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We report a neutron spin-echo study of the critical dynamics in the S = 5
2 antiferromagnets MnF2 and Rb2MnF4

with three-dimensional (3D) and two-dimensional (2D) spin systems, respectively, in zero external field. Both
compounds are Heisenberg antiferromagnets with a small uniaxial anisotropy resulting from dipolar spin-spin
interactions, which leads to a crossover in the critical dynamics close to the Néel temperature, TN . By taking
advantage of the μeV energy resolution of the spin-echo spectrometer, we have determined the dynamical critical
exponents z for both longitudinal and transverse fluctuations. In MnF2, both the characteristic temperature for
crossover from 3D Heisenberg to 3D Ising behavior and the exponents z in both regimes are consistent with
predictions from the dynamical scaling theory. The amplitude ratio of longitudinal and transverse fluctuations
also agrees with predictions. In Rb2MnF4, the critical dynamics crosses over from the expected 2D Heisenberg
behavior for T � TN to a scaling regime with exponent z = 1.387(4), which has not been predicted by theory
and may indicate the influence of long-range dipolar interactions.
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I. INTRODUCTION

Following the discovery of high-temperature supercon-
ductivity in doped antiferromagnets, the spin dynamics
of both two-dimensional (2D) and three-dimensional (3D)
antiferromagnets have received considerable attention in re-
cent years. Since the spin systems of the parent compounds
of the copper- and iron-based superconductors are nearly
isotropic [1–4], the spin excitations and critical dynamics of
Heisenberg antiferromagnets have been widely studied by in-
elastic neutron scattering [5–8]. The temperature dependence
of the magnetic correlation lengths, ξ , in the paramagnetic
state generally agrees with scaling relations predicted by the
theory of critical phenomena [9–11], independently of whether
the spins are in the classical or quantum limit. Because of the
limited energy resolution of neutron triple-axis spectrometry
(TAS), however, much less information is available on the
energy widths, �, of the spin excitations in the paramagnetic
state and their dynamical scaling behavior, � ∼ ξ−z, with the
dynamical critical exponent z.

In RbMnF3, one of the best experimental realizations of
the three-dimensional Heisenberg antiferromagnet (3DHA),
the dynamical critical exponent is in good agreement with
the dynamical scaling theory which predicts z = 1.5 [12]. In
MnF2, where dipolar spin-spin interactions induce a small
uniaxial anisotropy, the measured static exponents β, ν, and
γ follow 3D Ising behavior, as expected close to the Néel
temperature TN , but the dynamic exponent z is close to the
value 1.5 predicted for the 3DHA [13,14]. This origin of this
discrepancy has not yet been conclusively resolved, but it it is
probably caused by the limited energy resolution of neutron

*To whom correspondence should be addressed:
b.keimer@fkf.mpg.de

three-axis spectroscopy (TAS) [14], which precludes inelastic
scattering measurements sufficiently close to TN .

The undoped parent compounds of the cuprate supercon-
ductors, such as La2CuO4, are excellent models for the two-
dimensional Heisenberg antiferromagnet (2DHA) with S = 1

2 .
The temperature-dependent correlation length measured by
neutron scattering is well described by theoretical work on
the 2DHA, not only for S = 1

2 compounds (Refs. [1–4]),
but also for related compounds with S = 1 (Refs. [5,6]) and
S = 5

2 (Refs. [7,8]). Measurements on the spin dynamics
in the paramagnetic state of S = 1

2 systems are in good
agreement with the exponent z = 1 predicted for the 2DHA
[4]. For the quasi-2D S = 5

2 compound Rb2MnF4, on the
other hand, the uniaxial spin-space anisotropy is expected to
generate a crossover from Heisenberg to Ising behavior upon
cooling towards TN , which precludes experimental tests of the
dynamical scaling by TAS, as in the case of MnF2. Neutron
scattering data in a magnetic field H close to the bicritical point
in the H-T phase diagram, where the anisotropy is expected
to become irrelevant, yielded a value of z = 1.35 ± 0.02,
clearly different from the theoretically predicted z = 1 [15].
The origin of this unexpected exponent has thus far remained
unresolved.

Motivated by these open questions, we have reinvestigated
the critical dynamics of the model compounds MnF2 and
Rb2MnF4 by means of the neutron spin-echo (NSE) triple-axis
spectroscopy technique with energy resolution in the μeV
range. A related technique was first used by Mezei to study the
critical dynamics of polycrystalline iron [16,17] and later opti-
mized for the measurement of linewidths of quasielastic excita-
tions at small momentum transfer Q [18]. For the present study
at larger Q, we took advantage of a modified type of NSE based
on radio-frequency spin flippers incorporated in a TAS spec-
trometer (termed neutron-resonant spin-echo, NRSE) [19,20].
In this setup, the TAS provides good momentum resolution
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and helps suppress the background, but offers a comparatively
coarse energy resolution, while the spin-echo device enhances
the energy resolution by about two orders of magnitude. The
neutron spin-flip processes related to the scattering by spin
excitations lead to complicated spin-echo signals. To describe
these effects, we introduce an analysis technique based on a
ray-tracing simulation of the spectrometer. In this way, we
are able to discriminate between longitudinal and transverse
fluctuations at positions in Q space where both fluctuation
components contribute to the scattering cross section. Since it
has thus far proven difficult to find a scattering vector Q where
only one of these components has a nonzero cross section, this
is an additional distinct advantage of the NRSE-TAS setup.

II. EXPERIMENTAL DETAILS

MnF2 and Rb2MnF4 are weakly anisotropic Heisenberg
antiferromagnets with 3D and 2D spin systems, respectively
(Fig. 1). Both compounds form body-centered tetragonal
crystal lattices. MnF2 crystallizes in the rutile structure
(a = 4.874 Å, c = 3.300 Å), Rb2MnF4 in the K2NiF4 struc-
ture (a = 4.230 Å, c = 13.82 Å) [21,22]. The dominant
magnetic interaction is the antiferromagnetic superexchange
coupling between the S = 5

2 spins of the Mn2+ ions, between
the eight next-nearest neighbors in MnF2, and between the
four nearest neighbors in the ab plane in Rb2MnF4. A small
anisotropy arising from dipolar interactions causes uniaxial
spin alignment along the c axis in both compounds below the
respective Néel temperatures [21,22]. Large single crystals of
MnF2 (Rb2MnF4) with a volume of 10 cm3 (3 cm3) and mosaic
spread of 0.44′ (0.99′) FWHM were available from a previous
experiment [23]. The mosaic spreads were measured by γ

diffractometry at the (200) reflections at room temperature.
Elastic magnetic neutron scattering measurements of the
antiferromagnetic order parameters of these samples (Fig. 2)
yielded TN = 67.3 K (MnF2) and 38.4 K (Rb2MnF4), in
agreement with prior work [7,8,14,15,24].

The experiments were conducted at the NRSE-TAS spec-
trometer TRISP [27] at the Maier-Leibnitz-Zentrum (MLZ) in

FIG. 1. Chemical (top) and magnetic (bottom) structures of
(a) MnF2 and (b) Rb2MnF4. In the ordered state, the spins in both
compounds are aligned along the tetragonal c axis.

FIG. 2. Antiferromagnetic order parameters. (a) Intensity of the
antiferromagnetic Bragg peak (300) in MnF2 as a function of
temperature. The maximum slope defines the Néel temperature TN .
(b) Left axis: Intensity of the (0.5 0.5 0) magnetic Bragg reflection of
Rb2MnF4. The sharp peak results from critical scattering and defines
TN . Right axis: Calculated inverse correlation length, ξ−1(T ), for
the 2D S = 5

2 Heisenberg model with Ising anisotropy distortion
according to Refs. [25,26].

Garching, Germany (Fig. 3). The crystals were mounted in a
closed-cycle cryostat in exchange gas in the (H0L) (MnF2)
and (HK0) (Rb2MnF4) scattering planes. The temperature
was stable within 1 mK. Data were collected during several
beam times with slightly varying crystal mounts. Consistent
thermometry between these runs was ensured by measuring
the intensities of magnetic Bragg reflections at the beginning
of each run. TN is given by the maximum slope of the
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FIG. 3. Schematic view of the TRISP spectrometer. M and A are
the monochromator and analyzer, S is the sample and D the detector;
VS is a velocity selector acting as a higher order filter. The precession
devices (PDs) are defined by pairs of radio-frequency coils (C1-C2)
and (C3-C4) or by DC coils (DC1, DC2). To avoid spurious spin
precession, mu-metal boxes and tubes (MS) enclosing the coils and
the sample reduce external magnetic fields along the beam path to
<5 mG. Inset: Spin-echo raw data, detector counts vs position TC4
of the coil C4 or vs difference in DC currents �I = I2 − I1.
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magnetic intensity, which varies by ±0.07 K between the
individual experiments. We defined TN as the mean of all
runs and adjusted the temperature scales by adding an offset
such that the positions of maximum slope coincide. TRISP
was operated with a graphite (002) monochromator and a
Heusler (111) analyzer, with open collimation and scattering
senses SM = −1, SS = −1, SA = 1 at the monochromator,
sample, and analyzer, respectively (−1 is clockwise). The data
were collected at reciprocal lattice points corresponding to
pure antiferromagnetic Bragg reflections. For the experiment
on MnF2 at Q = (300), we used an incident wave number

ki = 2.35 Å
−1

with a TAS energy resolution V = 0.8 meV
(vanadium width, full width at half maximum, FWHM).

For Rb2MnF4, ki was set to 2.5 Å
−1

with V = 1.1 meV at
Q = (0.5 0.5 0).

In the following we highlight some features of the spin-echo
technique that are relevant for the subsequent data analysis,
and then discuss how spin-flip scattering affects the spin-echo
signal and how we can discriminate between longitudinal and
transverse fluctuations. The key components of a spin-echo
spectrometer are two precession devices (PDs) bracketing the
sample, either formed by uniform DC fields B0 (NSE) [28] or
by pairs of radio-frequency (RF) spin-flip coils (NRSE) [19],
where each RF coil incorporates both a RF field B1 ∝ cos(ωLt)
and a DC field B0. Inside these two PDs the neutron spins
undergo Larmor precession with frequency ωL = γB0, with
γ = 2.916 kHz/Oe. The phase φSE vs frequency or current
generated in the PDs was measured before the experiments and
enters the fitting procedure as a known and fixed parameter.
In the case of non-spin-flip scattering, the fields B0 of the two
PDs are chosen to be opposite in sign, and the net precession
angle �φSE at the exit of the second region is a measure of the
energy transfer �ω, with �φSE = ω×τ . τ = m2ωLL/(�2k3

i ) is
the spin-echo time; m is the neutron mass.

The polarization of the scattered beam is defined as P =
〈cos(�φSE)〉. In the case of non-spin-flip scattering,

P (τ ) = P0(τ )
∫

S( Q,ω)R( Q,ω) cos(ωτ )dω, (1)

where S is the dynamic structure factor, and R is the Gaussian
TAS resolution function. P0 is the spin-echo resolution
function, including instrumental effects resulting from the
beam divergence and from small field inhomogeneities of the
PDs [29]. S( Q,ω) is usually Lorentzian in ω with a half-width
at half maximum �. In high-resolution spin-echo experiments,
� is usually much smaller than the energy width V of
R( Q,ω). In this case, the polarization is a simple exponential
P = exp(−�τ ). At TRISP (Fig. 3), the RF coils can only be
operated in a range τmin � τ � 20×τmin with τmin = 4.09 ps

at ki = 2.51 Å
−1

. For the present study, it was necessary to
extend the τ range to zero by using small DC coils as PDs,
which cover 0 � τ � 1.8×τmin such that a good overlap with
the RF coils is given.

The polarization P (τ ) is determined by detuning the
precession phase of the second PD by a small amount �φoff.
The count rate I (�φoff) varies sinusoidally with an amplitude
∝ P :

I (τ,�φoff) = I0[1 + P (τ ) cos(�φoff)], (2)

φi

My

Mz

sisf y

sf z

φf z

φf y

x Q||

y

FIG. 4. Spin-flip processes at the sample. The spins si of the
incident beam are spread within the horizontal xy plane, where x ‖ Q,
z is vertical. Only magnetic fluctuations My,Mz ⊥ Q contribute to
the scattering cross section. The spin of the incident neutron si with
Larmor phase φi is flipped to sfy or sf z by My or Mz, respectively.
The corresponding phases are φfy = π − φi and φf z = π + φi .

where I0 is the mean intensity corresponding to P = 0. In
the operation mode using the RF coils, coil C4 is scanned
along the beam direction, such that the widths of the two
PDs differ by TC4 (Fig. 3). The phase offset is �φoff(TC4) =
2πTC4/�TC4, with the period �TC4 = 2π×�kf /(mωL).
In the low-resolution mode using the DC coils, the phase
offset is �φoff(I2) = 2π (I2 − I1)/�I2, and the period is

�I2 = kf /Ccoil with Ccoil = 49.9 Å
−1

A−1 for the coils used
at TRISP.

We now discuss the distribution of neutron spins at the
sample, the spin-flip processes, and the influence of spin-flip
scattering on the spin-echo signal. Figure 4 shows the geometry
of the neutron spin-flip processes arising from the magnetic
fluctuations in the sample. At TRISP, the magnetic fields B0

of the precession devices are vertical (z direction), and the
neutron spins s precess in the horizontal xy plane, also referred
to as the precession plane. In the first PD, the neutron spins of
an initially polarized beam accumulate a Larmor phase φi =
mωLL/(�ki), m is the neutron mass. The phase varies due to
the variation �ki of the incident neutron wave number, so that
�φi = �ki/ki×φi . The width of the Gaussian ki distribution

is �ki/ki = 0.02 for ki = 2.51 Å
−1

. The incident beam is
fully depolarized at the sample for �φi > 2π , which happens
for �φ > 3×102 or τ > 10 ps. This is in contrast to the usual
1D polarization analysis technique [30], where at the sample
all neutron spins are aligned in the same direction, parallel (or
antiparallel) to a guide field.

The relation between the coordinates xyz and the longitu-
dinal and transverse spin fluctuations M‖ and M⊥ is shown in
Fig. 5. si undergoes a π flip around the respective component
of M, such that Mz flips si to sf z with φf z = φi + π [30]. My

flips si to sfy with φfy = −φi + π and thus inverts the sign of
φi . This is an effective sign inversion of the field B0 in the first
PD. The echo condition is fulfilled; that is, the Larmor phase
of the first PD is inverted in the second one, if the fields B0 of
the two PDs are antiparallel for Mz and parallel for My . The
neutron spins scattered by the component of M not fulfilling
the echo conditions effectively precess with the same sign in
both PDs. They are depolarized if their phase is spread by
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FIG. 5. Spin fluctuations parallel and perpendicular to the sublat-
tice magnetization Ms are referred to as longitudinal (labeled ‖) and
transverse (labeled ⊥). In both MnF2 and Rb2MnF4, Ms is parallel
to the tetragonal c axis. (a) In MnF2, the ac plane was aligned in the
scattering plane; thus the longitudinal fluctuations M‖ are along y,
and the transverse fluctuations M⊥ along z. (b) Rb2MnF4 was aligned
in the ab plane with M‖ along z and M⊥ along y.

more than 2π at the exit of the second region. Following the
previous argument about depolarization of the neutron beam
at the sample, this happens for τ > 5 ps.

III. DATA ANALYSIS

Figure 6 shows typical data P (τ ) for MnF2 at the pure an-
tiferromagnetic Bragg point Q = (300). A prominent feature
of the data is the fast oscillation of the polarization, which
is displayed as the red area in panel (a) and resolved in the
zoomed version in panel (b). These oscillations result from the
τ -dependent phase φf z − φfy = 2φi(τ ) between sf z and sfy

(Fig. 4), with φi[rad] = 3.15×τ [ps]×(ki[ Å
−1

])2. For positive
τ (parallel B0 configuration), only the spins sfy obey the
echo condition, whereas the spins sf z are depolarized with
increasing τ , such that the oscillation amplitude decreases. For
negative τ (antiparallel B0) sf z fulfill the echo condition and
the remaining polarization of sfy generates the oscillations. At
large τ beyond the oscillation regime, P (τ ) can be modeled
by Eq. (1). Thus the asymmetry in the decay between τ > 0
and τ < 0 indicates �‖ 
 �⊥, both for T = 69 K and T =
67.75 K. The smaller oscillation amplitude at T = 67.75 K
arises from a larger relative intensity of the neutrons scattered
by the longitudinal fluctuations M‖.

To devise an analytic model describing the entire data
set independently of approximations, we implemented a
numerical calculation of P (τ ) based on a ray-tracing model,
which traces the spin of individual neutrons in the PDs and
in the scattering process. We first assume S( Q,ω) to be
independent of Q within the small momentum range defined
by the TAS resolution ellipsoid. The small effect of the
finite-momentum resolution is discussed below. The energy
dependence is modeled as Lorentzian:

S(ω) = A�‖
�2

‖ + ω2
+ (1 − A)�⊥

�2
⊥ + ω2

, (3)

where A and (1 − A) are proportional to the integrated inten-
sities scattered by the longitudinal and transverse fluctuations,
respectively. We also tested a second model of S(ω) allowing

FIG. 6. Sample echo data of critical scattering in MnF2 and fit
with the model described in the text at Q = (300) at (a) T = 69 K and
(c) T = 67.75 K, where TN = 67.3 K. (a) and the zoom (b) show the
fast oscillation of the polarization resulting from the interference of
scattering by My and Mz. A positive (negative) sign of τ corresponds
to parallel (antiparallel) B0. The lines P‖ and P⊥ show the contribution
of the longitudinal and transverse fluctuations to the polarization,
where the peaks of these curves are proportional to the integrated
intensities.

for two split Lorentzian modes �±
⊥ for T < TN similar to the

observations in the 3DHA RbMnF3 [12], but we obtained no
improvement of the fit quality. All our data are consistent with
the model in Eq. (3). Further we assume a Gaussian distribution
of ki . The resolution function of the TAS, R(ω), is modeled as
a Gaussian, and the width is taken as the vanadium width V

determined experimentally. The parameters assigned to each
neutron are ki , a 3D polarization vector, and a probability
p to find a neutron in this state. In contrast to the usual
ray-tracing packages, the choices of ki , the scattering process
(‖ or ⊥ fluctuations), and the energy transfer ω are not based
on random numbers, but on equally spaced grids. This avoids
the statistical noise introduced by random numbers, which
disturbs the minimization algorithm of the fitting routine [31].
The energy transfers ω‖,⊥ are taken in a band ±10�‖,⊥ with
about 200 points to avoid cutting of the Lorentzian wings.
The polarization P (τ,�φoff,ki,A,�‖,�⊥) calculated within
this model is in excellent agreement with our entire data set
(Fig. 6).

We now discuss the effect of the finite-momentum reso-
lution defined by the TAS resolution ellipsoid R( Q,ω). The
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data of the present experiments were taken at magnetic Bragg
reflections G, where q = G − Q and S(q,ω) vary within the
region defined by R. To estimate the effect on the linewidth
measured by spin-echo, we calculated the polarization from
Eq. (1), where the R( Q,ω) was calculated with matrix
elements corresponding to the spectrometer configurations
[32]. S(q,ω) was taken from Refs. [14,15]. The resulting
additional broadening of the linewidth is roughly independent
of temperature for T � TN and amounts to about 5 μeV in
MnF2 and 0.8 μeV in Rb2MnF4. The reason for the larger
value in MnF2 is the relaxed vertical resolution Qz, which has
no effect in the 2D spin system of Rb2MnF4.

IV. RESULTS AND DISCUSSION

A. MnF2

Figure 7 shows the longitudinal (�‖) and transverse (�⊥)
linewidths at Q = (300) extracted with the aforementioned
model. Only the longitudinal fluctuations show critical behav-
ior around TN while the transverse ones evolve continuously,
as expected based on the spin anisotropy and the uniaxial
order parameter [14]. TN = 67.29 K was determined from the

FIG. 7. Temperature dependence of �‖,⊥ in MnF2 at Q = (300).
(a) �‖ shows a crossover from 3D Ising to 3D Heisenberg critical
scaling, where the gray band indicates the crossover region centered
at Tx . R = 5 μeV is the broadening due to the finite-momentum
resolution. (b) �⊥ and data from early TAS experiments [14,24]. The
green dotted line shows the calculated �⊥ [33]. (c) Ratio of integrated
intensities I⊥/I‖. Close to TN , I‖ is much stronger. For T > Tx in the
3DHA region, I⊥/I‖ is growing within the experimental temperature
range and approaches unity for T � TN .

maximum slope of the intensity of the magnetic (300) Bragg
reflection (Fig. 2), and is in agreement with the literature
values [34]. The measured linewidth �‖(T = TN ) = 5 μeV
is larger than the intrinsic spectrometer resolution (<1 μeV)
and agrees with the value calculated above by taking the finite
Q resolution into account. According to the dynamical scaling
prediction [10], �‖ follows a power law

�‖(T ) = A‖t zν ∝ κz
‖ , (4)

where A‖ is a normalized amplitude, t = T/TN − 1 is the re-
duced temperature, and κ = ξ−1 ∝ tν is the inverse correlation
length.

The �‖(T ) data in Fig. 7(a) clearly deviate from a single
power law in the shaded region around T = 69 K. We thus
performed separate fits to the regions below and above 69 K.
The blue dotted line fits the data in the range TN < T <

1.01TN , with zν = 1.25(2). With the exponent ν3DIA = 0.6301
predicted for 3D Ising antiferromagnet (3DIA) scaling [35],
we obtain z = 1.98(3), which matches the z3DIA = 2 expected
for this universality class within the experimental error [11].
3DHA scaling in this temperature range can be excluded:
dividing zν by ν3DHA = 0.7112 predicted for the 3DHA [36]
results in z = 1.77, inconsistent with z3DHA = 1.5 predicted
for the 3DHA [11]. For T > 1.04TN , the red dotted curve
corresponds to an exponent zν = 1.02(3). Dividing by ν3DHA

gives z = 1.43(5), close to 3DHA scaling, whereas the z =
1.62(4) obtained with ν3DIA is inconsistent with the theoretical
z3DIA = 2. Thus the data �‖(T ) show a crossover from 3DIA
close to TN to 3DHA scaling for T � TN . The relative
amplitudes A‖3DIA/A‖3DHA = 3.0 resulting from the fits are
in good agreement with the value 3.1 predicted by Riedel and
Wegner [33] who extended the dynamical scaling theory to
anisotropic systems.

For a quantitative description of the crossover region of
�‖(T ) we use the phenomenological expression

�(T ) = [1 − H (T − Tx)]�Ising + H (T − Tx)�Heis, (5)

where H (T − Tx) = 1/2 + 1/2 tanh[γ (T − Tx)] is a slowly
varying function symmetrically centered at a crossover tem-
perature Tx . The transition width γ is defined as the region
0.1 < H < 0.9 describing the crossover temperature range. A
fit of Eq. (5) to our data gives a crossover region 1.01TN < T <

1.04TN with Tx = 69.2(1) K or tx = 0.029(1). Pfeuty et al.
[37] predicted such a crossover for antiferromagnetic 3DIA to
3DHA scaling for tx = α0.8

I , where αI = HA/HE is the ratio
of anisotropy and exchange fields in the spin Hamiltonian.
αI = 0.016 for MnF2 gives tx = 0.036, in good agreement
with our experimental result [38].

Schulhof et al. [14] pointed out that their result for MnF2

favors the value z = 1.5, consistent with 3DHA scaling,
whereas the static exponents ν and γ agree with the 3DIA
model. They argued that the reason for this discrepancy might
be the small range in momentum q where the crossover
is visible in �‖. Riedel and Wegner [33,39] introduced the
parameter κ� = κ‖(tx,q = 0) defining the crossover between
isotropic and anisotropic regions in momentum space, with

κ2
‖ + q2 = κ2

�. They estimate κ� = 0.054 Å
−1

for MnF2, cor-
responding to Tx ≈ TN + 2 K, close to the observation in the
present work. Frey and Schwabl [40] obtained a similar value
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FIG. 8. Spin-echo polarization P vs spin echo time τ [ps] at selected T > TN = 37.6 K measured at Q = (0.5 0.5 0) in Rb2MnF4. The fit
(red line) using the model discussed in the text reproduces the fast oscillations in the region of small τ , displayed as red areas. The components
of the polarization P‖ and P⊥ corresponding to longitudinal and transverse fluctuations are shown in green and gray; the peak values of these
two curves are proportional to the relative intensities I‖,⊥ = I‖,⊥/(I‖ + I⊥). I‖,⊥ are the integrated intensities. The inset of (c) shows a zoom to
the T = 43 K data.

of κ� = 0.06 Å
−1

in a calculation of the critical dynamics
taking dipolar interactions into account. Since the linewidths
�‖ in this region were too narrow to be resolved by TAS,
the crossover of the dynamical exponent z was missed. For
the strongly anisotropic antiferromagnet FeF2, both tx = 0.45

and κ� = 0.29 Å
−1

are larger, such that the TAS experiment
covered the 3D Ising region close to TN without observing the
crossover to Heisenberg dynamic scaling [41].

The width �⊥ of the transverse fluctuations is shown in
Fig. 7(b) in comparison with TAS data from Refs. [14,24].
We observe a rapid increase of �⊥ between TN and the lower
bound of the crossover region at 1.01TN , where �⊥ saturates
at ∼0.3 meV. Calculations predicted this saturation value,
corresponding to z⊥ = 0 [33,40,42]. But �⊥ is expected to stay
constant in the broad range TN < T < Tx , which contradicts
both our data and the results of the early TAS experiments.
�⊥ increases beyond the crossover region (T > 1.04TN ), as
expected for the 3DHA. The error bars increase at high
temperature, because the wings of the Lorentzian line are
cut by the transmission function R(ω) of the NRSE-TAS
spectrometer (∼0.8 meV FWHM). Thus the data quality
does not allow fitting of a critical exponent and quantitative
confirmation of 3DHA scaling of �⊥ for T � TN .

B. Rb2MnF4

Spin-echo data of critical fluctuations in Rb2MnF4 were
measured at Q = (0.5 0.5 0), a pure magnetic Bragg reflection
in the antiferromagnetically ordered state. The intensity of this
reflection is shown in Fig. 2(b) as a function of temperature.

The sharp peak results from the longitudinal critical scattering
and defines TN = 37.6 K, [43] close to values from the
literature [7,8,15]. Representative spin-echo data are shown in
Fig. 8. Both fluctuation components M‖ and M⊥ contribute to
the scattering cross section. According to Fig. 5(b), M‖ (M⊥)
is perpendicular (parallel) to the scattering plane xy and fulfills
the spin-echo condition for negative (positive) τ corresponding
to antiparallel (parallel) B0. Close to TN , the intensity of the
longitudinal fluctuations dominates, and the transverse ones
have nearly no effect on the signal. �‖ is small, so that for τ < 0
(where the M‖ scattering fulfills the spin-echo condition) the
polarization decays slowly. Upon heating [Figs. 8(b)–8(e)] the
intensity ratio I⊥/I‖ approaches unity, as expected for isotropic
spin fluctuations, and �‖ increases rapidly, leading to a faster
decay of P (τ < 0). �⊥ is rather large at TN and evolves more
smoothly upon heating, so that P (τ > 0) shows less variation
with temperature.

Figure 9(a) shows the linewidth �‖ of the longitudinal
fluctuations. The broadening of �‖ sets in about 0.6 K below
TN and reaches 4.3 μeV at TN . This value is larger than
the calculated resolution of ∼1.6 μeV, including ∼0.8 μeV
intrinsic resolution and 0.8 μeV broadening from the finite-
momentum resolution. The latter value was calculated assum-
ing 2D correlations in the xy plane, such that the vertical
momentum resolution Qz has no effect. Very close to TN ,
where the fluctuations leading to the 3D order also must reflect
3D correlations, such that the finite Qz resolution should
become relevant. However, this temperature regime is very
narrow, and the resolution correction should be insignificant
in the range of reduced temperatures we are probing [44].
Nonetheless, we note that the observed width at TN is very
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FIG. 9. Linewidth vs T of the critical fluctuations in Rb2MnF4

at Q = (0.5 0.5 0). (a) �‖ shows a crossover in the scaling at Tx =
44.3 K, where above Tx 2DHA is observed. (b) �⊥. (c) Ratio of
integrated intensities I⊥/I‖.

similar to the one in MnF2 at TN , where it most likely arises
from the 3D spin correlations in conjunction with the poor
vertical resolution. It is also similar to the residual linewidth
of magnons at T = 3 K, deep in the Néel state of Rb2MnF4,
which could be attributed to the effect of structural and/or
magnetic domain boundaries [23]. Further work is required to
determine whether the small linewidth at TN arises from an
unidentified resolution effect or from intrinsic properties of
the sample such as residual disorder. In the following analysis,
we subtract this contribution from the temperature-dependent
�‖ data.

�‖ shows a change in slope around 44 K. From the dipolar
anisotropy one expects a crossover from 2DIA scaling for
T ∼ TN to 2DHA behavior for T � TN . Such a crossover was
observed [7] for the correlation length ξ‖ close to Tx = 1.2TN .
This value of Tx was calculated for an anisotropy parameter
αI = 0.0047 extracted from the spin-wave dynamics [45–47].
Fitting the power law �‖(t) of Eq. (4) in the range TN < T <

1.16TN gives an exponent zν = 1.387(4). This value depends
only weakly on the choice of the fitting range; removing
two data points at the upper or lower boundary changes the
result within the error bar. Using the exponent ν2DIA = 1
predicted for 2DIA scaling [48], we obtain z = 1.387(4),
clearly different from the z2DIA = 1.75 predicted for the 2D
Ising model [49]. Other simple models, such as the 3DIA,
also do not fit. With ν3DIA = 0.6301, we obtain z = 2.201(6),

different from the predicted z3DIA = 2. This means that our
linewidth data close to TN are not consistent with the 2DIA
behavior observed for the correlation length ξ‖ [7]. Such a
deviation from 2DIA scaling was also observed for the static
exponent β for T < TN [44].

A possible reason for the unexpected scaling of �‖ is the
the dipolar interaction, which is the major contributor to the
magnon gap in the antiferromagnetically ordered state and can
affect the universality class by virtue of its long spatial range.
Based on theoretical considerations, Refs. [40,50] argued that
the long-range nature of the dipolar forces should have no
effect on the correlation length in antiferromagnets, but that
the critical dynamics are modified by additional damping
processes, especially in the limit of small q and close to
TN . In 3D antiferromagnets such as MnF2, the critical regime
in which the long-range character of the dipolar interaction
significantly affects the critical scaling is expected to be small
[51]. Indeed, our investigation of MnF2 did not uncover any
evidence of such an effect. For the 2D case, a stronger influence
of the long range character is expected [40], but to the best of
our knowledge a calculation of the critical dynamics of 2D
antiferromagnets with dipolar interactions has not yet been
reported. It is interesting to note that the critical exponent in
a magnetic field H close to the bicritical point in the H-T
phase diagram of Rb2MnF4, z = 1.35 ± 0.02 [15], is identical
to ours within the experimental error. This suggests that the
magnetic field does not close the damping channels actuated
by the dipolar interaction.

For T � TN the impact of the anisotropy decreases, and
the fluctuations are expected to follow the 2DHA model which
exhibits magnetic long-range order only for T → 0 [52]. The
correlation length ξ2DHA for the pure S = 5

2 2DHA has been
calculated by Cuccoli et al. [25,26] and the influence of the
small spin-space anisotropy can be described by the mean-field
expression ξeff [1]:

ξeff(αI ,T ) = ξ2DHA√
1 − αI ξ

2
2DHA(T )

. (6)

The effective correlation length ξ−1
eff is plotted in the inset of

Fig. 2(b). Fitting the expression �‖(t) = A‖×ξ
−z‖
eff (t) to the

data �‖ at T > 1.20TN gives z‖ = 0.96(4), in agreement with
the prediction z = 1 for the 2DHA [11]. This result also agrees
with a numerical simulation of �‖ by Wysin and Bishop [53],
also shown in Fig. 8(a), and with experimental results on a
2DHA model compound with S = 1

2 [4]. Finally we analyzed
the entire data set �‖(T > TN ) with the crossover function
in Eq. (5). The resulting Tx = 44.3(4) (tx = 0.179) is slightly
smaller than the predicted value, and the width of the crossover
region is 1.7 K.

The linewidth �⊥ of the transverse fluctuations is plotted
in Fig. 9(b). �⊥ is nonzero at TN , forms a plateau with z⊥ ∼ 0
between TN and Tx , and grows continuously for T > Tx . In
the 2DHA regime observed for �‖(T > Tx), it is expected that
�⊥(t) = �‖(t) [39]. It was pointed out that the effective Néel
temperatures for the longitudinal and transverse fluctuations
T‖ and T⊥ are different [54], such that t = T/T‖,⊥ − 1. TN

relevant for the magnetic ordering is the larger T‖. We then fit
�⊥ = A⊥×ξ

−z⊥
eff to the data �⊥(T > Tx) assuming A⊥ = A‖,
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FIG. 10. Scaling plot of the linewidth of longitudinal spin
fluctuations in MnF2 and Rb2MnF4. The residual linewidth at TN

was subtracted from the data.

where the latter is known from the scaling of �‖. This fit gives
T⊥ = 33.3(14) and z⊥ = 0.97(15) as expected for the 2DHA.
This result is also supported by the intensity ratio I⊥/I‖ shown
in Fig. 9(c), which approaches 1 above Tx as expected for the
identical behavior of M‖ and M⊥ in the 2DHA.

V. CONCLUSIONS

Figure 10 summarizes the salient results of our study
of the dynamical critical behavior of two canonical weakly
anisotropic S = 5

2 antiferromagnets with 3D and 2D spin
coupling, respectively. Both compounds show a crossover
in the scaling behavior resulting from the small uniaxial
anisotropy induced by dipolar interactions. The dynamic
critical exponent in MnF2 changes from z‖ = 1.43(5) at
high T , consistent with 3D Heisenberg scaling, to z‖ =
1.98(3) corresponding to a 3D Ising model close to TN .
This crossover occurs around Tx = 1.03TN , consistent with

predictions in the literature [33,37]. The previous contradictory
experimental results for the longitudinal fluctuations, with z‖
ranging from 1.6 to 2.3, are mainly due to the insufficient
energy resolution of conventional triple-axis spectroscopy.
The transverse linewidths �⊥ are consistent with the predicted
value z⊥ = 0 around Tx , but �⊥ decreases significantly upon
cooling towards TN . This behavior was also observed in earlier
TAS experiments.

The dynamical critical exponent z‖ measured in Rb2MnF4

changes around the crossover temperature Tx = 1.18TN from
z‖ = 0.96(4) for T > Tx , corresponding to the expected 2D
Heisenberg scaling, to z‖ = 1.387(4) for TN < T < Tx . The
latter value does not correspond to the expected z = 1.75
for the 2D Ising model. This scaling behavior probably
results from the long-range nature of the dipolar forces,
which influence the dynamic scaling in antiferromagnets
by opening additional damping channels, while the static
exponents remain unaffected. The transverse fluctuations show
constant linewidths (z⊥ = 0) close to TN and are equal to the
longitudinal fluctuations for T � TN , where they show 2D
Heisenberg scaling with z⊥ = 0.97(15).

The high-resolution three-axis spin-echo technique has thus
provided detailed insight into the critical dynamics of antifer-
romagnets and helped resolve previous contradictory results.
Our approach can straightforwardly be applied to a large
class of questions on spin fluctuations and spin excitations,
especially if a broad dynamic range with linewidths <1 μeV
up to a few hundred μeV has to be covered.
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