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Magnon spin transport driven by the magnon chemical potential in a magnetic insulator
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We develop a linear-response transport theory of diffusive spin and heat transport by magnons in magnetic
insulators with metallic contacts. The magnons are described by a position-dependent temperature and chemical
potential that are governed by diffusion equations with characteristic relaxation lengths. Proceeding from a
linearized Boltzmann equation, we derive expressions for length scales and transport coefficients. For yttrium
iron garnet (YIG) at room temperature we find that long-range transport is dominated by the magnon chemical
potential. We compare the model’s results with recent experiments on YIG with Pt contacts [L. J. Cornelissen
et al., Nat. Phys. 11, 1022 (2015)] and extract a magnon spin conductivity of σm = 5 × 105 S/m. Our results for
the spin Seebeck coefficient in YIG agree with published experiments. We conclude that the magnon chemical
potential is an essential ingredient for energy and spin transport in magnetic insulators.
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I. INTRODUCTION

The physics of diffusive magnon transport in magnetic
insulators, first investigated by Sanders and Walton [1], has
been a major topic in spin caloritronics since the discovery
of the spin Seebeck effect (SSE) in YIG|Pt bilayers [2–4].
This transverse voltage generated in platinum contacts to
insulating ferromagnets under a temperature gradient can be
explained by thermal spin pumping caused by a temperature
difference between magnons in the ferromagnet and electrons
in the platinum [4–7]. The magnons and phonons in the
bulk ferromagnet are considered as two weakly interacting
subsystems, each with their own temperature [1]. Hoffman
et al. explained the spin Seebeck effect in terms of the
stochastic Landau-Lifshitz-Gilbert equation with a noise term
that follows the phonon temperature [8].

Recently, diffusive magnon spin transport over large dis-
tances has been observed in yttrium iron garnet (YIG) that was
driven either electrically [9,10], thermally [9], or optically [11].
Notably, our observation of electrically driven magnon spin
transport was recently confirmed in a Pt|YIG|Pt trilayer
geometry [12,13]. Here, we argue that previous theories cannot
explain these observations, and therefore do not capture the
complete physics of magnon transport in magnetic insulators.
We present arguments in favor of a nonequilibrium magnon
chemical potential and work out the consequences for the
interpretation of experiments.

Magnons are the elementary excitations of the magnetic
order parameter. Their quantum mechanical creation and
annihilation operators fulfill the boson commutation relations
as long as their number is sufficiently small. Just like photons
and phonons, magnons at thermal equilibrium are distributed
over energy levels according to Planck’s quantum statistics for
a given temperature T . This is a Bose-Einstein distribution
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with zero chemical potential because the energy and therefore
magnon number is not conserved. Nevertheless, it is well
established that a magnon chemical potential can parametrize
a long-living nonequilibrium magnon state. For instance,
parametric excitation of a ferromagnet by microwaves gen-
erates high-energy magnons that thermalize much faster by
magnon-conserving exchange interactions than their number
decays [14]. The resulting distribution is very different from a
zero-chemical potential quantum or classical distribution func-
tion, but is close to an equilibrium distribution with a certain
temperature and nonzero chemical potential. The breakdown
of even such a description is then indicative of the creation of
a Bose (or, in the case of pumping at energies much smaller
than the thermal one, Rayleigh-Jeans [15]) condensate. This
new state of matter has indeed been observed [16]. Here, we
argue that a magnon chemical potential governs spin and heat
transport not only under strong parametric pumping, but also in
the linear response to weak electric or thermal actuation [17].

The elementary magnetic electron-hole excitations of nor-
mal metals or spin accumulation have been a very fruitful
concept in spintronics [18]. Since electron thermalization is
faster than spin-flip decay, a spin-polarized nonequilibrium
state can be described in terms of two Fermi-Dirac distribution
functions with different chemical potentials and temperatures
for the majority and minority spins. We may distinguish
the spin (particle) accumulation as the difference between
chemical potentials from the spin heat accumulation as the
difference between the spin temperatures [19]. Both are vectors
that are generated by spin injection and governed by diffusion
equations with characteristic decay times and lengths. The
spin heat accumulation decays faster than the spin particle
accumulation since both are dissipated by spin-flip scattering,
while the latter is inert to energy exchanging electron-
electron interactions. Here, we proceed from the premise that
nonequilibrium states of the magnetic order can be described
by a Bose-Einstein distribution function for magnons that
is parametrized by both temperature and chemical potential,
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where the latter implies magnon number conservation. We
therefore define a magnon heat accumulation δTm as the
difference between the temperature of the magnons and that
of the lattice. The chemical potential μm then represents
the magnon spin accumulation, noting that this definition
differs from that by Zhang and Zhang [20], who define a
magnon spin accumulation in terms of the magnon density.
The crucial parameters are then the relaxation times governing
the equilibration of δTm and μm. When the magnon heat accu-
mulation decays faster than the magnon particle accumulation,
previous theories for magnonic heat and spin transport should
be doubted [1,5–7,21]. The relaxation times are governed by
the collision integrals that include inelastic (one-, two-, and
three-magnon scatterings involving phonons) and elastic two-
and four-magnon scattering processes. At room temperature,
two-magnon scattering due to disorder is likely to be negligibly
small compared to phonon scattering. Four-magnon scattering
only redistributes the magnon energies, but does not lead to
momentum or energy loss of the magnon system. Processes
that do not conserve the number of magnons are caused by
either dipole-dipole or spin-orbit interaction with the lattice
and should be less important than the magnon-conserving ones
for high-quality magnetic materials such as YIG. At room
temperature, the magnon spin accumulation is then essential
to describe diffusive spin transport in ferromagnets.

Here, we revisit the linear-response transport theory for
magnon spin and heat transport, deriving the spin and heat
currents in the bulk of the magnetic insulator as well as
across the interface with a normal metal contact. The magnon
transport is assumed to be diffusive. Formally we are then
limited to the regime in which the thermal magnon wavelength
� and the magnon mean-free path � (the path length over which
magnon momentum is conserved) are smaller than the system
size L. The wavelength of magnons in YIG is (in a simple
parabolic band model) a few nanometers at room temperature.
Boona et al. [22] find that � at room temperature is of the
same order. As in electron transport in magnetic multilayers,
scattering at rough interfaces is likely to render a diffusive
picture valid even when the formal conditions for diffusive bulk
transport are not met. Under the assumptions that magnons
thermalize efficiently and that the mean-free path is dominated
by magnon-conserving scattering by phonons or structural and
magnetic disorder, we find that the magnon chemical potential
is required to harmonize theory and experiments on magnon
spin transport [9].

This paper is organized as follows: We start with a brief
review of diffusive charge, spin, and heat transport in metals
in Sec. II A. In Sec. II B, we derive the linear-response
expressions for magnon spin and heat currents, starting from
the Boltzmann equation for the magnon distribution function.
We proceed with boundary conditions at the Pt|YIG interface
in Sec. II C. In Sec. II D, we provide estimates for relaxation
lengths and transport coefficients for YIG. The transport
equations are analytically solved for a one-dimensional model
(longitudinal configuration) in Sec. III A. In Sec. III B, we
implement a numerical finite-element model of the experi-
mental geometry and we compare results with experiments in
Sec. III C. We apply our model also to the (longitudinal) spin
Seebeck effect in Sec. III D. A summary and conclusions are
given in Sec. IV.
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FIG. 1. Schematic of the 1D geometry [13,20]. A charge current
j in
c is sent through the left platinum strip along +y. This generates a

spin current js = jxz = θj in
c towards the YIG|Pt interface and a spin

accumulation, injecting magnons into the YIG with spin polarization
parallel to the magnetization M. The magnons diffuse towards the
right YIG|Pt interface, where they excite a spin accumulation and
spin current into the contact. Due to the inverse spin Hall effect, this
generates a charge current j out

c along the −y direction. Note that if M
is aligned along −z, magnons are absorbed at the injector and created
at the detector.

II. THEORY

We first review the diffusion theory for electrical magnon
spin injection and detection as published by one of us
in [17,23]. By introducing the magnon chemical potential, this
approach can disentangle spin and heat transport in contrast
to earlier treatments based on the magnon density [20] or
magnon temperature [1,5–7] only. We initially focus on the
one-dimensional (1D) geometry in Fig. 1 with two normal
metal (Pt) contacts to the magnetic insulator YIG. We express
the spin currents in the bulk of the normal metal contacts
and magnetic spacer, and the interface. While Ref. [17]
focused on the chemical potential, here we include the magnon
temperature as well. At low temperatures, the phonon specific
heat has been reported to be an order of magnitude larger than
the magnon one [22]. The room-temperature phonon mean-
free path (that provides an upper bound for the phonon collision
time) of a few nm [22] corresponds to a subpicosecond
transport relaxation time for sound velocities of 103–104 m/s.
From the outset, we therefore take the phonon heat capacity
to be so large and the phonon mean-free path and collision
times so short that the phonon distribution is not significantly
affected by the magnons. The phonon temperature Tp is
assumed to be either a fixed constant or, in the spin Seebeck
case, to have a constant gradient. For simplicity, we also
disregard the finite thermal (Kapitza) interface heat resistance
of the phonons [24].

A. Spin and heat transport in normal metals

There is much evidence that spin transport in metals is
well described by a spin diffusion approximation. Spin-flip
diffusion lengths of the order of nanometers reported in plat-
inum betray the existence of large interface contributions [25],
but the parametrized theory describes transport well [26]. The
charge (jc,α), spin (jαβ), and heat (jQ,α) current densities in
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the normal metals, where the spin polarization is defined in
the coordinate system of Fig. 1, are given by (see e.g. [27])

jc,α = σe∂αμe − σeS∂αTe − σSH

2
εαβγ ∂βμγ ,

2e

�
jαβ = −σe

2
∂αμβ − σSHεαβγ ∂γ μe − σSHSSNεαβγ ∂γ Te,

jQ,α = −κe∂αTe − σeP ∂αμe − σSH

2
PSNεαβγ ∂βμγ . (1)

Here, μe, Te, and μα denote the electrochemical potential,
electron temperature, and spin accumulation, respectively.
The subscripts α,β,γ ∈ {x,y,z} are Cartesian components
in the coordinate system in Fig. 1, α indicating current
direction and β spin polarization. εαβγ is the Levi-Civita
tensor and the summation convention is assumed throughout.
The charge, spin, and heat current densities are measured in
units of A/m2, J/m2, and W/m2, respectively, while both
the electrochemical potential and the spin accumulation are
in volts. The charge and spin Hall conductivities are σe and
σSH, both in units of S/m. Thermoelectric effects in metals are
governed by the Seebeck coefficient S and Peltier coefficient
P = STe. Similarly, we allow for a spin Nernst effect via
the coefficient SSN and the reciprocal spin Ettingshausen
effect governed by PSN = SSNTe. We assume, however, that
spin-orbit coupling is weak enough so that we can ignore spin
swapping terms, i.e., terms of the form jαβ ∼ ∂βμα and their
Onsager reciprocal [28]. The spin heat accumulation in the
normal metal and therefore spin polarization of the heat current
are disregarded for simplicity [19]. � and −e are Planck’s
constant and the electron charge. The continuity equation
∂tρe + ∇ · je = 0 expresses conservation of the electric charge
density ρe. The electron spin μ and heat Qe accumulations
relax to the lattice at rates �sμ and �QT , respectively:

∂t sβ + 1

�
∂αjαβ = −2�sμeμβν, (2)

∂tQe + ∇ · jQ = −�QT Ce(Te − Tp), (3)

where the nonequilibrium spin density sβ = 2eμβν, Ce is the
electron heat capacity per unit volume, and ν the density of
states at the Fermi level. Inserting Eq. (1) leads to the length
scales �s = √

σe/(4e2�sμν) and �ep = √
κe/(�QT Ce) govern-

ing the decay of the electron spin and heat accumulations,
respectively. At room temperature, these are typically �Pt

s =
1.5 nm, �Pt

ep = 4.5 nm for platinum [21,29], and �Au
s = 35 nm,

�Au
ep = 80 nm for gold [21,30].

B. Spin and heat transport in magnetic insulators

Magnonics traditionally focuses on the low-energy, long-
wavelength regime of coherent wave dynamics. In contrast,
the basic and yet not-well-tested assumption underlying the
present theory is diffusive magnon transport, which we believe
to be appropriate for elevated temperatures in which short-
wavelength magnons dominate. Diffusion should be prevalent
when the system size is larger than the magnon mean-free path
and magnon thermal wavelength (called magnon coherence
length in [5]). Magnons carry angular momentum parallel to
the magnetization (z axis). Oscillating transverse components
of the angular momentum can be safely neglected for system

sizes larger than the magnetic exchange length, which is on
the order of 10 nm in YIG at low external magnetic fields [8].

Not much is known about the scattering mean-free path, but
extrapolating the results from Ref. [22] to room temperature
leads to an estimate of a few nm. Dipolar interactions
affect mainly the long-wavelength coherent magnons that
do not contribute significantly at room temperature. Thermal
magnons interact by strong and number-conserving exchange
interactions. In the Appendix, the magnon-magnon scattering
rate is estimated as (T/Tc)3kBT /� [31,32] or a scattering time
of 0.1 ps for YIG with Curie temperature Tc ∼ 500 K at room
temperature T = 300 K, where T ≈ Tm ≈ Tp. According to
the Landau-Lifshitz-Gilbert phenomenology [33], the magnon
decay rate is αGkBT /� [32], with Gilbert damping constant
αG ≈ 10−4 � 1 for YIG. Hence, the ratio between the scatter-
ing rates for magnon-nonconserving to -conserving processes
is αG(Tc/T )3 � 1 at room temperature. These numbers justify
the second crucial premise of the present formalism, viz., very
efficient, local equilibration of the magnon system. Since a
spin accumulation in general injects angular momentum and
heat at different rates, we need at least two parameters for the
magnon distribution f , i.e., an effective temperature Tm and
a nonzero chemical potential (or magnon spin accumulation)
μm in the Bose-Einstein distribution function nB :

f (x,ε) = nB(x,ε) = (
e

ε−μm(x)
kB Tm (x) − 1

)−1
, (4)

where kB is Boltzmann’s constant. Both magnon accumu-
lations Tm − Tp and μm vanish on, in principle, different
length scales during diffusion. Assuming an isotropic (cubic)
medium, the magnon spin current ( jm, in J/m2) and heat
current densities ( jQ,m, in W/m2) in linear response read as(

2e
�

jm

jQ,m

)
= −

(
σm L/T

�L/2e κm

)(∇μm

∇Tm

)
, (5)

where μm is measured in volts, σm is the magnon spin
conductivity (in units of S/m), L is the (bulk) spin Seebeck
coefficient in units of A/m, and κm is the magnonic heat
conductivity in units of Wm−1K−1. Magnon-phonon drag
contributions jm,jQ,m ∝ ∇Tp are assumed to be absorbed in
the transport coefficients since Tm ≈ Tp. The spin and heat
continuity equations for magnon transport read as(

∂ρm

∂t
+ 1

�
∇ · jm

∂Qm

∂t
+ ∇ · jQ,m

)
= −

(
�ρμ �ρT

�Qμ �QT

)(
μm

∂ρm

∂μm

Cm(Tm − Tp)

)
,

(6)
in which ρm is the nonequilibrium magnon spin density and
Qm the magnonic heat accumulation. Cm is the magnon heat
capacity per unit volume. The rates �ρμ and �QT describe
relaxation of magnon spin and temperature, respectively. The
cross terms (decay or generation of spins by cooling or heating
of the magnons and vice versa) are governed by the coefficients
�ρT and �Qμ. Equations (5) and (6) lead to the diffusion
equations(

e αμkB

eαT /kB 1

)(∇2μm

∇2Tm

)

=
(

e/�2
m kB/(�ρT T 2)

e/
(
kB�Qμμ2

m

)
1/�2

mp

)(
μm

Tm − Tp

)
, (7)
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FIG. 2. Length scales at normal metal|ferromagnetic insulator
(NM|FI) interfaces in Fig. 1. Assuming a constant gradient of the
phonon temperature Tp and disregarding Joule heating, the electron
temperature Te and magnon temperature Tm relax on length scales �ep

and �mp. A significant phonon heat (Kapitza) resistance would cause
a step in Tp at the interface. The spin Hall effect in the normal
metal drives a spin current jxz towards the interface, which will
be partially transmitted to the magnon system (causing a nonzero
magnon chemical potential in the FI) and partially reflected back into
the NM (causing a nonzero electron spin accumulation in the NM).
The electron spin accumulation μs = μz and the magnon chemical
potential μm relax on length scales �s and �m, respectively.

with four length scales and two dimensionless ratios. Here,

�m =
√

σm/(2e�ρμ)( ∂ρm

∂μm
)
−1

is the magnon spin diffusion
length (or relaxation length of the magnon chemical potential)
and �mp = √

κm/(�QT Cm) is the magnon-phonon relaxation
length that governs the relaxation of the magnon tempera-
ture. The equilibrium values for magnon chemical potential
and magnon temperature are μm = 0 and Tm = Tp (see
Fig. 2). The length scales �ρT = √

kBσm/(2e2�ρT Cm) and

�Qμ =
√

eκm/(�kB�Qμ)( ∂ρm

∂μm
)
−1

arise from the nondiagonal
cross terms. The dimensionless ratio αμ = eL/(kBσmTp) is
a measure for the relative ability of chemical-potential and
temperature gradients to drive spin currents. Similarly, αT =
�kBL/(2eκm) characterizes the magnon heat current driven
by chemical potential gradients relative to that driven by
temperature gradients.

C. Interfacial spin and heat currents

The electron and magnon diffusion equations are
linked by interface boundary conditions. Spin currents and
accumulations are parallel to the magnetization direction of
the ferromagnet along the z direction. We assume that the
exchange coupling dominates the coupling between electrons
and magnons across the interface. A perturbative treatment
of the exchange coupling at the interface leads to the spin

current [34,35]

j int
s = − � g↑↓

2e2πs

∫
dε D(ε)(ε − eμz)

×
[
nB

(
ε − eμm

kBTm

)
− nB

(
ε − eμz

kBTe

)]
, (8)

where g↑↓ is the real part of the spin-mixing conductance in
S/m2, s = S/a3 the equilibrium spin density of the magnetic
insulator, and S is the total spin in a unit cell with volume a3.
The density of states of magnons D(ε) = √

ε − �/(4π2J
3/2
s )

for a dispersion �ωk = Jsk2 + �. The spin-wave gap � is
governed by the magnetic anisotropy and the applied magnetic
field. In soft ferromagnets such as YIG � ∼ 1 K, which we
disregard in the following since we focus on effects at room
temperature (see e.g. Ref. [8]). The heat current is given by
inserting ε/� into the integrand of Eq. (8).

Linearizing the above equation, we find the spin and heat
currents across the interface [17](

j int
s

j int
Q

)
= 3� g↑↓

4e2πs�3

(
e ζ (3/2) 5

2kBζ (5/2)

5
2

ekBT
�

ζ (5/2) 35
4

k2
BT

�
ζ (7/2)

)

×
(

μz − μm

Te − Tm

)
. (9)

� = √
4πJs/(kBT ) is the magnon thermal (de Broglie)

wavelength (the factor 4π is included for convenience).
These expressions agree with those derived from a stochastic
model [5] after correcting numerical factors of the order
of unity. In YIG at room temperature � ∼ 1 nm. The term
proportional to μz corresponds to the spin transfer (absorption
of spin current by the fluctuating magnet), while that
proportional to μm is the spin pumping contribution (emission
of spin current by the magnet). The prefactor ∼1/(s�3) can
be understood by noting that s�3 is the effective number of
spins in the magnetic insulator that has to be agitated and
appears in the denominator of Eq. (9) as a mass term. In the
macrospin approximation, this term would be replaced by the
total number of spins in the magnet.

From Eq. (9) we identify the effective spin conductance
gs that governs the transfer of spin across the interface by
the chemical potential difference �μ = μz − μm. In units of
S/m2,

gs = 3 ζ
(

3
2

)
2πs

g↑↓

�3
. (10)

Using the material parameters for YIG from Table II and the
expression for the thermal de Broglie wavelength given above,
we find gs = 0.06g↑↓ at room temperature [21,36]. gs scales
with temperature like ∼(T/Tc)3/2, but it should be kept in mind
that the theory is not valid in the limits T → Tc and T → 0.

It is nevertheless consistent with the recently reported strong
suppression of gs at low temperatures [10,13].

D. Parameters and length scales

In this section, we present expressions for the transport
parameters derived from the linearized Boltzmann equation
for the magnon distribution function and present numerical
estimates based on experimental data.
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TABLE I. Transport coefficients and length scales [17] as derived in the Appendix.

Symbol Expression

Magnon thermal de Broglie wavelength �
√

4πJs/(kBT )

Magnon spin conductivity σm 4ζ (3/2)2e2Jsτ/(�2�3)

Magnon heat conductivity κm
35
2 ζ (7/2)Jsk

2
BT τ/(�2�3)

Bulk spin Seebeck coefficient L 10ζ (5/2)eJskBT τ/(�2�3)
Magnon thermal velocity vth 2

√
JskBT /�

Magnon spin diffusion length �m vth

√
2
3 ττmr

Magnon-phonon relaxation length �mp vth

√
2
3 τ (1/τmr + 1/τmp)−1

Magnon spin-heat relaxation length �ρT �m/
√

αμ

Magnon heat-spin relaxation length �Qμ �m/
√

αT

αμ
5
2 ζ (5/2)/ζ (3/2)

αT
2
7 ζ (5/7)/ζ (7/2)

1. Boltzmann transport theory

Magnon transport as formulated in the previous section
is governed by the transport coefficients σm, L, κm, four
length scales �m, �mp, �ρT , and �Qμ, and two dimension-
less numbers αμ and αT . In the Appendix, we derive
these parameters using the linearized Boltzmann equation
in the relaxation time approximation. We consider four
interaction events: (i) elastic magnon scattering by bulk
impurities or interface disorder, (ii) magnon dissipation by
magnon-phonon interactions that annihilate or create spin
waves and/or inelastic scattering of magnons by magnetic
disorder, (iii) magnon-phonon interactions that conserve the
number of magnons, and (iv) magnon-magnon scattering by
magnon-conserving exchange scattering processes (see also
Sec. II B).

The magnon energy and momentum-dependent scattering
times for these processes are τel, τmr, τmp, and τmm. At elevated
temperatures they should be computed at magnon energy
kBT and momentum �/�. Magnon-magnon interactions that
conserve momentum do not directly affect transport currents
in our single magnon band model, so the total relaxation rate
is 1/τ = 1/τel + 1/τmr + 1/τmp.

The transport coefficients and length scales derived in
the Appendix are summarized in Table I. The Einstein
relation σm = 2eDm∂ρm/�∂μm connects the magnon diffusion
constant Dm defined by jm = −Dm∇ρm with the magnon con-
ductivity, where ∂ρm/∂μm = eLi1/2(e−�/kBT )/(4π�Js) and
Lin(z) is the polylogarithmic function of order n.

We observe that the magnon-phonon relaxation length �mp

is smaller than the magnon spin diffusion length �m since the
latter is proportional to τmr, whereas �mp is limited by both
magnon-conserving and -nonconserving scattering processes.
Furthermore, 1/τmr can be estimated by the Landau-Lifshitz-
Gilbert equation as ∼αGkBT /� [32], where the Gilbert
constant αG at thermal energies is not necessarily the same
as for ferromagnetic resonance.

2. Clean systems

In the limit of a clean system, 1/τel → 0. At sufficiently
low temperatures, the magnon-conserving magnon-phonon
scattering rate 1/τmp ∼ T 3.5 [37] (see also the Appendix)

loses against 1/τmr ∼ αGkBT /� since αG is approximately
temperature independent. Then, all lengths ∼�/αG ∼ 10 μm
for YIG at room temperature and with αG = 10−4 from
ferromagnetic resonance (FMR) [8]. The agreement with the
observed signal decay [9] is likely to be coincidental, however,
since the spin waves at thermal energies have a much shorter
lifetime than the Kittel mode for which αG is measured. σm

estimated using the FMR Gilbert damping is larger than the
experimental value by several orders of magnitude, which is
a strong indication that the clean limit is not appropriate for
realistic devices at room temperature.

3. Estimates for YIG at room temperature

The phonon and magnon inelastic mean-free paths derived
from the experimental heat conductivity appear to be almost
identical at low temperatures up to 20 K [22] but could
not be measured at higher temperatures. Both are likely
to be limited by the same scattering mechanism, i.e., the
magnon-phonon interaction. We assume here that the magnon-
phonon scattering of thermal magnons at room temperature
is dominated by the exchange interaction (which always
conserves magnons) rather than the magnetic anisotropy
(which may not conserve magnons) [38]. Then, τ ∼ τmp and
extrapolating the low-temperature results to room temperature
leads to an �mp of the order of a nm, in agreement with an
analysis of spin Seebeck [6] and Peltier [21] experiments. The
associated time scale τmp ∼ 1–0.1 ps is of the same order
as τmm estimated in Sec. II B. On the other hand, τmr ∼ 1 ns
from αG ∼ 10−4 and therefore �m ∼ vth

√
τmpτmr ∼ 0.1–1 μm.

The observed magnon spin transport signal decays over a
somewhat longer length scale (∼10 μm). Considering that the
estimated τmr is an upper limit, our crude model apparently
overestimates the scattering. An important conclusion is,
nonetheless, that �m � �mp, which implies that the magnon
chemical potential carries much farther than the magnon
temperature.

With τ ∼ τmp ∼ 0.1–1 ps we can also estimate the magnon
spin conductivity σ ∼ e2Jsτ/�

2�3 ∼ 105–106 S/m, in rea-
sonable agreement with the value extracted from our experi-
ments (see next section).
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III. HETEROSTRUCTURES

Here, we apply the model, introduced and parametrized
in the previous section, to concrete contact geometries and
compare the results with experiments. We start with an
analytical treatment of the one-dimensional geometry, fol-
lowed by numerical results for the transverse configuration
of top metal contacts on a YIG film with finite thickness.
Throughout, we assume, motivated by the estimates presented
in the previous section, that the magnon-phonon relaxation
is so efficient that the magnon temperature closely follows
the phonon temperature, i.e., Tm = Tp (only in Sec. III C 3
we study the implications of the opposite case, i.e., Tm 
= Tp

and μm = 0). This allows us to focus on the spin diffusion
equation for the chemical potential μm. This approximation
should hold at room temperature, while the opposite regime
�mp � �m might be relevant at low temperatures or high
magnon densities: when the magnon chemical potential is
pinned to the band edge, transport can be described in terms of
the effective magnon temperature. The intermediate regime
�mp ∼ �m, in which both magnon chemical potential and
effective temperature have to be taken into account, is left
for future study.

A. One-dimensional model

We consider first the one-dimensional geometry shown in
Fig. 1. We focus on strictly linear response and therefore
disregard Joule heating in the metal contacts as well as
thermoelectric voltages by the spin Nernst and Ettingshausen
effects. The spin and charge currents in the metal are then
governed by(

jc

2e
�

js

)
=

(
σe −σSH

−σSH −σe

)(
∂yμe

1
2∂xμz

)
, (11)

where the charge transport is in the y direction, spin transport in
the x direction, and the electron spin accumulation is pointing
in the z direction. The spin and magnon diffusion equations
reduce to

∂2μs

∂x2
= μz

�2
s

, (12)

∂2μm

∂x2
= μm

�2
m

. (13)

The interface spin currents (8) provide the boundary conditions
at the interface to the ferromagnet, while all currents at the
vacuum interface vanish. Equations (9) and (10) lead to the
interface spin current density j int

s = gs(μint
z − μint

m ), where gs

is defined in Eq. (10).

1. Current transfer efficiency

The nonlocal resistance Rnl is the voltage over the detector
divided by current in the injector, also referred to as nonlocal
spin Hall magnetoresistance (see below). The magnon spin
injection and detection can also be expressed in terms of
the current transfer efficiency η, i.e., the absolute value of
the ratio between the currents in the detector and injector
strip [20] when the detector circuit is shorted. η = Rnl/R0

for identical Pt contacts with resistance R0. In Fig. 3, we

lm

lm

FIG. 3. The current transfer efficiency η (nonlocal resistance
normalized by that of the metal contacts) as a function of distance
between the contacts in a Pt|YIG|Pt structure calculated in the 1D
model. Parameters are taken from Table II and the Pt thickness
t = 10 nm. The dashed lines are plots of the functions C1/d (red
dashed line) and C2 exp (−d/�m) (blue dashed line) to show the
different modes of signal decay in different regimes: diffusive 1/d

decay for d < �m and exponential decay for d > �m. The constants C1

and C2 were chosen to show overlap with η for illustrative purposes,
but have no physical meaning.

plot the calculated η as a function of distance d between the
contacts for a Pt thickness t = 10 nm and parameters from
Table II. η decays algebraically ∝1/d when d � �m, which
implies diffusion without relaxation, and exponentially for
d � �m. The calculated order of magnitude already agrees
with experiments [9]. The η′s in Ref. [20] are three orders
of magnitude larger than ours due to their much weaker
relaxation.

TABLE II. Selected parameters for spin and heat transport in
bilayers with magnetic insulators and metals. a, S, and Js are adopted
from [39], �s and θ from [21,29], and σe is extracted from electrical
measurements on our devices [9]. Note that our values for σe and
�s are consistent with Elliot-Yafet scattering as the dominant spin
relaxation mechanism in platinum [40]. The mixing conductance,
magnon spin diffusion length, and the magnon spin conductivity are
estimated in the main text.

Symbol Value Unit

YIG lattice constant a 12.376 Å
Spin quantum number per YIG S 10

unit cell
Spin-wave stiffness constant in YIG Js 8.458 × 10−40 Jm2

YIG magnon spin diffusion length �m 9.4 μm
YIG spin conductivity σm 5 × 105 S/m
Real part of the spin-mixing g↑↓ 1.6 × 1014 S/m2

conductance
Platinum conductivity σe 2.0 × 106 S/m
Platinum spin relaxation length �s 1.5 nm
Platinum spin Hall angle θ 0.11
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FIG. 4. Experimental spin Hall magnetoresistance (SMR) as a
function of platinum strip width. The black squares (left axis) show
absolute resistance changes �RSMR divided by the device length
(18 μm) in units of �/m. The red dots (right axis) show the relative
resistivity changes �ρ/ρ.

The origin of the small η is the inefficiency of the spin Hall
mediated spin-charge conversion. The ratio between the spin
accumulations in injector and detector ηs = μdet

s /μ
inj
s is much

larger than η and discussed in Sec. III C 2.

2. Spin Hall magnetoresistance

The effective spin conductance gs governs the amount of
spin transferred across the interface between the normal metal
and the magnetic insulator. While gs cannot be extracted from
measurements directly, it is related to the spin-mixing conduc-
tance g↑↓ via Eq. (10). In order to determine g↑↓ we measured
the spin Hall magnetoresistance (SMR) [41,42] in devices of
Ref. [9]. The SMR is defined as the relative resistivity change
in the Pt contact between in-plane magnetization parallel and
normal to the current �ρ/ρ. The expression for the magnitude
of the SMR reads as [43]

�ρ

ρ
= θ2 �s

t

2�sg
↑↓ tanh2 t

2�s

σe + 2�sg↑↓ coth t
�s

, (14)

where t = 13.5 nm is the platinum thickness. Figure 4 shows
the experimental SMR as a function of platinum strip width.
As expected �ρ/ρ = (2.6 ± 0.09) × 10−4 does not depend on
the strip width. Using Eq. (14) and the values for �s , θ , and
σe as indicated in Table II, we find g↑↓ = (1.6 ± 0.06) × 1014

S/m2,which agrees with previous reports [29,42,44].
In Chen et al.’s zero-temperature theory [43] the spin

current generated by the spin Hall effect in Pt is perfectly
reflected when spin accumulation and magnetization are
collinear. As discussed above, at finite temperature a fraction of
the spin current is injected into the ferromagnet in the form of
magnons. This implies that the SMR should be a monotonously
decreasing function of temperature. This has been found for
high temperatures [45], but the decrease of the SMR at low
temperatures [46] hints at a temperature dependence of other
parameters such as the spin Hall angle.

The current transfer efficiency η can be interpreted as a
nonlocal version of the SMR [10]. The SMR is caused by

the contrast in spin current absorption of the YIG|Pt interface
when the spin accumulation vector is normal or parallel to
the magnetization M. In the nonlocal geometry, we measure
the voltage in contact 2 that has been induced by a charge
current (in the same direction) in contact 1. Since gs < g↑↓, the
relation |�ρ/ρ| � η must hold even in the absence of losses
in the ferromagnet and detector. This indeed agrees with our
data.

3. Interface transparency

The analytical expression for η in the one-dimensional
geometry is lengthy and omitted here, but it can be simplified
for special cases. In the limit of a large bulk magnon
spin resistance, the interface resistance can be disregarded.
The decay of the spin current is then dominated by the
bulk spin resistance and relaxation of both materials. When
σm/�m,σe/�s � gs

η = θ2�mσeσm

t
[
σ 2

m + (
�m

�s

)2
σ 2

e

] sinh−1 d

�m

, (15)

where the Pt thickness is chosen t � �s and θ = σSH/σe

is the spin Hall angle. When d � �m we are in the purely
diffusive regime with algebraic decay η ∝ 1/d. Exponential
decay with characteristic length �m takes over when d � �m.
In our experiments (see Table II) σm ∼ σe and �m � �s , so

η = θ2�2
s σm

�mtσe

sinh−1 d

�m

. (16)

On the other hand, when σm/�m,σe/�s � gs the interfaces
dominate and

η = θ2g2
s �

2
s �m

tσeσm

sinh−1 d

�m

, (17)

with identical scaling with respect to d, but a different
prefactor. According to the parameters in Table II σm/�m �
σe/�s � gs , so spin injection is limited by the interfaces due
to the small spin conductance between YIG and platinum.

B. Two-dimensional geometry

Experiments are carried out for Pt|YIG|Pt with a lateral
(transverse) geometry in which the platinum injector and
detector are deposited on a YIG film. The two-dimensional
model sketched in Fig. 5 captures this configuration but cannot
be treated analytically. We therefore developed a finite-element
implementation of our spin diffusion theory by the COMSOL

MULTIPHYSICS (version 4.3a) software package, extending
the description of spin transport in metallic systems [47] to
magnetic insulators. The finite-element simulations of the spin
Seebeck [6] and spin Peltier [21] effects in Pt|YIG focused
on heat transport and were based on a magnon temperature
diffusion model. Here, we find that neglecting the magnon
chemical potential underestimates spin transport by orders
of magnitude because the magnon temperature equilibrates
at a length scale �mp of a few nanometers and the magnon
heat capacity and heat conductivity are small [22]. The
magnon chemical potential and the associated nonequilibrium
magnons, on the other hand, diffuse on the much longer length
scale �m.
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Interface layer

FIG. 5. Schematic of the 2D geometry. The relevant dimensions are indicated in the figure. The spin accumulation arising from the charge
current through the injector μs is used as a boundary condition on the YIG|Pt interface. The interface layer is used to account for the effect of
finite spin-mixing conductance between YIG and platinum.

In order to model the experiments in two dimensions, we
assume translational invariance in the third direction, which
is justified by the large aspect ratio of relatively small contact
distances compared with their length. With equal magnon and
phonon temperatures everywhere, the magnon transport in two
dimensions is governed by

2e

�
jm = −σm∇μm,

∇2μm = μm

�2
m

, (18)

where ∇ = x∂x + z∂z.
The particle spin current js = (jxx,jzx) in the metal is

described by

2e

�
js = −σe

2
∇μx,

∇2μx = μx

�2
s

, (19)

where μx is the x component of the electron spin accumu-
lation. The spin-charge coupling via the spin Hall effect is
implemented by the boundary conditions in Sec. III B 2, while
the inverse spin Hall effect is accounted for in the calculation
of the detector voltage (see Sec. III B 5). The estimates at the
end of the previous section justify disregarding temperature
effects.

1. Geometry

In order to accurately model the experiments, we define two
detectors (left and right) and a central injector, introducing the
distances dleft and dright as in Fig. 5. We generate a short- (A)
and a long-distance (B) geometry. The injector and detectors
are slightly different as summarized in Table III. The YIG film
thicknesses are 200 nm for (A) and 210 nm for (B). The YIG
film is chosen to be long compared to the spin diffusion length
(wYIG = 150 μm) in order to prevent finite-size artifacts.

TABLE III. Properties of geometry sets A and B.

Pt width Pt thickness Distances
w (nm) t (nm) d (μm)

Geometry A 140 13.5 0.2–5
Geometry B 300 7 2–42.5

2. Boundary conditions

Sending a charge current density jc in the +y direction
through the platinum injector strip generates a spin accumula-
tion μs at the YIG|platinum interface by the spin Hall effect
(shown in Fig. 5). This is captured by Eq. (1) that predicts a
spin accumulation at the Pt side of the interface of [21]

μs ≡ μx|interface = 2θjc

�s

σe

tanh

(
t

2�s

)
, (20)

which is used for the interface boundary condition of the
magnon diffusion equation. Here, we assume that the contact
with the YIG does not significantly affect the spin accumu-
lation [43], which is allowed for the collinear configuration
since gs < σe/�s . The spin orientation of μs points along
−x, parallel to the YIG magnetization. A charge current
I = 100 μA generates spin accumulations in the injector
contact of μA

s = 8.7 μV and μB
s = 7.7 μV for geometries

A and B, respectively.
The uncovered YIG surface is subject to a zero current

boundary condition (∇ · n)μs = 0, where n is the surface
normal.

3. YIG|Pt interface

The interface spin conductance gs is modeled by a thin
interface layer, leading to a spin current j int

s = −σ int
s ∂μx/∂z,

with spin conductivity σ int
s = gstint. When the interface thick-

ness tint is small compared to the platinum thickness tPt we
can accurately model the Pt|YIG interface without having
to change the COMSOL code. Varying the auxiliary interface
layer thickness between 0.5 < tint < 2.5 nm, the spin currents
change by only 0.1%. This is expected because the increased
interface layer thickness is compensated by the reduced
resistivity of the interface material such that the resistance
remains constant. In the following, we adopt tint = 1.0 nm.

Finally, with Eq. (10) gs = 0.06g↑↓ and g↑↓ from
Sec. III A 2 we get gs = 9.6 × 1012 S/m2.

4. Magnon chemical potential profile

A representative computed magnon chemical potential map
is shown in Fig. 6(a), while different profiles along the three
indicated cuts are plotted in Figs. 6(b)–6(d). The magnon
chemical potential along x and at z = −1 nm (i.e., 1 nm
below the surface of the YIG) in Fig. 6(b) is characterized by
the spin injection by the center electrode. Globally, μm decays
exponentially with distance from the injector on the scale of �m.
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FIG. 6. (a) Two-dimensional magnon chemical potential distribu-
tion for geometry (A) with dleft = 200 nm and dright = 300 nm. The
lines numbered 1, 2, 3 indicate the locations of the profiles plotted
in figures (b), (c), (d), respectively. In (b) we observe a maximum
μm for x = 0, i.e., under the injector, followed by a sharp decrease
close to the detectors located at x = −200 and 300 nm because the Pt
contacts are efficient (but not ideal) spin sinks. On the outer sides of
the detectors μm partially recovers with distance and finally decays
exponentially on the length scale �m.

We also observe that the left and right detector contacts at x =
−200 nm and 300 nm, respectively, act as sinks that visibly
suppress but do not quench the magnon accumulation. The
finite mixing conductance and therefore magnon absorption
are also evident from the profiles along z in Figs. 6(c) and 6(d):

the magnon chemical potential changes abruptly across the
YIG|Pt interface by the relatively large interface resistance
g−1

s . The magnon chemical potential is much smaller than the
magnon gap (∼1 K). We are therefore far from the threshold
for current-driven instabilities such as magnon condensation
and/or self-oscillations of the magnetization [32].

5. Detector contact and nonlocal resistance

The spin current density in the detectors is governed by the
spin accumulation according to

〈jzx〉 = − σe

2A

∫
A

∂μx

∂z
dA′, (21)

which is an average over the detector area A = wt . The
observable nonlocal resistance Rnl (normalized to device
length) in units of �/m,

Rnl = θ〈jzx〉
σeI

, (22)

is compared with experiments in the next section.

C. Comparison with experiments

1. Two-dimensional model

Figure 7 compares the simulations as described in the
previous section with our experiments [9]. Figure 7(a) is a
linear plot for closely spaced Pt contacts while Fig. 7(b) shows
the results for all contact distances on a logarithmic scale. The
magnon spin conductivity σm and the magnon spin diffusion
length �m are adjustable parameters; all others are listed in
Table II. We adopted σm = 5 × 105 S/m and �m = 9.4 μm as
the best fit values that agree with the estimates in Ref. [9] and
Sec. II D.

At large contact separations in geometry (B), the signal
is more sensitive to the bulk parameters �m and σm than
the interface gs . When contacts are close to each other, the
interfaces become more important and the results depend
sensitively on gs and σm as compared to �m. For very close
contacts (d < 500 nm) the total spin resistance of YIG is
dominated by the interface and our model calculations slightly

(b)(a)

FIG. 7. (a) Computed nonlocal first harmonic signal as a function of distance on a linear scale. The red open circles show the results for
sample (A), while black open squares represent sample (B). The blue triangles are the experimental results [9]. The red dashed line is a 1/d fit
of the numerical results for (A). (b) Same as (a) but on a logarithmic scale.
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FIG. 8. (a) Experimental and simulated spin transfer efficiency
ηs = μdet

s /μ
inj
s . The blue solid line is a fit by the 1D spin diffusion

model [9]. Since here interfaces are disregarded, μdet
s → μ

inj
s for

vanishing contact distances. The red dashed line is obtained from
the equivalent circuit model in (b) with spin resistances Rs

X defined
in the text. This model includes gs but is valid for d < �m only since
spin relaxation is disregarded. The interfaces lead to a saturation of
ηs at short distances.

underestimate the experimental signal and, in contrast to
experiments, deviate from the ∼d−1 fit that might indicate
an underestimated gs. However, a larger gs would lead to
deviations at intermediate distances (1 < d < 5 μm).

2. Spin transfer efficiency and equivalent circuit model

The spin transfer efficiency ηs = μdet
s /μ

inj
s , i.e., the ratio

between the spin accumulation in the injector and that in
the detector, can be readily derived from the experiments by
Eq. (20). From the voltage generated in the detector by the
inverse spin Hall effect VISHE [48]

μdet
s = 2t

θL

1 + e−2t/�s

(1 − e−t/�s )2
VISHE, (23)

where l is the length of the metal contact. The spin transfer
efficiency therefore reads as

ηs = t

�sθ2

Rnl

Rdet

(et/�s + 1)(e2t/�s + 1)

(et/�s − 1)3
, (24)

where Rnl = VISHE/I is the observed nonlocal resistance and
Rdet the detector resistance. Figure 8(a) shows the experimental
data converted to the spin transfer efficiency as a function of
distance d that is fitted to a 1D magnon spin diffusion model
that does not include the interfaces [9]. When d → 0 and
interfaces are disregarded, ηs diverges. This artifact can be
repaired by the equivalent spin-resistor circuit in Fig. 8(b)

according to which

ηs = Rs
Pt

Rs
YIG + 2Rs

int + 2RPt
s

, (25)

where Rs
Pt = �s/[σeAint tanh(t/�s)] is the spin resistance of

the platinum strip [48], Rs
int = 1/(gsAint) is interface spin

resistance, and Rs
YIG = d/(σmAYIG) is the magnonic spin

resistance of YIG. AYIG = ltYIG is the cross section of the YIG
channel and Aint = wl is the area of the Pt|YIG interfaces. The
parameters in Table II lead to the red dashed line in Fig. 8(a),
which agrees well with the experimental data for d < �m. No
free parameters were used in this model since we adopted
σm = 5 × 105 S/m as extracted from our 2D model in the
previous section.

The model predicts that the spin transfer efficiency should
saturate for d � 100 nm for gs = 9.6 × 1012 S/m2. A pre-
dicted onset of saturation at 200 nm is not confirmed by the
experiments, which as pointed out already in the previous
section, could imply a larger gs . Experiments on samples
with even closer contacts are difficult but desirable. Based
on the available data, we predict that the efficiency saturates
at ηs = 4 × 10−3. The charge transfer efficiency (defined in
Sec. III A 1) would be maximized at η ≈ 5 × 10−5, which
is still below the SMR �ρ/ρ = 2.6 × 10−4, as predicted in
Sec. III A 2.

3. Magnon temperature model

We can analyze the experiments also in terms of magnon
temperature diffusion [1] as applied to the spin Seebeck [5,6]
and spin Peltier [21] effects. Communication between the
platinum injector and detector is possible via phonon and
magnon heat transport: the spin accumulation at the injector
can heat or cool the magnon/phonon system by the spin Peltier
effect. The diffusive heat current generates a voltage at the
detector by the spin Seebeck effect. However, pure phononic
heat transport does not stroke with the exponential scaling,
but decays only logarithmically (see below). The magnon
temperature model (which describes the magnons in terms
of their temperature only) can give an exponential scaling,
but in order to agree with experiments, the magnon-phonon
relaxation length must be large such that Tm 
= Tp over large
distances. This is at odds with the analysis by Schreier et al.
and Flipse et al. However, we can test this model by, for the
sake of argument, increasing this length scale by four orders
of magnitude to �mp = 9.4 μm and completely disregard the
magnon chemical potential. The spin Peltier heat current Qinj

SPE
is then [21]

Q
inj
SPE = LsT

μ
inj
s

2
Aint, (26)

where Ls is the interface spin Seebeck coefficient, Ls =
2g↑↓γ �kB/(eMs�

3) [5,6,21], and Ms = μBS/a3 is the sat-
uration magnetization of YIG. The equivalent circuit is based
on the spin Peltier heat current and the spin thermal resistances
of the YIG|Pt interfaces and the YIG channel. This allows us
to find Tm−e, the temperature difference between magnons and
electrons at the detector interface, which is the driving force
for the SSE in this model. The equivalent thermal resistance
circuit is shown in Fig. 9(b). Relaxation is disregarded, so
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FIG. 9. (a) Results of the thermal model for κm = 10−2 W/(mK)
(red curve), κm = 10−1 W/(mK) (green curve), and κm = 1 W/(mK)
(black curve). Plotted on the y axis is the spin transfer efficiency
resulting from the thermal model ηth = μdet

s /μ
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s . The blue squares

represent the experimental data. (b) The equivalent thermal resistance
model. The definitions of the thermal resistances used in the model
are given in the main text. At the thermal grounds in the circuit,
the temperature difference between magnons and electrons (Tm−e) is
zero.

the model is only valid for d < �mp. The interface magnetic
heat resistance is given by Rth

int = 1/(κI
s Aint), with κI

s equal
to [5,6,21]

κI
s = h

e2

kBT

�

μBkBg↑↓

πMs�3
, (27)

and where μB is the Bohr magneton. The YIG heat resistance
Rth

YIG = d/(κmAYIG) and from the thermal circuit model we

find that Tm−e = Q
inj
SPE(Rth

int)
2
/(Rth

int + Rth
YIG), which generates

a spin accumulation in the detector by the spin Seebeck effect

μdet
s = Tm−e

g↑↓γ �kB

πMs�3

4π

e

�s

σ
tanh

(
t

2�s

)
1 + e−2t/�s

(1 − e−t/�s )2
. (28)

The thus obtained spin transfer efficiency ηth is plotted in
Fig. 9(a) as a function of the magnon spin conductivity
κm. For κm ∼ 0.1–1 W/(mK) reasonable agreement with the
experimental data can be achieved. While Schreier et al.
argued that κm should be in the range 10−2–10−3 W/(mK)),
κm from Table I is also of the order of 1 W/(mK) at
room temperature. Hence, the magnon temperature model
can describe the nonlocal experiments, provided that the
magnon-phonon relaxation length �mp is large. However, from
the expression for �mp that we gave in Table I we find that
�mp ∼ 10 μm corresponds to τmp ≈ τmr ∼ 1 ns and κm ∼ 104

W/(mK), which is at least three orders of magnitude larger
than even the total YIG heat conductivity, and is clearly

unrealistic. Thus, requiring �mp ∼ 10 μm while maintaining
κm ∼ 1 W/(mK) is inconsistent. Also, an �mp of the order of
nanometers as reported by Schreier et al. and Flipse et al. is
difficult to reconcile with the observed length scale of the order
of 10 μm.

Up to now, we disregarded phononic heat transport. As
argued, the interaction of phonons with magnons in the spin
channel is weak, but the energy transfer can be efficient.
The spin Peltier effect at the contact generates a magnon
heat current that decays on the length scale �mp, heating up
the phonons that subsequently diffuse to the detector, where
they cause a spin Seebeck effect. The magnon system is in
equilibrium except at distances from injector and detector on
the scale �mp that we argued to be short. In this scenario, there
is no nonlocal magnon transport in the bulk at all, but injector
and detector communicate by pure phonon heat transport.
However, this mechanism does not explain the exponential
decay of the nonlocal signal: the diffusive heat current emitted
by a line source, taking into account that the gadolinium
gallium garnet (GGG) substrate has a heat conductivity close
to that of YIG [6], decays only logarithmically as a function
of distance.

D. Longitudinal spin Seebeck effect

The spin Seebeck effect is usually measured in the longi-
tudinal configuration, i.e., samples with a YIG film grown
on GGG and a Pt top contact. Longitudinal spin Seebeck
measurements are hence local measurements, as opposed to
the nonlocal experiments we have discussed in the preceding
sections. However, in the longitudinal configuration our one-
dimensional model [17] is still applicable. A recent study
extracted the length scale of the longitudinal spin Seebeck
effect from experiments on samples with various YIG film
thicknesses [49]. A length of the order of 1 μm was found.
Similar results were obtained by Kikkawa et al. [50].

We assume a constant gradient (TL − TR)/d < 0, where
TL,TR are the temperatures at the interfaces of YIG to GGG,
platinum, respectively, with Tmeverywhere equilibrized to Tp,

and disregard the Kapitza heat resistance [cf. Fig. 10(a)]. At
the YIG|GGG interface the spin current vanishes. Figure 10
illustrates the magnon chemical potential profile on the YIG
thickness d as well as the transparency of the Pt|YIG interface
for four limiting cases, i.e., for opaque (gs < σm/�m) and
transparent (gs > σm/�m) interfaces and a thick (d > �m) and
a thin (d < �m) YIG film, in which analytic results can be
derived.

We define a spin Seebeck coefficient as the normalized
inverse spin Hall voltage VISHE/ty in the platinum film of
length ty divided by the temperature gradient �T/d, with
�T = TL − TR and average temperature T0:

σSSE = dVISHE

ty�T
. (29)

Assuming that the Pt spin diffusion length �s is much shorter
than its film thickness t , we find the analytic expression

σSSE =
gs�s�mLθ

[
cosh d

�m
− 1

]
tσeT0

[
gs�m cosh d

�m
+ σm

(
1 + 2gs�s

σe

)
sinh d

�m

] . (30)
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FIG. 10. Magnon chemical potential μm under the spin Seebeck
effect for a linear temperature gradient in YIG, in the limit of (a)
an opaque interface and thick YIG, (b) an opaque interface and thin
YIG, (c) a transparent interface and thick YIG, and (d) a transparent
interface and thin YIG. In all four cases, μm changes sign somewhere
in the YIG. For higher interface transparency (larger gs), the zero
crossing shifts closer to the Pt|YIG interface.

In Fig. 11, σSSE is plotted as a function of the relative
thickness d/�m of the magnetic insulator in the transport
direction, Pt thickness of t = 10 nm and T0 = 300 K. We
adopt L from Table I and a relaxation time τ ∼ τmp ∼ 0.1
ps and the parameters from Fig. 11. The normalized spin
Seebeck coefficient saturates as a function of d on the scale
of the magnon spin diffusion length �m. While experiments at
T0 � 250 K report somewhat smaller length scales than our
�m, our saturation σSSE ∼ 0.1–1 μV/K is of the same order as
the experiments [51].

In the limit of an opaque interface, σSSE saturates to

σSSE(d � �m) = gs�s�mLθ

tT0σeσm

=
(

gs�s

σe

)(
�m

t

)
αμθkB

e
, (31)

in terms of the dimensionless ratio αμ from Eq. (7).
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FIG. 11. Normalized spin Seebeck coefficient as a function of the
thickness of the magnetic insulator in the direction of the temperature
gradient. Parameters taken are from Table II, together with a Pt
thickness of t = 10 nm and temperature of 300 K. The value for
the bulk spin Seebeck coefficient L is taken from the expression in
Table I with τ = 0.1 ps.

For a transparent interface with �m � �s and σm ∼ σe, the
result is governed by bulk parameters only:

σSSE(d → ∞) = �sLθ

tT0σe

. (32)

This model for the spin Seebeck effect is oversimplified
by assuming a vanishing magnon-phonon relaxation length
and disregarding interface heat resistances. The gradient in
the phonon temperature can give rise to a spin Seebeck
voltage [52] even when bulk magnon spin transport is frozen
out by a large magnetic field. Nevertheless, it is remarkable
that it gives a reasonable qualitative description for the spin
Seebeck effect with input parameters adapted for electrically
driven magnon transport. We conclude that also in the
description of the spin Seebeck effect the magnon chemical
potential can play a crucial role.

IV. CONCLUSIONS

We presented a diffusion theory for magnon spin and
heat transport in magnetic insulators actuated by metallic
contacts. In contrast to previous models, we focus on the
magnon chemical potential. This is an essential ingredient
because under ambient conditions �m > �mp, i.e., the magnon
chemical potential relaxes over much larger length scales
than the magnon temperature. We compare theoretical results
for electrical magnon injection and detection with nonlocal
transport experiments on YIG|Pt structures [9], for both a 1D
analytical and a 2D finite-element model.

In the 1D model, we study the relevance of interface versus
bulk-limited transport and find that, for the materials and
conditions considered, the interface spin resistance dominates.
For the limiting cases of transparent and opaque interfaces,
the spin transfer efficiency η decays algebraically ∝1/d as
a function of injector-detector distance d when d < �m, and
exponentially with a characteristic length �m for d > �m.

A 2D finite-element model for the actual sample configura-
tions can be fitted well to the experiments for different contact
distances, leading to a magnon conductivity σm = 5 × 105

S/m and diffusion length �m = 9.4 μm.
The experiments measure first- and second-order har-

monic signals that are attributed to electrical magnon spin
injection/detection and thermal generation of magnons by
Joule heating with spin Seebeck effect detection, respectively.
Here, we focus on the linear response that we argue to
be dominated by the diffusion of a magnon accumulation
governed by the chemical potential, rather than the magnon
temperature. However, we applied our theory also to the
standard longitudinal (local) spin Seebeck geometry. We find
the same length scale �m and a (normalized) spin Seebeck
coefficient of σSSE ∼ 0.1–1 μV/K for d � �m, which is of
the same order of magnitude as the observations [49].

ACKNOWLEDGMENTS

We would like to acknowledge H. M. de Roosz and
J. G. Holstein for technical assistance, and Y. Tserkovnyak,
A. Brataas, S. Bender, J. Xiao, and B. Flebus for discussions.
This work is part of the research program of the Foundation
for Fundamental Research on Matter (FOM) and supported

014412-12



MAGNON SPIN TRANSPORT DRIVEN BY THE MAGNON . . . PHYSICAL REVIEW B 94, 014412 (2016)

by NanoLab NL, EU FP7 ICT Grant No. 612759 InSpin,
Grant-in-Aid for Scientific Research (Grants No. 25247056,
No. 25220910, and No. 26103006) and the Zernike Institute
for Advanced Materials. R.D. is a member of the D-ITP
consortium, a program of the Netherlands Organization for
Scientific Research (NWO) that is funded by the Dutch
Ministry of Education, Culture, and Science (OCW).

APPENDIX: BOLTZMANN TRANSPORT THEORY

Here, we derive our magnon transport theory from the
linearized Boltzmann equation in the relaxation time ap-
proximation, thereby introducing and estimating the different
collision times.

1. Boltzmann equation

Equations (5)–(7) are based on the Boltzmann equation for
the magnon distribution function f (x,k,t):

∂f

∂t
+ ∂f

∂x
· ∂ωk

∂k
= �in[f ] − �out[f ], (A1)

where �in = �in
el + �in

mr + �in
mp + �in

mm and �out = �out
el +

�out
mr + �out

mp + �out
mm are the total rates of scattering into and

out of a magnon state with wave vector k, respectively.
The subscripts refer to elastic magnon scattering at defects,
magnon relaxation by magnon-phonon interactions that do not
conserve magnon number, magnon-conserving inelastic and
elastic magnon-phonon interactions, and magnon number and
energy-conserving magnon-magnon interactions. We discuss
them in the following for an isotropic magnetic insulator and
in the limit of small magnon and phonon numbers.

The elastic magnon scattering is given by Fermi’s golden
rule as

�out
el = 2π

�

∑
k′

∣∣V el
kk′

∣∣2
δ(�ωk − �ωk′)f (k,t), (A2)

where V el
kk′ is the matrix element for scattering by defects

and rough boundaries [23,37] of a magnon with momentum
�k to one with �k′ at the same energy. �in

el is obtained
from this expression by interchanging k and k′. In the
presence of the in-scattering term (vertex correction) �in

el ,
the Boltzmann equation is an integrodifferential rather than
a simple differential equation.

Gilbert damping parametrizes the magnon dissipation into
the phonon bath. According to the linearized Landau-Lifshitz-
Gilbert equation [32]

�out
mr = 2αGωkf (k,t). (A3)

Since the phonons are assumed to be at thermal equilibrium
with temperature Tp, �in

mr is obtained by substituting f (k,t) →
nB(�ωk/kBTp) in �out

mr .
Magnon-conserving magnon-phonon interactions with ma-

trix elements V
mp

kk′q generate the out-scattering rate

�out
mp = 2π

�

∑
k′,q

∣∣V mp
kk′q

∣∣2
δ(�ωk − �ωk′ − εq)

×f (k,t)[(1 + f (k′,t)]
[

1 + nB

(
εq

kBTp

)]
, (A4)

where εq = �c|q| is the acoustic phonon dispersion with sound
velocity c and momentum q. The “in” scattering rate

�in
mp = 2π

�

∑
k′,q

∣∣V mp
kk′q

∣∣2
δ(�ωk − �ωk′ − εq)

×f (k′,t)[(1 + f (k,t)]nB

(
εq

kBTp

)
. (A5)

Finally, the four-magnon interactions (two magnons in, two
magnons out) generate

�out
mm = 2π

�

∑
k′,k′′,k′′′

∣∣V mm
k+k′,k−k′,k′′−k′′′

∣∣2

×δ(�ωk + �ωk′ − �ωk′′ − �ωk′′′ )δ(k + k′ − k′′ − k′′′)

×f (k,t)f (k′,t)[1 + f (k′′,t)][1 + f (k′′′,t)], (A6)

while �in
mm follows by exchanging kk′′, and k′ and k′′′.

Disregarding umklapp scattering, the magnon-magnon inter-
actions conserve linear and angular momentum. V mm therefore
depends only on the center-of-mass momentum and the relative
magnon momenta before and after the collision, which implies
that �mm does not affect transport directly (analogous to the
role of electron-electron interactions in electric conduction).

The collision rates govern the energy and
momentum-dependent collision times τa(k,�ω) (with
a ∈ {el,mr,mp,mm}). These are defined from the “out” rates
via

1

τa(k,�ω)
= �out

a

f (k,t)
, (A7)

replacing f → nB(�ωk/kBTp) and �ωk with �ω where
phonons are involved. Here, we are interested mainly in
thermal magnons for which the relevant collision times are
evaluated at energy �ω = kBT and momentum k = �−1.
Then, 1/τmr ∼ αGkBT /�. Elastic magnon scattering can be
parametrized by a mean-free path �el = τel(k,�ω)∂ωk/∂k, and
therefore 1/τel(k,�ω) = 2�−1

el

√
Jsω/� or τel = �el/vm, where

vm = 2
√

Jsω/� is the magnon group velocity. Estimates for
�el range from 1 μm [23] under the assumption that �el is due to
Gilbert damping and disorder only, to 500 μm [37]. Therefore,
τel ∼ 10–105 ps. Since we deduce in the main text that at room
temperature τmp is one to two orders of magnitude smaller than
this τel, we completely disregard elastic two-magnon scattering
in the comparison with experiments.

We adopt the relaxation time approximation in which the
scattering terms read as

�[f ] = 1

τel

[
f − nB

(
�ωk − μm

kBTm

)]

+ 1

τmr

[
f − nB

(
�ωk

kBTp

)]

+ 1

τmp

[
f − nB

(
�ωk − μm

kBTp

)]

+ 1

τmm

[
f − nB

(
�ωk − μm

kBTm

)]
. (A8)

The distribution functions here are chosen such that the
elastic scattering processes stop when f approaches the Bose-
Einstein distribution with local chemical potential μm 
= 0,
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in contrast to the inelastic scattering that causes relaxation to
thermal equilibrium with the lattice and μm = 0. Similarly, the
temperatures Tp vs Tm are chosen to express that the scattering
exchanges energy with the phonons or keeps it in the magnon
system, respectively.

The Boltzmann equation may be linearized in terms of
the small perturbations, i.e., the gradients of temperature and
chemical potential. The local momentum space shift δf of the
magnon distribution function

δf (x,k) = τ
∂nB

(
�ωk
kBTp

)
∂�ωk

∂ωk

∂k
·
(

∇xμm + �ωk
∇xTm

Tp

)
,

(A9)

where 1/τ = 1/τmr + 1/τmp. The magnon spin and heat
currents [Eq. (5)] are obtained by substituting δf into

jm = �

∫
dk

(2π )3
δf (k)

∂ωk

∂k
, (A10)

jQ,m =
∫

dk
(2π )3

δf (k)�ωk
∂ωk

∂k
. (A11)

The magnon spin and heat diffusion [Eq. (6)] are obtained
by a momentum integral of the Boltzmann equation (A8) after
multiplying by � and �ωk, respectively. The local distribution
function in the collision terms consists of the sum of the
“drift” term δf and the Bose-Einstein distribution with local
temperature and chemical potential

f (k,t) = δf + nB([�ωk − μm(x)]/[kBTm(x)]). (A12)

We reiterate that the relatively efficient magnon conserving τm

limits the energy, but not (directly) the spin diffusion.

2. Magnon-magnon scattering rate

The four-magnon scattering rate is believed to efficiently
thermalize the local magnon distribution to the Bose-Einstein
form [31,32]. At room temperature, the leading-order correc-
tion to the exchange interaction in the presence of magnetiza-
tion textures reads as

Hxc = −Js

2s

∫
dx s(x) · ∇2s(x), (A13)

where s(x) (s = |s| = S/a3) is the spin density. By the
Holstein-Primakoff transformation, the spin-lowering op-
erator reads as ŝ− = sx − isy =

√
2s − ψ̂†ψ̂ψ̂ � √

2sψ̂ −
ψ̂†ψ̂ψ̂/2

√
2s in terms of the bosonic creation (ψ̂†) and

annihilation (ψ̂) operators. Hxc can be approximated as a
four-particle pointlike interaction term

Hmm ≈ g

∫
dx ψ̂†ψ̂†ψ̂ψ̂, (A14)

where g ∼ kBT /s is the exchange interaction strength at
thermal energies. Using Fermi’s golden rule for this interaction
yields collision terms as Eq. (A6) with V mm ≈ g:

1

τmm(k,�ω)
≈ g2

�

∑
k′,k′′,k′′′

δ(�ωk + �ωk′ − �ωk′′ − �ωk′′′ )δ(k + k′ − k′′ − k′′′) × nB

(
�ωk′

kBTp

)

×
[

1 + nB

(
�ωk′′

kBTp

)][
1 + nB

(
�ωk′′′

kBTp

)]
. (A15)

The momentum integrals can be estimated for thermal
magnons with k = �−1 and �ω = kBT and

1

τmm
≈ g2

�6

kBT

�
≈

(
T

Tc

)3
kBT

�
, (A16)

with Curie temperature kBTc ≈ Jss
2/3. With parameters for

YIG Jss
2/3/kB ≈ 200 K, which is the correct order of

magnitude. The T 4 scaling of the four-magnon interaction
rate results from the combined effects of the magnon density of
states (magnon scattering phase space) and energy dependence
of the exchange interactions.

While the magnon-magnon scattering is efficient at thermal
energies, it becomes slow at low energies close to the band edge
due to phase space restrictions and leads to deviations from the
Bose-Einstein distribution functions that may be disregarded
at room temperature.

3. Magnon-conserving magnon-phonon interactions

At thermal energies and large wave numbers, the magnon-
conserving magnon-phonon scattering [37] is dominated by

the dependence of the exchange interaction on lattice distor-
tions rather than magnetocrystalline fields. Since we estimate
orders of magnitude, we disregard phonon polarization and
the tensor character of the magnetoelastic interaction and start
from the Hamiltonian

Hmp = −B

s

∫
dxs(x) · ∇2s(x)

⎛
⎝ ∑

α∈{x,y,z}

∂R

∂xα

⎞
⎠, (A17)

where B is a magnetoelastic constant. The scalar lattice
displacement field R can be expressed in the phonon creation
and annihilation operators φ̂† and φ̂ as

R =
√

�2

2ρε
[φ̂ + φ̂†], (A18)

where ε is the phonon energy and ρ the mass density. By the
Holstein-Primakoff transformation introduced in the previous
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section, we find to leading order

Hmp ≈ B

∫
dx(∇ψ̂†) · (∇ψ̂)

(
�

2

ρε

)⎛
⎝ ∑

α∈{x,y,z}

∂φ̂

∂xα

⎞
⎠ + H.c.

(A19)

This Hamiltonian is the scattering potential in the matrix
elements of Eq. (A5):

∣∣V mp
kk′q

∣∣2 ≈ B2
�

2q2

ρεq
(k · k′)2δ(k − k′ − q) (A20)

which by substitution and in the limit � � �p, where �p =
�c/kBTp is the phonon thermal de Broglie wavelength, leads
to

1

τmp
∼ B2

�ρ

(
�

kBT

)2 1

�4�5
p

. (A21)

In the opposite limit � � �p,

1

τmp
∼ B2

�ρ

(
�

kBT

)2 1

�7�2
p

. (A22)

At room temperature � ≈ �p and for ρa3 = 10−24 kg both
expressions lead to τmp = 10(Js/B)2 ns [38]. We could not
find estimates of B for YIG in the literature. In iron, exchange
interactions change by a factor of 2 upon small lattice distortion
�a � a [53]. While the authors of this latter work find that
this does not strongly affect the Curie temperature, it leads
to fast magnon-phonon scattering as we show now. Namely,
B ∼ a∂Js/∂�a|�a=0 ≈ aJs/�a, so that τmp = 10(�a/a)2

ns, which is many orders of magnitude smaller than one ns
(and thus smaller than τmr at room temperature). While no
proof, this argument supports our hypothesis that the magnon
temperature relaxation length is much shorter than that of the
magnon chemical potential.
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Takahashi, R. Gross, G. E. W. Bauer, S. T. B. Goennenwein,
and E. Saitoh, Phys. Rev. Lett. 110, 206601 (2013).

[42] N. Vlietstra, J. Shan, V. Castel, B. J. van Wees, and J. Ben
Youssef, Phys. Rev. B 87, 184421 (2013).

[43] Y.-T. Chen, S. Takahashi, H. Nakayama, M. Althammer, S. T.
B. Goennenwein, E. Saitoh, and G. E. W. Bauer, Phys. Rev. B
87, 144411 (2013).

[44] M. B. Jungfleisch, V. Lauer, R. Neb, A. V. Chumak, and B.
Hillebrands, Appl. Phys. Lett. 103, 022411 (2013).

[45] K.-i. Uchida, Z. Qiu, T. Kikkawa, R. Iguchi, and E. Saitoh, Appl.
Phys. Lett. 106, 052405 (2015).

[46] S. Meyer, M. Althammer, S. Geprägs, M. Opel, R. Gross, and
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