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Transient Loschmidt echo in quenched Ising chains
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We study the response to sudden local perturbations of highly excited quantum Ising spin chains. The key
quantity encoding this response is the overlap between time-dependent wave functions, which we write as a
transient Loschmidt Echo. Its asymptotics at long time differences contain crucial information about the structure
of the highly excited nonequilibrium environment induced by the quench. We compute the echo perturbatively for
a weak local quench but for arbitrarily large global quench, using a cumulant expansion. Our perturbative results
suggest that the echo decays exponentially, rather than power law as in the low-energy orthogonality catastrophe,
a further example of quench-induced decoherence already found in the case of quenched Luttinger liquids. The
emerging decoherence scale is set by the strength of the local potential and the bulk excitation energy.
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I. INTRODUCTION

The response of dynamical systems to external
perturbations is a topic of fundamental interest in many
different areas of physics, which has attracted considerable
attention since the early days of statistical mechanics. A
notable example is provided by the debate between Loschmidt
and Boltzmann on the origin of the arrow of time [1], which
brought the former to imagine reversing at once the velocities
of all the particles in the system to challenge the concept
of irreversibility. For classical dynamical systems, such a
question has emerged more recently in connection with the
exponential instability of trajectories after a small change of
initial conditions and the onset of chaos [2] and it is still a
subject of intense research and beautiful experiments [3]. For
quantum systems this question has traditionally appeared in
a variety of contexts, from quantum information to quantum
chaos to nuclear magnetic resonance [4,5].

A key quantity to measure the sensitivity of dynamics to
perturbations is known as Loschmidt echo and amounts to
comparing the dynamics starting from an initial condition,
after a forward evolution in the presence of the perturbation
and a backward unperturbed evolution. Quantum mechanically
this amounts to introducing the correlator [5–7]

L(t) = |〈ψ0| eiH0t e−iH t |ψ0〉|2. (1)

where H and H0 are, respectively, the system Hamiltonians
in presence/absence of the perturbation. Recent experimental
advances in controlling and probing strongly interacting quan-
tum many-body systems in different nonequilibrium regimes
have offered a new platform to study dynamical phenomena
in complex quantum systems. As a consequence, fresh interest
around the topic of the Loschmidt echo has emerged in various
contexts, including work statistics [8–10], quantum quenches
[11–14], and quantum thermodynamics [15,16].

A special role in the discussion on the sensitivity of
quantum dynamics is played by those perturbations which
are local in real space, i.e., which act on finite portion of the
system. In condensed-matter physics there is a long tradition
of studying the effect of these kinds of sudden perturbations

on the ground state of gapless many-body Hamiltonians. Here
the effect is remarkably nonlinear; even a weak disturbance
substantially changes the structure of the many-body state.
Signatures of this orthogonality catastrophe (OC) emerge in
various condensed-matter settings [17], from x-ray spectra in
metals [18] and Luttinger liquids [19–22] to the physics of the
Kondo effect [23,24]. More recently there has been interest in
the signatures of this OC in the real-time dynamics following
such a local quantum quench [25–34], which typically results
in a power-law decay of the Loschmidt echo, also known as
core-hole Green’s function in the x-ray edge problem, with an
exponent which may or may not show universal behavior [35].
While most of the attention has been traditionally devoted to
local perturbations acting on systems in their ground state or,
more recently, in driven stationary nonequilibrium conditions
[36–43], much less is known about the response of explicitly
time dependent and highly excited quantum states, such as,
for example, those obtained by rapidly changing in time some
parameter of an otherwise isolated system.

A sudden global quench in an isolated quantum many-body
system creates an effective nonequilibrium time-dependent
bath for local quantum degrees of freedom, a new exotic
class of quantum impurity models where a small set of
interacting quantum degrees of freedom is strongly coupled
to an out-of-equilibrium, transient environment.

For a clean, nonintegrable, quantum many-body system
one might expect this environment to be, at sufficiently long
times, effectively thermal. Exceptions are expected to occur
for integrable systems, whose steady-state properties can be
often described in terms of a generalized Gibbs ensemble
(GGE) [44,45], or for many-body localized systems [46]. Yet,
strongly interacting ergodic quantum systems may often get
trapped into long-lived metastable prethermal states which
may still show genuine quantum correlations [47–51] or dy-
namical transitions [52–55] with no equilibrium counterparts.
Investigating the local spectral properties of these transient
states of nonequilibrium quantum matter and understanding
their relevant excitations is among the purposes of this work.
The problem is of current experimental relevance, since recent
developments with ultracold gases and other hybrid quantum
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systems have made it possible to create and probe local
excitations with single-site and real-time resolution [56,57].
In addition, recent proposals to measure the Loschmidt
echo in these settings have appeared [12,15,16,58–62] and
their extension to the time-dependent case is in principle
straightforward.

Recent works [63–65] have started to investigate the
response of quantum nonequilibrium systems to local pertur-
bations, specifically in the context of a Luttinger model excited
by a sudden change of the interaction and perturbed by a static
local potential. In Ref. [64] we have generalized the Loschmidt
echo (1) to transient time-dependent states and computed it
for the Luttinger model with impurity, using a combination
of perturbative and renormalization group approaches. The
results reveal an intermediate-time regime where this response
still decays as a power law, featuring genuine nonequilibrium
behavior such as aging. On longer time scales the interplay be-
tween nonequilibrium excitation of bulk modes and local non-
linearity generates an effective, quench-induced decoherence
causing the echo to decay exponentially, in accordance with
numerical analysis [14]. Such a phenomenon also finds clear
signatures in transport characteristics, turning the Kane and
Fisher conductor-insulator quantum phase transition [21] into
a smooth crossover [65], reminiscent of a finite-temperature
behavior.

A natural question, which motivates the present study, is
whether a similar quench-induced decoherence mechanism
also applies to other settings involving a quantum impu-
rity coupled to a nonequilibrium transient bath, beside the
abovementioned case of an impurity in a quenched Luttinger
liquid. This latter is indeed known to display peculiar features
which are rather nongeneric among other integrable models
described by GGE, in particular the power law decays of out-
of-equilibrium correlators with quench-dependent exponents
[66,67]. To this extent in the present work we study the
response to sudden local perturbations of a highly excited
quantum spin chain. In particular the paper will focus on the
transverse–field Ising spin chain (TFIC), for which we will
compute the transient Loschmidt echo after a global quantum
quench [68–73] followed by a local perturbation.

We mention in passing that recent works [43,74–76] have
also discussed the interplay of global and local perturbations
in the dynamics of isolated many-body systems, introducing
protocols that find similarities with the one discussed in this
work.

This paper is organized in the following way. In Sec. I A we
describe the nonequilibrium protocol to study transient local
perturbations and introduce the main object of interest, the
two-time generalization of transient Loschmidt Echo. Then
using a cumulant expansion we derive a perturbative result for
the echo valid for weak local quenches. As we are going to
see, this will reduce the problem of computing the Loschmidt
echo to evaluating a suitable local dynamical correlator out of
equilibrium. In Sec. II we apply these results to the TFIC. We
briefly revisit its solution for the out-of-equilibrium dynamics
after a quench of transverse field and the calculation of the
relevant local dynamical correlator (transverse magnetization).
Section III contains the main results of this work, namely the
transient and stationary Loschmidt echo and the discussion
of orthogonality catastrophe out of equilibrium, while in

FIG. 1. Nonequilibrium protocol to study the response of a tran-
sient state to a local perturbation. We compare two time-dependent
states, |�(t)〉 and |�tw+(t)〉, evolved from time t = 0 up to time
t = τ + tw under two different histories, the former under the effect
of a global quantum quench and the latter perturbed by an additional
local potential switched on at time t = tw and for an interval of
time τ .

Sec. IV we conclude with a discussion of the results and future
directions.

Transient Loschmidt echo and orthogonality catastrophe

We begin with a general discussion of the nonequilibrium
protocol that will be the focus of this paper. We consider a
quantum many-body system initially prepared at time t0 = 0
in the ground state |�0〉 of some Hamiltonian H0. At t0 we
quench the system suddenly, changing some global parameter
of the Hamiltonian H0, and we then let the system evolve up
to some time tw > 0 with a new Hamiltonian H , i.e.,

|�(tw)〉 = e−iH tw |�0〉. (2)

This global quantum quench injects extensive energy into the
system and triggers a transient nonequilibrium dynamics. In
order to characterize the time-dependent state |�(tw)〉 we will
study a specific transient dynamical correlator, which encodes
its response to an external local perturbation Vloc. The idea is to
switch on a local perturbation Vloc for an interval of duration
τ between tw and t = tw + τ ; see Fig. (1). After this time
evolution, the state will read

|�tw+(t)〉 = e−iH+τ |�(tw)〉, (3)

where

H+ = H + Vloc (4)

Then, in order to quantify the effect of this local perturbation
Vloc we will compare this state with a state that evolves under H

all the way from time 0 to t but without the local perturbation,
i.e.,

|�(t)〉 = e−iH t |�0〉 = e−iHτ |�(tw)〉. (5)

A simple way to compare states is to compute their overlap
that we define as

D(τ,tw) ≡ 〈�(t)|�tw+(t)〉
= 〈�(tw)|eiHτ e−iH+τ |�(tw)〉. (6)

This correlator has been introduced recently in Ref. [64]
as a transient Loschmidt echo amplitude, since it strongly
resembles the conventional Loschmidt echo of Eq. (1), except

014310-2



TRANSIENT LOSCHMIDT ECHO IN QUENCHED ISING CHAINS PHYSICAL REVIEW B 94, 014310 (2016)

that it is evaluated on the explicitly time-dependent state
|�(tw)〉. Such a correlator can be seen therefore as a measure
of the sensitivity of the system, brought out of equilibrium by
a global quench, to a sudden local perturbation.

One can immediately see that when the initial state |�0〉 is
the ground state of H

D(τ,tw) ≡ Deq(τ ) = 〈�0|ei Hτ e−i H+τ |�0〉; (7)

i.e., it becomes time-translational invariant and reduces to
the familiar Loschmidt echo amplitude. In equilibrium, the
long time asymptotics of Deq(τ ) give rich information on the
structure of ground state |�0〉 and its low-lying excitations. It
is then natural to investigate its properties for time-dependent
excited states, as we are going to do in the following for the
specific case of a transverse-field Ising chain (TFIC).

II. GLOBAL AND LOCAL QUENCHES IN A QUANTUM
ISING CHAIN

We now apply the nonequilibrium protocol discussed in
full generality in the previous section, to a concrete example,
namely the Transverse-Field Ising Chain (TFIC), which is
characterized by the following Hamiltonian:

H0 = −J

L∑
i

σ x
i σ x

i+1 − �0

L∑
i

σ z
i , (8)

where L is the number of the spins in the chain and σα
i (α =

x,y,z) are the Pauli matrices relative to the ith spin. This model
represents a paradigm solvable example of a quantum phase
transition and it has been therefore the subject of many reports
[77]. In equilibrium at zero temperature and depending on the
value of the transverse field �0, it features a quantum phase
transition between two gapped broken symmetry phases, with
gapless excitations at the quantum critical point.

As discussed earlier, we consider the system initially
prepared at time t0 = 0 in the ground state |ψ0〉 of Eq. (8).
We then suddenly change the value of the transverse field,
�0 → � (global quench), so that for t > 0 the system evolves
with the new Hamiltonian

H = −J

L∑
i

σ x
i σ x

i+1 − �

L∑
i

σ z
i . (9)

The dynamics of the system after a sudden change of the
transverse field from �0 to � can be obtained exactly using
a Jordan-Wigner transformation and a time-dependent Bogol-
ubov transformation. The calculation of correlation functions
is a more challenging task for which recent developments
have been obtained [68–73]. The model is integrable and
therefore the long-time steady-state properties of single and
double observables can be obtained in terms of a generalized
Gibbs ensemble [44,78,79].

As local perturbation (local quench) for Eq.(4), we choose
to slightly change the value of the transversve field on a single
site of the chain, say i = 0, so we add a perturbation of the
form

Vloc = V�σ z
0 . (10)

Other forms of local perturbation could be considered in
principle, for example, involving other components of the

spin. Our choice is motivated from one side by the fact that
averages of σ z

i or its correlation function can be computed
in closed form, thus allowing us to extract many important
results analytically. In addition, recent studies on the TFIC
[72] have shown that the correlator of local order parameter
decays exponentially in time, while the one for the transverse
magnetization does not [80], thus making it a more stringent
test to explore the effect of local perturbation in the steady-state
after the quench and the emergence of a quench-induced
decoherence scale.

We stress at this point that while the Loschmidt echo
amplitude after a global quench in the TFIC can be computed
analytically in closed form since all momenta decouple from
each other, the presence of a local quench (impurity) breaks the
translational symmetry of the problem and mixes the different
momentum sectors, making the analytical evaluation of such
correlator a more challenging task that we do not attempt here.
Hence in order to proceed we will derive a perturbative result
for the out-of-equilibrium transient Loschmidt echo using a
cumulant expansion that is valid in the limit of weak local
perturbations but allows us to access arbitrary values of the
global quench. As we are going to show, this approach will
be sufficient to reveal the emergence of a quench-induced
decoherence scale, thus confirming the result obtained in
Ref. [64] for the Luttinger model.

A. Weak local quench and cumulant expansion

The cumulant (or linked cluster) expansion has long been
applied to the equilibrium x-ray edge problem to compute the
core-hole/orthogonality catastrophe correlator, also known as
Loschmidt echo; see, for example, Ref. [35] for a review. It is
therefore natural to generalize it to the present nonequilibrium
case. To this extent it is convenient to focus on the logarithm
of the Loschmidt echo amplitude D(τ,tw):

logD(τ,tw) = log〈�(tw)|eiHτ e−iH+τ |�(tw)〉 (11)

If we now go in the interaction picture with respect to the
Hamiltonian H and remember that H+ = H + Vloc we can
write this as

logD(τ,tw) = log

〈
T exp

(
−i

∫ tw+τ

tw

dt1 Ṽloc(t1)

)〉
c

, (12)

where only connected (c) averages contribute. The average is
done over the time-dependent state generated at time t = tw
by the global quench and the operator Ṽloc(t1) is evolved with
the Hamiltonian H (after the global quench) according to

Ṽloc(t1) = eiH (t1−tw)Vloc e−iH (t1−tw). (13)

We can now expand exponential in power series up to the
second order, then plug this result into the logarithm and re-
exponentiate to obtain

D(τ,tw) = e−if1(τ,tw) e−f2(τ,tw)/2, (14)

where

f1(τ,tw) =
∫ tw+τ

tw

dt1〈Ṽloc(t1)〉 (15)

f2(τ,tw) =
∫ tw+τ

tw

dt1dt2 〈T Ṽloc(t1)Ṽloc(t2)〉c. (16)
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Equation (14), relating the transient Loeschmidt echo D(τ,tw)
to the dynamical correlator f2(τ,tw), is one of the main results
of this work and serves as starting point of the analysis in the
forthcoming sections. In the specific case of our interest, the
TFIC, and for our choice of the local perturbation, the above
results read

f1(τ,tw) = V�

∫ tw+τ

tw

dt1
〈
σ̃ z

0 (t1)
〉
, (17)

f2(τ,tw) = (V�)2
∫ tw+τ

tw

dt1dt2
〈
T σ̃ z

0 (t1)σ̃ z
0 (t2)

〉
c

= 2(V�)2
∫ tw+τ

tw

dt1

∫ t1

tw

dt2
〈
σ̃ z

0 (t1)σ̃ z
0 (t2)

〉
c
. (18)

Finally, we notice that the dynamical correlator in the previous
expression, which is taken with respect to the state |�(tw)〉,
can be also written as (say for t1 > t2)

〈�(tw)|σ̃ z
0 (t1)σ̃ z

0 (t2)|�(tw)〉 = 〈�0|σ z
0 (t1)σ z

0 (t2)|�0〉
with the usual Heisenberg evolution of the operators

σ z
0 (t) = eiHtσ z

0 e−iH t (19)

Thus thanks to the perturbative expansion in the local potential,
the initial problem in which the evolution is governed by two
different Hamiltonians (respectively H and H+) is reduced to
compute local double correlation functions out of equilibrium
due to the global quench, Eq. (18).

A natural question concerns the validity of the cumulant
expansion described above. This requires the strength of the
local perturbation to be small as compared to a typical energy
scale of the unpertubed system, in the case of present interest,
the uniform TFIC. In addition, an expansion of the evolution
operator also sets, a priori, a limitation on accessible time
scales, here the duration of the perturbation τ [81]. Therefore,
the following results have to be interpreted as intermediate
time asymptotics and in principle one should check whether
higher order terms in the local potential change qualitatively
the long-time behavior (see the following for further comments
on this point). While this is not an easy task to accomplish,
as higher orders cumulants involve multidimensional integrals
whose asymptotic behavior is difficult to estimate analytically
or numerically, it might be useful to recall [35] that in thermal
equilibrium the cumulant expansion to lowest order is able
to capture the leading long-time power-law behavior of the
Loschmidt echo, with higher orders only renormalizing the
value of the exponent into the phase shift. Checking whether
a similar scenario also apply to the out-of-equilibrium case
would require going beyond perturbation theory. We will
discuss at the end of this paper possible directions to explore
the nonperturbative regime of local quenches, using numerical
or analytical techniques.

In the next section we are going to discuss the calculation
of this dynamical spin-spin correlation function. The reader
who is not interested in these details can go directly to Sec. III
where we discuss the results for the Loschmidt echo.

B. Dynamical spin susceptibility after a global quench

As we have seen in previous sections, in order to compute
the echo we need to evaluate a local dynamical correlator of

the TFIC

S(t1,t2) = 〈
T σ z

0 (t1)σ z
0 (t2)

〉
c

(20)

or directly its greater component

S>(t1,t2) = 〈
σ z

0 (t1)σ z
0 (t2)

〉
c
, (21)

which can be done exactly since both the initial (H0) and final
(H ) Hamiltonian can be diagonalized using the Jordan-Wigner
transformation and a Bogolubov rotation. We briefly review the
main steps of the calculation since they are straightforward. We
introduce fermionic degrees of freedom, obeying {ci ,c

†
j } = δij ,

to represent the quantum spin at each site j as

σx
j =

⎡
⎣∏

l<j

(1 − 2c
†
l cl)

⎤
⎦ (cj + c

†
j ), (22)

σ z
j = 1 − 2c

†
j cj . (23)

In terms of these new degrees of freedom, the initial and final
TFIC Hamiltonians become quadratic:

H0 =
∑
k>0

εk0 (c†kck − c−kc
†
−k) −

∑
k>0

iγk(c†k c
†
−k − c−kck)

(24)

and

H =
∑
k>0

εk (c†kck − c−kc
†
−k) −

∑
k>0

iγk(c†k c
†
−k − c−kck),

(25)

where we have defined

εk0 = 2 �0 − 2 J cos k, γk = 2 J sin k, (26)

and similarly for εk with the transverse field �. The two
quadratic Hamiltonians can be diagonalized in terms of two
sets of fermionic quasiparticles:

H0 =
∑
k>0

Ek0η
†
kηk, H =

∑
k>0

Ekξ
†
k ξk, (27)

with energies

Ek0 =
√

ε2
k0 + γ 2

k , Ek =
√

ε2
k + γ 2

k . (28)

A sudden change of the transverse field corresponds therefore
to a sudden change of the gap. It is useful to relate the
quasiparticle operators ηk, η

†
k of the initial Hamiltonian H0

to quasiparticle operators ξk, ξ
†
k of the final Hamiltonian H .

Such a relation reads(
ξk

ξ
†
−k

)
=

(
cos δθk i sin δθk

i sin δθk cos δθk

)(
ηk

η
†
−k

)
(29)

where δθk = θk − θ0
k and the Bogolubov angles θk0,θk are

defined respectively as

cos 2θk0 = εk0

Ek0
, sin 2θk0 = − γk

Ek0
, (30)

cos 2θk = εk

Ek

, sin 2θk = − γk

Ek

. (31)
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Using this result we can obtain the full time dependence of
the fermionic operators which is needed to evaluate dynamical
averages, (

ck(t)

c
†
−k(t)

)
= Mk(t)

(
ηk

η
†
−k

)
, (32)

where the dynamical matrix reads in compact form

Mk(t) = cos θk0 cos Ekt I − i cos(θk + δθk) sin Ekt τ z

−i cos Ekt sin θk0τ
x − i sin(θk + δθk) sin Ekt τ y

with τα=x,y,z being the Pauli matrices.
The spin-spin correlator in Eq. (20) corresponds in the

fermionic language to the connected density-density correlator

S(t1,t2) = 4〈T n0(t1)n0(t2)〉c, (33)

which can be computed either by direct substitution of Eq. (32)
into the definition, as discussed, for example, in Ref. [71], or
using Wick’s theorem to obtain

S = 4

L2

∑
kp

Gk(t1,t2)Gp(t2,t1) − F̄k(t1,t2)Fp(t1,t2) (34)

and decoupling both normal and anomalous Green’s functions

Gk(t1,t2) = −i〈T ck(t1)c†k(t2)〉,
Fk(t1,t2) = −i〈T ck(t1)c−k(t2)〉,
F̄k(t1,t2) = i〈T c

†
k(t1)c†−k(t2)〉,

whose explicit expressions are given in Appendix A. By
plugging these expressions in Eq. (34) and taking the greater
component we arrive to the final result for the spin-spin
correlator S>(t1,t2). This has a lengthy expression which is
not particularly illuminating, and therefore we do not give it
here in explicit form. Rather we focus on the function f2(τ,tw),
which is directly related to the Loschmidt echo via Eq. (14)
and that can be obtained from S>(t1,t2) after double time
integrations; see Eq. (18). The function f2(τ,tw) has a real
part and an imaginary part, the latter only contributing to a
overall phase to the Loschmidt echo, which we are going to
disregard. Then, focusing on the real part of the f2 function,
we find the following structure:

Ref2(t ′,tw) = f st
2 (τ ) + f tr

2 (τ,tw), (35)

namely a stationary term, depending only on time difference,
τ = t ′ − tw, i.e., the duration of the local perturbation and a
transient contribution which explicitly depends on the waiting
time. The stationary contribution reads

f st
2 (τ ) = 2V 2

�

L2

∑
k,p

V
Q
kp

{
1 − cos[τ (Ek + Ep)]

(Ek + Ep)2

}

+ 2V 2
�

L2

∑
k,p

W
Q
kp

{
1 − cos[τ (Ek − Ep)]

(Ek − Ep)2

}
, (36)

where Ek is the quasiparticle spectrum of the final Hamiltonian
H (�), while the kernels V

Q
kp, W

Q
kp strongly depend on the

quench amplitude. If we introduce the combination

�k = εkεk0 + γ 2
k

EkEk0
(37)

we can write them respectively as

V
Q
kp = (1 + �k�p)

[(
1 + εk

Ek

)(
1 − εp

Ep

)
+ γkγp

EkEp

]
(38)

and

W
Q
kp = (1 + �k)(1 − �p)

(
1 + εkεp − γkγp

EkEp

)
. (39)

For what concerns the transient contribution, after simple
algebra we can write it in the form

f tr
2 (τ,tw) = −V 2

�

∫ τ

0
ds s K2(s; τ,tw)

− 2V 2
�

∫ τ

0
dsϕ(s)K1(s; τ,tw), (40)

where we have introduced the kernels K1,2(s; τ,tw)

K1(s; τ,tw) = �(s + 2tw) + �(2tw + 2τ − s), (41)

K2(s; τ,tw) = [�(s + 2tw)]2 + [�(2tw + 2τ − s)]2 (42)

as well as the functions

�(x) = (� − �0)
1

L

∑
k

2γ 2
k

E0
k E2

k

cos Ekx, (43)

ϕ(x) = 1

L

∑
k

εk

E2
k

�k sin Ekx, (44)

whose behavior at large argument x will play an important
role for the analysis of f tr

2 (τ,tw) as we will discuss in the next
sections.

III. RESULTS FOR THE LOSCHMIDT ECHO

We now turn to the discussion of the transient Loschmidt
echo, using the results obtained in previous section, in
particular Eqs. (35), (36), and (40), for the cumulant function
f2(τ,tw). Quite generically we can say that the Loschmidt echo
depends on both the duration τ of the local perturbation and
on the waiting time tw, and that it takes the general form

|D(τ,tw)|2 = |Dtr (τ,tw)|2 |Dst (τ )|2, (45)

where the transient and stationary contributons read respec-
tively as

|Dtr (τ,tw)|2 = exp
[−f tr

2 (τ,tw)
]
, (46)

|Dst (τ )|2 = exp
[−f st

2 (τ )
]
, (47)

with the functions f
st,tr
2 given in the previous section. In the

following we will analyze each of these terms in detail with
a special emphasis on the large-time asymptotics. Before this,
we first discuss the equilibrium case to verify that our results
recover those of Ref. [8].

In the rest of the paper we fix J = 1 as unit of energy, which
gives �c = 1 as the equilibrium quantum critical point.
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A. Orthogonality catastrophe in thermal equilibrium
at zero temperature

In absence of a quench, i.e., for � = �0, when the system
is not globally perturbed but rather remains in its ground state
until the switching of the local perturbation, we do not expect
any transient effect for the echo. Indeed, a two-time correlator
in a stationary equilibrium state is expected to depend only on
the time difference. Our results for f tr

2 (τ,tw) show that this is
the case since the function �(x) vanishes, see Eq. (43), and
so do the kernels K1,2 in Eqs. (41) and (42). As a result we
have that Dtr (τ,tw) ≡ 1 for � = �0. In addition the stationary
contribution f st

2 (τ ) also simplifies, since the kernel W
Q
kp in

Eq. (39) vanishes while V
Q
kp reduces to

V
eq
kp = 2

[(
1 + εk

Ek

)(
1 − εp

Ep

)
+ γkγp

EkEp

]
(48)

and we obtain for the equilibrium Loschmidt echo

|Deq(τ )|2 ∼ exp
[−f

eq
2 (τ )

]
(49)

with

f
eq
2 (τ ) = 2V 2

�

L2

∑
k,p

V
eq
kp

{
1 − cos[τ (Ek + Ep)]

(Ek + Ep)2

}
(50)

as already shown in Ref. [8]. In Fig. 2 we plot the behavior of
the echo as a function of τ for different values of �. We see
that the echo starts at one, decreases with time, and eventually
reaches a stationary value at long times (as shown in the inset),
which slowly decreases upon approaching the critical point
� = 1. Here the dynamics slowing down is a result which
can be understood from the structure of f

eq
2 (τ ). Indeed at

� = 1 the denominator in Eq. (50) develops a singularity for
k,p → 0, which is only cut by a finite τ , since the kernel V

eq
kp

stays finite at small momenta. In other words the integral at
� = 1 is divergent with τ , due to the contribution of gapless

0 20 40 60 80 100
0.94
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0.98
0.99
1

Γ=0.5
Γ=0.7
Γ=1.1

0 10 20 30 40 50 60 70 80 90 100
τ

0.92

0.94

0.96

0.98

1

|D
eq
(t)
|2

Γ=0.9
Γ=0.99
Γ=0.999

τ−α

FIG. 2. Loschmidt echo |Deq(τ )|2 in equilibrium at zero temper-
ature for a TFIC after quenching the local potential and for different
values of the transverse field �. The black dashed line refers to the
power-law decay in Eq. (53) at the QCP � = 1. Other parameters are
V� = 0.5, J = 1.

quasiparticles at the quantum critical point. This is seen more
clearly going in the continuum limit and writing f

eq
2 (τ ) as an

integral:

f
eq
2 (τ ) = 8V 2

�

π2E2+

∫ E+

0
dωω

1 − cos (2E− + ω)τ

(2E− + ω)2
, (51)

where E± = 2|� ± 1| are the edges of the density of states
associated to the dispersion Ek . In the long-time limit we have
f

eq
2 ∼ log(E+/E−) and therefore the echo vanishes at � = 1

as a power law

|Deq(τ → ∞)|2 ∼ |� − 1|α (52)

with exponent α = 2(V�/2π )2. Similarly, at � = 1 and for
long times the integral diverges logaritmically, f

eq
2 (τ ) ∼

log(E+τ ), so we have for the echo

|Deq(τ )|2 ∼
(

1

τ

)α

; (53)

namely it vanishes as a power law, with a nonuniversal
exponent that depends on the strength of the local poten-
tial. This power-law decay is a signature of orthogonality
catastrophe of the ground state and its low-lying excited
states [35,82], with respect to the low-energy sector of the
final Hamiltonian (in the presence of the local scattering).
In thermal equilibrium it is well known that the cumulant
expansion result survives higher order terms in the local
potential, which just renormalize the exponent, but leaves the
power-law structure unchanged. Whether a similar result holds
for the quenched nonequilibrium case it is not known and
would require computing the echo nonperturbatively in the
local potential, a task which is beyond our goal here. We will
comment in the discussion section on possible approaches
to answer this question, while in the rest of the paper we
will discuss the cumulant expansion result out of equilibrium
which, as we are going to see, already provides quite an
interesting result.

B. Out-of-equilibrium Loschmidt echo:
Waiting time dependence

Let us now move to the main focus of the present work
and discuss the out-of-equilibrium Loschmidt echo. Due to
a finite quench amplitude �0 	= � now the echo depends, as
we mentioned, on both time arguments and we start analyzing
the dependence from the waiting time tw, at fixed τ . This is
encoded in cumulant function f tr

2 (τ,tw) defined in Eq. (40).
To understand its large tw behavior it is useful first to look at
the behavior of the function �(x), defined in Eq. (43), which
enters the integral expression for the transient contribution
f tr

2 (τ,tw).
In Fig. 3 we plot �(x) for different quench amplitudes,

starting from �0 = 0.75. We see that this function quite
generically decays in a power-law fashion for large values of
its argument x, with an exponent that does not depend much on
the quench parameters. A stationary phase analysis for large
x allows us to get the analytical estimates �(x) ∼ 1

x3/2 , which
is consistent with the numerical data shown in Fig. 3. For
comparison, it is also shown that the function ϕ(x), defined in
Eq. (44), for large values of its argument decays as ϕ(x) ∼ 1

x1/2 ,
a result that will be useful later when we discuss the aging
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FIG. 3. Asymptotic behavior of the kernels �(x) and ϕ(x),
defined in Eqs. (43) and (44), which enter in the integral expression
for the transient contribution to the echo, f tr

2 (τ,tw). We plot them
for different quench amplitudes and highlight their power-law decay
x−α for large values of the argument x, with exponents α = 3/2 and
α = 1/2 respectively.

effects. From the analysis of �(x) we can conclude that also
the kernels K1,2(x) in Eqs. (41) and (42) decay as power laws,
respectively, as K1(x) ∼ 1/x3/2 and K2(x) ∼ 1/x3. If we plug
these expressions in the integral for f tr

2 (τ,tw), see Eq. (40),
and then take the large waiting time limit, tw → ∞ at fixed
τ , we conclude that the transient contribution vanishes as well
for large waiting time arguments

f tr
2 (τ,tw) → 0 tw → ∞. (54)

This is indeed confirmed by the numerical results that we plot
in Fig. 4. We conclude that after a transient time the Loschmidt

0 3 6 9 12 15
tw

-0.5

0

0.5

1

1.5

2

2.5

3

f 2
(τ

,t w
)

Γ0 = 0.75  Γ = 1.0
Γ0 = 0.75   Γ = 1.25

FIG. 4. Transient contribution f tr
2 (τ,tw), Eq. (40), to the

Loschmidt echo, as function of waiting time tw at fixed τ = 1.0
and for different quench amplitudes. Other parameters are V� = 0.5
and J = 1.

approaches a stationary value, |Dst (τ )|2, whose behavior with
τ we are going to analyze in detail in the next section.

C. Stationary Loschmidt echo and quench-induced decoherence

From the results of previous section we conclude the
Loschmidt echo in the stationary state after the global quench,
i.e., for tw → ∞, reads therefore

|Dst (τ )|2 ∼ exp
[−f st

2 (τ )
]

(55)

with f st
2 (τ ) given in Eq. (36) as a sum of two contributions,

that we rewrite here for the reader’s convenience:

f st
2 (τ ) = 2V 2

�

L2

∑
k,p

V
Q
kp

{
1 − cos[τ (Ek + Ep)]

(Ek + Ep)2

}

+ 2V 2
�

L2

∑
k,p

W
Q
kp

{
1 − cos[τ (Ek − Ep)]

(Ek − Ep)2

}
. (56)

The first term above has the same structure as in the zero-
temperature equilibrium case [cf. Eq. (50)], i.e., a denominator
of the form 1/(Ek + Ep)2 which is always finite except poten-
tially for � = 1, when the quasiparticle spectrum becomes
gapless Ek ∼ vk. The difference here with respect to the
equilibrium case is the kernel V

Q
kp is now renormalized by

the finite quench amplitude. However, since for k → 0 we
have

�k = εkεk0 + γ 2
k

EkEk0
→ 1,

we conclude that this renormalization does not affect the low-
momentum structure of the kernel V

Q
kp , which remains finite

as k,p → 0.
If it were only for the first term above, we would not expect

much difference in the behavior of the echo in presence or
absence of a global quantum quench and we would conclude
that the orthogonality catastrophe (53) remains unchanged out
of equilibrium.

A finite quench amplitude results, however, also in a second
contribution to f st

2 (τ ) [see the second line in Eq. (56)], which
comes with an interesting structure. We notice the integrand
has a denominator which vanishes for Ek = Ep, irrespective of
the value of �, and a kernel W

Q
kp which stays finite as k → p.

As a consequence we can expect this contribution to grow
faster with τ as compared to the previous equilibrium-like
case. To see this more explicitly we recast Eq. (56) into an
integral of the form

f st
2 (τ ) = α

∫ E+

0
dω ω

1 − cos (2E− + ω)τ

(2E− + ω)2
(57)

+ γQ

∫ E+−E−

0
dω

∫ ω

0
dε

(
1 − cos ετ

ε2

)
(58)

which can be evaluated analytically.
Here α = 2(V�/2π )2 is the same as in equilibrium, a

consequence of the fact that the kernel V
Q
k remains unchanged

at small momentum. The other constant γQ has instead a
nontrivial dependence from �,�0 as we are going to discuss
below. For a generic quench �0 → � 	= 1 the first integral
saturates at long times, as in equilibrium, while the second
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FIG. 5. Exponential decay of the Loschmidt echo, Eq. (59), after
a global quench of the transverse field, from �0 = 0.5 to � =
0.6, 0.9, 1.7, 3.5, as well as a local perturbation. Other parameters
are V� = 0.5 and J = 1.

one grows linearly with τ , i.e., f st
2 (τ ) ∼ γQτ . As shown in

Fig. 5, this immediately translates into an exponential decay
of the echo,

|Dst (τ )|2 ∼ e−γQτ , (59)

with a rate γQ. The emergence of this energy scale that we call,
in analogy with the Luttinger model result, a quench-induced
decoherence scale is one of the main result of this work.

In order to get an analytic expression for γQ we can go
back to Eq. (56) and notice that for large τ one can employ the
identity limτ→∞[1 − cos(ωτ )]/ω2 = τδ(ω) and conclude that
the second term [83] in the expression for f st

2 (τ ) would grow
indeed linearly in time with a rate

γQ = 2V 2
�

L2

∑
k,p

W
Q
kpδ(Ek − Ep). (60)

In Fig. 6 we plot this decoherence rate at fixed �0 as a function
of �. We notice that for small (global) quench amplitudes the
rate vanishes quadratically; i.e., we have

γQ ∼ V 2
� (� − �0)2 , (61)

in agreement with the result obtained for the Luttinger model
[64]. Right at the equilibrium critical point, for � = 1, this
exponential decays adds on top of a subleading power-law
decay coming from the term proportional to Vkp, so that we
have in this case

|Dst (τ )|2 ∼ e−γQτ

τ α
, (62)

a result which bears strong similarities with the equilibrium
finite-temperature case, as we are going to discuss more in
detail toward the end of the paper.

D. Waiting-time dependence and absence of aging effects

We conclude our analysis by discussing the effect of a finite
waiting time on the long-time asymptotics of the Loschmidt
echo, i.e., by studying the behavior of Dtr (τ,tw) at finite tw

0 0.6 0.9 1.5 3 6
Γ

0

0.05

0.1

Q

Γ0=0.6
Γ0=0.9
Γ0=1.5

-0.2 -0.1 0 0.1 0.2
Γ−Γ0

0

0.001

0.002

0.003

0.004

FIG. 6. Quench-induced decoherence rate for different values of
�0 and as a function of �. We notice that for small quench amplitude,
�0 
 �, the rate is quadratic in the deviation out of equilibrium. Other
parameters are V� = 0.5 and J = 1.

and large τ , which is related to possible emergence of aging
effects in the echo. We notice that this is a rather different
regime with respect to what we discussed in Sec. III B, where
instead we considered a finite τ and took the long waiting time
limit tw → ∞ when the bulk modes dephase after the global
quench and the environment look again stationary, although
out of equilibrium. Instead here we would like to ask whether
a finite waiting time tw can change the leading time decay
of the echo as function of τ , for example, its power-law
structure. Such an intriguing effect, a unique signature of
the nonequilibrium transient nature of the environment, was
indeed found in Ref. [64], in the context of the quenched
Luttinger model, and it is one of our purposes here to assess
the generality of this result.

To address this question we study the transient contribution
to the second cumulant f tr

2 (τ,tw) at fixed waiting time and
for large τ . In light of what we discussed so far, in order to
obtain a correction to the stationary contribution f st

2 (τ ), one
should find a term in f tr

2 (τ,tw) growing unbounded with τ ,
either logarithmically or as a power law, with a characterstic
aging-like dependence of the ratio τ/tw [64]. A closer look at
the structure of this transient contribution, that we rewrite here
for reader convenience,

f tr
2 (τ,tw) = −V 2

�

∫ τ

0
ds s K2(s; τ,tw)

− 2V 2
�

∫ τ

0
dsϕ(s)K1(s; τ,tw), (63)

together with the results obtained in Sec. III B on the large
argument scaling of the kernels K1,2 and the decay of ϕ(x),
make clear, however, that such an aging behavior is not present
in the TFIC. A simple power-counting argument points toward
a saturating behavior for f tr

2 (τ,tw) at large τ : Indeed we have
argued that K2(x) decays as 1/x3 at large x, so the first term in
the integral above is well behaved. Similarly, ϕ(x) ∼ 1/x1/2

whileK1(x) ∼ 1/x3/2 so the result of the second integral is also
finite at large τ . To confirm this analysis we have evaluated
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FIG. 7. Transient contribution to cumulant expansion f tr
2 (τ,tw)

in function of τ , evaluated at fixed tw = 1.0 value and for different
quench amplitudes. In both cases we have chosen �0 = 0.75 and
� = 1.0,� = 2.0. Other parameters are V� = 0.5 and J = 1.

numerically the transient contribution f tr
2 (τ,tw) and plotted the

results in Fig. 7, for different values of the quench parameters.
We conclude that for the TFIC the echo does not show aging
dynamics, as opposed to what was found in the Luttinger model
with an impurity [64].

E. Summary of results

We conclude this section with a brief summary of the vari-
ous regimes so far discussed for the transient Loeschmidt echo,
|D(τ,tw)|2. First, when discussing the long-time behavior with
respect to the two time arguments, we are always assuming
time scales much longer than a microscopic scale, related
to some high-energy cutoff; in the present case of TFIC the
quasiparticle bandwith that we set to � = 4J = 4. Then we
can distinguish two regimes

(1) τ,tw � 1/� and τ/tw � 1, i.e., 1/� � τ � tw
Here the duration of the local quench is much shorter than the
waiting time and therefore one can consider bulk excitations
to be fully dephased to a diagonal ensemble. The echo decays
exponentially with a quench-induced decoherence rate cutting
off the power-law decay; see Eq. (62). Such a scale γQ only
depends on the stationary properties after the quench. This
regime is analogous to what was obtained for the Luttinger
model with impurity.

(2) τ,tw � 1/� and τ/tw � 1, i.e., 1/� � tw � τ

Here the duration of the local quench is much longer than the
waiting time and in principle the transient nature of the bath
could be important. This was, in the Luttinger liquid case, the
regime associated with aging due to the forward scattering
contribution. Here instead we do not see, at least at the level
of second-order cumulant, any nontrivial dependence from tw,
which only enters in the prefactor of the echo, see Eq. (45) but
does not change the leading power-law behavior in time.

IV. DISCUSSION

Putting things together, the cumulant expansion suggests
that the combined effect of global and local perturbation
change qualitatively the behavior of the Loschmidt echo in
the stationary state after the quench, as compared to the
ground-state low-energy case. The echo now exhibits an
exponential decay in time with an emerging energy scale, the
quench-induced decoherence rate γQ, which is controlled by
the local perturbation and the excitation energy injected by the
global quench.

Interestingly, a similar exponential decay for the echo is
expected in equilibrium at finite temperature, as we explicitly
show in Appendix B. The result of this equilibrium calculation
reveals a striking similarity between the quenched and thermal
cumulant expansion for the Loschmidt echo; in particular, the
leading term growing linearly in time—resulting in a finite rate
γQ—comes in both cases from a singular denominator due to
degenerate quasiparticle states. We stress that such similarity
is only qualitative; i.e., asymptotic behavior of the echo is
analogous to the one at finite temperature, but nevertheless
at the quantitative level the steady-state Loschmidt echo in
the TFIC is far from being thermal, as one can see by direct
inspection by recognizing that the modes contributing to the
echo are populated in a highly nonthermal fashion [see, for
example, Eq. (B4)]. This result is therefore fully consistent
with the integrability of the model and with the results known
about dynamical correlations in the TFIC after a quench, which
are expected to relax to a generalized Gibbs equilibrium.

More importantly for our scope here, the results we
have obtained confirm qualitatively the picture of quench-
induced decoherence that emerged in the study of quenched
Luttinger models [64,65] and represents a further nontrivial
confirmation of its robustness, that adds to other indirect
confirmations obtained by numerical investigation of fidelity /
Loschmidt echo decay in highly excited quantum spin chains
[14]. However, the transient effects are substantially different
between the Ising and Luttinger cases, the former lacking the
nontrivial aging dynamics in the Loschmidt echo that was
found for a static impurity in a Luttinger model (or boundary
Sine-Gordon problem). We can trace back such a difference
to the peculiar nature of the quenched Luttinger model and
its nonequilibrium power-law correlators. In the Ising case
the behavior of the echo is, as we mentioned, reminiscent of
finite temperature and the existence of a thermal decoherence
time scale seems consistent with the absence of aging usually
associated with scale-invariant systems at critical points.

A. Future directions

An interesting question left open is whether the present
problem admits a genuine strong coupling regime, similar
to the impurity in a quenched Luttinger liquid where it
was shown that for certain parameters the strength of the
impurity potential grows under renormalization, making weak
coupling approaches questionable. We notice that the behavior
of quench-induced decoherence scale does not suggest a break-
down of perturbation theory for certain values of quenches
(as it was in the case of Ref. [64]) nor does the knowledge
about the equilibrium physics of static σ z defect in a critical
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TFIC seem to point toward this conclusion. Nevertheless, to
properly answer this question, one would need to address the
nonperturbative regime of local quenches. We conclude the
paper with few ideas on how to proceed in this direction.

As we have stressed throughout the paper, our results are
based on a lowest-order cumulant expansion in the strength of
the local perturbation. A natural question is how to approach
the nonperturbative regime of large local quenches, where the
impurity physics is expected to play a major role. A direct
evaluation of higher order cumulants does not appear par-
ticularly insightful, although progress on a similar problem
has been recently achieved [84]. For the TFIC in the case
of a pure local quench, progress has been obtained working
at the quantum critical point in the scaling limit and using
bosonization [28,29]. This approach does not seem to be
of immediate usage in the present case, due to a finite
bulk mass in the initial/final Hamiltonian (corresponding to
having either �,�0 	= 1), which translates under bosonization
into a backscattering term which is nonlinear in the bosonic
variables. A possible direction we envision is to work in the
fermionic representation and make use of the determinant
structure [82] of the Loschmidt echo to compute it numerically
in the presence of both a global quench and a finite local
perturbation. Alternatively, one can take advantage of the fact
that, at least for a local perturbation coupling σ z, the model
with defect remains quadratic. Therefore one should be able to
cast the Loschmidt echo in the form of a suitable rate function
defined as integral over the spectrum of the nontranslational
invariant yet quadratic fermionic Hamiltonian.
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APPENDIX A: FERMIONIC GREEN’S FUNCTIONS

In this Appendix we consider the fermionic Hamiltonian

H0 =
∑
k>0

εk0 (c†kck − c−kc
†
−k) −

∑
k>0

iγk(c†k c
†
−k − c−kck)

(A1)

with εk,γk defined in the main text, Sec. II, and give expressions
for the normal and anomalous Green’s functions (GFs):

Gk(t,t ′) = −i〈T ck(t)c†k(t ′)〉, (A2)

Fk(t,t ′) = −i〈T ck(t)c−k(t ′)〉, (A3)

F̄k(t,t ′) = i〈T c
†
k(t)c†−k(t ′)〉, (A4)

both in equilibrium at finite temperature T and at zero
temperature after a quantum quench, εk0 → εk .

1. Equilibrium finite temperature

In this case all GFs are time-translational invariant. The normal
component reads

Gk(t) = −iθ (t)
[
cos2 θke

−iEkt (1 − fk) + sin2 θke
iEktfk

]
+ iθ (−t)

[
cos2 θke

−iEktfk + sin2 θke
iEkt (1 − fk)

]
(A5)

while the anomalous

Fk(t) = θ (t)
sin 2θk

2

[
e−iEkt (1 − fk) − eiEktfk

]
− θ (−t)

sin 2θk

2

[
e−iEktfk − eiEkt (1 − fk)

]
(A6)

and

F̄k(t) = θ (t)
sin 2θk

2

[
eiEktfk − e−iEkt (1 − fk)

]
+ θ (−t)

sin 2θk

2

[
e−iEktfk − eiEkt (1 − fk)

]
, (A7)

where the angle θk is defined in the main text, Sec. II,
while fk = 1/(exp βEk + 1) is the Fermi distribution at the
quasiparticle energy Ek .

2. Zero-temperature, quenched transverse field

Here the Green’s functions depend on both time arguments,
due to the quench of the transverse field. For convenience, we
decompose the normal and anomalous components as

Gk(t,t ′) = θ (t − t ′)G>
k (t,t ′) + θ (t ′ − t)G<

k (t,t ′), (A8)

Fk(t,t ′) = θ (t − t ′)F>
k (t,t ′) + θ (t ′ − t)F<

k (t,t ′), (A9)

F̄k(t,t ′) = θ (t − t ′)F̄ >
k (t,t ′) + θ (t ′ − t)F̄ <

k (t,t ′), (A10)

and we find, for the normal GFs, respectively

G>
k (t,t ′) = −i

(
cos2 θk cos2 δθke

−iEk (t−t ′) + sin2 θk sin2 δθke
iEk (t−t ′)) − i

2
sin 2θk sin 2δθk cos Ek(t + t ′), (A11)

G<
k (t,t ′) = i

(
cos2 θk sin2 δθke

−iEk (t−t ′) + sin2 θk cos2 δθke
iEk (t−t ′)) − i

2
sin 2θk sin 2δθk cos Ek(t + t ′), (A12)

while for the anomalous components we find

F>
k (t,t ′) = sin 2θk

2

(
cos2 δθke

−iEk (t−t ′) − sin2 δθke
iEk (t−t ′)) + sin 2δθk

2

(
sin2 θke

iEk (t+t ′) − cos2 θke
−iEk (t+t ′)), (A13)

F<
k (t,t ′) = − sin 2θk

2

(
sin2 δθke

−iEk (t−t ′) − cos2 δθke
iEk (t−t ′)) + sin 2δθk

2

(
sin2 θke

iEk (t+t ′) − cos2 θke
−iEk (t+t ′)), (A14)
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as well as

F̄ >
k (t,t ′) = − sin 2θk

2

(
cos2 δθke

−iEk (t−t ′) − sin2 δθke
iEk (t−t ′))

+ sin 2δθk

2

(
cos2 θke

iEk (t+t ′) − sin2 θke
−iEk (t+t ′)),

(A15)

F̄ <
k (t,t ′) = sin 2θk

2

(
sin2 δθke

−iEk (t−t ′) − cos2 δθke
iEk (t−t ′))

+ sin 2δθk

2

(
cos2 θke

iEk (t+t ′) − sin2 θke
−iEk (t+t ′)),

(A16)

where δθk = θk − θk0 is the difference between Bogolubov
angles; see Sec. II.

APPENDIX B: LOSCHMIDT ECHO AT FINITE
TEMPERATURE AND CUMULANT EXPANSION

Here we extend the cumulant expansion calculation of the
Loschmidt echo, presented in Sec. III, to the equilibrium finite-
temperature case. We start from

|Deq(τ )|2 ∼ exp
[−f

eq
2 (τ )

]
, (B1)

where

f
eq
2 (τ ) = 1

2

∫ τ

0
dt1

∫ τ

0
dt2 S(t1 − t2) (B2)

withS(t) = 〈T σ z
0 (t)σ z

0 (0)〉c. The spin-spin dynamical correla-
tion function in equilibrium can be still evaluated from Eq. (34)
in the main text,

S(t1,t2) = 4

L2

∑
kp

Gk(t1,t2)Gp(t2,t1) − F̄k(t1,t2)Fp(t1,t2),

using the expression for the equilibrium Green’s functions
given in the previous section. After some algebra we obtain
the final result:

Ref eq
2 (τ ) = V 2

�

L2

∑
kp

V T
kp

{
1 − cos[τ (Ek + Ep)]

(Ek + Ep)2

}

+ V 2
�

L2

∑
k,p

WT
kp

{
1 − cos

[
τ (Ek − Ep)

]
(Ek − Ep)2

}
,

(B3)
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FIG. 8. Decoherence rate for the Loschmidt echo in equilibrium
at finite temperature T for different values of the transverse field �.
Other parameters are V� = 0.5 and J = 1.

where the finite-temperature kernels V T
kp,WT

kp read respectively

V T
kp = V

eq
kp [(1 − fk)(1 − fp) + fpfk], (B4)

WT
kp = fk(1 − fp)

(
1 + εkεp − γkγp

EkEp

)
. (B5)

Here V
eq
kp is the zero-temperature equilibrium kernel given

in Eq. (48) and we have introduced the Fermi function
fk = 1/[exp(βEk) + 1]. From this expression we immediately
see that for T → 0 we recover the ground-state result,
while at finite temperature corrections appear which have
the same structure as in the stationary quenched case. In
particular, the kernel WT

kp resembles very much the one
obtained in the out-of-equilibrium case, with the identification
of (1 − �k)(1 + �p) as effective distribution function of the
quench-excited modes. Following the analysis presented in
the main text we can conclude that the finite-temperature
equilibrium Loschmidt echo acquires an exponential decay,
irrespective of �, |Deq(τ )|2 ∼ exp (−γT τ ) with a thermal
decay rate

γT = V 2
�

L2

∑
k,p

WT
kpδ(Ek − Ep) (B6)

that we plot in Fig. 8 as a function of temperature and for
different values of the transverse field �.
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[84] M. F. Maghrebi, M. Krüger, and M. Kardar, Phys. Rev. B 93,
014309 (2016).

014310-13

http://dx.doi.org/10.1103/PhysRevB.85.155413
http://dx.doi.org/10.1103/PhysRevB.85.155413
http://dx.doi.org/10.1103/PhysRevB.85.155413
http://dx.doi.org/10.1103/PhysRevB.85.155413
http://dx.doi.org/10.1103/PhysRevB.93.014309
http://dx.doi.org/10.1103/PhysRevB.93.014309
http://dx.doi.org/10.1103/PhysRevB.93.014309
http://dx.doi.org/10.1103/PhysRevB.93.014309



