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Formation of new phase inclusions in the system of quasiequilibrium magnons of high density
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The paper studies the spatial variation of the magnetization in a nonconducting magnetic sample with an excess
number of magnons in comparison to the equilibrium. The phenomenon is considered using the Landau-Lifshits
equation with additional terms describing the longitudinal relaxation of the magnetization, the magnon diffusion,
and the magnon creation by external pumping. The free energy of the system is presented in the mean-field
approximation. It is shown that, if the pumping exceeds some critical value, regions of a new phase arise where
the magnetic moments are oriented opposite to the magnetization of the magnetic sample. The phenomenon is
similar to the appearance of droplets of condensed phase in a supersaturated vapor. The appearance of a new
phase either in the form of a single domain or a periodical lattice is demonstrated. The studied process is a
competitor to the process of the Bose-Einstein condensation of magnons.
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I. INTRODUCTION

Spatial structures in nonequilibrium nonlinear systems have
been studied widely and successfully during the last half
century [1]. The processes of formation of such structures
are referred to as nonequilibrium phase transitions. There are
various nonequilibrium phase transitions and in their majority
differ from the equilibrium phase transitions. There is a class
of specific nonequilibrium phase transitions in systems of
particles (or quasiparticles in crystals) that have finite values
of lifetime. If combining particles produces an energy gain
and the lifetime of particles is much larger than the time of
interparticle collisions, the particles may form a condensed
phase. The formation of drops of electron-hole liquid in
germanium or silicon with high density of excitons created by
light is a classical example of phase transitions in systems of
unstable particles [2,3]. The stationary state of the condensed
phase of unstable particles may exist only in the presence of a
source which creates new particles instead of the disappearing
ones. When the value of the lifetime is large, the parameters of
the condensed phase (density, critical temperature of the phase
transition, etc.) are only slightly modified compared to the
same parameters for the infinite value of the lifetime. However,
for the range of parameters where the gas and the condensed
phase coexist, the spatial distribution of finite lifetime particles
has particular features which will be discussed later.

Magnons in magnetic materials are a classical example
of particles with a finite lifetime. The chemical potential of
magnons is equal to zero in the equilibrium state because
their number is not conserved due to the magnon-magnon and
magnon-phonon interactions. In the presence of an external
pumping, additional magnons appear besides the equilibrium
magnons. As a result, the chemical potential is not equal to
zero. Magnons are Bose particles and when their concentration
exceeds some threshold value, an appearance of Bose-Einstein
condensation (BEC) could be expected together with its
interesting manifestations: accumulation of particles at a
certain level, superfluidity, and so on. An interesting effect
was observed in Refs. [4,5] in which the authors investigated

*sugakov@kinr.kiev.ua

magnons in the yttrium-iron-garnet (YIG) films. The magnons
were excited by the parametric longitudinal pumping. The
analysis of the magnon spectra was carried out using Brillouin
light scattering (BLS) spectroscopy. The authors showed from
the analysis of experiments the manifestation of the Bose-
Einstein condensation of magnons. In particular, an increase
of the magnon concentration in the state with the wave vector
that corresponded to the minimum of the magnon band was
observed [4,5]. The appearance of the spontaneous coherence
in BLS by magnons was observed if the pumping exceeded a
critical value [6]. The emergence of a periodical variation of the
magnon density at a high level of magnon excitations was also
demonstrated [7]. The latter phenomenon was explained by the
presence of two minima in the magnon dispersion law leading
to the formation of two condensates and to the interaction
between the condensates.

Since then the investigation of the magnon condensation in
YIG obtained further development in numerous works which
further advanced the explanation of the phenomenon observed
in Refs. [4–7] and suggested different other effects related to
Bose-Einstein condensation. Thus the stability of BEC in the
high-density magnon system in YIG was analyzed in Ref. [8].
The microwave emission from the uniform mode generated
by BEC was studied in Ref. [9]. The spatial structure of
interacting bosons with two minima in the dispersion law
was investigated in Refs. [10–12]. The dramatic peak in the
density of the proposed condensed magnons after switching
off the pumping was observed in Ref. [13]. It is interesting
that the time it took for the peak to increase coincided with the
time of the magnon decay and the time it took for the peak to
decrease was much larger than the magnon decay time. The
problem of the spin current in the system of an isolator and
a conductor was theoretically studied under the condition of
BEC of magnons in the isolator in Ref. [14]. In Refs. [15,16],
the Josephson oscillations in the magnon density between
two spatially separated magnon clouds were calculated and
also the methods of the magnon current measurement were
analyzed. In Ref. [17], a temporal decrease of the magnon
condensate density in YIG in a gradient of temperature,
created by a laser after the pumping shutdown, was observed.
The authors explained this effect by the appearance of a
supercurrent in the condition of BEC. However, there are
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works in which doubt is expressed about the correctness of the
interpretation of the results observed in Refs. [4,5]. The authors
of Ref. [18] showed that the reason for the accumulation
of particles created by pumping at the lowest state may be
caused by the peculiarities of the Bose-Einstein condensation
of quasiparticles. In Ref. [19], the authors described the
time evolution of the magnon condensate under pumping
by the classical stochastic Landau-Lifshits-Gilbert equation
including magnon-phonon hybridization and came to the
conclusion that the phenomenon observed in Refs. [4,5] has a
purely classical nature.

In the current paper, we present another version of the
processes in a ferromagnet with the magnon density exceeding
the equilibrium value. We show that, if there are additional
magnons, created by an external pumping, the evolution of the
system may choose a scenario alternative to the Bose-Einstein
condensation. This new scenario is the formation of regions in
the ferromagnetic material where the magnetic moments are
oriented opposite to the orientation of the magnetic moment
of the sample. Similar to the Bose-Einstein condensation, this
phenomenon appears in crystals with a magnon density higher
than the equilibrium value.

The system of magnons is in a way equivalent to a gas
of particles. If the concentration of the particles exceeds the
equilibrium value, the gas is referred to as “oversaturated”
or “supersaturated.” Processes of precipitation of regions of a
new phase are known to occur in oversaturated gas. Similar
systems arise also in mixtures of liquids or solids after rapid
cooling. There are two popular models that describe processes
of the unmixing of mixtures from one thermodynamic phase
to form two coexisting phases: the model of the spinodal
decomposition [20,21] and the model of the nucleation and
growth [22]. The subject of our interest, a system with
magnon pumping, is oversaturated with magnons. So, during
the relaxation, individual magnons would cluster forming
inclusions of the new phase. Within these inclusions, the
orientation of the magnetic moments would be opposite to
the magnetic moment of the crystal. A qualitative picture for
the dynamics of the magnon system is shown in Fig. 1.

Let us assume that the magnon state of Fig. 1(a) presents
a uniform quasiequilibrium magnon distribution, which arises
due to both the thermal excitation and the external pumping.
There are two scenarios for the further development of the
uniform magnon distribution. According to the first scenario,
the Bose-Einstein condensation shall occur if the magnon
concentration exceeds the critical value. Such process is
investigated in Refs. [4,5]. However, the second scenario,
according to which the formation of the new phase occurs in the
oversaturated magnon system, is also realistic. There is a strong
short-range interaction between magnons. When magnons are
collected in a cluster, the energy per magnon decreases by
a value of order of 0.1 eV [23], which significantly exceeds
the thermal energy at the room temperature. The equilibrium
state of the system is determined by the minimum of the
free energy and not by the minimum of the energy. Also,
if the magnon concentration exceeds the equilibrium one,
magnon clusters have to form with an opposite orientation
of their magnetic moments to the magnetic moment of the
other part of the crystal. The magnon clusters are inclusions of
regions of the magnon condensed phase. However, it is not a

FIG. 1. The distribution of magnon magnetic moments in a
crystal. The continuous regions present the areas with the majority
of lattice cell moments oriented along the field (light) and opposite
to the field (dark). The individual lattice cell moments are not shown
because there are too many of them. The arrows show the directions
of the moments of magnons that are opposite to the direction of
the majority of cell moments. The left part (a) presents the uniform
distribution of magnons at which the Bose-Einstein condensation may
occur if the magnon density is higher than some threshold value. The
right part (b) shows an alternative distribution of the magnetization,
in which the state with a domain (the dark strip) having the moments
of the lattice cells oriented opposite to the magnetic field arises. The
light arrows in the dark region show the magnetic moments of the
magnons in the domain.

Bose-Einstein condensation, it is a conventional condensation
in the coordinate space due to the interaction between particles.
The clusters of the new condensed phase may be shaped
variously. A structure in the form of a single domain is drawn
in Fig. 1(b). The present paper investigates the processes of
formation of the regions of a new phase in the supersaturated
magnon gas.

Because the magnon lifetime is finite, the arising structures
may exist only during the continuous magnon pumping.
Similar studies of the phase transitions in systems of particles
with finite lifetimes have been carried out for different types
of quasiparticles: for the radiation defects [24–26] and for the
excitons [27–32]. The theories of these works have modified
and generalized the stochastic model of the nucleation and
growth (Lifshiz-Slyosov [22]) and the model of the spinodal
decomposition (Cahn-Hillert [20,21]) to make them applicable
to systems of particles with a finite lifetime. The theories have
been successful in explaining the unconventional experimental
results obtained by different authors (mainly by the Timofeev’s
[33] and Butov’s [34] groups) during investigations of the
light emission by excitons from double quantum well het-
erostructures in semiconductors at low temperature. Excitons
were created by lasers and, at high density, formed islands of
the excitonic condensed phase. Sometimes the islands were
localized periodically in space. (For more information on the
application of the theory of phase transitions in systems of
unstable particles for the explanation of experiments with
excitons see Refs. [31,32,35] and references therein.) The
formation of a new phase in a system of unstable particles has
distinct features compared to the phase transition in a system
of stable particles. The distinctions include the following: (1)
the size of the regions of the new phase is restricted, (2) there
is a correlation between the regions of the new phase, which
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may cause the appearance of periodical structures, and (3) the
regions of the new phase exist only with external pumping.
The structures are the results of self-organization processes in
nonequilibrium systems.

In the present paper, we apply the approach developed
in the above papers (see Ref. [35] and references therein),
devoted to the study of the phase transitions in systems of
unstable particles, to a many-magnon system. We shall show
the possibility of an appearance of a new phase inclusion in a
magnetic supersaturated magnon gas. The qualitative analysis,
given in the last section, argues that effects caused by the new
inclusions may be similar to the effects that were observed in
Refs. [4–7] and explained by the manifestation of BEC.

II. TAKING INTO ACCOUNT MAGNON DIFFUSION AND
MAGNON PUMPING INTO EQUATION FOR

MAGNETIZATION

We shall consider a nonconducting magnetic crystal in a
magnetic field oriented along the crystalline axis 0Z. We
assume that the nonequilibrium magnons are excited in the
system by the two-magnon longitudinal pumping and the
number of magnons is larger than the equilibrium one. Due to
the strong magnon-magnon and magnon-phonon interactions,
the magnons are in a quasiequilibrium state. Our aim is to
determine the spatial variation of the magnetization M. To this
end, we shall study the clustering of magnons into a new phase
with the creation of regions that have the magnetic moment
oriented opposite to the orientation of the main magnetization.
After the creation of regions of the new inverse phase, the
magnetization is nonuniform, though the initial system and
external fields (the static magnetic field, the pumping) are
assumed to be uniform. The processes of the self-organization
in the system spontaneously break the symmetry. In describing
the nonuniform system we assume that the principle of local
equilibrium holds. In this case, in a small vicinity of some
spatial point, the thermodynamic functions are the same
functions of the local microscopic variables (magnon density,
temperature) as in the equilibrium system. This assumption
allows the introduction of the free energy in a nonequilibrium
system. The local free energy depends on the magnon density
and the magnon density depends on the spatial coordinates.
The principle of the local equilibrium is conventionally used
in the majority cases when considering the self-organization
problems in nonequilibrium systems [1].

We shall use the phenomenological approach for the
solution of the problem. Let us analyze the phenomenological
equation for the magnetization M, the solution of which will
be investigated in this paper. The equation for the change of the
magnetization in the unit time contains the dynamic and the
relaxation parts. The relaxation terms of the Landau-Lifshits
(LL) and the Landau-Lifshits-Gilbert (LLG) equations cannot
be used in our paper because they require the conservation
of the magnetization. The pumping creates magnons and
decreases the absolute value of the magnetization. The LL
and LLG equations do not describe the equilibration of the
magnetization after the pumping is switched off. Taking into
account the processes of the establishment of the equilibrium
state is important in a description of the nonequilibrium
system. The equation for the evolution of the magnetization,

which does not require the conservation of the absolute value
of the magnetization, is given in the monograph of Akhiezer,
Baryakhtar, and Peletminskii [36]. But neither the equation in
Ref. [36] and nor the LL and LLG equations take into account
the diffusion of magnons. The diffusion processes induce
a spatial redistribution of magnons due to the interaction
between them, which may be a reason for the formation of
the new phase. The diffusion is important in the formation of
the new phase at spinodal decomposition processes [20–22].
So, we presented the main equation for the magnetization in
the form given in Ref. [36] and added to its right-hand side
the terms describing the magnon diffusion (∂M/∂t)D and the
pumping P: (

∂M
∂t

)
= −γ [M,Heff] + R + P, (1)

where γ is the gyromagnetic ratio, Heff is the effective
magnetic field determined as the variational derivative of the
free energy with respect to the magnetization

Heff = − δF

δM
, (2)

R is the relaxation term

R = −γR1[nM,[nM,Heff]] + γRHeff +
(

∂M
∂t

)
D

, (3)

γR and γR1 are the relaxation rates, and nM = M/M .
The two first terms in the right-hand side of Eq. (3)

determine the relaxation in Ref. [36]. The first term in Eq. (3)
is equal to the relaxation term of the LL equation. For such
a relaxation, the conservation of the absolute value of the
magnetization holds. The LLG equation for the magnetization
is equivalent to the LL equation: the LLG equation may be
obtained from the LL equation by redefining the parameters
[37]. Therefore the first term cannot describe the magnetization
in the condition of external magnon pumping. The second and
the third terms in Eq. (3) are important for the description of the
development of the nonuniform variation of the magnetization
under pumping. The third term in Eq. (3), responsible for the
magnon diffusion, is absent from the LL, LLG, and Akhiezer,
Baryakhtar, and Peletminskii [36] equations.

To describe the contribution of the exchange interaction to
the free energy, we use the method of the self-consistent field
and present the free energy in the form

F (M,∇M) = aM2

2
+ bM4

4
+ K

2
(∇M)2 − MH cos θ

− 1

2
M · H(m) + Kan sin2 θ, (4)

where Kan is the anisotropy constant, θ is the angle between
the magnetic field and the crystal axis, H(m) is the magnetic
field created by the magnetic moment M, a, b, and K are
parameters depending on the temperature and not depending
on the spatial coordinates. The first three terms describe the
exchange interaction. The free energy may be given in the form
of Eq. (4) at a temperature close to the critical temperature of
the phase transition. Such case will be studied in this paper.

As mentioned, the regions of the new phase, appearing due
to the pumping, may have different shapes. We shall consider
the formation of a magnetic domain with the orientation of the
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magnetic moments opposite to the orientation of the magnetic
moment of the crystal and parallel to its easy axis. Domains
of such type are simple and widespread defects in magnetics.

In the transition area, where one orientation of the magnetic
moments change to another, the exchange energy increases.
The transition may occur either by a rotation of the magnetic
moment, which preserves its absolute value, or by changing
the value of the moment. Usually, the first way dominates due
to the high magnitude of the exchange interaction. However,
in the vicinity to the phase transition, the exchange interaction
decreases and the second way is plausible (see the textbook
problem in Ref. [38]). Since we study the processes nearby
the critical temperature, the transition between the domain and
the matrix is considered by changing the value of the magnetic
moment without its rotation.

In the framework of the chosen approach, when the normal
to the domain plane is perpendicular to the magnetic field
H, the orientation of the magnetic moments has the form
presented schematically in Fig. 1. The magnetic moment inside
the domain has the single component Mz and depends on the
single variable y. Therefore M −→ Mz(y) and H(m) = 0. For
a such orientation of the magnetic moment, the angle θ in
Eq. (4) is zero and both the first term in the right-hand side
of Eq. (1) and the first term in the right-hand side of Eq. (3)
disappear.

Let us apply the phenomenological approach to deter-
mine how the diffusion contributes to the time evolution of
the magnetic moment. The density of the magnon current
in the nonhomogeneous system at the uniform distribution
of the temperature may be expressed by the gradient of the
chemical potential μ,

j = −KM∇μ, (5)

where the coefficient KM (mobility) depends on the temper-
ature. KM may be evaluated from the Boltzmann equation
for the magnon distribution function taking into account the
magnon scattering on magnons, phonons, and impurities.

Let us introduce the tensor of magnetization current,
�Mik , that describes the density current of the ith component
of the magnetic moment when the magnons are moving
along the axis k. It is equal to the product of the ith component
of the magnetic moment of a single magnon and the kth
component of the magnon current density,

�Mik = mijk. (6)

A single magnon has the following magnetic moment:

m = −gμBnM. (7)

The vector nM is oriented along the axis z. It may assume
two values, ±1. The sign “+” takes place in the matrix where
the moment is oriented along the magnetic field. The sign
“-” is realized in the domain. The rate of the change of the
magnetization is equal to(

∂M
∂t

)
Di

= −∂�Mik

∂xk

. (8)

The magnon current creates the magnetic moment current

�Mik = −gμBnMijk. (9)

In the considered case, the tensor of the magnetization current
has a single nonzero component �Mzy . The contribution of
the magnetic moment current to the rate of the magnetization
change is equal to(

∂Mz

∂t

)
Dy

= −∂�Mzy

∂y
= gμB

∂

∂y

(
nMzKM

∂μ

∂y

)
. (10)

The chemical potential may be determined via the free energy
by the formula μ = δF/δn at a constant temperature, where n

is the magnon density. The magnon density may be related to
the magnetization by the expression

M = nM(Ms − gμBn), (11)

where the saturation magnetization Ms = NμB , and N is the
number of the crystal cells in a unit volume. Equation (11)
does not take into account Walker’s modes. However, since
we consider the high-temperature case, the main contribution
to the decrease of the magnetization comes from the magnons
with a high value of wave vectors. The authors of Ref. [39]
showed that the notion of magnons as quasiparticles may hold
almost up to the temperature of the phase transition.

Using the free energy of Eq. (2) and Eqs. (4) and (11), we
obtain the chemical potential

μ = δF

δM
∂M
∂n

= −Heff(−gμBnM)

= −gμB(aM + bM3 − nMzH − KnM�M). (12)

As seen from Eq. (12), the chemical potential may be
presented as the interaction energy of the effective magnetic
field with the magnetic moment of a magnon (−mBgnM).
Without the pumping (P = 0), Eq. (1) has the solution Heff = 0
and, therefore, μ = 0, as follows from Eq. (12).

Let us consider now the contribution of the pumping into
Eq. (1). The rate of the magnon injection into the sample
depends on the method of the injection and numerous other
conditions: the frequency and amplitude of the external field,
the state of the magnetization of the sample, the magnon
spectrum and so on [23,40]. We shall not consider the processes
of the magnon creation by the external microwave field. We
assume only that the value of P , which determines the change
of the magnetization in the unit time and the unit volume due
to the pumping, does not depend on time or spatial position.
The magnons created by the pumping come very quickly to
the quasiequilibrium state due to the magnon-magnon and the
magnon-phonon interactions and the dynamics of system is
determined by the total number of magnons. It is the major
assumption of the BEC studies as well. The pumping causes
the decrease of the magnetization. So, the value of P should be
negative with respect to the crystal magnetization and positive
in the domain, where the magnetization changes sign, and
should be equal to zero at the point where Mz = 0. We shall
present the pumping in a simplified form. Its value will be
approximated by the formula

P = −qMz, (13)

where q is a positive phenomenological parameter. Its value is
deduced from the experimental decrease of the magnetization
due to the pumping.
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Using Eqs. (10), (12), and (13) in Eq. (1) and taking into
account that the dynamic term in the considered case is zero,
we obtain the equation for the magnetization

∂Mz

∂t
= Rz + P, (14)

where

Rz = γRHeff − gμBKM

∂2Heff

∂y2
, (15)

Heff = H − aMz − bM3
z + K

∂2Mz

∂y2
. (16)

Since the dynamic term in Eq. (14) for the magnetization
is zero in the considered system, its right-hand side consists
of the relaxation term given by Eq. (15) and the pumping. It is
seen that dissipative term in Eq. (15) contains the component
with the second derivative of the effective magnetic field.
The form of the dissipative term Rz coincides with the form
of the dissipative term RBar obtained for the magnetization in
the Landau-Lifshits-Baryakhtar equation [41–43],

(
∂M
∂t

)
= −γ [M,Heff] + RBar, (17)

where

RBar = λ1Heff − λ2�Heff, (18)

where λ1 and λ2 are tensor coefficients in the general case.
Comparing the relaxation term of Eq. (15) with the

Baryakhtar’s expression of Eq. (18), we obtain the values
of the coefficients: λ1 = γR , λ2 = gμBKM for our particular
case of the magnon diffusion. Baryakhtar built the equation
for the magnetization using the Onsager kinetic equations
and the crystal symmetry. As shown in a number of works,
the terms additional to the LL and the LLG equations are
important for the explanation of many processes in ferromag-
nets: the dynamics of domain walls [41,44], the dynamics
of solitons [43], the damping of the spin waves with high
values of the wave vectors [42,44], the anisotropic damping
in the feromagnetics [45], and the temporal spin evolution
in the magnetic heterostructures disturbed by femtosecond
laser pulses [46]. The general theory [41] does not specify
the numerical value of the coefficients. Their values are
determined for particular systems. For example, the inclusion
of the conductivity electrons in the magnetization dynamics of
conducting ferromagnets [44,47] gives additional terms that
depend on the conductivity. The value of the coefficient we
obtained is determined by the diffusion of magnons.

Let us introduce the dimensionless variables ỹ = y/l0,
l0 = (K/(−a))1/2, M̃=M/M00, H̃ = H/H00, t̃ = Kt/(a2g

μBKM ), q̃ = qK/(a2gμBKM ), and γ̃R = γRK/((−a)g2

μ2
BKM ), where M00 = ((−a)/b)1/2 and H00 = (−a)(−a/b)1/2

are the value of the magnetization and the effective magnetic
field, respectively, in the absence of the magnetic field and
pumping.

Equation (14) for the magnetization in the dimensionless
variables takes the form (the diacritic “∼” above the notations

for Mz, H , q, t , and y will be omitted from now on)

∂Mz

∂t
= ∂2

∂y2

(
−Mz + M3

z − H − ∂2Mz

∂y2

)

− γ̃R

(
− Mz + M3

z − H − ∂2Mz

∂y2

)
− qMz. (19)

Equation (19) determines the variation of the magnetization
in the region of the phase transition in the presence of
the magnon pumping. The first and the second terms in its
right-hand side describe dissipative processes. The first term
originates from the processes of the magnon diffusion. The
second term describes the relaxation of the magnetization to
the equilibrium value.

Let us consider expressions that may be used for the
estimation of the numerical values of parameters. The mobility
KM may be related to the magnon diffusion coefficient by the
Einstein’s relation KM = Dn/κT , where T is the temperature.
The diffusion coefficient may be obtained from the solution of
the Boltzmann equation for magnons. According to Eq. (11),
n = (Ms − M)/gμB . In the vicinity of the phase transition,
where M � Ms , we have n ∼ Ms/gμB . In the mean-field
approximation, the parameters of the free energy [48] are

a = −	t
κTc

MsμB

, b ∼ 1

3

κTc

M3
s μB

, K ∼ κTc

MsμB

d2, (20)

where Tc is the phase transition temperature, 	t = (Tc −
T )/Tc, d is the period of the crystal lattice. In the approach
of Eq. (20) in dimensionless variables, the length unit is
equal to lo = d/(	t)1/2, the magnetization unit is M00 =
(	t)1/2

√
3Ms , and the magnetic field unit is equal to H00 =

Ms(	t)3/2
√

3(κTc)/(μBMs). Let us do the estimations of
the values of the parameters in the dimensionless units. We
consider the parameters of the yttrium-iron-garnet crystal,
in which Tc = 560 K and Ms = 140 Gs. We assume that
D = 100 cm2/s. Since the dimensionless magnetization is the
ratio of the magnetization to the value of the magnetization
of the sample without the magnetic field and pumping, its
magnitude is of order of unity or smaller (M̃ � 1). The
magnetic fields, which vary in the experiments [4–6] from
0 and to 1000 Oe, are described in the dimensionless units
by the values that are less than the unity (H̃ � 1). For
example, a magnetic field of 1000 Oe in dimensionless units
is equal to 0.00077 and 0.0022 at temperatures 	t = 0.2 and
	t = 0.1, correspondingly. We shall choose the parameter
of the pumping q in Eq. (13) in a way that ensures a small
decrease of the magnetization due to the pumping (less than
several percent of the magnetization value). The dimensionless
coefficient γ̃R is found to be very small. For 	t = 0.1, varying
the parameter γR from 10−6 to 10−3 s−1 leads to the decrease of
the dimensionless coefficient γ̃R from 10−6 to 10−9. Therefore,
in dimensionless units, the new magnon diffusion related term
in the LL equation has a coefficient which is large compared
to the typically used relaxation term. However, because this
term contains derivatives of a higher (second) order than other
terms, its effect becomes important only in the case of the
strongly nonuniform states. For example, for Walker’s modes
in a sample with the size of order of 1 mm, the presence of the
second derivative in the first term in the left part of Eq. (19)
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decreases this term, presented, in dimensionless units, by 13
orders of magnitude and it becomes negligible.

Equation (19) describes the domains in the ZOX plane
and a magnetization oriented along the z axis and depending
on y (M ≡ Mz(y)). Let us consider another orientation of
the domain plane. Using the free energy of Eq. (4), we may
describe the domain in the X0Y plane with a magnetization
depending on z [M ≡ Mz(z)] with an equation that may be ob-
tained from Eqs. (14)–(16) by the transformations Mz(y) −→
Mz(z),H −→ H − 4πMz(z). The new term 4πMz(z) may be
combined with the term aMz from the free energy. As the
condition a 	 2π holds, the equation for the magnetization
for the alternative XOY orientation of the domain plane will
assume the form of Eq. (18). Naturally, the resulting solutions
will be similar. Therefore we shall study only Eq. (18) [Eq. (19)
in dimensionless units].

III. INVESTIGATION OF STABILITY OF UNIFORM
MAGNETIZATION

At the uniform steady pumping, Eq. (19) has a uniform
steady state solution which determines the stationary magne-
tization M0 that satisfies the following equation:

M3
0 − M0(1 + q/γ̃R) − H = 0. (21)

The solution of this equation in the absence of the pumping
(q = 0) determines the equilibrium magnetization Meq .

In order to investigate the stability of the uniform solution,
let us put M = M0 + δM exp(λ(k)t + iky), where δM � M0.
The decrement of the damping obtained from Eq. (19) is equal
to

λ(k) = (
1 − 3M2

0 − k2
)
(k2 + γ̃R) − q. (22)

Equation (22) implies that the decrement λ(k) is negative in
the absence of the pumping for every value of k, meaning that
the uniform state is stable. The dependence of the damping
decrement on k is presented in Fig. 2 for the different values of
the pumping q. As seen from Fig. 2, the damping decrement
λ(k) becomes positive with increasing pumping at a certain
wave number k = kc. At q < 3.3424 × 10−8, the uniform state

FIG. 2. Dependence of the damping decrement λ(k) on the wave
number of the uniform solution fluctuation k at the relaxation rate
γ̃R = 5 × 10−8, magnetic field H = 0.001 for different values of the
pumping parameter q: (1) 3.3424 × 10−8, (2) 3.34261 × 10−8, and
(3) 3.3428 × 10−8. The values in this figure and in the subsequent
figures are given in dimensionless units .

is stable. At the increased pumping q > 3.34261 × 10−8, the
uniform solution becomes unstable with respect to the creation
of the periodical magnon density variation with the wave
number kc. The instability occurs in the region of the spinodal
decomposition, where the second derivative of the free energy
with respect to the order parameter (Mz in the considered case)
changes sign (∂2F/∂M2

z = 0). But the numerical value of the
drop of the magnetization Mz caused by the pumping needed to
reach the instability is very large. For the example considered
in Fig. 2, the magnetization Mz changes from 1.0005 (in the
dimensionless units) at q = 0 to 0.577244 at q = qs . Such a
decrease of the magnetization requires an extremely strong
pumping, which is likely to change the temperature state of
the crystal. We shall not consider the region in the vicinity to
the spinodal decomposition and such strong pumping.

So, at λ(k) < qs , the uniform state is stable even in the
presence of the pumping and for the finite lifetime of the
nonequilibrium state. However, nonuniform stable states may
coexist with the uniform state even at λ(k) < qs in a certain
range of the pumping intensity. These states arise when
the parameters of the system belong to the region between
the binodal and the spinodal. For a magnetic system, the
magnetization in this region is restricted by the conditions
imposed on ∂F/∂M = 0 and ∂2F/∂M2 = 0 (this region is
slightly affected by the pumping and the finite value of
the particle’s lifetime). The condition ∂F/∂M = −Heff =
0 is realized in the equilibrium state and determines the
equilibrium magnetization. The region between ∂F/∂M = 0
and ∂2F/∂M2 = 0 arises at a magnetization smaller than the
equilibrium value, which can be caused by the pumping, which
creates the magnons and decreases the magnetization. The total
number of magnons in this region exceeds the equilibrium
value. The system is supersaturated with magnons. The gas
of the particles in the state between the binodal and the
spinodal may remain in the uniform supersaturated state or
could transfer due to fluctuations to a state with nuclei of the
new condensed phase. Subsequently, these nuclei grow with
time. In the case of stable particles, the growth of the condensed
phase nuclei slows down with time because their number in
the matrix is limited. To the contrary, in a system of constantly
created particles with a finite lifetime, the spatially localized
regions of the new phase may be stabilized by the interplay of
the steady generation and decay. Stationary localized islands
of the condensed phase of indirect excitons created by light
in double quantum well heterostructures were studied in
Refs. [49,50] in parameter ranges at which the uniform and the
nonuniform solutions are stable simultaneously. The localized
solutions are called either the autosolitons (static solitons)
according to the classification by Ref. [51] or the breathers
according to Ref. [52]. In the next section, we shall use Eq. (19)
to study the nonuniform nonequilibrium stationary states in a
magnetic sample at steady pumping.

IV. FORMATION OF A SINGLE DOMAIN

We shall consider the steady state solutions of Eq. (19)
for the magnetization. The nonuniform states studied in
the paper are domains with the magnetic moment oriented
opposite to the magnetization of the matrix. As we already
mentioned, we shall consider the solutions in the region on the
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magnetization diagram where the uniform solution is stable,
but the nonuniform solutions appear as well due to the magnon
created by pumping. In the search of the nonhomogeneous
solutions, we follow the procedure applied in Refs. [49,50].
Two approaches are used. In the first approach, we solve
Eq. (19) for a certain value of the pumping choosing the initial
magnetization in the form of the nonhomogeneous function
Mz,(y,t)t=0 = Min(y) depending on some parameters, and
the value of q is given. In the second method, the external
pumping is presented in the form of q → q + Qi(y,t), where
Qi(y,t) is a function containing some parameters and tends
to zero at t → ∞, the initial magnetization being uniform.
Thus the solution of the evolution equation converges with
time to the solution of Eq. (19) with a given value of q. By
varying the functions Min(y) and Qi(y,t), different nonuniform
stationary solutions for the magnetization may be obtained.
These solutions give M(y,t) → Meq at q → 0. The solutions
are stable because they do not change at t → ∞. They do
not change with the variation of the functions of Min(y)
and Qi(y,t) in some limited region of parameters of the
functions. In other words, for every solution there is a region
of parameters of the functions Min(y) and Qi(y,t) in which
the solution is the same. This region determines “the attraction
basin” for the given solution.

In the absence of pumping (q = 0), the solution of Eq. (19)
is uniform. Nonuniform solutions are possible at q �= 0. Firstly,
let us find one such nonuniform solution localized in the center
of the sample. It may be obtained by choosing the initial
magnetization in the form

Min(y) = Min0 exp[−(y − L/2)2/s2], (23)

where L is the length of the sample, and Min0 and s are
parameters.

If the function given by Eq. (23) with certain values of
parameters belongs to the attraction basin of some solution of
Eq. (19), it converges to this solution with time. We consider
such a solution in the time limit t → ∞ as one of the desired
solutions. An example of the magnetization variation obtained
in such a way is presented in Fig. 3. In the center of the
sample, a region is seen where the orientation of the magnetic
moment is opposite to the orientation of the magnetization of
the remaining part of the sample. The change of the parameters

FIG. 3. Spatial dependence of the magnetization at the pumping
parameter q = 0.000003, the magnetic field H = 0.001, and the
relaxation rate γ̃R = 0.0001.

Min0 and s of the trial function (23) within some limits gives the
same solution of Eq. (19), presented in Fig. 3. This confirms
that the applied method for the solution (19) is correct. Figure 3
is the manifestation of the scenario shown in Fig. 1. The
inverted spins (magnons) created by the pumping are clustered
into a domain. The applied method allows determination of the
possible states in the system. The realization of a certain state
depends on the boundary initial condition and on fluctuations.
The calculations showed that the time of the establishment of
the steady size of the inclusions is very long (much longer than
magnon lifetime). This fact should be taken into account when
one performs an investigation of the magnon distribution at a
pulse excitation.

The stationary state of the domain may exist if there is an
additional inflow of magnons from outside. There are minimal
values of the domain thickness and the sample thickness L at
which the domain could develop. The domain thickness grows
if the value of L rises, since the region from which the domain
harvests magnons increases. However, if L becomes greater
than the diffusion length, the size of the single domain reaches
the limit for the fixed value of the pumping rate. This occurs at
L > (1/γR)1/2. In this limit, the results would not depend on
the boundary conditions. We studied the magnetization for two
types of the boundary conditions: for the periodical conditions
and for the fixed magnetization at the boundary.

The domain size grows with increasing pumping. Figure 4
presents the domain thickness as a function of the pumping
rate. It is seen from Fig. 4 that there is a threshold of the
pumping rate for the domain creation. The pumping in Fig. 4
leads to the decrease of the magnetization. The pumping is
such that the relative change of the uniform magnetization is
equal to 5 × 10−3 and 3 × 10−2 at q = 10−8 and 6 × 10−8,
correspondingly. As seen from Fig. 4, the threshold qc for
pumping is 0.8 × 10−8 for the given value of the magnetic
field. Only the uniform solution exists at q < qc. The threshold
grows with increasing magnetic field. In dimensional units,
at Tc/(Tc − T ) = 10, q = 5 × 10−8, D = 100 cm2/s, the
thickness of the domain reaches 1.2 mμ. The size of the
domains increases with decreasing the parameter γ̃R , i.e., with
increasing the magnon lifetime.

FIG. 4. Dependence of the thickness of the domain L on the
parameter of the pumping q. qc is the pumping threshold of the
domain creation and Lmin is the minimal thickness of the domain.
The parameters of the system are the relaxation rate γ̃R = 10−6 and
the magnetic field H = 0.01.
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If the decrease of the magnetization is such that the state
of the system is between the binodal and the spinodal, the
nuclei of a new phase (for example, a domain) are created
due to fluctuations. Only those nuclei survive that overcome
a barrier. Therefore, in order to describe this process of
the domain formation mathematically, we solved the main
equation (23) with a given initial trial nonhomogeneous
magnetization. If the width of the initial nonhomogeneous
magnetization increases [the value of s in Eq. (23) decreases],
a solution with two parallel domains arises. The two domains
move apart. The repulsion may be explained in the following
way. Since the magnons in domains relax, the domains
exist due to the magnon inflow from outside. The region
between the domains is common for both domains and, as
long as the number of the magnons is restricted, their density
is not sufficient to support a stationary state of two domains
close to each other. As a result, the domains tend to be situated
at a certain distance from each other.

V. SUPERLATTICE OF DOMAINS

Comparing Fig. 5, Fig. 6 and Fig. 7, one can see that with
increasing the pumping rate the domains widen.

Solutions of Eq. (19) with a periodical variation of the
magnetization are also possible. Some of them are presented in
Figs. 5 and 6. In Figs. 5(b) and 6(b), the enlarged regions of one
of the domains are given separately. Comparing Figs. 5–7, one
can see that with increasing pumping rate the domains widen.
The appearance of a periodical structure of the magnetization
was observed in Ref. [7] in YIG films at external pumping.

FIG. 5. Spatial dependence of the magnetization at the pumping
parameter q = 8 · 10−9, the magnetic field H = 0.01, the relaxation
rate γ̃R = 10−5 (a). A single domain is given separately in (b).

FIG. 6. Spatial dependence of the magnetization at the pumping
parameter q = 1.5 · 10−8, the magnetic field H = 0.01, the relaxation
rate γ̃R = 10−5.(a). A single domain is given separately in (b).

Some comments about the effect of fluctuations are possi-
ble. The problem of the fluctuations of the density of unstable
particles was investigated in the Refs. [28–30] by solving
the Fokker-Planck functional equation for the free energy in
the Landau-Ginzburg form. Both the intrinsic fluctuations and
the fluctuations of the pumping were taken into account. The
studies showed the appearance of a second maximum in the
one-point distribution function if the pumping rate exceeded a
certain value. This maximum corresponded to the development
of the second phase. The separation of two phases may occur
if the particle lifetime is greater than a certain threshold value.
The two-point correlation function was obtained. The Fourier
transform of the two-point correlation function calculated in
Ref. [28] has a sharp maximum at some value of the wave

FIG. 7. Periodical distribution of the magnetization at pumping
parameter g = 0.018, the magnetic field H = 0.005, the relaxation
rate γ̃R = 0.2.
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vector that corresponds to the oscillations of the correlation
function as a function of coordinates. So, periodical structures
appear in the system. The problem that was solved in Ref. [28]
differs from the problem in the current work in the presentation
of the lifetime of particles: the lifetime in Ref. [28] is constant,
it is a function of the spatial coordinate [the second term in
the right-hand side of Eq. (19)]. However, the first term in the
right-hand side of Eq. (19) plays the main role in the formation
of a nonuniform structure. Using these results, we may argue
that the fluctuations do not destroy the periodical structures that
arise in the considered ferromagnetic system if the magnon
lifetime is much greater than the times of magnon-magnon
and magnon-phonon collisions and the quasiequilibrium state
is formed in the system.

VI. DISCUSSION AND CONCLUSION

We have shown that, in a system with a high density of
quasiequilibrium magnons, nonuniform structures may arise
similar to the formation of inclusions of a condensed phase
in a supersaturated gas or to the separation of a new phase
in a crystal supersaturated with impurities. To perform a
calculation, we used the Landau presentation of the free energy
of magnons, which is valid in the vicinity to the phase transition
temperature. The work explored the simplest model, namely,
we considered the appearance of simple defects in the form of
domains. However, in our opinion, some of the obtained results
give insight into the general behavior in more complicated
cases. Besides the considered simplest one-dimensional struc-
tures, the system may develop other types of nonuniformities
having different shapes and being restricted in all directions
(disks, balls, ellipsoids, and so on). What new features may
be expected when more complex regions of the new phase are
formed? Let us make some qualitative analysis of the possible
manifestations of the development of nonuniform structures.
The following list names the most important of them.

(1) The appearance of regions of nonuniform magnetization
causes additional scattering of the electromagnetic waves. The
intensity of the light scattering by clusters of magnons at some
frequencies is greater than the one caused by the same number
of individually independent particles.

(2) Since the nonuniform inclusions are small, the magnon
levels in them will be quantized. The lowest states vary slowly
in space and manifest themselves intensively in the scattering
and absorption of the electromagnetic waves. The levels with
small quantum numbers will display themselves most strongly.
This may cause an increase in the lowest part of the scattering
spectra similar to the effect observed at the Bose-Einstein
condensation. It was shown that a stationary state becomes
established if the time of the pumping pulse duration is much
longer that the magnon lifetime. The size of the inclusions
will grow with increasing duration of the pulse. This will
lower the quantized levels of magnons in the inclusions and
will shift the scattering spectra of electromagnetic waves to
lower frequencies.

(3) The spin orientation in an inclusion of the condensed
phase is determined by the strong exchange interaction. In
order to change the orientation of its spin to the orientation of
the matrix spins, a magnon should jump out of the inclusion,

where it is bound by the strong exchange interaction. There
is another mechanism of the spin relaxation in the inclusion.
Firstly, magnons (light arrows in dark regions of Fig. 1) are
exited in the domain and then leave the inclusion. This is a
two-stage process and therefore it has small probability. As a
result, the inclusions should live long.

(4) Let us compare the contributions to the thermal
conductivity of independent magnons and the inclusions of
the condensed phase. Since the drawing forces acting on the
inclusions in the temperature gradient depend on the volume
of the inclusion, and the friction forces depend on its surface,
the gathering of the magnons into inclusions of the condensed
phase enhances the resulting force. This would be observed
experimentally as an increase of the thermal conductivity
coefficient.

(5) The regions of the condensed phase in systems supersat-
urated with magnons may arrange themselves into structures.
These structures would form a periodical distribution of
domains with parallel planes. The normal to the domain plane
may be oriented either along the external magnetic field or per-
pendicular to the field. Such picture was observed in Ref. [7].

All these effects, which may be expected due to the
inclusions of the new phase, were observed in experiments
[4–7], and explained as a manifestation of the Bose-Einstein
condensation. We cannot object to that attribution because
our study is carried out in somewhat different conditions.
The majority of experiments [4–6] were carried out using
magnon excitation by pulses. Our calculations studied the
steady states. Yet we would like to underline that, besides
the Bose-Einstein condensation, another scenario should be
considered when studying the many-magnon systems. A
search for the inclusions of the new phase and evaluation of
their role in the physical processes should be performed.

Thus the presented paper studied a magnetic sample
with a large magnon concentration created by the external
pumping. Due to the long lifetimes, magnons are in the
quasiequilibrium state. It is shown that besides the Bose
condensation, formation of inclusions of a new condensed
magnon phase may occur similarly to the development of
the condensed phase in a supersaturated gas. The exchange
interaction promotes the combination of separate magnons
into inclusions. The orientation of the magnetic moments in
each inclusion is opposite to the magnetic moment of the
magnetic matrix. Therefore the inclusions may exist only in the
conditions of external pumping. Summarizing, inclusions are
dissipative structures that arise as a result of self-organization
processes in nonequilibrium conditions [1]. The presented
study considered the inclusions of the condensed phase shaped
as individual domains or periodical supperlattices of domains.
The possibility of the formation of inclusions of a new phase
should be taken into account side by side with the process of
Bose-Einstein condensation when analyzing experiments.
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