
PHYSICAL REVIEW B 94, 014417 (2016)

Exact asymptotic correlation functions of bilinear spin operators of the Heisenberg
antiferromagnetic spin-1

2 chain

T. Vekua1 and G. Sun2

1Institut für Theoretische Physik, Leibniz Universität Hannover, 30167 Hannover, Germany
2Max-Planck-Institut für Physik komplexer Systeme, Dresden, Germany

(Received 7 April 2016; revised manuscript received 28 June 2016; published 14 July 2016)

Exact asymptotic expressions of the uniform parts of the two-point correlation functions of bilinear spin
operators in the Heisenberg antiferromagnetic spin- 1

2 chain are obtained. Apart from the algebraic decay, the
logarithmic contribution is identified, and the numerical prefactor is determined. We also confirm numerically
the multiplicative logarithmic correction of the staggered part of the bilinear spin operators 〈〈Sa

0 Sa
1 Sb

r S
b
r+1〉〉 =

(−1)rd/(r ln
3
2 r) + (3δa,b − 1) ln2 r/(12π 4r4), and estimate the numerical prefactor as d � 0.067. The relevance

of our results for ground-state fidelity susceptibility at the Berezinskii-Kosterlitz-Thouless quantum phase
transition points in one-dimensional systems is discussed at the end of our work.
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I. INTRODUCTION

The XXZ spin- 1
2 chain is a paradigmatic one-dimensional

quantum many-body system which can be studied using
exact methods, while simultaneously describing the magnetic
properties of real materials [1]. The Hamiltonian of the XXZ
chain, written in terms of spin- 1

2 matrices, reads

ĤXXZ = J
∑

r

{
Sx

r Sx
r+1 + Sy

r S
y

r+1 + λSz
r S

z
r+1

}
, (1)

where J is an exchange coupling, that will be assumed to
be positive, and λ is an anisotropy parameter. For λ = 1,
the XXZ chain reduces to the Heisenberg antiferromagnetic
(AFM) chain.

Despite being exactly solvable, calculating correlation
functions (objects that provide direct connection between
theoretical calculations and experimental observations) from
the microscopic XXZ model for λ > −1 is a formidable task,
due to the complicated form of the wave functions [2]. On the
other hand, effective approaches have allowed asymptotically
exact calculation of the spin correlation functions in the gapless
regime −1 < λ � 1 [3–6].

Effective theory, describing the low-energy properties of the
XXZ spin- 1

2 chain for −1 < λ < 1, is given by the Gaussian
model [7],

HG =
∫

HG(r)dr = v

2

∫
dr{[∂r�(r)]2 + �2(r)}, (2)

where � is a real bosonic field with the compactification
radius R, � = � + 2πR, and � is its conjugate momentum,
[�(r),�(r ′)] = iδ(r − r ′). Spin-wave velocity v and R are
known analytically as functions of λ from the exact solution
of the model (1) [8].

In this work, using an effective approach, we determine
exact asymptotic expressions of the uniform parts of two-
point correlation functions of bilinear spin operators in the
Heisenberg AFM spin- 1

2 chain. Apart from the algebraic decay,
we identify the logarithmic contribution and determine the
exact numerical prefactor. Our calculations are similar to
the ones that were performed by Affleck for obtaining exact
asymptotic correlation functions of single-spin operators in the
Heisenberg antiferromagnetic chain [4] by combining renor-

malization group (RG) improved perturbation theory with the
exact asymptotic results of Lukyanov and Zamolodchikov [3]
conjectured for −1 < λ < 1. However, in the case of the
correlation functions of the bilinear spins, there are various
operators of effective field theory that contribute equally at the
SU(2) antiferromagnetic point, though the exact asymptotic
expression is known for −1 < λ < 1 for the correlation
function involving only one of them [6]. We have to use
additional symmetry arguments to obtain exact asymptotic
expression of the complete uniform parts of the bilinear spin
correlation functions at λ = 1.

We also identify numerically the multiplicative logarithmic
contribution of the staggered (leading) parts of the bilinear spin
correlation functions, consistent with analytical prediction [9],
and estimate the numerical prefactor.

II. SINGLE-SPIN CORRELATION FUNCTIONS

Asymptotic expressions of the single-spin correlation func-
tions of the XXZ spin- 1

2 chain, Ga
r = 〈Sa

0 Sa
r 〉, where a = x,y,z

and no summation with repeated indices is implied in this
work, are known exactly in the gapless phase, including the
numerical prefactors [3,5,6]

Gx
r = (−1)rAx

0

rη
− Ax

1

rη+1/η
,Gz

r = (−1)rAz
1

r1/η
− 1

4ηπ2r2
, (3)

where η = 1 − (arccos λ)/π = 2πR2 and 0 � η � 1 for
−1 � λ � 1.

These amplitudes appearing in Eqs. (3) have been checked
numerically [10]. Amplitudes Ax

0 and Az
1 diverge in the

isotropic AFM limit, λ → 1, since in this limit mapping of
the spin- 1

2 chain to the Gaussian model becomes singular due
to the marginally irrelevant (cosine) term with the scaling
dimension 2/η occurring in the low-energy effective theory
from the “spin umklapp” processes [11–14].

Effective theory description of the XXZ spin- 1
2 chain, for

λ → 1, necessarily contains terms beyond the Gaussian model,

Heff =
∫

drHeff =
∫

dr[HG(r) + H′
1(r) + H′

2(r)], (4)
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where H′
1 = πg0

||√
3

[(∂r�)2 − �2] and H′
2 = πg0

⊥√
3

cos
√

8π�.
The running coupling constants g = (g||,g⊥), with the
bare values g0 = (g0

||,g
0
⊥), are governed by the Kosterlitz-

Thouless [15] RG equations,

β|| = ġ|| = −4πg2
⊥/

√
3, β⊥ = ġ⊥ = −4πg⊥g||/

√
3, (5)

where the dot indicates a derivative with respect to the RG
scale l = ln r̃ and πr̃−1 is the running ultraviolet cutoff. At
the SU(2) AFM point g|| = g⊥ = g, and the exact expression
of amplitudes of the asymptotic correlation functions of spin
operators were derived [4,16] by combining the expressions of
Ax

0 [3] and Az
1 [5] for λ → 1− with RG improved perturbation

theory [9,17],

〈
Sa

0 Sb
r

〉 = (−1)r δab

√
ln r

(2π )3/2r
− δab

4π2r2
, (6)

where a,b = x,y,z.
Prior to the analytical works [4,16], the numerical prefactor

of the staggered term in Eq. (6) has been estimated by
numerical simulations [18] as 0.065, which is close to the
exact value 1/(2π )3/2 � 0.0635.

III. BILINEAR SPIN CORRELATION FUNCTIONS

We will generalize the approach leading to the exact
asymptotic expressions of single-spin correlation functions at
the Heisenberg AFM point [4,16], Eq. (6), for the calculation
of the uniform part of the correlation function of bilinear spin
operators, Sa

r Sa
r+1.

Let us first address the correlation function of the bilinear
in Sx operator in the gapless region in the vicinity of (but
not directly at) the SU(2) AFM point. Up to the subleading
corrections we have〈

Sx
0 Sx

1 Sx
r Sx

r+1

〉 = B0 + (−1)rB1

r1/η
+ B2

r4η
+ B3

r4/η
+ B4

r4
. (7)

The Bl’s, for l � 2, are amplitudes of the correlation functions
of the following Ôx

l operators,

Ôx
2 ∼ cos

√
8πη
, Ôx

3 ∼ cos
√

8π/η�,

Ôx
4 ∼ (∂r�)2 + βx

η (∂r
)2, ∂r
 = �, (8)

and βx
η is, similarly to other proportionality coefficients in (8),

an η-dependent factor such that∑
r

Sx
r Sx

r+1 →
∫

dr
{√

B0 + Ôx
2 + Ôx

3 + Ôx
4

}
. (9)

The scaling dimension of Ôx
2 is 2η, while those of Ôx

3 and
Ôx

4 are 2/η and 2, respectively. In the limit of the SU(2) AFM
point η → 1 and all of them become marginal.

The constant term in Eq. (7) can be easily fixed due to the
translational symmetry, B0 = 1

4 (e0 − λ∂e0/∂λ)2, where e0 is
the ground-state energy density known exactly (together with
its dependence on λ) from the Bethe ansatz. However we will
be interested in the following with the reduced correlation
function,〈〈

Sx
0 Sx

1 Sx
r Sx

r+1

〉〉 = Gx,x
r = (−1)rGx,x

s (r) + Gx,x
u (r). (10)

Namely, the uniform part of the above reduced correlation
function is the main quantity of our interest,

Gx,x
u (r) = G

x,x
B2

(r) + G
x,x
B3

(r) + G
x,x
B4

(r)

= B2

r4η
+ B3

r4/η
+ B4

r4
. (11)

For the XXZ chain, for −1 < λ < 1, the exact expression of
B2 amplitude has been obtained [6],

B2 = [�(η)]4

23+4ηπ2+2η(1 − η)2

[
�

(
1

2−2η

)
�

(
η

2−2η

)
]4−4η

, (12)

and confirmed numerically away from the SU(2) points [19]. In
Appendix A we provide details of calculating B2, confirming
expression (12). However, when η → 1, the expression for
B2 is only valid for evaluating correlations Eq. (11) at
exponentially large distances, r 
 e1/(1−η). In the limit of
the SU(2) AFM point we apply RG improved perturbation
theory [4]. We note that Gx,x

B2
obeys the following RG equation,⎛

⎝ ∂

∂ ln r
+

∑
j={||,⊥}

βj

∂

∂gj

+ 2γB2 (g)

⎞
⎠G

x,x
B2

(r,g) = 0, (13)

where βj are beta functions presented in Eq. (5) and
γB2 (g) = 2 − 4πg||/

√
3 is the anomalous dimension of the

Ôx
2 operator, calculated in Appendix B. This allows us to

follow the approach [4,16] that led to the exact expression
of the single-spin correlation function Eq. (6). Solving the
RG Eq. (C6) and integrating over γB2 (ln r) in the solution,
as shown explicitly in Appendix C, gives for 1 − η � 1 the
following behavior over an intermediate range 1 � ln r �
1/(1 − η): G

x,x
B2

(r) � B2[4(1 − η) ln r]2/r4. Then taking the
limit η → 1 and using the limiting expression of the amplitude
in Eq. (12), B2 → 1/[27π4(1 − η)2], we obtain the following
exact asymptotic expression for ln r 
 1,

G
x,x
B2

(r) = 1

8π4

ln2 r

r4
. (14)

Let us consider now the mixed correlation function of
bilinear spin operators at the Heisenberg AFM point,〈〈

Sa
0 Sa

1 Sb
r S

b
r+1

〉〉 = Ga,b
r = (−1)rGa,b

s (r) + Ga,b
u (r), (15)

for a �= b. Using bosonization [7] one can show that the
leading staggered part of the mixed correlation function
Ga,b

s (r) behaves identically to Ga,a
s (r) [20]. To study the

long-distance asymptotics of the uniform part of the mixed
bilinear correlation function, Ga,b

u (r) for ln r 
 1, it is useful
to look at the correlation function of the Hamiltonian density,

〈〈(S0S1)(SrSr+1)〉〉 = (−1)rGE
s (r) + GE

u (r), (16)

where GE
s (r) = 9Ga,a

s (r) + · · · , and we will use the impor-
tant property that the uniform part GE

u (r) cannot contain
multiplicative logarithmic corrections due to energy conser-
vation [21]. Since energy density does not pick up anomalous
dimension due to marginally irrelevant perturbations, the
correlation function of energy density behaves similarly to
the correlation function of the energy-momentum tensor of the
unperturbed conformally invariant Gaussian or Wess-Zumino
model [22], thus GE

u (r) ∼ 1/r4. This means that logarithmic
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contributions, such as in Eq. (14), all must be canceled by the
mixed terms. Hence, at the SU(2) AFM point, for the leading
behavior of the uniform parts of the bilinear spin correlation
functions, we obtain

2Ga,b �=a
u (r) = −Ga,a

u (r). (17)

Let us rewrite the relation (9) in the following way:∑
r Sx

r Sx
r+1 → ∫

dr{√B0 + Ôx
2 + Ŵ }, by grouping two op-

erators into one, Ŵ = Ôx
3 + Ôx

4 . Then, from bosonization, it
follows that

∑
r S

y
r S

y

r+1 → ∫
dr{√B0 − Ôx

2 + Ŵ }. For λ →
1, using Eq. (17) for the case of a = x and b = y, we obtain
3〈〈Ŵ (0)Ŵ (r)〉〉 = 〈〈Ôx

2 (0)Ôx
2 (r)〉〉 and thus,

Ga,a
u (r) = 4

3
G

x,x
B2

(r) = 1

6π4

ln2 r

r4
. (18)

This exact asymptotic expression is our main result.

IV. NUMERICAL RESULTS

In the remaining part we will present a numerical check of
Eq. (18) based on our results obtained from the density matrix
renormalization group (DMRG) method [23,24] implemented
for systems with periodic boundary conditions.

Directly from the computation of the reduced bilinear spin
correlation function Eq. (10) it is hardly possible to analyze
the space dependence of its uniform part. The reason is that
the reduced correlation function Ga,a

r is strongly dominated
by the leading term, its staggered part, which is expected
to behave as Ga,a

s (r) ∼ 1/(r ln
3
2 r) [9], and such decay is

much slower than that of the uniform part (∼ ln2 r/r4). We
have performed numerical simulations of Ga,a

r for different
system sizes, ranging from L = 24 (Lanczos) to L = 48,96
and L = 144 sites (DMRG), assuming periodic boundary
conditions. In Fig. 1 we present the behavior of the reduced
correlation function of the bilinear spin operators for the
Heisenberg spin- 1

2 AFM chain with L = 96 and L = 144
sites. We use conformal mapping of an infinite 2-dimensional
plane on a cylinder [22] with finite circumference in the
spatial direction to compare the analytic results for the
thermodynamic limit with finite-size calculations for the
systems with periodic boundary conditions. This implies that
the distances are replaced by the chord distances on the circle,
ρ = L/π sin(rπ/L).

On the other hand, in the difference Ga,a
r − Ga,b

r , b �= a, the
leading oscillatory terms cancel [20] and from this quantity
and Eq. (17) we can obtain the desired uniform part of
the correlation function Ga,a

u (r). In Fig. 2 we plot numer-
ical data for r4(Ga,a

r − Ga,b
r ), which includes both uniform

and staggered components. For the uniform component our
analytical results are ln2 r/(4π4), following from Eq. (18),
and the relation Ga,s

r − Ga,b
r = 3

2Ga,a
u (r) + · · · , where dots

indicate subleading contribution. We will calculate the leading
oscillatory contribution in

2
(
Gx,x

r − Gx,y
r

) = 〈(
Sx

0 Sx
1 − S

y

0 S
y

1

)(
Sx

r Sx
r+1 − Sy

r S
y

r+1

)〉
.

In bosonization (−1)r (Sx
r Sx

r+1 − S
y
r S

y

r+1) → D̂(r), where

D̂(r) ∼ ei
√

8π
(r) cos
√

2π�(r) + H.c., up to subleading con-
tributions. The anomalous dimension of D̂ is γD = 5/2 −√

3πg/2, giving 〈D̂(0)D̂(r)〉 ∼ ln
3
2 r/r5.

15 20 25 30 35 40 45
r

(−1)     G     10

4.5

5.0

5.5

40 45 50 55 60 65 70
r

(−1)     G    10

3.95

4.00

4.05

4.10

4.15

4.20

L=144, PBC

3x,x.rρr

L=96,  PBC

.r
r
x,xρ 3

FIG. 1. Bilinear spin correlation function of the Heisenberg
spin- 1

2 AFM chain (−1)rρGa,a
r × 103, where we have introduced

the cord distance on the circle ρ = L/π sin(rπ/L). Data shown
are for L = 96 spins with periodic boundary conditions (PBC)
and are obtained by keeping typically m = 1500 states in DMRG
simulations. Bullets indicate numerical data [25] and continuous line
is the curve, 103d/ ln

3
2 (cρ), with d � 0.067 and c � 16 coefficients

obtained by fits of analytical curve to numerical data for r > 10.
Inset shows (−1)rρGa,a

r × 103, for L = 144 spins and for distances,
40 � r � 72. Fitting to the data for L = 144 sites gives similar
estimates for d and c.

Hence, including the leading oscillatory contribution in
Ga,a

r − Ga,b
r , we obtain

Ga,a
r − Ga,b

r = (1 − δa,b)

[
ln2 r

4π4r4
+ c̃(−1)r

ln
3
2 r

r5

]
, (19)

where c̃ is a numerical constant estimated from fitting to
DMRG data. We present in Fig. 2 comparison of our analytical
curves, obtained separately for even and odd r from Eq. (19),
with our numerical data.

2 10 20 30 4840 r
0.04

0.06

0.08

0.10

2 10 20 30 40 50 60 70
r0.04

0.06

0.08

0.10

0.12

L=144,  PBC

x,x
r

4ρ (G   − G     )x,z
r

r
x,x

rρ4 (G    − G    )

L=96, PBC

x,z

FIG. 2. Difference of bilinear spin correlation functions of the
Heisenberg spin- 1

2 AFM chain ρ4(Ga,a
r − Ga,b

r ) for a �= b and for
L = 96 sites chain with periodic boundary conditions (PBC). Bullets
indicate numerical data and continuous lines are analytical curves,
ln2(c0ρ)/(4π 4) ± c̃ln

3
2 (c0ρ)/ρ, where + sign corresponds to even

r data and − sign to odd r data. Constant c0 � 22 and c̃ is fitted
to c̃ � 0.0023. Dashed line is analytical result without taking into
account leading oscillatory contribution. Inset shows L = 144 sites
case with c0 � 23 and the same value of c̃ � 0.0023.
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V. RELEVANCE FOR FIDELITY SUSCEPTIBILITY

The asymptotically exact expression of the uniform part of
the correlation function of the bilinear spin operators at λ = 1,
Eq. (18), confirms our previous work [26], showing that com-
puting the ground-state fidelity susceptibility of the XXZ spin-
1
2 chain by the effective Gaussian model gives a qualitatively
wrong result at the Berezinskii-Kosterlitz-Thouless quantum
phase transition point. Moreover, our approach allows us to
explicitly follow the steps on how the divergence in fidelity
susceptibility at the Berezinskii-Kosterlitz-Thouless transition
point arises in the thermodynamic limit due to the singular
nature of the mapping of the Heisenberg spin- 1

2 AFM chain
on the Gaussian model and is not a property of either the
microscopic or effective models. When taking into account
marginally irrelevant corrections to the effective Gaussian
model and resumming perturbation series with the help of
the RG, the spurious divergence of fidelity susceptibility
disappears, as explained in Appendix D.

VI. SUMMARY

Using an effective field-theory approach, exact asymptotic
expressions of the uniform parts of the bilinear spin correlation
functions of the Heisenberg antiferromagnetic spin- 1

2 chain,
Ga,a

u (r) and Ga,b
u (r), have been computed. We have checked

numerically analytical results and also estimated the numerical
prefactor in front of the staggered part of the bilinear spin
correlation function and identified the logarithmic contribution
in accordance with the previous analytical investigations [9].

As a by-product, our studies confirm the finiteness of
the ground-state fidelity susceptibility at the Berezinskii-
Kosterlitz-Thouless quantum phase transition points in one-
dimensional systems.
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APPENDIX A: CALCULATING CONSTANT B2 FOR
−1 < λ < 1

We provide details of calculating the exact expression of
constant B2 appearing in Eq. (12) in the main text. For this we
introduce the Hamiltonian of the fully anisotropic XYZ spin- 1

2
chain,

ĤXYZ =
∑

r

{
JxS

x
r Sx

r+1 + JyS
y
r S

y

r+1 + JzS
z
r S

z
r+1

}
. (A1)

We will assume |Jz| < Jy � Jx . Denoting � = Jz/J , J =
(Jx + Jy)/2, and γ = (Jx − Jy)/(2J ), we rewrite the Hamil-
tonian of the XYZ chain as follows,

ĤXYZ

= J
∑

r

{
(1 + γ )Sx

r Sx
r+1 + (1 − γ )Sy

r S
y

r+1 + �Sz
r S

z
r+1

}
.

We will put � = 1 and measure energy in units of J . Spin-
wave velocity for the gapless, γ = 0, case is

v = J r0 sin (πη)

2(1 − η)
, (A2)

where r0 is the lattice constant and η = 1 − (arccos �)/π . It is
convenient to fix the spin-wave velocity equal to unity (hence
also make dimensionless) for γ = 0, independently of �. For
this, we will fix

J r0 = 2
1 − η

sin (πη)
. (A3)

In the following we will use the exact solution of the XYZ
chain [8,27]. In particular we will be interested in the limit
γ → 0, and take the so-called scaling limit of the XYZ chain,
where the spin gap behaves as [28]

MXYZ = 2Jx

sin(πη)

1 − η

⎛
⎝

√
J 2

x − J 2
y

4
√

J 2
x − J 2

z

⎞
⎠

1
1−η

� 2J
sin(πη)

1 − η

(
γ

4(1 − �2)

) 1
2(1−η)

= 4

r0

(
γ

4 sin2(πη)

) 1
2(1−η)

= 4

(
γr

4 sin2(πη)

) 1
2(1−η)

, (A4)

where γr = γ r
−2(1−η)
0 and to arrive from the second to the third

line we used Eq. (A3). The scaling limit is a continuous limit
of the lattice model, r0 → 0, with additional requirements: the
velocity Eq. (A2) stays equal to unity and the gap Eq. (A4)
stays constant; hence γ → 0 so that γr = constant. In this limit,
the effective theory describing the XYZ chain is a massive
relativistic sine-Gordon model [28],

AsG = 1

2

∫
d2r(∂μ
)2 − 2μ

∫
d2r cos

√
8πη
. (A5)

To give explicit meaning to μ one has to specify normalization
of fields. We will follow the approach developed by Zamolod-
chikov [29], where the dimension of field [cos

√
8πη
] =

r
−2η

0 and the fields are normalized as follows at short distances,
where perturbation is irrelevant [21]:

lim
r→0

〈cos
√

8πη
(0) cos
√

8πη
(r)〉 = 1

2

1

r4η
. (A6)

Explicit connection between the coupling constant μ and
the soliton mass of the sine-Gordon model was obtained [29]
by using the Bethe ansatz integrability of the sine-Gordon
model in external uniform gauge field, with amplitude A,
coupled to the conserved current [30] and viewing the same
model as a conformal field theory (Gaussian model for μ = 0)
perturbed by a cosine term. In the Bethe ansatz approach,
the ground-state energy of the quantum sine-Gordon model in
strong external field, [E0(A,Ms−G) − E0(0,Ms−G)]/A2, can
be expanded in a dimensionless parameter, the ratio of the
soliton mass to the field amplitude Ms−G/A. On the other
hand, when viewing the sine-Gordon model in strong external
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field as a perturbation of conformal field theory with cosine
field, the ground-state energy, [E0(A,μ)] − E0(A,0)]/A2,
can be expanded in the powers of dimensionless parameter
μ/A2/(p+1). Note that without strong external field, ground-
state energy cannot be perturbatively expanded in μ, due to
the infrared divergent integrals characteristic of the relevant
cosine term. Matching the two ground-state energies in the
first nontrivial power of A gives

MsG =
(

μ

κ(η)

) 1
2(1−η)

, (A7)

where the dimensionless parameter κ is called the λ-M ratio
(proportionality constant between ultraviolet and asymptotic
scales) and is given by [29]

κ(η) = 1

π

�(η)

�(1 − η)

(√
π�

(
1

2(1−η)

)
2�

(
η

2(1−η)

)
)2(1−η)

. (A8)

We wish to determine a proportionality constant α,

2μ = −αγrJ r0, (A9)

in order to obtain a precise value of the constant in the operator
identification of bilinear spin operators in the scaling limit,

Jγ
∑

r

(
Sx

r Sx
r+1 − Sy

r S
y

r+1

)

= Jγ

r0

∑
r

(
Sx

r Sx
r+1 − Sy

r S
y

r+1

)
r0

= Jγ

r0

r
2η

0

a2η

∑
r

(
Sx

r Sx
r+1 − Sy

r S
y

r+1

)
r0

= αJγ r
2η−1
0

∫
dr cos

√
8πη


= αJr0γr

∫
dr cos

√
8πη


= −2μ

∫
dr cos

√
8πη
, (A10)

where
∑

r (Sx
r Sx

r+1 − S
y
r S

y

r+1)r0/r
2η

0 → α
∫

dr cos
√

8πη
.
With the help of Eqs. (A7) and (A9) we express the sine-

Gordon mass as

MsG =
(−αγrJ r0

2κ(η)

) 1
2(1−η)

. (A11)

Equating MXYZ = MsG gives us the following equation:

42(1−η) γr

4 sin2(πη)
= −αγrJa

2κ(η)
. (A12)

Using the following property of � functions,

�(η)�(1 − η) = π

sin (πη)
, (A13)

we obtain

α = −42(1−η)�2(η)

4π2(1 − η)

(√
π�

(
1

2(1−η)

)
2�

(
η

2(1−η)

)
)2(1−η)

= − �2(η)

4π1+η22(η−1)(1 − η)

(
�

(
1

2(1−η)

)
�

(
η

2(1−η)

)
)2(1−η)

. (A14)

Note that due to the U (1) symmetry at γ = 0,

∑
r

Sx
r Sx

r+1 = −
∑

r

Sy
r S

y

r+1 → α

2r
1−2η

0

∫
dr cos

√
8πη
.

(A15)
Also note that at γ = 0 the effective theory enjoys conformal
invariance and hence a unique normalization of correlation
function is carried to all distances Eq. (A6). Finally we obtain
for γ = 0,

Gx,x
u (r) = Gy,y

u (r) = B2

r4η
, (A16)

where

B2 = α2

23
= 1

27

�4(η)

π2+2η24(η−1)(1 − η)2

(
�

(
1

2(1−η)

)
�

(
η

2(1−η)

)
)4(1−η)

= �4(η)

π2+2η23+4η(1 − η)2

(
�

(
1

2(1−η)

)
�

(
η

2(1−η)

)
)4(1−η)

. (A17)

This expression agrees with the one obtained in [6].
We note that one cannot use the effective representation of

single-spin operators [7] to obtain the short-distance correla-
tion function for the XXZ spin- 1

2 chain and in particular to
obtain exact amplitudes of the correlation functions of bilinear
spin operators with the fusion rules of underlying conformal
theory. This is so, because conformal symmetry is only an
effective property of the model and at short distances the
XXZ chain is not conformally invariant, because of irrelevance
in infrared limit corrections (the leading ones can be found
in [16]). Due to this reason the constant B2 is not related
to coefficients Ax

0 and Ax
1 appearing in Eq. (3) of the main

text in any simple way and also we cannot determine the exact
numerical prefactor in front of the staggered part of the bilinear
spin correlation function [the B1 coefficient in Eq. (7) of the
main text cannot be fixed with currently known methods].

APPENDIX B: CALCULATING ANOMALOUS
DIMENSION γB2

In this appendix we show how to calculate the anomalous
dimension of the field cos

√
8π
 picked up upon renormaliza-

tion due to marginally irrelevant perturbations of the Gaussian
model.

In the absence of perturbations, for g = 0, the effective
theory given by Eq. (4) in the main text has conformal
invariance, and hence

2〈cos
√

8π
(0) cos
√

8π
(r)〉G = r−4. (B1)

When marginally irrelevant perturbations are included on top
of the Gaussian model, g⊥ does not contribute to the anomalous
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dimension of the cos
√

8π
 field to first order, since〈
cos

√
8π
(0)

∫
d2xH′

2(x) cos
√

8π
(r)

〉
G

= 0. (B2)

Hence, at the lowest (first) order in g �= 0, we can include g||
into the quadratic part of the action and obtain

G
x,x
B2

(r) ∼ r−2(2−4πg||/
√

3). (B3)

Perturbation H′
1 can be included into the quadratic part of the

action independently of the strength of g||. It is the strength of
g⊥ that must be small in order to use the anomalous dimension
obtained from perturbative analyses at the lowest order.

From Eq. (B3) we read off the anomalous dimension of the
cos

√
8π
 field at the lowest order in g,

γB2 (g) = 2 − 4πg||/
√

3. (B4)

Using the fixed-point value of g||(∞) = √
3(1 − η)/(2π ) in

Eq. (B3) reproduces the r dependence of G
x,x
B2

in Eq. (7) of the
main text, ∼ r−4η.

Next we provide the details of calculating the exact long-
distance asymptotics of G

x,x
B2

at the SU(2) antiferromagnetic
point, given in Eq. (14) of the main text.

APPENDIX C: RG IMPROVED PERTURBATION THEORY
APPROACH FOR LONG-DISTANCE

ASYMPTOTICS OF Gx,x
B2

Here we will generalize the calculation of exact asymptotic
correlation functions of single-spin operators at the SU(2)
antiferromagnetic point [4,16] to the case of G

x,x
B2

.
Our aim is to compute the two-point correlation function

for the effective action with the bare coupling constants g0

(which carry information of the initial microscopic lattice
model) G(r) = G(r,r0,g(r0)). However, since the Hamiltonian
is not Gaussian, one has to use some approximate methods
for computing correlation functions. If one tries to perform
a perturbation theory calculation in coupling constants, a
standard method of interacting field theory, because of the
logarithmic divergences that occur in the infrared limit, one
cannot stop perturbative series at some finite order, even if
initially g(r0) � 1. For example, in our case, the first order in
the coupling constants contribution in the correlation function
GB2 (r) comes with g||,

− 2

〈
cos

√
8π
(0)

∫
d2xH′

1(x) cos
√

8π
(r)

〉
G

= 8πg0
||√

3
ln (r/r0)r−4. (C1)

Combining this correction with Eq. (B1) we obtain, up to
the first order in coupling constants,

G
x,x
B2

(r) ∼ r−4

(
1 + 8πg0

||√
3

ln r/r0

)
. (C2)

Hence, the effective expansion parameter of perturbation series
increases logarithmically at large distances, g0

|| → g0
|| ln (r/r0).

RG is a way to resum the leading logarithmic divergences
of the infinite perturbation series occurring in the r → ∞

limit. One can obtain from Eq. (C2) directly at the SU(2)
antiferromagnetic point the double-logarithmic correction of
the correlation function as follows. At η = 1 we have g⊥ =
g|| = g and considering it as a small perturbation the following
connection between the bare and renormalized couplings exists
from the one-loop beta function,

g(r) = g0

1 + 4g0 ln(r/r0)/
√

3
. (C3)

Hence to the lowest order in coupling constant we can make a
substitution,

1 + 8πg0

√
3

ln
r

r0
= [g0/g(r)]2 + · · · , (C4)

and represent Eq. (C2) in the following form,

G
x,x
B2

(r) ∼ r−4[g0/g(r)]2 + · · · . (C5)

From Eq. (C3), at large distances, g(r) � √
3/[4 ln(r/r0)], and

plugging this into Eq. (C5) produces multiplicative double-
logarithmic correction of the algebraic 1/r4 decay of the corre-
lation function G

x,x
B2

(r). Note that if the anomalous dimension
of the operator does not depend on the coupling constants
(which is the case for conserved quantities) there will be
no multiplicative logarithmic corrections in the corresponding
correlation function.

Moreover, apart from the logarithmic correction we can
even determine the precise numerical prefactor, by comparing
with the exact results for η < 1 [6]. Since in the infrared
limit the running coupling constant g⊥ flows to zero, one can
estimate the (renormalized) correlation function at large scale,
from perturbative expansion in g⊥.

We note that G
x,x
B2

obeys the following Callan-Symanzik
(CS) RG equation,⎛

⎝ ∂

∂ ln r̃
+

∑
j={||,⊥}

βj

∂

∂gj

− 2γB2 (g)

⎞
⎠G

x,x
B2

(r,r̃,g(r̃)) = 0,

(C6)
where g(r̃) = (g||(r̃),g⊥(r̃)), βj are their beta functions pre-
sented in Eq. (5) of the main text, and γB2 (g) = 2 − 4πg||/

√
3

is the anomalous dimension of Ôx
2 calculated in the previous

section. The CS RG equation is equivalent to the one presented
in the main text Eq. (13), up to the sign in front of the
anomalous dimension γB2 (due to the fact that increase of the
short-distance cutoff is equivalent to decreasing the distances
measured in units of the new cutoff).

CS Eq. (C6) defines the evolution of the two-point correla-
tion function G under variation of the length scale r̃ at which
the theory is defined. Since the effective theory is derived
from the original microscopic lattice model, the initial length
scale is given by the lattice constant r0 and is increased in the
RG process of gradually eliminating high-energy degrees of
freedom.

The following connection between the bare and renormal-
ized correlation functions is provided by the CS Eq. (C6),

G(r,r0,g(r0)) = G(r,r1,g(r1))e−2
∫ r1
r0

γ (g(r̃))d ln r̃
. (C7)
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To see this, observe that the left-hand side of Eq. (C7) does
not depend on some arbitrary scale r1. Applying r1

δ
δr1

to both
sides of Eq. (C7) reproduces Eq. (C6) for r1 = r̃ .

We will choose r1 large enough, so that G(r,r1,g(r1)) can
be expanded in powers of g⊥(r1) � 1. This step is called the
RG improvement of the perturbation theory. The zeroth-order
term, evaluated by Gaussian fixed point action, with rescaled
cutoff r1 is

G(r,r1,g(r1))|g⊥=0 = const.

(
r1

rr0

)4η

. (C8)

Note that increasing cutoff from r0 to r1 is equivalent to
decreasing distance (measured in new units) by the same factor,
r → rr0/r1.

Since at the lowest order γB2 (g) = 2 − 4πg||/
√

3, we need
the solution of the Kosterlitz-Thouless RG equations (5),
presented in the main text, only for g||,

g||(r̃) =
√

3(1 − η) coth [2(1 − η) ln r̃]/(2π ). (C9)

Using Eq. (C9) and Eq. (C8) we get from Eq. (C7)

G
x,x
B2

(r) = const.

(
1

r

)4η(1 − (Ar)−4(1−η)

1 − r
−4(1−η)
0

)2

. (C10)

In obtaining Eq. (C10) we used the following table integral∫
dx coth αx = ln[sinh(αx)]/α and put r1 = Ar . As an ar-

tifact of the finite-order perturbation theory approximation
(for correlation function, beta functions, and anomalous
dimension), G

x,x
B2

(r) in Eq. (C10) contains some arbitrary
number A.

Choosing the (η dependent) normalization constant in such
a way that the leading behavior of G

x,x
B2

(r), for distances ln r 

1/(1 − η), becomes identical to that shown in Eq. (11) of the
main text, we obtain for η → 1, over an intermediate range of
distances 1 � ln r � 1/(1 − η),

G
x,x
B2

(r) � B2[4(1 − η) ln (Ar)]2/r4, (C11)

where for η → 1

B2 � 1 − 2(1 − η) ln (1−η)
6π

+ O((1 − η)2)

(1 − η)227π4
.

For obtaining Eq. (C11) from Eq. (C10) we have used the
following equation,

lim
η→1

(r2(1−η) − r−2(1−η)) = 4(1 − η) ln r + O((1 − η)3).

(C12)
Number A in Eq. (C11) can be estimated by going to

higher order approximation in perturbation theory [6,16];
however it will contain some fitting constant depending on the
order of truncation of the perturbative series. If the complete
perturbation series could be summed then the correlation
function naturally would not contain any fitting parameter.

APPENDIX D: GROUND-STATE FIDELITY
SUSCEPTIBILITY AT THE

BEREZINSKII-KOSTERLITZ-THOULESS QUANTUM
PHASE TRANSITION

In quantum many-body systems, at zero temperature, phase
transitions can be encountered when changing strength λ

of the certain term in the Hamiltonian, Ĥ = Ĥ0 + λV̂ . In
the finite-size computational studies, a quantity that can be
sensitive to the rapid change of the ground state is the overlap of
two ground states at slightly different values of the parameter
λ, F (λ,λ + δλ) = 〈ψ0(λ)|ψ0(λ + δλ)〉 [31], and is called a
ground-state fidelity. The ground-state fidelity susceptibility
per site (FS) [32–34] is defined as

χL = (1/L) lim
δλ→0

[−2 ln |F (λ,λ + δλ)|]/(δλ)2 (D1)

and is expected to diverge in the thermodynamic limit at certain
quantum phase transitions.

Calculating numerically FS has been established as an
unbiased indicator of quantum phase transitions [35,36],
especially in one-dimensional systems where a highly accurate
numerical calculation of the ground state wave function is
possible due to the well-established methods, such as DMRG.

Another attractive feature of FS is that even though it can
be computed solely from the ground-state wave functions,
it contains information about the matrix element of operator
V̂ between the ground state and excited states. Due to this
property FS was used to confirm numerically [37] the analytic
prediction for the leading low frequency dependence of the
regular part of the dynamical current conductivity in gapless
systems [38], the relevant experimentally measurable quantity
that is notoriously difficult to compute with other numerical
methods.

For a translationally invariant system with a nonde-
generate ground state, perturbed by a local operator V̂ =
∂λĤ = ∑

r V̂ (r), the following connection between the FS
and the reduced two-point correlation function G(r,τ ) =
〈〈V̂ (r,τ )V̂ (0,0)〉〉 exists [34],

χL =
∫ L

r0

dr

∫ ∞

0
dτ τG(r,τ ), (D2)

where the imaginary time dependence is defined by V̂ (r,τ ) =
eτĤ V̂ (r)e−τĤ , averages are taken in the ground state |ψ0(λ)〉,
and r0 is the short-distance cutoff. The FS diverges for L → ∞
as χ ∝ Ld+2z−2�V , where �V is the dimension of operator
V̂ (x) at the critical point and z is the dynamic exponent, if
�V � z + 1/2. These simple scaling arguments show that for
the Berezinskii-Kosterlitz-Thouless (BKT) phase transition,
z = 1 and �V = 2 (the perturbing operator V̂ is marginal)
and FS should not diverge.

The XXZ spin- 1
2 chain is an example model where the

properties of the BKT transition in one-dimensional quantum
systems can be extracted in an exact way due to integrability.
It is well known that ground-state energy changes smoothly
across the BKT transition (ground-state energy is infinitely
differentiable with anisotropy parameter across the BKT
transition). An interesting question is how the ground-state
wave function evolves across the transition: Does the overlap
of the two ground states that correspond to the parameters
arbitrarily close, but located at different sides of the BKT
transition “feel” the transition? The answer to this question
is encoded in the behavior of FS and the correct behavior of
FS across the BKT transition point was uncovered in [26]:
The FS develops a cusp singularity, however stays finite in
the thermodynamic limit. This is in contrast to the previously
seemingly established results on the divergence of the FS
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at the BKT transition point [39–41] that were based on
asymptotically exact calculations within the effective Gaussian
description of the XXZ chain in the gapless regime λ < 1
and extending the results towards λ = 1. Here we clarify why
divergence in FS appears within the Gaussian approximation
and show that when correcting the Gaussian model by
marginally irrelevant perturbations (a necessary ingredient of
the effective theory describing the BKT transition), the FS in
the thermodynamic limit becomes finite.

In the following we will represent Hamiltonian (1) of the
main text as ĤXXZ = Ĥ0 + λV̂ , with V̂ = ∑

r Sz
r S

z
r+1.

Since the effective Gaussian model, given by Eq. (2) in
the main text, is quadratic, one can explicitly calculate the
fidelity F (K,K + δK), where K = 1/(4πR2) is the Luttinger
liquid parameter, and obtain for the FS in the thermodynamic
limit, χ |L=∞ = (∂λK)2/(8r0K

2). Stretching the mapping to
the Gaussian model towards the SU(2) limit (which is not
justified there), the singular dependence K(λ), at λ = 1,
leads to the divergence of the FS χ ∝ (1 − λ)−1 [39–41].
FS is related to the overlaps of the ground states at slightly
shifted anisotropy parameters and the ground state contains
information on all distances, whereas an effective approach
only connects low-energy properties of the microscopic and
effective models. However, since the singular contribution in
FS of the lattice systems, if such exist, is expected to come
from large distances (short distances being regularized by
lattice), it seems reasonable to assume that for the purpose
of identifying singularity in FS, effective description will be
reliable. The problem is that the mapping itself of the XXZ
spin- 1

2 model to the Gaussian theory becomes singular for
λ → 1. This singularity is encoded as well in the dependence
of the Luttinger liquid parameter on the anisotropy of the
microscopic model when λ → 1. Despite the fact that pertur-
bations to the Gaussian model are marginally irrelevant and
they die out in the infrared limit (fixed-point value of g is zero),
and thus the fixed-point action is Gaussian, they are crucial to
be kept for obtaining correct correlation functions and hence
for calculating the FS due to Eq. (D2).

If one does naive extrapolation of Eq. (11) in the main
text towards the Heisenberg AFM point, without keeping
marginally irrelevant correction to the Gaussian model with
the subsequent RG improved procedure outlined above, one
obtains unphysical divergence of the prefactor in front of the
1/r4 algebraic decay, B2 ∼ 1/(1 − λ). This would produce an
identical erroneous result for the FS that has been obtained

by calculating overlaps of the Gaussian model at different
Luttinger liquid parameters and extending the result all the
way towards λ → 1 from the gapless side [39–41].

Using non-Abelian bosonization, however, we showed
recently that instead of diverging, FS shows a finite (cusplike)
peak at the BKT phase transition. It converges, though logarith-
mically, to its finite thermodynamic value with increasing the
system size [26], χL � χc − χ1/ ln(L/a) + · · · , where both χc

and χ1 are finite positive numbers that are obtained respectively
from the two- and three-point correlation functions of the
currents of the SU1(2) Wess-Zumino model, the fixed-point
action of the Heisenberg spin- 1

2 antiferromagnetic (AFM)
chain [7].

To obtain the ground-state FS at the BKT phase transition
from Eq. (D2), we need imaginary-time dependence of the
uniform part of the bilinear spin correlation function at
the SU(2) AFM point. To this end the effective Lorentz
invariance of the Heisenberg spin- 1

2 chain can be invoked to
calculate Gz,z

u (r,τ ), noting that the processes breaking Lorentz
invariance (due to lattice) have high scaling dimension [16]
and will not modify asymptotic results. We can represent in
bosonization V̂ as∑

r

SrSr+1 → α0Heff +
∫

[α1H′
1(r) + α2H′

2(r)]dr, (D3)

where Heff,H′
1,H′

2 are from Eq. (4) of the main text and
proportionality factors α0,α1, and α2 will not be important in
the following. The first term in the right-hand side of bosoniza-
tion correspondence is the Hamiltonian of the effective model
ĤXXZ → Heff ; hence it does not contribute to the FS of V̂ ,
like any other quantity that commutes with the Hamiltonian.
This is easily seen from the following representation of the
ground-state FS [32], χ = ∑

n�=0 |〈n|V̂ |0〉|/(En − E0)2. Both
H′

1 and H′
2 are scalar operators and hence for calculating

the FS we can obtain the imaginary-time dependence of
the correlation function Gz,z

u (r,τ ) from the equal-time result,
Eq. (18) of the main text, by replacing r → √

r2 + v2τ 2.
From the convergence of the integral at large distances it is

clear that FS does not diverge at the BKT phase transition in
the thermodynamic limit, L = ∞,

χ ∼
∫ ∞

r0

dr

∫ ∞

0
dτ τ

ln2 (r2 + v2τ 2)

(r2 + v2τ 2)2
< ∞. (D4)
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