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4ICREA - Institució Catalana de Recerca i Estudis Avancats, Lluis Companys 23, 08010 Barcelona, Spain
5Department of Mathematics, University of Arizona, Tucson, Arizona 85721-0089, USA

(Received 23 September 2015; revised manuscript received 13 June 2016; published 18 July 2016)

We investigate the effect of a unidirectional quenched random field on the anisotropic quantum spin-1/2 XY

model, which magnetizes spontaneously in the absence of the random field. We adopt a mean-field approach for
this analysis. In general, the models considered have Ising symmetry, and as such they exhibit ferromagnetic
order in two and three dimensions in the presence of not too large disorder. Even in the special case when the
model without disorder has U(1) symmetry, a small U(1)-symmetry-breaking random field induces ferromagnetic
long-range order in two dimensions. The mean-field approach, consequently, provides a rather good qualitative and
even quantitative description when applied not too close to the criticality. We show that spontaneous magnetization
persists even in the presence of the random field, but the magnitude of magnetization gets suppressed due to
disorder, and the system magnetizes in the directions parallel and transverse to the random field. Our results are
obtained via analytical calculations within a perturbative framework and by numerical simulations. Interestingly,
we show that it is possible to enhance a component of magnetization in the presence of the disorder field provided
that we apply an additional constant field in the XY plane. Moreover, we derive generalized expressions for the
critical temperature and the scalings of the magnetization near the critical point for the XY spin system with
arbitrary fixed quantum spin angular momentum.

DOI: 10.1103/PhysRevB.94.014421

I. INTRODUCTION

Disorder is ubiquitous in solid-state materials. The effects
of disorder are often nonintuitive, and hence they have
generated a lot of attention in condensed-matter physics [1–5].
Disorder can currently also be engineered in a controlled way
via ultracold atoms trapped in optical lattices subjected to
an additional, e.g., optical speckle potential [4,5]. Disordered
systems are often endowed with nontrivial properties, dramat-
ically different from those of their homogeneous counterparts.
The novel quantum phases [6,7] and unique phenomena,
such as Anderson localization [8], dynamical many-body
localization [9], the presence/absence of thermalization [10],
and high-Tc superconductivity [11], are some of the prominent
examples. Quenched disorder in type II superconductors has
been investigated using Ginzburg-Landau theory to uncover
“glassy” properties in the system [12]. In particular, consider-
able efforts have been dedicated to understanding the effects of
disorder in spin models, both classical and quantum [13–17].

In classical systems with continuous symmetry, it has
been shown that a random field with the symmetry of the
system may cause significant changes in its properties [18,19].
A small random magnetic field of this kind can destroy
magnetization in a classical spin system at any temperature,
including zero temperature. For example, two-dimensional
XY and Heisenberg models do not magnetize in the presence of
random fields with SO(2) and SO(3) symmetries, respectively
[14,18] (see also [19] for the analogous effect in systems with
discrete symmetry). The effect prevails in higher dimensions as
long as the random field exhibits the corresponding symmetry
[14]. However, in the absence of appropriate symmetry, these
systems exhibit spontaneous magnetization [15,16]. Interest-

ingly, Ref. [15] demonstrated a counterintuitive phenomenon,
namely random-field-induced order, where disorder favors
ordering in certain spin models that magnetize at a higher
temperature in the presence of an arbitrarily small symmetry-
breaking random field in comparison to the disorder-free
systems. Disorder-induced ordering has also been reported
in several other contexts [20].

Despite the difficulty in dealing with spontaneous mag-
netization and other system characteristics in quantum disor-
dered systems, many important results have been obtained.
A quantum Hall nematic phase has been predicted in a
zero-temperature two-dimensional electron system that is
unstable to weak disorder [21,22]. Collective properties of
magnetic impurities on a topological surface were studied
both theoretically [23] and experimentally [24]. Experimental
and theoretical investigations in solid-state systems have
revealed that alloy disorder can reduce the Curie temperature
in the system [25]. Arbitrarily weak interparticle interactions
were shown to destabilize the surface states of topological
superconductors in the presence of nonmagnetic disorder [26].
The critical behavior and effective exponents in ferromagnetic
quantum phase transitions of disordered systems were derived
in Ref. [27].

Recently, a mean-field classical spin model with SO(n)
symmetry was considered, and its spontaneous magnetization
was investigated in the presence of unidirectional random
fields [16]. The natural question is how a symmetry-breaking
random field affects these systems in the quantum limit. As
already mentioned, this question is particularly relevant as the
disordered quantum spin models are currently accessible to the
experimental community [4]. If we restrict ourselves to the XY
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model with a random field, and to one dimension, then such a
quantum system of a moderately large size can be investigated
using the Jordan-Wigner technique [28]. However, higher
dimensional quantum spin models remain intractable due to the
lack of analytical and numerical techniques, even for ordered
systems. We work within the mean-field (MF) approximation,
which is often effective in capturing the system’s properties
qualitatively. Numerical schemes such as exact diagonalization
are usually inefficient for even moderately large systems due
to the exponential growth of the dimension of the system’s
Hilbert space. Metastability effects and slow relaxation rates,
usually present in disordered systems, make other numerical
simulation techniques such as the density-matrix renormal-
ization group and the Monte Carlo approach difficult to apply,
particularly in higher-dimensional lattice systems with higher-
dimensional spins [29]. The mean-field approach essentially
liberates one from these immediate challenges, allowing for
a detailed analysis that enables us to answer some of the key
questions. Of course, the price to pay is that the mean-field
approach is not expected to describe the details of the critical
behavior precisely, except in high dimensions.

Before turning to the main body of the paper, let us explain
why the use of mean-field theory is interesting in the context
of the problem considered in this paper. It may be expected
that the interplay of short-range interactions and random fields
leads to situations in which mean-field approaches fail. For
instance, Ising ferromagnetism turns out to be unstable to
infinitesimal random fields in dimensions lower than 2. Strictly
speaking, mean-field theory is exact in infinite dimension or
in systems of infinite connectivity (an infinite number of next
neighbors).

Let us mention here that the mean-field approximation
should be understood as a variational method in which
minimization of energy of a lattice system corresponding to
the ground state at zero temperature is assumed to have a
product form for each lattice site, and the minimization of the
free energy corresponding to the density matrix at nonzero
temperature also has a form of a product over the sites. Such
a mean-field treatment works well whenever ferromagnetic
order is present far from quantum criticality, e.g., Ising systems
without disorder in lattice dimension d � 2, and XY as well
as Heisenberg systems in d � 3 at temperature T > 0. For
d � 4, the mean field starts to work well even at quantum
criticality.

We consider here anisotropic XY systems with Ising
symmetry. In the absence of disorder, the system orders
for d � 2, whereas it exhibits Kosterlitz-Thouless-Berezinskii
transitions in the special isotropic U(1) symmetric case in two
dimensions. In the presence of the parallel [U(1) symmetry
breaking] random field, the system orders ferromagnetically
even in two dimensions (as proven in Refs. [15,34]). For this
reason, far from quantum criticality, the mean field provides
a quantitatively reasonable approximation that allows us to
estimate very well the critical temperature and the value of
the order parameters in two, three, and higher dimensions. On
the contrary, mean-field results do not work in one dimension,
where there is no long-range order.

This work considers a quantum spin-1/2 XY model with
anisotropic interaction in the presence of a unidirectional
quenched random field. The purely isotropic case, i.e., the

quantum XY model with vanishing anisotropy parameter and
vanishing disorder, exhibits a spontaneous magnetization that
has circular symmetry. The continuous symmetry is broken due
to the presence of anisotropy even for the pure system. The
pure spin-1/2 XY system magnetizes below a certain critical
temperature. This system still magnetizes when a random field
is introduced at a critical temperature that is higher than in the
system without disorder. We show by means of numerical as
well as perturbative analysis that the system now magnetizes
in specific directions, which is either along the parallel or
the perpendicular directions to the random field. The critical
temperature in both cases decreases with the increase in the
random field strength. We find that the critical temperature
corresponding to the transverse and the parallel directions
shows opposite behavior with respect to the anisotropy in
the system. Specifically, with the increase of anisotropy, the
critical temperature corresponding to the transverse magne-
tization increases, while the opposite happens for parallel
magnetization. It is important to mention that for a vanishing
anisotropy parameter, the continuous symmetry of the pure
XY system is broken by the introduction of an arbitrarily
small random field. We also present general expressions of
the scalings of critical temperature of magnetization for the
quantum XY spin systems with arbitrary half-integer and
integer spins.

In addition, adding a constant magnetic field along with the
random field, we find that the component of the magnetization
perpendicular to the random field gets enhanced due to the
disorder, which has also been reported for several other models
[17,20,30,31].

The rest of the paper is arranged as follows. In Sec. II, we
introduce the spin-1/2 quantum XY model in the presence of
a random field, and subsequently we derive critical scaling of
the magnetization via a perturbative approach. We also discuss
numerical results obtained within the MF approximation. In
Sec. III, we demonstrate, both numerically and analytically,
the disorder-induced enhancement under the influence of an
additional constant field. In Sec. IV, we derive the generalized
expressions for the case of arbitrary integer and half-integer
spins. Finally, we conclude in Sec. V.

II. QUANTUM SPIN-1/2 XY MODEL IN A RANDOM FIELD

We consider the quantum spin-1/2 XY model in a random
field. Our aim is to study the effect of the random field on
the magnetization as a function of temperature, and to find the
scaling of the magnetization around the critical temperature.
In the following subsection, we introduce the system and the
mean-field approximation.

A. The system and its mean-field treatment

The Hamiltonian of the ferromagnetic quantum XY model
is given by

HXY = Hint + Hext, (1)

where

Hint = −
N∑

|i−j |=1

[
Jxσ

x
i σ x

j + Jyσ
y

i σ
y

j

]
. (2)
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The coupling constants, Jα , are assumed to be positive. They
can be further expressed in terms of an anisotropy parameter,
γ , as Jx = J (1 + γ ) and Jy = J (1 − γ ). In the following
discussion, we assume γ � 0, unless stated otherwise. The
indices i and j denote the sites of an arbitrary d-dimensional
lattice, and σα

i , α = x,y are the Pauli matrices on the ith
site. The part of the Hamiltonian in Eq. (1) due to an
inhomogeneous magnetic field, Hext, equals

Hext = −ε
∑

i

�hi · �σi, (3)

where ε (>0), a dimensionless parameter that quantifies the
strength of the randomness, is typically chosen to be small. The
unidirectional random field, �hi , is chosen to be �hi = ηi · êy ,
where ηi are independent and identically distributed quenched
Gaussian random variables with zero mean and unit variance,
and êy is the unit vector in the y direction. Within the mean-
field limit, as we show below, the pure systems governed by
the Hamiltonian Hint magnetize even in low dimensions. This
does not contradict the Mermin-Wagner-Hohenberg theorem
[32], which predicts no spontaneous magnetization in one
and two dimensions, at γ = 0, since the predictions made
by the mean-field approximation only become accurate in
higher dimensions [33] where the Mermin-Wagner-Hohenberg
theorem is not valid. Interestingly, it has been shown that a
uniaxial random field may help the system to magnetize even
at two dimensions [15,34]. Note that had the random field, �hi ,
been chosen to be invariant under rotations, the system would
not magnetize at any nonzero temperature in any dimension
d � 4 [14,18,19].

Within the mean-field approximation, each spin is regarded
as reacting to an average field due to all the other spins
in the system. Assuming N to be the total number of
spins in the system, the effective interaction, replacing the
nearest-neighbor interaction in Hint, for large N , equals
approximately Hint = −1/N(

∑
α=x,y

∑N
j ;j �=i νJ ′

ασα
i )σα

j =
−∑

α=x,y νJ ′
αmασα

i , where mα = 1
N

∑N
j=1 σα

j . J ′ is the
coupling constant and ν is the coordination number, which
depends on the geometry of the lattice. Note that the mean-field
approximation provides close to the exact description for
large dimensional lattice systems [35]. Within the mean-field
approximation, the Hamiltonian, HXY , is given by

H = −J (1 + γ )mxσx − J (1 − γ )myσy − ε �η · �σ , (4)

where the operators mα are replaced by their average values
denoted by the same symbol, in the canonical equilibrium
state at absolute temperature T and J = J ′ν. Now in order

to monitor the behavior of the magnetization as a function of
temperature, one needs to calculate the expectation value of
the spin operators, σα, α = x,y. So in the mean-field regime,
the magnetization of the system governed by the Hamiltonian,
H [see Eq. (4)], is given by

mα = avη

[
Tr[σα exp(−βH )]

Tr[exp(−βH )]

]
, (5)

where β = 1/(kBT ), where kB is the Boltzmann constant, and
avη[.] denotes the average over the realizations of randomness.
From Eqs. (4) and (5), we obtain a coupled set of the following
two equations:

m
ε,2
⊥ ≡ mx = avη

[
J (1 + γ )mx

kε
tanh(βkε)

]
(6)

and

m
ε,2
‖ ≡ my = avη

[
J (1 − γ )my + εη

kε
tanh(βkε)

]
, (7)

where kε = √
[J (1 + γ )mx]2 + [εη + J (1 − γ )my]2. Note

that the subscripts ⊥ and ‖ classify two distinct cases, as
would be apparent later. The superscripts ε and 2 keep track of
the strength of the disorder and of the value of the spin (1/2),
respectively.

B. Critical point and scaling of magnetization near criticality

The magnetization, �m, can be obtained by finding the
common zeros of the following two functions obtained from
Eqs. (6) and (7):

Fε,2
x ( �m) = avη

[
J (1 + γ )mx

kε
tanh(βkε)

]
− mx (8)

and

Fε,2
y ( �m) = avη

[
J (1 − γ )my + εη

kε
tanh(βkε)

]
− my. (9)

Let us set mx = m cos φ1, my = m sin φ1, and �m = (mx,my).
By performing perturbative analysis, we can study the

magnetization for small ε. A Taylor series expansion of
Eqs. (8) and (9) in ε around ε = 0 gives

Fε,2
x ( �m) = c1 + 1

2b1ε
2 + O(ε4) (10)

and

Fε,2
y ( �m) = c2 + 1

2b2ε
2 + O(ε4), (11)

where

c1 = mx

(
−1 + J (1 + γ )

k
tanh(βk)

)
, (12)

c2 = my

(
−1 + J (1 − γ )

k
tanh(βk)

)
, (13)

b1 = −3J 3mxm
2
yβ(1 − γ )2(1 + γ )

k4

1

cosh(βk)2
+ Jmxβ(1 + γ )

k2

1

cosh(βk)2
+ 3J 3mxm

2
y(1 − γ )2(1 + γ ) tanh(βk)

k5

−Jmx(1 + γ ) tanh(βk)

k3
− 2J 3mxm

2
yβ

2(1 − γ )2(1 + γ ) tanh(βk)

k3

1

cosh(βk)2
, (14)
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b2 = −3J 3m3
yβ(1 − γ )3

k4

1

cosh(βk)2
+ 3Jmyβ(1 − γ )

k2

1

cosh(βk)2
+ 3J 3m3

y(1 − γ )3 tanh(βk)

k5

−3Jmy(1 − γ ) tanh(βk)

k3
− 2J 3m3

yβ
2(1 − γ )3 tanh(βk)

k3

1

cosh(βk)2
. (15)

Here k = √
[J (1 + γ )mx]2 + [J (1 − γ )my]2.

A contour analysis at this point becomes helpful to
characterize the behavior of the system, particularly in finding
the directions in which the system magnetizes (see Fig. 1).
This amounts to identification of the zero-contour lines corre-
sponding to Eqs. (10) and (11). The intersection points of the
zero-contour lines are possible solutions of the magnetization.
For any given set of parameters, one immediately finds that the
roots of Fε,2

x ( �m) and Fε,2
y ( �m) exist only at φ1 = 0 or π/2. This

implies that the magnetization is either transverse to the ran-
dom field (case I) or parallel to the random field (case II). Note
that for ε = 0 and γ = 0, the zero contour lines for both equa-
tions would lie on top of each other due to the circular sym-
metry in the system. However, an arbitrary small random field
is enough to break this symmetry. It follows from the contour
analysis that above a certain temperature (the critical temper-
ature), the zero-contour lines corresponding to Eqs. (10) and
(11) intersect only if mx = my = 0, which is a trivial solution.

To find the critical temperature and the scaling of magne-
tization near criticality, we perform another round of Taylor
expansions in Eqs. (10) and (11) around m = 0 to obtain

Fε,2
x ( �m) = −1

3
[3 + Jβ(1 + γ )(−3 + β2ε2)]m cos φ1

− 1

3!

2

5
J 3β3(1 + γ )3(5 − 8β2ε2

+ 4β2ε2 cos 2φ1)m3 cos φ1 + O(m5) (16)

and

Fε,2
y ( �m) = [−1 + Jβ(1 − γ )(1 − β2ε2)]m sin φ1

− 1

3!

2

5
J 3β3(1 − γ )3(5 − 16β2ε2

+ 4β2ε2 cos 2φ1)m3 sin φ1 + O(m5). (17)

FIG. 1. The system magnetizes in directions parallel and trans-
verse to the disorder field. Zero contour lines of the F ε,2

x (m) and
F ε,2

y (m) in Eqs. (10) (solid red line) and (11) (dotted blue line) for
γ = 0.3, ε/J = 0.1, and Jβ = 2, respectively, as functions of mx

and my . All quantities are dimensionless.

The contour analysis implies that the allowed values of φ1 are
π/2 and 0. For transverse magnetization, i.e., for the case I
with φ1 = 0, Fε,2

y ( �m) vanishes [see Eq. (17)]. The nontrivial
solutions, which solely appear from Eq. (16), are given by

m
ε,2
⊥ = ±

√
5

√
3 + Jβ(1 + γ )(ε2β2 − 3)

(−5 + 4ε2β2)J 3β3(1 + γ )3
. (18)

The critical point is obtained by setting m
ε,2
⊥ = 0 in Eq. (18).

We get

β
ε,2
c,⊥ = 1

J (1 + γ )
+ ε2

3J 3(1 + γ )3
. (19)

Here β is associated with the subscript ⊥, following a similar
convention in magnetization.

The magnetization values corresponding to case II are
obtained by setting φ1 = π/2 in Eqs. (16) and (17). In this
case, the function in Eq. (16) vanishes. The nontrivial solutions
of Eq. (17) are given by

m
ε,2
‖ = ±

√
3

√
1 + Jβ(1 − γ )(ε2β2 − 1)

J 3β3(1 − γ )3(4ε2β2 − 1)
. (20)

Subjecting Eq. (20) to the constraint m
ε,2
‖ = 0, we obtain the

following expression for the critical temperature:

β
ε,2
c,‖ = 1

J (1 − γ )
+ ε2

J 3(1 − γ )3
. (21)

From the set of Eqs. (18), (19) and (20), (21), one can immedi-
ately infer that for all positive values of γ , the effect of disorder
is more conspicuous if the system chooses to magnetize along
the direction parallel to the random field, as compared to
the other possibility with a transverse magnetization. On the
contrary, the random field may cause a reverse scenario below
a certain negative value of the anisotropy parameter. Inter-
estingly, the findings are consistent with the pictures drawn
within a classical limit [16] for the isotropic case, i.e., γ = 0.
However, a quantitative comparison shows that the analysis
with classical spins overestimates the effect of disorder on
the critical scaling. Note that the disorder creates an ordering
of the critical temperatures corresponding to the directions
in which the system magnetizes, and which is interchanged
at a certain disorder-strength-dependent transition anisotropy,
γc. For example, for ε/J = 0.1, γc ≈ −0.0033. For γ > γc,
β

ε,2
c,⊥ > β

ε,2
c,‖ , while the critical temperatures have the opposite

ordering for γ < γc. This can be easily deduced from Eqs. (19)
and (21), and it has also been verified numerically.

Note that one can immediately deduce the scaling expres-
sions for the magnetizations and critical temperature of the
isotropic ordered systems by setting γ = ε = 0 in Eqs. (20)
and (21) [or equivalently, in Eqs. (18) and (19)]. In this case,
the solutions form a circle in the XY plane. This can be
easily understood by following the set of Eqs. (6) and (7),
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which become identical for the isotropic ordered systems. The
symmetry is broken in the presence of the random field, and
then the system prefers a specific direction of magnetization.

Moreover, it is clear from Eqs. (19) and (21) that the critical
temperature at which the system magnetizes increases with the
coordination number, i.e., with the dimension of the system,
for any value of γ .

C. Numerical results

In the previous section, we derived the expressions for
magnetization near the critical point. However, away from the
critical point, where the perturbative approach is no longer
valid, one has to rely on a numerical simulation to find
the roots of the coupled set of equations, given in Eqs. (6)
and (7). We use the classical Monte Carlo technique for
performing a configurational averaging over η. It requires a
few thousand random realizations in order to obtain converged
values. Our numerical searches show the presence of two kinds
of solutions, either m

ε,2
⊥ �= 0,m

ε,2
‖ = 0 (i.e., case I) or m

ε,2
⊥ =

0,m
ε,2
‖ �= 0 (i.e., case II), which is in accordance with previous

discussions in the context of analytical perturbative analysis.
Figure 2(a) exhibits the results obtained by numerical analy-

sis for the transverse magnetization, i.e., case I, with vanishing
y component and nonzero x component, for ε/J = 0.1 and
γ = 0.1. When the temperature is high enough, the system
does not magnetize, similar to the case of an ordered system,
i.e., ε/J = 0. However, below the critical temperature (i.e., if
β > β

ε,2
c,⊥), the system magnetizes in the direction transverse to

0.8 1 1.2 1.4 1.6
Jβ

-1

-0.5

0

0.5

1

m

1 1.2 1.4 1.6
Jβ

-0.5

0

0.5

m
 

0.9 0.9
Jβ

0

0.2

0.4

m

1.1 1.1

5 1

5 1.2
0

0.2

0.4

aa

(a)

(b)

FIG. 2. Numerical and analytical results exhibit persistence of
spontaneous magnetization in specific directions even after insertion
of disorder. Numerical results for the magnetization as a function of
Jβ, in the directions (a) transverse and (b) parallel to the disordered
field. Red circles correspond to the roots of Eqs. (6) and (7) with
ε/J = 0.1 and γ = 0.1. Insets: The blue solid lines correspond to
the analytic solutions derived for small m given in Eqs. (18) and (20)
for the same set of parameters. The red circles are the numerical
results. We find that the numerical and analytical results agree in the
small-m regime. All quantities are dimensionless.

the applied random field. We see that the critical temperature
decreases in the presence of the disorder, i.e., that the critical
point, βε,2

c,⊥, shifts toward the right in the presence of the random
field. We also find excellent agreement between the exact
numerical results and the approximate analytical expression
of the transverse magnetization derived using a perturbative
approach given in Eq. (18) [see the inset of Fig. 2(a)].

The numerical results for case II with a vanishing x com-
ponent and a nonzero y component are shown in Fig. 2(b) for
ε/J = 0.1 and γ = 0.1. The features of parallel magnetization
are qualitatively similar to that of transverse magnetization.
However, we find that the critical point, β

ε,2
c,‖ , as may be

expected by now given the analytical results, shifts toward
an even higher value compared to the case of transverse
magnetization. A closer examination of Figs. 2(a) and 2(b)
shows that the effect of disorder is more prominent in the
parallel magnetization than in the transverse one. This is
confirmed by the expressions derived in the small-m regime
[see Eqs. (18) and (20)].

The behavior of the transverse and the parallel magneti-
zations for a given ε and selectively chosen values of the
anisotropy constant, γ , is demonstrated in Fig. 3. We find that
the inverse critical temperature, βε

c,⊥, decreases with increasing
γ for the case when the system magnetizes in the direction that
is transverse to the applied random field. The opposite happens
when the system magnetizes in the direction that is parallel to
the random field. The insets of Figs. 3(a) and 3(b) show the
critical temperatures βc’s as functions of γ . The trends suggest
that for highly anisotropic systems, the parallel magnetization
would occur only at sufficiently low temperatures. High
anisotropy favors transverse magnetization, i.e., the system
starts magnetizing in the transverse direction at comparatively
higher temperatures.

0.6 0.8 1
Jβ

-1

-0.5

0

0.5

1

m

1 2 3 4 5
Jβ

-1

-0.5

0

0.5

1

m
 

0 0.4 0.8
γ

0.6

0.8

1

β c

0 0.4 0.8
γ

0

2

4

6

β c

aa

(a)

(b)

FIG. 3. Magnetization as a function of Jβ for different choices
of the anisotropy constant, γ , in the directions (a) transverse and (b)
parallel to the random field. Circles, squares, and crosses correspond
to the magnetization of the system with ε/J = 0.1 and γ = 0.2, 0.4,
and 0.6, respectively. Insets show the inverse critical temperatures as
functions of γ for ε/J = 0.1. All quantities are dimensionless.
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For ε = 0 and γ = 0, Hamiltonian (4) has U(1) symmetry.
As seen from Eq. (4), positive values of the parameter γ destroy
this symmetry, leading to an anisotropic system that magne-
tizes due to a Z2-symmetry breaking mechanism, both in the
direction transverse to the random field and in the direction
parallel to it. In particular, the Mermin-Wagner-Hohenberg
result no longer applies, so that the system magnetizes in two
dimensions, unlike in the γ = 0 case. Magnetization persists in
the presence of a (small) random field directed along the y axis.
Figure 3 presents the values of the magnetization in both direc-
tions for three different values of γ . The critical temperature
for the onset of the transverse magnetization is higher
than that for the onset of the parallel magnetization, and
the latter is smaller than the former. One also sees from
Fig. 3(a) that the critical temperature for the onset of the
transverse magnetization grows with γ (βc decreases with γ ).
Figure 3(b) demonstrates the reversal of this tendency for the
parallel magnetization.

As seen from Eqs. (19) and (21), the presence of the
random field lowers the critical temperatures at which both
magnetizations appear, but the effect is more pronounced in
the case of parallel magnetization. This is consistent with the
fact that for the two-dimensional system at γ = 0, it is the
very presence of the disorder that makes the system magnetize
in the transverse direction, i.e., a small random field actually
enhances the value of the transverse magnetization.

It is worth mentioning here that we work within the
equilibrium scenario, where the properties of the system
depend only on the given choice of the system parameters.
Our results tell us that within this treatment, there are three
regions on the temperature scale with respect to spontaneous
magnetizability. Region 1: the system does not magnetize in
any direction; region 2: for a window of temperature below
region 1, it magnetizes in a single direction; region 3: for
still lower temperatures, it magnetizes in two orthogonal
directions. The methods needed to reach these phases, from a
possibly high temperature, are an important aspect, but they
are beyond the scope of the present study. We would like to
mention, however, that the spontaneous magnetization requires
an infinitesimal external field to manifest itself. Therefore, in
principle, one can imagine that the material is cooled through
regions 1 and 2 where the system remains unmagnetized,

and a symmetry-breaking infinitesimal field is applied only
when we are inside region 3, causing the system to magnetize
accordingly (depending on the symmetry-breaking field).

III. DISORDER-INDUCED ENHANCEMENT: RANDOM
FIELD QUANTUM XY MODEL IN THE PRESENCE

OF AN ADDITIONAL UNIFORM FIELD

Until now, we have seen that the spontaneous magnetization
in the system persists, albeit only in a restricted set of
directions, even in the presence of a disordered field. Is this
still true when there is an additional constant field? In this
section, we consider this question and show that not only does
the spontaneous magnetization persist, but disorder can now
help one of the components of the magnetization to achieve an
enhanced value compared to the ordered system.

We first consider the case in which the ordered XY model
is subject to a constant magnetic field, �h. The mean-field
Hamiltonian, Hh, governing the system in this case is given by

Hh = −(J [(1 + γ )mxσx + (1 − γ )myσy] + �h · �σ ). (22)

The constant field �h lies in the XY plane, i.e., �h = (hx,hy) =
(h cos θ,h sin θ ) with magnitude h, where 0 < h � 1, and
phase θ , with −π/2 � θ � π/2. In the presence of the
constant field, the mean-field equation for the magnetization
is obtained replacing H by Hh in Eq. (5). The system now has
no critical temperature, as there is always a unique solution at
any value of β.

Let us now investigate the effect of a random field, ε �η, on
the system. The mean-field Hamiltonian Hh,ε can be written
as

Hh,ε = −(J [(1 + γ )mxσx + (1 − γ )myσy]

+ �h · �σ + εησy), (23)

where we assume the random field to be directed along the y

axis. Replacing again H by Hh,ε in Eq. (5), we obtain two
coupled equations, which we solve to find �m. As may be
expected, the solution for the magnetization is again unique.

Our numerical calculations show that the magnetization
m and the y component of the magnetization vector my are
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FIG. 4. Disorder-induced enhancement. Effect of the random field in the presence of a constant field. The X component of magnetization,
mx , as a function of Jβ for (a) γ = 0.05 and (b) γ = 0.1. Red pluses show mx for the case when the XY model is subjected to a constant field
�h with h/J = 0.3 and θ = π/3. The blue solid and green dashed lines represent mx when the system is treated with a random field of strength
ε/J = 0.1 and 0.2, respectively, along with the constant field [the corresponding Hamiltonian is given in Eq. (23)]. The insets show blowups
of the same for a smaller range of Jβ. The enhancement of mx in the presence of the disorder field uncovers a “random field induced order.”
Comparing panels (a) and (b), we observe disorder-induced enhancement as the anisotropy parameter is cranked down for fixed h/J and θ . θ

is in radians. All other quantities are dimensionless.
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reduced in length in the presence of disorder, i.e., when
the system is governed by Hh,ε as compared to the ordered
system described by Hh. However, the x component mx

behaves in a very different manner. Depending upon the system
parameters, mx can be both higher and lower than its value in
the ordered system. In Fig. 4, we exhibit the results in the
particular example for the system with h/J = 0.3, θ = π/3,
which demonstrate the random field-induced enhancement
of mx in the presence of disorder for two different values
of γ . Our numerical observations are further supported by
results obtained analytically via a perturbative approach at
low temperature. The details are discussed below.

Perturbative analysis of low-temperature magnetization

The mean-field equations in Eq. (5) can be alternatively
presented as

mx = 1

βJ (1 + γ )

∂

∂mx

(24)

and

my = 1

βJ (1 − γ )

∂

∂my

, (25)

where

 ≡ avη[loge Tr exp(−βHh)], (26)

or in the disordered case,

 ≡ avη[loge Tr exp(−βHh,ε)], (27)

depending on whether the governing Hamiltonian is Hh

or Hh,ε . The symmetry of the Gaussian distribution of η

ensures that �m is an even function of ε. As a result, dmx

dε

and dmy

dε
vanish at ε = 0. Starting with Eqs. (24) and (25),

straightforward algebra leads to the following set of coupled
equations:

d2mx

dε2

[
1 − 1

βJ (1 + γ )

∂2

∂m2
x

]
= 1

βJ (1 + γ )

[
∂3

∂2ε∂mx

+ ∂2

∂my∂mx

d2my

dε2

]
(28)

and

d2my

dε2

[
1 − 1

βJ (1 − γ )

∂2

∂m2
y

]
= 1

βJ (1 − γ )

[
∂3

∂2ε∂my

+ ∂2

∂my∂mx

d2mx

dε2

]
, (29)

where the total and partial derivatives are evaluated at ε = 0. To evaluate d2mx

dε2 and d2my

dε2 , at ε = 0, we need to calculate the partial

derivatives at ε = 0. For example, the expression for 1
βJ (1+γ )

∂2

∂ε2
∂
∂mx

is

1

βJ (1 + γ )

∂

∂mx

= mx = Jmx(1 + γ ) + hx

kε
′ tanh(βkε

′). (30)

It follows that

1

βJ (1 + γ )

∂2

∂ε2

∂

∂mx

= avη

[
[Jmx(1 + γ ) + hx]

(−3βη2[hy + Jmy(1 − γ ) + εη]2

kε
′4 cosh2(βkε

′)
+ βη2

kε
′2[cosh2(βkε

′)]
− η2 tanh(βkε

′)
kε

′3

+3η2[hy + Jmy(1 − γ ) + εη]2 tanh(βkε
′)

kε
′5 − 2β2η2[hy + Jmy(1 − γ ) + εη]2 tanh(βkε

′)
kε

′3 cosh2(βkε
′)

)]
. (31)

Here kε
′ = √{[J (1 + γ )mx] + hx}2 + {[J (1 − γ )my] + εη + hy}2. Next, using the asymptotic expansion of the hyperbolic

function tanh(βkε
′) ≈ 1–2 exp(−2βkε

′), we obtain for the partial derivatives at ε = 0,

d2mx

dε2

∣∣∣∣
ε=0

= 1

h2
P

(
θ,

J

h

)
+ O(e−β ) (32)

and

d2my

dε2

∣∣∣∣
ε=0

= 1

h2
Q

(
θ,

J

h

)
+ O(e−β ), (33)

where the functions P and Q are given by (for j = J/h)

P (θ,j ) = AE + BC

DE − CC ′ (34)

and

Q(θ,j ) = AC ′ + BD

DE − CC ′ . (35)

Here,

A(θ,j ) = a cos x

(
3b2 sin2 θ

k′5 − 1

k′3

)
, (36)

B(θ,j ) = b sin x

(
3b2 sin2 θ

k′5 − 3

k′3

)
, (37)

C(θ,j ) = −Jab cos θ sin θ

k′3 (1 − γ ), (38)

C ′(θ,j ) = −Jab cos θ sin θ

k′3 (1 + γ ), (39)

D(θ,j ) = 1 − J (1 + γ )

k′

(
1 − a2 cos θ

k′2

)
, (40)
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FIG. 5. The span of disorder-induced enhancement in parameter space. Plots of the functions (a) P (θ,j ), (b) Q(θ,j ), (c) R(θ,j ), and
(d) S(θ,j ) with respect to θ and j = J/h. Note that there are ranges of the (θ,j ), for which the function P (θ,j ) is positive, signaling
disorder-induced enhancement in the system described by the Hamiltonian Hh,ε . However, this is not true for Q(θ,j ) and R(θ,j ), which are
negative for the entire range of θ and j . θ is in radians. The fact that S(θ,j ) is also negative in the entire range implies that in the presence of
disorder, the magnetization vector moves away from the direction of the applied random field. All other quantities are dimensionless. Here,
γ = 0.1.

and

E(θ,j ) = 1 − J (1 − γ )

k′

(
1 − b2 sin θ

k′2

)
, (41)

with a = 1 + j (1 + γ ), b = 1 + j (1 − γ ), and
k′ = √

a2 cos2 θ + b2 sin2 θ . The positivity of P (θ,j )
implies that disorder-induced enhancement occurs.

As is clear from Fig. 5(a), there exists a region in
the parameter space (θ,j ), for which P (θ,j ) > 0, which
confirms that the quenched averaged X component mx of the
magnetization is enhanced by the presence of disorder. This
does not hold for the quenched averaged Y component, my ,
which is reduced in length in the presence of disorder [see
Fig. 5(b)].

To further investigate the effect of disorder on the length m

and phase φ1 of the magnetization, we expand tan φ1 = my

mx
as

tan φ1 = my

mx

∣∣∣∣
ε=0

+ ε2 d2

dε2

(
my

mx

)∣∣∣∣
ε=0

+ O(ε4), (42)

with

d2

dε2

(
my

mx

)∣∣∣∣
ε=0

= mx
d2my

dε2 − my
d2mx

dε2

m2
x

∣∣∣∣
ε=0

= 1

m2
x

∣∣
ε=0

1

h2
S(x,j ) + O(e−β ), (43)

where

S(θ,j ) = Q(θ,j ) cos x − P (θ,j ) sin θ. (44)

S(θ,j ) is negative for all θ and J/h [see Fig. 5(d)], implying
that the phase always shifts toward the X axis in the presence
of the random field.

The square of the length of the magnetization, when
similarly expanded, is given by

m2
x + m2

y = (
m2

x + m2
y

)∣∣
ε=0 + 2ε2[R(θ,j ) + O(e−β )], (45)

where

R(θ,j ) = (P cos θ + Q sin θ )
∣∣
ε=0. (46)

As seen in Fig. 5(c), R(θ,j ) is negative regardless of the choice
of parameters, i.e., the length of the magnetization decreases in
the presence of the disorder. Note that the analytical results are
in agreement with the numerical evidence presented above. It
is worth mentioning here that the analytical results are valid for
small ε and large β. The difference between the magnetization
in the disordered system and the ordered system, as obtained
analytically, is of the order of ε2. Comparison of these analyti-
cal results with the numerical ones is valid only when the same
difference, obtained numerically, has precision of order ε2.

IV. GENERALIZATION TO ARBITRARY SPINS AND
SCALING OF CRITICAL TEMPERATURE

In this section, our aim is to investigate d-dimensional
lattices where the occupant of each lattice site is a quantum
spin with arbitrary spin angular momentum. Here we restrict
ourselves to the XX model. For our purposes, it is necessary
to treat the half-integer and integer spins separately. In the
following subsections, we derive the generalized expressions
for the scaling of the magnetization and critical temperature
for both cases.
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A. Half-integer spins

The mean-field equations for a general half-integer spin n+1
2 (n = 1,3, . . . ) are

mx = avη

[
Jmx

k

∑n
p=0(2p + 1) sinh [(2p + 1)βk]∑n

p=0 cosh [(2p + 1)βk]

]
, (47)

my = avη

[
Jmy + εη

k

∑n
p=0(2p + 1) sinh [(2p + 1)βk]∑n

p=0 cosh [(2p + 1)βk]

]
, (48)

where k = √
J 2m2

x + (Jmy + εη)2.
Finding the magnetization �m requires simultaneous solution of the coupled set of Eqs. (47) and (48), i.e., finding the common

zeros of the following two functions:

Fε,n
x ( �m) = avη

[
Jmx

k

∑n
p=0(2p + 1) sinh [(2p + 1)βk]∑n

p=0 cosh [(2p + 1)βk]

]
− mx, (49)

Fε,n
y ( �m) = avη

[
Jmy + εη

k

∑n
p=0(2p + 1) sinh [(2p + 1)βk]∑n

p=0 cosh [(2p + 1)βk]

]
− my. (50)

The Taylor expansion in ε, followed by the expansion in m, of the functions given in Eqs. (49) and (50), around ε = 0 and
m = 0, gives

Fε,s
x ( �m) = 1

45
[−45 + 60Jβs(s + 1) − 8J s(s + 1)(2s2 + 2s + 1)β3ε2]m cos φ1

+ 1

3!

16

315
β3J 3{s(s + 1)[−21(2s2 + 2s + 1) + 2β2ε2(4s2 + 2s + 1)(4s2 + 6s + 3)]}m3 cos φ1 + O(m5) (51)

and

Fε,s
y ( �m) = 1

15
[−15 + 20Jβs(s + 1) − 8J s(s + 1)(2s2 + 2s + 1)β3ε2]m sin φ1

+ 1

3!

16

315
β3J 3{s(s + 1)[−21(2s2 + 2s + 1) + 10β2ε2(4s2 + 2s + 1)(4s2 + 6s + 3)]}m3 sin φ1 + O(m5), (52)

where s = n + 1/2 with n = 0,1,2, . . . ,φ1 has two allowed values: π/2 (the system magnetizes in the direction parallel to the
disordered field) and 0 (the system magnetizes in the direction transverse to the disordered field). For transverse magnetization,
Fε,n

y ( �m) vanishes, and two nontrivial solutions solely come from Eq. (51) as

m
ε,s
⊥ = ±

√
21

8

√
45 − 60Jβs(s + 1) + 8J s(s + 1)(2s2 + 2s + 1)β3ε2

J 3β3s(s + 1)[−21(2s2 + 2s + 1) + 2β2ε2(4s2 + 2s + 1)(4s2 + 6s + 3)]
. (53)

The critical point can now be easily obtained by setting m
ε,s
⊥ = 0 in Eq. (53). We get

8s(s + 1)(2s2 + 2s + 1)Jβ3ε2 − 60s(s + 1)Jβ + 45 = 0, (54)

which gives

β
ε,s
c,⊥ = 3

4J s(s + 1)
+ 9

160

(2s2 + 2s + 1)

J 3s3(s + 1)3
ε2. (55)

The critical temperature decreases with the increase in the number of spins. The shift in critical temperature is of the order of
ε2 for all spins. Note that the generalized expressions for the scaling and for the critical temperature for the pure system with a
transverse magnetization can be obtained simply by putting ε = 0 in Eqs. (53) and (55), respectively.

To find the expressions for the parallel magnetization, we put φ1 = π/2 in Eqs. (51) and (52). In this case also, the right-hand
side of Eq. (51) vanishes to leading order, while Eq. (52) has two nontrivial solutions, given by

m
ε,s
‖ = ±

√
63

8

√
15 − 20J s(s + 1)β + 8J s(s + 1)(2s2 + 2s + 1)β3ε2

J 3β3s(s + 1)[−21(2s2 + 2s + 1) + 10β2ε2(4s2 + 2s + 1)(4s2 + 6s + 3)]
. (56)

The critical point can be obtained by considering m
ε,s
‖ = 0 in Eq. (56), and we obtain

β
ε,s
c,‖ = 3

4J s(s + 1)
+ 27

160

(2s2 + 2s + 1)

J 3s3(s + 1)3
ε2. (57)
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The generalized expressions of the scaling and the critical
temperature for the pure system with a parallel magnetization
can again be obtained by putting ε = 0 in Eqs. (56) and (57),
respectively. However, the shift in the critical temperature due
to the random field is bigger in this case than in the transverse
case and hence the effect of the disorder is more prominent
in the parallel case, similarly to what was seen in Sec. II B
without a constant field.

B. Integer spins

The generalized mean-field equations for the system with
integer spin n

2 , n even, are given by

mx = avη

[
Jmx

k

∑n
p=1 2p(e2pβk − e−2pβk)

1 + ∑n
p=1(e2pβk + e−2pβk)

]
, (58)

my = avη

[
Jmy + εη

k

∑n
p=1 2p(e2pβk − e−2pβk)

1 + ∑n
p=1(e2pβk + e−2pβk)

]
, (59)

where k = √
J 2m2

x + (Jmy + εη)2. Now in order to find the
magnetization �m, we have to solve the coupled set of Eqs. (58)
and (59). As one can expect from the previous discussions,
there are two different kinds of magnetizations—the transverse
magnetization, m

ε,s
⊥ , and the parallel magnetization, m

ε,s
‖ .

To derive the critical scaling for this case, we follow a
Taylor expansion method, similar to the one used for the
half-integer spin case. The final expressions for m

ε,s
⊥ , m

ε,s
‖ ,

and the associated critical temperatures are given by the
set of Eqs. (53), (55), (56), and (57) with s = n, where
n = 1,2,3, . . . .

Therefore, we again obtain corrections of order ε2 to the
critical temperature for all the integer spin systems. Again,
the effect of disorder is more pronounced in the parallel
magnetization case than in the transverse case.

C. Critical temperature versus spin quantum number

To study the effect of disorder as a function of s, we define
the dimensionless quantity δβ , given by

δβ = βε,s
c − β0,s

c

β
0,s
c

. (60)

0 0.1 0.2 0.3 0.4 0.5
1/s

0

5e-05

0.0001

δ β

FIG. 6. δβ as function of 1/s for the transverse (red circles) and
parallel (blue squares) magnetizations for ε/J = 0.05. The lines serve
as guides to the eye. All quantities are dimensionless.

δβ is shown as a function of 1/s in Fig. 6 for ε/J = 0.05.
We find that the shift in the critical temperature caused by the
random field decreases with increasing spin quantum number.

V. CONCLUSIONS

We considered the quantum spin-1/2 XY model in the
presence of a unidirectional quenched disordered field. Various
experimentally feasible proposals to realize the quantum spin
systems considered in this paper, and related models, have been
discussed in several physical systems [4,5,16,31,36,37], which
include Bose-Bose mixtures in optical lattices, the Raman
coupled Bose-Einstein condensate (BEC), and Fermi-Bose
mixtures. Perhaps the most interesting case is of the isotropic
XY model [with U(1) symmetry], which may be realized using
a gas of hardcore bosons in an optical lattice embedded in a
diluted BEC of the same atoms in a different internal state. The
hardcore bosons themselves realize a spin-1/2 XY model with
U(1) symmetry, where the spin-up (-down) states at a given site
are encoded into the presence (absence) of an atom. Parallel
random fields may be realized by random Raman coupling with
a fixed phase to the atoms in the BEC. Condensate creation and
annihilation (field) operators for large BEC can be replaced by
c numbers so that the coupling becomes proportional to the
sum of hard boson creation and annihilation operators with
random coefficients having a fixed phase. Taking the phase
to be zero, the coupling corresponds to the desired random
parallel field.

In this work, we treated the disordered system within the
mean-field approximation and showed that the spontaneous
magnetization persists in the system with the introduction
of a unidirectional quenched disordered field, albeit it is
smaller than in the pure system. Below a certain critical
temperature, the magnetization occurs in specific directions,
either parallel or transverse to the disordered field. The critical
temperatures and the magnitude of the magnetization decrease
with increasing strength of the disorder. We found perturbative
expressions for scaling of the magnetization and the expres-
sions for the scaling of the critical temperatures at which the
system magnetizes. We also performed numerical simulations
to obtain the behavior of magnetization for various values
of the temperature, the disorder strength, and the anisotropy
parameter, which match with the perturbative calculations for
small disorder values. Moreover, we extended our analysis to
arbitrary values of (half-integer or integer) spin. We found
that the decrease in the length of the magnetization due to
the random field is of the order of the square of the strength
of the disorder for all values of spin. The system requires
a lower temperature to magnetize when the spin quantum
number increases. The normalized shift in critical temperature
due to the disorder (δβ) also decreases with the increase in the
spin quantum number. In addition, we studied the random field
quantum spin-1/2 XY model with an additional constant field,
for which we showed a random-field-induced ordering in the
component of magnetization transverse to the disordered field.
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Fölling, M. Feld, U. Schnorrberger, A. M. Rey, A. Polkovnikov,
E. A. Demler, M. D. Lukin, and I. Bloch, Science 319, 295
(2008); J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss,
and M. Greiner, Nature (London) 472, 307 (2011).

014421-12

http://dx.doi.org/10.1103/PhysRevA.84.013612
http://dx.doi.org/10.1103/PhysRevA.84.013612
http://dx.doi.org/10.1103/PhysRevA.84.013612
http://dx.doi.org/10.1103/PhysRevA.84.013612
http://dx.doi.org/10.1063/1.3679069
http://dx.doi.org/10.1063/1.3679069
http://dx.doi.org/10.1063/1.3679069
http://dx.doi.org/10.1063/1.3679069
http://dx.doi.org/10.1103/PhysRevA.88.063646
http://dx.doi.org/10.1103/PhysRevA.88.063646
http://dx.doi.org/10.1103/PhysRevA.88.063646
http://dx.doi.org/10.1103/PhysRevA.88.063646
http://dx.doi.org/10.1103/PhysRevLett.100.030403
http://dx.doi.org/10.1103/PhysRevLett.100.030403
http://dx.doi.org/10.1103/PhysRevLett.100.030403
http://dx.doi.org/10.1103/PhysRevLett.100.030403
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRev.158.383
http://dx.doi.org/10.1103/PhysRev.158.383
http://dx.doi.org/10.1103/PhysRev.158.383
http://dx.doi.org/10.1103/PhysRev.158.383
http://dx.doi.org/10.1007/BF01608557
http://dx.doi.org/10.1007/BF01608557
http://dx.doi.org/10.1007/BF01608557
http://dx.doi.org/10.1007/BF01608557
http://dx.doi.org/10.1007/BF02099355
http://dx.doi.org/10.1007/BF02099355
http://dx.doi.org/10.1007/BF02099355
http://dx.doi.org/10.1007/BF02099355
http://dx.doi.org/10.1007/BF02506422
http://dx.doi.org/10.1007/BF02506422
http://dx.doi.org/10.1007/BF02506422
http://dx.doi.org/10.1007/s10955-010-0094-6
http://dx.doi.org/10.1007/s10955-010-0094-6
http://dx.doi.org/10.1007/s10955-010-0094-6
http://dx.doi.org/10.1007/s10955-010-0094-6
http://dx.doi.org/10.1214/09-BJPS029
http://dx.doi.org/10.1214/09-BJPS029
http://dx.doi.org/10.1214/09-BJPS029
http://dx.doi.org/10.1214/09-BJPS029
http://dx.doi.org/10.1209/0295-5075/102/36003
http://dx.doi.org/10.1209/0295-5075/102/36003
http://dx.doi.org/10.1209/0295-5075/102/36003
http://dx.doi.org/10.1209/0295-5075/102/36003
http://dx.doi.org/10.1007/s00220-014-1979-z
http://dx.doi.org/10.1007/s00220-014-1979-z
http://dx.doi.org/10.1007/s00220-014-1979-z
http://dx.doi.org/10.1007/s00220-014-1979-z
http://dx.doi.org/10.1143/ptp/87.3.535
http://dx.doi.org/10.1143/ptp/87.3.535
http://dx.doi.org/10.1143/ptp/87.3.535
http://dx.doi.org/10.1143/ptp/87.3.535
http://dx.doi.org/10.1103/PhysRevLett.98.170403
http://dx.doi.org/10.1103/PhysRevLett.98.170403
http://dx.doi.org/10.1103/PhysRevLett.98.170403
http://dx.doi.org/10.1103/PhysRevLett.98.170403
http://dx.doi.org/10.1103/PhysRevLett.91.073601
http://dx.doi.org/10.1103/PhysRevLett.91.073601
http://dx.doi.org/10.1103/PhysRevLett.91.073601
http://dx.doi.org/10.1103/PhysRevLett.91.073601
http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1126/science.1150841
http://dx.doi.org/10.1126/science.1150841
http://dx.doi.org/10.1126/science.1150841
http://dx.doi.org/10.1126/science.1150841
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1038/nature09994



