greatly enhanced effect
due to direct optical transitions between spin-split subbands.
We find that in ferromagnetic systems the sign of the total
light-induced effective magnetic field is not proportional the
light helicity. The field can, however, be decomposed to the
helicity dependent term (IF effect) and a helicity independent
term (ICM effect). This is different with nonmagnetic systems
where the overall sign of the effective field is set by the light
helicity, the IF effect. The actual direction of the light-induced
magnetic field in ferromagnet depends also on the sign of the
effective g factor. If the effective g factor of charge carriers
were positive the total light-induced effective magnetic field

direction would be always opposite to the initial magnetization
direction of the sample irrespective of the light polarization
(in case of the linearly polarized light, a small transverse
component of the field also emerges parallel to the polarization
vector). Thus, whether the effective magnetic field leads to a
magnetization reversal is a material dependent phenomenon.
The magnitude of the effect, given by Eqs. (16) and (17) and
illustrated in the Fig. 3, is proportional to a large parameter
M/γ where M is the exchange energy and γ is the scattering
rate. The effect takes place also on short time scales, i.e.,
for femtosecond time pulses. Both effects, IF and ICM, can
be classified as the optical rectification [19,50] in magnetic
systems where an ac electric field induces a dc magnetic field.

In contrast, the effective magnetic field in the absence of
magnetization is strongly suppressed [33,51], see Eq. (18). The
effect in this case is proportional to a small parameter γ /�,
where � is the frequency of light, and can only be induced by
a circularly polarized light.

The strength of spin-orbit interaction defines the frequency
window of Eq. (2) in which the effect can be observed.
Since the effect is facilitated by resonant optical transitions
it is always accompanied by some joule heating. The energy
absorbed depends crucially on the time of the light pulse and
the sample quality.

In Fig. 3 we illustrate our main results, which are given
by Eqs. (5) and (16), using typical parameters: E0 = 109

V m, εF = 3.3 eV, M = 0.3 eV, γ+ = 2γ−, γ− = 1 meV, d =
0.4 nm. The effective field is shown for two different values
of spin-orbit interaction strength: 	 = 0.1 and 0.2 eV such
that the condition of Eq. (2) selects the frequency windows
� ∈ (1.62,2.02) eV and � ∈ (2.07,2.87) eV, correspondingly.
We see that the effective magnetic field can exceed 1 T
for the case of circular light polarization with the helicity
λ = sgn[M]. We also see that the IF contribution is indeed
larger for lower values of � in the frequency window of
Eq. (2) as expected from Eq. (19). Our results show that
we get an effective magnetic field of between 0.2 and 2.2 T
within realistic parameter range for Co/Pt bilayers. Very
recently it was experimentally reported that the light induced
effective magnetic field is about 0.2 T in such heterostructures
[52].

The effect of spin-orbit interaction on inverse Faraday effect
has been studied recently by several authors. In Ref. [53] it
was shown that the IF effect in disordered metals and in the
terahertz regime is linearly proportional to both the frequency
of light and the extrinsic spin-orbit interaction strength.
In clean metals, in the presence of the Rashba spin-orbit
interaction, the effect was found to be of the second order in
αR in the terahertz regime [51]. On the other hand, the IF effect
in dilute magnetic semiconductors has been argued to have an
intrinsic origin due to the renormalization of the spin-split
subbands via the spin-dependent optical Stark effect [18].
The resulting effective magnetic field in such a scenario (for
both IF and ICM effects) is inversely proportional to �2

and is vanishing in the absence of the spin-orbit interaction.
The mechanism, however, requires the light pulse duration
to be larger than the electron spin-flip scattering time. The
latter is typically of the order of a few picoseconds [18].
In contrast, the light-induced magnetic field due to direct
optical transitions between the spin-split subbands, which we
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considered above, is effective already on ultrashort time scales
and is of particularly large amplitude.

Our results are also relevant in the context of all-optical
magnetization reversal [1,2]. It was shown in Refs. [54,55]
that for temperatures in a vicinity of the Curie temperature,
the linear magnetization switching can occur provided the
magnetic field applied is larger than a critical value that is
typically of the order of a few Tesla. The authors also showed
that at lower temperatures the magnetization may switch via
the precessional reversal in similar magnetic fields but on
longer time scales. Our calculation shows that the light pulse
in the kinematic frequency range of Eq. (2) induces both the
joule heating as well as the large dc effective field on the scale
of 1 T. Thus, the mechanism described may be optimized for
all-optical magnetization reversal [4].

In conclusion we derived the effective magnetic field
due to direct optical transitions between the spin-split sub-
bands in the presence of both magnetization and Rashba
spin-orbit coupling. The effect can be used to initiate the
ultrafast magnetization dynamics for all-optical magnetization
reversal.
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