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Given the unique optical properties of LiF, it is often used as an observation window in high-temperature and
-pressure experiments; hence, estimates of its transmission properties are necessary to interpret observations.
Since direct measurements of the thermal conductivity of LiF at the appropriate conditions are difficult, we resort
to molecular simulation methods. Using an empirical potential validated against ab initio phonon density of states,
we estimate the thermal conductivity of LiF at high temperatures (1000–4000 K) and pressures (100–400 GPa)
with the Green-Kubo method. We also compare these estimates to those derived directly from ab initio data. To
ascertain the correct phase of LiF at these extreme conditions, we calculate the (relative) phase stability of the
B1 and B2 structures using a quasiharmonic ab initio model of the free energy. We also estimate the thermal
conductivity of LiF in an uniaxial loading state that emulates initial stages of compression in high-stress ramp
loading experiments and show the degree of anisotropy induced in the conductivity due to deformation.
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I. INTRODUCTION

LiF is an ionic solid that is particularly transparent to
short-wavelength radiation due to its large band gap and hence
is commonly used in optics for high-pressure and -temperature
experiments, such as those related to the development of pulsed
power [1]. LiF is also a component in molten salts frequently
employed as high-temperature thermal fluids. Estimates of the
transport properties of LiF are important to both of these appli-
cations. Specifically, in dynamic high-pressure experiments, a
LiF window maintains the pressure at the sample interface
where velocimetry measurements are typically made. Due to
the extreme conditions, the necessary transmission properties
are difficult to measure directly. In these experiments, a
shock or a near-shock ramp compression with pressures up
to 800 GPa [2] is generated by a variety of means and the
material response is measured using velocity interferometry,
see, e.g., Refs. [2–6]. There are many efforts concentrating
on estimating the optical properties of LiF crucial to this
measurement; see, e.g., Refs. [2,7–9]. Due to the short but
finite time scale of dynamic material experiments, the thermal
conductivity of LiF windows can significantly affect the
temperature measured at the sample interface. In this work, we
focus on calculating this thermal conductivity at the extreme
conditions relevant to these experiments with the goal of
understanding the nonequilibrium energy transfer that governs
their behavior.

The material properties of LiF have been explored in
experiments and simulation primarily nearer to ambient
conditions. For instance, Thacher [10] measured the sound
velocity and thermal conductivity of LiF at temperatures less
than 100 K. At ambient pressure, Ref. [10] shows that the
thermal conductivity of LiF peaks at about 2 W/m K near
20 K, where the quantum increase of heat capacity begins
to be dominated by the decrease in conductivity due to
Umklapp scattering. Andersson and Bäckström [11] were able
to measure the heat capacity and thermal conductivity of LiF
at room temperature up to pressures of 1 GPa. They showed a
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linear dependence of thermal conductivity on pressure and
measured a conductivity value of 16.3 W/mK at 1 GPa.
Phase and other transitions can complicate measurements at
higher temperatures and pressures. Given that the full phase
diagram for LiF is not known, Smirnov [12] computed an ab
initio phase diagram of LiF over pressures ranging from 0 to
500 GPa and temperatures ranging from 0 K to 12 000 K
together with the elastic properties and associated Debye
temperatures. Smirnov [12] predicted that the structure of
LiF is the NaCl-like arrangement B1 at low temperature and
pressure but transitions to the CsCl-like arrangement B2 at
higher pressures and temperatures. Smirnov correlated his
results with experimental data by Kormer [13] and Boehler
et al. [14]. (See Root et al. [15] for a similar study of
MgO, where ab initio molecular dynamics and quantum
Monte Carlo methods were also employed to predict a phase
diagram at extreme conditions.) Boehler et al. [14] studied
the high-pressure melting regime of LiF with diamond anvil
experiments and classical molecular dynamics (MD) fitted to
properties at standard temperature and pressure. Clérouin et al.
[16] used ab initio dynamics to estimate the optical properties
of LiF along the shock Hugoniot where it transitions from
a transparent solid to a reflective plasma. Belonoshko et al.
[17] investigated LiF melting with MD using a potential tuned
with ab initio data and compared to existing diamond anvil
and shock experimental data. In particular, Belonoshko et al.
showed that density as a function of pressure and the radial
distribution function computed with their potential compares
well with trusted data. They also make clear the distinction
between thermal instability and melting, especially for small
systems at high pressures using a phase coexistence method.
Also using classical MD, Young [18] studied ion damage of
LiF crystals. Related to thermal properties of LiF, Nüsslein and
Schröder [19] calculated the dispersion and phonon density of
states (phDOS) via a polarizable model of the interatomic
interactions of LiF at 0 K. Dolling et al. [20] also calculated
the phDOS of LiF via lattice dynamics and compared it to
dispersion data derived from slow neutron inelastic scattering.
In their work, the crystal has phonon content up to 20 THz
with most of the low-frequency content attributed to the F ion.
Recently, Stegailov [21] calculated the phDOS with density
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functional theory with the generalized gradient approximation
and showed the onset of mechanical instability, which may
lead to defect formation or melting, due to hot electrons when
the electron temperature reaches 37 000 K.

Following this body of work, in this paper we use MD
together with the Green-Kubo (GK) formalism [22–27] to
estimate the thermal conductivity of LiF at stresses on par
with the elastic moduli and temperatures in excess of the melt
temperature at ambient conditions. In particular, we investigate
both volumetric and uniaxial deformation modes similar to
(non-Hugoniot) ramp compression experiments. (Reference
[9] makes a corresponding study of the optical properties
of LiF.) Generally speaking, classical MD is well suited to
simulating ionic solids since essentially all heat propagates
via phonons. The related publications, Refs. [28–33], are
the few examples of estimating the thermal conductivity
of alkali metals with classical MD and typically focus on
the thermal properties of molten salts with applications to
high-temperature thermal transfer fluids. The strong ionic
character of LiF leads to the usual complications due to
long-range Coulomb interaction, requiring dipole corrections
and large cell sizes; but the main issue is that MD is highly
reliant on empirical potentials. There has been some work
on suitable potentials for ionic solids like LiF, typically of
the Buckingham [18,34] or Born/Tosi-Fumi [35–37] forms.
A high-quality potential parametrization for LiF of another
form was developed by Ishii et al. [31], but focused on the
properties of molten mixtures; see also Refs. [31–33]. On the
other hand, Belonoshko et al. [17] carefully constructed a Tosi-
Fumi/Born-Mayer-Huggins potential to suit high-pressure and
temperature conditions by dropping the unstable terms in
the full Tosi-Fumi form and compared its behavior to that
described in the literature and their own density functional
theory (DFT) results. Given the findings in Ref. [17], it was
evident that the MD potential may not transition to the most
stable phase with changes in pressure and temperature but
instead becomes stuck in a metastable state. We used this
fact together with a phase diagram independently calculated
with DFT to estimate thermal conductivity over pressures
ranging from 100 to 400 GPa and temperatures ranging from
1000 K to 4000 K. To compute the phase diagram, we
follow the work of Smirnov [12] and others [38–40] and use
plane augmented wave (PAW) DFT with the local density
approximation (LDA) instead of the linear muffin-tin orbital
method Smirnov employed to estimate the zero-temperature
enthalpy and entropy of the phonon population. From a
dynamical matrix calculated with DFT, we are able to estimate
the entropy component of the free energy with a quasiharmonic
model. The range of the free energy estimated with the
quasiharmonic model is limited by the mechanical stability,
which we also estimated with the ab initio bond stiffnesses
governing the phonon propagation. In addition, we use the
ab initio phDOS to validate and recalibrate the Belonoshko
parametrization for thermal conductivity estimates.

II. THEORY

Given a definition of the heat flux J, the thermal conduc-
tivity tensor κ can be obtained from the Green-Kubo formula

dependent on the time correlation of J with itself,

κ = V

kBT 2

∫ ∞

0
〈J(0) ⊗ J(t)〉dt, (1)

where V is the system volume, T is the temperature, and
kB is the Boltzmann constant. The bracket 〈·〉 denotes the
appropriate ensemble average, where it is important to note
that 〈J〉 = 0 in equilibrium. A microscopic formula [41,42]
for the heat flux J is

J = 1

V

∑
α

(
εαI + νT

α

)
vα, (2)

where the per-atom energy εα is formed from the kinetic
energy of the atom α and a reasonable partition of the
total potential energy composed of short-range bonds and
long-range Coulomb interactions to individual atoms [43]
and the virial stress να for atom α in terms of fundamental
quantities (which is given in Appendix A). Classical MD
provides the necessary positions xα , velocities vα , and forces
fα from the trajectories obtained by integrating Newton’s
equations of motion, mα ẍα = fα , given an initial configuration
{xα(0)} and atomic masses mα . The total force fα on an atom
α is the sum of interatomic forces derived from an empirical
potential �({xα}). For ionic solids like LiF, explicit charges qα

are typically constant and located at ion cores.
A widely used potential for ionic materials is the Tosi-

Fumi/Born-Mayer-Huggins (TF/BMH) potential [36,44–46].
It is a combination of long-range Coulomb and short-range ϕ

(repulsion) pairwise interactions,

� =
∑
a�b

α �=β∑
α ∈ Aa

β ∈ Ab

φab(rαβ) where φab(r)

= zazbe
2

εr
+ Aab exp(−Babr) − Cab

r6
− Dab

r8︸ ︷︷ ︸
ϕab(r)

, (3)

for species a,b with associated groups of atoms Aa,Ab,
interatomic distance rαβ = ‖xα − xβ‖, and charge qα = zae

for α ∈ Aa . Here ε is the (vacuum) permittivity and e is the ele-
mentary charge. Of the empirical parameters—Aab, Bab, Cab,
and Dab—the last two are related to dipole interactions and
are set to zero for high-pressure stability considerations by
Belonoshko et al. [17] in their model of LiF. The periodic
images participating in the Coulomb forces on the atoms in the
system extend well beyond the explicitly represented periodic
box. For efficiency, the energy � is decomposed into long
(reciprocal k-space) and short (real x-space) components. This
decomposition is the essence of Ewald summation and the
particle-particle particle-mesh (PPPM) method [47–51] (see
Appendix A for more details).

To validate an empirical potential for calculation of thermal
conductivity, ideally all the properties related to the phonon
population and propagation would be compared with exper-
imental or ab initio data. In lieu of a full comparison of
the dispersion relationship for harmonic waves and related
properties for anharmonic interactions, we follow others in
comparing the elastic constants and phonon density of states
related to the phonon dispersion and wave speeds. As derived
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from the dispersion relationship of the material, the phDOS
is linked to the thermal conductivity of the material. The
dispersion relationship is determined by the matrix of bond
stiffnesses K, which is composed of submatrices of linearized
force constants,

[K]αβ = ∂2�

∂xα∂xβ

∣∣∣∣
xα=yα

= − ∂fα
∂xβ

∣∣∣∣
xα=yα

, (4)

referenced to a given lattice configuration yα [52–54]. The
dynamical matrix D, a Fourier transform of K, results from
applying a plane wave ansatz for the motion of the atoms about
lattice positions yα ,

[D(k)]αβ =
∑

�

1√
mαmβ

Kαβ exp[−ık · (xα − xβ − �)], (5)

where � ranges across all periodic images of the unit cell
including the original one. The dynamical matrix determines
the eigenvalues ω2

i for a given propagation direction (wave
vector) k and polarization. The phDOS is constructed by
sampling the eigenvalues ω2

i of Eq. (5) throughout the Brillouin
zone. The same procedure can be used in the context of an ab
initio density functional model of the material where the forces
fα are the Hellman-Feynman forces. The dynamical matrix also
determines the (linear) phonon and long-wavelength elastic
stability. The elastic moduli tensor

[B]iAjB =
[

∂2�

∂F∂F

]
iAjB

= 1

V0

⎡
⎣∑

α,β

∂2�

∂xα∂xβ

:
∂xα

∂F
∂xβ

∂F

⎤
⎦

iAjB

= 1

V0

∑
α,β

[[K]αβ]ij [Xα]A[Xβ]B (6)

is related to the tensor of bond stiffnesses K and determines
the stability in the continuum limit. Here F = ∂x

∂X is the
deformation gradient, Xα are the stress-free lattice sites, and
yα = FXα . See Appendix B for more details.

LiF can change phase over a range of temperatures and
pressures. To determine the relatively stable phase as a function
of temperature T and stress P, estimates of the Gibbs free
energy G,

G(P,T ) = F (F(P,T ),T ) + P · F(P,T ), (7)

a Legendre transform of Helmholtz free energy F , needs to be
calculated for both B1 and B2 structures. Here P = ∂FF |T is
the first Piola-Kirchhoff stress. Assuming positive frequencies
ωi , the Helmholtz free energy F is commonly estimated with
a quasiharmonic (QH) model,

F (F,T ) = Ec(F) + 1

2

∑
�ωi(F)

+kBT
∑

i

ln

[
1 − exp

(
�ωi(F)

kBT

)]
, (8)

which is based on the partition function of independent oscilla-
tors (see, e.g., Ref. [55], Chap. 5). This model is composed of
two zero-temperature components—(a) the cohesive energy
(referenced to an infinitely dispersed state), which can be
equated with Ec(F) = �({FXα}), and (b) the (nonclassical)
zero point/ground-state energy of the phonons 1

2

∑
�ωi(F) =

1
2 � tr

√
D—together with a third term: the temperature-entropy

product approximated by the harmonic oscillator model. Given
the wide band gap of LiF, which is still in excess of 10 eV at
the pressures we consider [9], we neglect the thermal electron
contribution in this approximate model. Clearly, an equation
of state (EOS) P = P(F,T ) is necessary to transform the
Helmholtz free energy F to the Gibbs free energy G. At zero
temperature the data needed to construct an accurate EOS can
be calculated with DFT. The change of stress with temperature
can be estimated with the QH model Eq. (8) [56] or from MD
simulations. Assuming a first-order dependence of stress on
temperature, we can use

P = P0(F) + MT (9)

to form the necessary inverse F = P−1
0 (P − MT ). Since the

systems of interest are cubic, the thermal expansion tensor
M ≡ ∂2F

∂T ∂F = ηI, and hence only one coefficient η needs to be
determined to effect thermal expansion.

III. METHODS

As discussed in the Introduction, we have based this study
on the potential by Belonoshko et al. [17]. This potential was
specifically parametrized for high-pressure states where the
Cab and Dab parameters of the TF/BMH potential in Eq. (3),
which cause instability, are set to zero. Since Belonoshko
et al. [17] were primarily concerned with investigating phase
diagram and mechanical properties and we are employing
the potential to estimate thermal conductivity, we compared
the phDOS resulting from the TF/BMH potential with the
Belonoshko et al. parameters to that from an ab initio
calculation as a measure of the validity of phonon transmission.
For the DFT calculations, we employed the local density ap-
proximation (LDA), a plane wave basis with cutoff 800 eV with
standard pseudopotentials [57], and a 20 × 20 × 20 k-point
Monkhorst-Pack grid, which were arrived at via convergence
studies for the dynamical matrix and elastic moduli.

Figure 1 shows that the phDOS (calculated via the DFT
code VASP [57,58] and the PHONOPY package [59,60]) is quite
sensitive to compression and hence pressure. The presence
of negative frequencies in the phDOS of compressed B2
structures also indicates that the B2 phase is unstable for
lattice constant a > 2.1 Å (and number density n = N/V <

0.215 atoms/Å
3
). We compared the phDOS for simulations

with 2 × 2 × 2,3 × 3 × 3 and 4 × 4 × 4 unit cells with the
correction based on Born effective charges [60] and found
results essentially indistinguishable, and hence we employed
systems with 2 × 2 × 2 for the remainder of the calculations.
For the comparison of the phDOS derived from the Belonoshko
potential and that from DFT, we picked the compressed
B1 configuration with a = 3.285 Å (corresponding to a
2000 K, 200-GPa lattice constant based on the Belonoshko
parametrization) as representative of our pressure-temperature
region of interest. Given the poor match shown in Fig. 2,
we retuned the potential to achieve a better correspondence,
particularly of the peaks in the phDOS, which is also shown
in Fig. 2. Note that only changing Li-F well depth resulted in
stable modifications of the crystal that maintained a reasonably
representative lattice constant—B1, 4.051 Å (original) vs
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FIG. 1. Dependence of the phonon density of states on deformation; cf. Ref. [20] (Fig. 6). The phDOS peak location is sensitive to strain
through the dynamical matrix. Also note that the fact that the phDOS is nonzero at zero frequency for B2:F indicates the existence of modes
with negative frequencies and hence mechanical instability at T = 0 K. For reference: B1, lattice constants a = 3.2, 3.4, 4.0 Å, correspond to

atomic densities n = 0.24, 0.20, 0.13 atom/Å
3
; B2, a = 2.0, 2.2, 2.4 Å, correspond to n = 0.25, 0.19, 0.14 atom/Å

3
, where aB1 = 3

√
4aB2 gives

the same density n.

4.206 Å (modified); B2, 2.514 Å (original) vs 2.588 Å
(modified)—at zero temperature. The resulting and original
parameters are given in Table I.

Regarding the possibility that LiF can have B1, B2, and
liquid phases over the pressure-temperature range of interest
and these structural changes can influence the thermal conduc-
tivity, we adopted the approach to (a) use DFT to predict the
appropriate phase for given stress and temperature conditions
and (b) use this phase to initialize the MD simulation, which
generally stays in this phase even if it is only metastable
with respect to the empirical potential. We did observe some

 0  5  10  15  20  25  30  35  40

DFT

THz

Li
F

 0  5  10  15  20  25  30  35  40

MD

FIG. 2. Comparison of MD and DFT phonon partial density of
states for the B1 structure with lattice constant a = 3.285Å, which
corresponds to 200 GPa and 2000 K (based on the Belonoshko
potential). In the lower phDOS the solid lines are the results for
the modified TS/BMH potential, where the well-depth parameter for
the Li-F interaction has been increased by 30% (refer to Table I)
relative to the original Belonoshko parametrization (dashed lines)
and compare well to the upper ab initio phDOS.

deviations from this assumption, including defect formation
and melting, which are noted in the Results section. To this
end, the QH model (8) derived from the same dynamical matrix
used to generate phDOS was employed to estimate the relative
free energy �G = GB2 − GB1 and thus the thermodynamic
stability of the B2 phase relative to B1. This model is built upon
direct ab initio estimates of the zero-temperature enthalpy and
limited in its range of validity by the mechanical stability of
the phonon population at each particular deformation state.

To construct the B1-B2 phase diagram, first we constructed
an equation of state. We interpolated the function P0 for B1
and B2 directly from DFT data and estimated the thermal
expansion coefficient η from MD data (as opposed to from
the QH model) due to its full representation of anharmonic
effects and its good correlation with measured values. Figure 3
shows the relevant pressure-versus-density curves for a range
of temperatures. Clearly, the finite-temperature MD pressure
curves are offset from the zero-temperature DFT data so that
positive thermal expansion coefficients are obtained and the
bulk modulus for the MD model are effectively the same as
for the DFT; however, the zero-temperature equilibrium lattice
constants do differ slightly. Our estimates of the expansion
coefficient η employed in Eq. (9) are B1, 0.008056 GPa/K; B2,
0.01164 GPa/K, for the original Belonoshko parametrization;

TABLE I. Potential parameters of the Tosi-Fumi/Born-Mayer-
Huggins style potential Eq. (3): A,B from Ref. [17] and modified
A′, B′ based on matching an ab initio phDOS; see Fig. 2. Note in
Ref. [17] that the short-range parameters C and D are set to zero for
high-pressure stability. Also, unit charges are assigned to Li (zLi =
+1) and F (zF = −1).

A (eV) B (Å
−1

) A′ (eV) B′ (Å
−1

)

Li-Li 98.933 3.3445 ′ ′ ′ ′

Li-F 401.319 3.6900 521.714 ′ ′

Li-Li 420.463 3.3445 ′ ′ ′ ′
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FIG. 3. Pressure as a function of (volumetric) compression and
temperature for B1 (solid lines) and B2 (dashed lines) phases. The
0 K (gray) contours are extrapolated from the higher-temperature data
using the linear thermal expansion model, Eq. (9). This extrapolation
is parallel but not coincident with the DFT data (black), which
implies that the MD and DFT models of LiF have similar elastic
elastic properties but different zero-temperature equilibrium lattice
constants. The inset shows corresponding data for the modified
MD potential. For reference, the Rose-Vinet fits to the DFT data
are B1, K = 83.93 GPa, K ′ = 4.594 GPa, a = 3.905Å; B2, K =
78.42 GPa, K ′ = 4.818 GPa, a = 2.464 Å, where K is the zero-
temperature bulk modulus and a is the corresponding lattice constant.
For reference, the measured, ambient lattice constant is 4.03 Å [68].

and B1, 0.007411 GPa/K; B2, 0.01082 GPa/K, for the modified
parametrization. For reference, the measured coefficient of
thermal expansion (η divided by the bulk modulus) is 37 ×
10−6 /K [61] at ambient conditions, which corresponds to our
estimate, 30 × 10−6 /K, for the unmodified B1 potential. Also
apparent is the fact that the B1 and B2 phases have similar
mechanical responses, with B2 being slightly, but distinctly,
softer than B1 at the same (number) density n.

Next we ascertained the mechanical stability of the B1 and
B2 phases through the ab initio estimates of the elastic moduli
and phDOS. Figure 4 shows the pressure and elastic moduli
calculated from the DFT data, and the derived stability moduli
(see Appendix B for details). The results—(a) B1 is stable
over the high-pressure range we consider, and (b) B2 is only

conditionally stable (a < 2.15Å, n > 0.2 atoms/Å
3
) based on

linearized, long-wavelength elastic stability considerations—
are comparable to the findings in Ref. [12] (Fig. 2) [62].
Examining phonon spectrum corresponding to the phDOS
data in Fig. 1 gives a more detailed account of stability since
each mode can be examined independently (see Appendix B
for a discussion of the connection between the two stability
criteria). From the phDOS data, B2 is apparently stable
for a < 2.1Å, which corresponds approximately to pressure
p ≈ 120–130 GPa for the temperatures we consider. (Coinci-
dentally, Belonoshko [17] speculates that a B1-B2 transition
occurs at approximately 130 GPa, which is in the neighborhood

of n = 0.2 atoms/Å
3

given Fig. 3.)
Finally, we evaluated the free-energy difference. The zero-

temperature energy (enthalpy) differences between B2 and
B1 shown in Fig. 5 display trends similar those shown in
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FIG. 4. Volumetric compression: elastic C11,C12,C44, and sta-
bility moduli K ′ = 1

3 (C11 + 2C12) − p,G′ = C44, G′′ = C11 − C12,
where Cij are Voigt moduli about the deformed configuration. B1
(solid lines) is elastically stable over the given range and B2 (dashed

lines) is stable for n > 0.2 atoms/Å
3
.

Ref. [12] (Fig. 1). Using the QH model Eq. (8), we calculate
the zero-point energy difference �F0, omitted in Ref. [12], to
be nearly uniformly 0.02 eV/atom over the pressure range we
examined, and, hence, has no significant effect on the resulting
B1-B2 phase separator. In fact, the change in zero-temperature
enthalpy difference between the two phases over the given
pressure range is dominated by the pressure-volume work [64].
Unlike Ref. [12] (Fig. 6), which shows a transition to B2 at
temperatures and pressures as low as 1500 K and 150 GPa, we
estimate that �G > 0.1 eV over the given T and p range, so B1
is always relatively thermodynamically stable. The contours
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FIG. 5. Energy differences (B2 relative to B1) at zero temperature
calculated with DFT; cf. Ref. [12] (Fig. 1). The results are nearly
the same up to zero-point energy difference �F0, which is nearly
constant at 0.02 eV/atom over the pressure range, which is omitted
in Smirnov’s estimate of the Gibbs free-energy difference �G. Note
that the zero-point energy difference curve stops at the point of B2
instability. Here Ec denotes cohesive energy, F0 the zero-point phonon
energy, pV pressure-volume work, and G the Gibbs free energy.
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FIG. 6. Mean thermal displacements for B1, a = 3.2Å. Solid
lines, molecular dynamics (MD) data; dashed lines, ab initio
quasiharmonic (QH) data.

of �G resemble the slope of B1-B2 separator in Ref. [12]
(Fig. 6) and the elastic moduli as a function of pressure and
phase are similar. The QH model of the free-energy difference
is arguably better than Debye model tuned by linear muffin-tin
data employed in Ref. [12] since the QH model does not make
assumptions about form of the dispersion relation; however, its
validity at these temperatures is suspect. As Fig. 6 shows, the
thermal displacements predicted by the QH model are large,
but still much smaller than those given by MD with similar
elastic properties. These data give credence to the notion
of thermal stabilization of apparently mechanically unstable
phases. In this form of nonlinear stability, at high temperatures
atoms primarily reside outside the zero-temperature minimum
state, which may be mechanically unstable and in nearby
regions of the energy surface with positive curvature [65,66].

After these validation and phase-determination procedures,
we thermalized and pressurized LiF lattices with a Nosé-
Hoover thermobarostat (using the classical MD code LAMMPS

[67]) in order to obtain the equilibrium flux correlations
necessary to estimate thermal conductivity. After 20 ps
of equilibration, we used ten replica systems with initial
conditions selected from the constant temperature-pressure
equilibration simulations of constant energy dynamics to
compute the average flux correlation. After transients due to
the relaxation from constant temperature dynamics subsided,
100 000 samples of the correlations contributing to the average
〈J(0) ⊗ J(t)〉 were collected every ten 0.5-fs time steps. As a
last preliminary, given the spatial decomposition employed
by PPPM, we checked for finite size effects in the flux
correlations. Figure 7 shows that they are negligible with
respect to the inherent noise even for periodic systems as small
as 4 × 4 × 4 unit cells; hence, in the following studies we used
4 × 4 × 4 systems and a real space/k-space decomposition
cutoff 1 nm for the PPPM electrostatic solver.

IV. RESULTS

Using the Green-Kubo (GK) method described in Sec. II
and the preliminaries given in Sec. III, we compute the thermal
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conductivity for compressed states in two studies for different
deformations of the lattice: (a) volumetric compression over a
range of pressures p = 100–400 GPa and temperatures T =
1000 K–4000 K and (b) uniaxial compression with normal
stress 1–50 GPa to simulate conditions at the initiation of
a ramp experiment. Since at ambient pressure the measured
Debye temperature for LiF is 732 K [69], Table 12.1] and the
melt is temperature 1121 K [70], our conditions are well within
the classical regime and some of the states may melt.

In preliminary studies, we found the difference in the
estimated conductivity with the modified vs the original
Belonoshko parameters was at most 10% over the range of
interest and typically only 3%. Since these differences were
comparable to the error in κ (< 5%) estimated from ten
replicas, we report conductivities derived from the original
parameters. We attribute these small differences between
parametrizations with distinct phDOS, and hence dispersion
characteristics, to the observation that low-frequency/long-
wavelength phonons carry most of the heat and in that range the
phDOS of the two parametrizations agree fairly well. In fact,
Chen and coauthors [71,72] showed that 90% of the heat in Si
at ambient conditions is carried by phonons with frequencies
less than about 2 THz (estimated from the reported 2–5-nm
wavelength and the given elastic moduli).

A. Volumetric compression

First we compared the conductivity κ estimated with MD
GK and a method directly employing ab initio data for B1
LiF at constant volume (a = 3.2Å) over the temperature range
T = 1000 K–4000 K. Specifically, in the second method the
Boltzmann transport equation (BTE) was parametrized with
ab initio second- and third-order force constants derived from
2 × 2 × 2 and 4 × 4 × 4 unit cell systems, respectively, and
solved in the single mode relaxation time approximation using
the PHONO3PY package with a 21 × 21 × 21 Monkhorst-Pack
grid. See Ref. [73,74] for details and the similar approach
in Ref. [75]. Given the differences in the resulting thermal
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conductivity, shown in Fig. 8, we also calculated κ using the
BTE with the second- and third-order force constants from
the empirical potential, Eq. (3). These results lie essentially
halfway between the Green-Kubo and ab initio BTE κ(T )
curves. Examining the ab initio and empirical second- and
third-order force constants, it appears the majority of the differ-
ences are in the third-order constants determining the Umklapp
processes (as opposed to the second-order constants, which
determine the phonon wave speeds). This is consistent with
the elastic moduli of the empirical potential nearly matching
that of the DFT. In addition, the MD estimates are uniformly
lower than those of the BTE, which is consistent with fact
that the MD has a complete, albeit less exact, Hamiltonian
with no truncation of the phonon scattering interactions and
the temperature is high enough for higher-order and nonlinear
mechanisms beyond those captured by a single relaxation time
to be significant. So roughly half the difference in the MD GK
and ab initio BTE results can be attributed to the differences
in the higher-order force constants and the remainder due
to the differences in the GK and BTE methods used. Also
noteworthy: The thermal conductivity derived from the BTE
model displays perfect T −1 scaling, whereas the MD estimates
show slightly stronger decay with temperature.

Figure 9 shows the thermal conductivity estimated with MD
GK for pressures in the range 1–400 GPa and temperatures
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FIG. 9. Volumetric deformation: thermal conductivity κ (W/K m)
as a function of pressure P (GPa) and temperature T (K) and crystal
structure. The phase of each sample is indicated by the color of the
square data points: B1, blue; B2, red; melt, black. The red dashed line
corresponding to the B1-B2 transition calculated by Smirnov [12] is
shown for reference.

1000 K–4000 K, and Table II gives the corresponding data
for both the B1 and the B2 phases. In Fig. 9 the phase of the
samples used to create the contour plot are marked and a few of
the high-temperature, relatively low-pressure systems melted.
As can be seen in Table II, the estimated thermal conductivity
for the B1 and B2 phases have comparable values and the
same trends. This is plausible given that the elastic properties
of the two phases are similar and a simple kinetic model
of thermal transport indicates that the resulting comparable
sound speeds should lead to similar conductivities. The same
basic kinetic interpretation is consistent with the observations
that the thermal conductivity increases with increased pressure
due to higher wave speeds and with lower temperature due to
relatively less scattering and longer phonon mean free path.
These trends are monotonic and have decreasing effect on the
thermal conductivity.

Although the Belonoshko potential was tuned to high-
pressure conditions, we also calculated the thermal conduc-
tivity nearer ambient conditions. The values we obtain, e.g.,
2.8 ± 0.2 W/mK at 1 GPa, 1000 K and 1.8 ± 0.2 W/mK at

TABLE II. Volumetric compression: thermal conductivity κ (W/K m) as a function of pressure P (GPa) and temperature T (K) and crystal
structure (values in italics are for melted crystals). Errors in estimated κ are <5% based on predictions from ten replicas. ∗ Note for B2 at
100 GPa, 1000 K–2000 K approximately half of the replicas transform to twinned B2 structures in initialization.

(a) (b) (c) (d) (e)

p T κB1 κB2 p T κB1 κB2 p T κB1 κB2 p T κB1 κB2 p T κB1 κB2

1 1000 2.83 100 1000 27.29 15.42∗ 200 1000 45.20 40.45 300 1000 57.23 61.79 400 1000 68.18 74.88
2000 5.13 2000 12.93 8.52∗ 2000 19.16 19.67 2000 24.38 28.36 2000 29.43 34.20
3000 3.15 3000 7.19 6.04 3000 11.60 12.34 3000 15.37 18.04 3000 27.28 22.69
4000 2.01 4000 5.20 5.54 4000 8.47 6.45 4000 10.96 7.82 4000 13.06 8.71
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FIG. 10. Uniaxial compression: phonon partial density of states
dependence on deformation, where λ is the compression in the 110
direction.

1 atm, 1200 K (melt, refer to Table II) are roughly comparable
to the value 1.5 W/mK at 1 atm, 1150 K (melt) given by
Ishii et al. [31] using a different empirical potential and
the experimental measurements: 15.7 W/mK at 0.1 GPa,
16.3 W/mK at 1.0 GPa, 300 K [11], and 4.0 W/mK at 1 atm,
314 K [61] of solid LiF.

B. Uniaxial compression

For this study, we compressed one direction of a B1 LiF
crystal while fixing the lateral dimension to a 4.02 Å lattice
spacing to mimic initial phases of ramp compression with
inertial confinement and examine the resulting differences
in the thermal conductivity resulting from unequal principal
strains. The compression direction was chosen to be 110, since
this direction lacks surface polarization. The lateral directions
were 11̄0 (equivalent to 110) and 001, respectively. The com-
pressions λ ∈ {0.8,0.9,1.0} examined corresponded to normal
stresses 1–50 GPa in the compressed dimension (note that the
75-GPa MD crystal was unstable and a dislocation formed)
and temperature range 1000 K–3000 K. It was not possible to
predict which phases were thermodynamically stable over this
deformation-temperature range since we predicted that B2 has
unstable phonons over the range we examined. The phDOS
for B1, Fig. 10, shows that the compressed direction becomes
stiffer (the sound speed is roughly inversely proportional to
slope of phDOS) and higher-frequency content is added to the
phonon spectrum.

Figure 11 shows stress response to these conditions and
corresponding anisotropy of the thermal conductivity of the B1
structure. Note that the initial lattice constant is not equilibrium
at the given temperatures, which immediately induces the
anisotropy shown. Also, the lateral stresses become nearly
equal but distinct from the normal stress in the compressed
direction as the structure loses perfect crystallinity. Figure 12
shows that the normal conductivity follows similar trends with
temperature and pressure as in the volumetric compression
case, namely in this state the highest conductivities are at the
highest pressures and lowest temperatures. The data for this
study are tabulated in Table III.
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FIG. 11. Uniaxial compression: stress ratios (top) and conductiv-
ity anisotropy (bottom) at T = 1000 K and all for the B1 phase. The
coordinate axes aligned with 110, 11̄0, and 001 crystal directions, and
the 110 direction is compressed and the others are unstrained relative
to the zero-temperature lattice.

V. DISCUSSION

In summary, we found that the thermal conductivity of LiF
at high temperatures and pressures is only marginally depen-
dent on phase and ranged from about 5 W/mK to 70 W/mK
over the range 1000 K–4000 K and 100–400 GPa. For our
purposes, the fact that the two expected phases (B1 and B2)
have similar conductivity offsets the difficulties in determining
their mechanical and thermodynamic stability. Our estimates
are corroborated by the limited experimental data available,
as well as direct ab initio estimates of thermal conductivity.
We also found that the uniaxial deformation expected to result
from inertia confinement of the targeted ramp compression
experiments may lead to significant anisotropy in the thermal
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FIG. 12. Uniaxial compression: thermal conductivity in the com-
pressed 110 direction.
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TABLE III. Uniaxial compression: thermal conductivity κ (W/K-m) as a function of normal stresses σ11,σ22,σ33 (GPa) and temperature T

(K) for the B1 crystal structure (values in italics are for melted crystals). Errors in estimated κ are < 5% based on predictions from ten replicas.
Lateral dimension set at 4.02 Å lattice.

(a) (b) (c)

σ11 σ22 σ33 T κ11 κ22 κ33 σ11 σ22 σ33 T κ11 κ22 κ33 σ11 σ22 σ33 T κ11 κ22 κ33

1 8 5 1000 3.50 3.78 3.61 25 14 15 1000 7.99 7.20 6.00 50 21 24 1000 11.59 9.04 6.51
1 1 2000 4.94 5.16 5.27 19 20 2000 4.11 4.11 3.48 50 28 2000 5.96 4.67 3.93
1 1 3000 3.04 3.20 3.34 25 25 3000 5.98 5.58 5.84 50 50 3000 5.64 5.51 5.60

conductivity. More rigorous treatment of the relative phase
stability exists in the literature than the method we selected,
notably Ref. [66], which focused on the influence of the
anharmonic phonon energy and Ref. [76], which adapts the
phase coexistence technique of Ref. [77] to finite-temperature
DFT calculations, which may shed light on phase transitions
from B1 at high temperatures and pressures. Since our findings
indicate that these transitions are unlikely over our temperature
and pressure range of interest, whereas the formation of defects
appear at relatively low uniaxial compression, we intend to
pursue investigation of the influence of defects on the thermal
conductivity of solid LiF next.
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APPENDIX A: VIRIAL STRESS WITH COULOMB INTERACTIONS

Although we employ the PPPM method in Sec. IV, the gist of how the virial stress and, hence, the heat flux is obtained is
easier to explain in the context of the Ewald sum [[49], Eq. (7)],

� = 1

2

∑
α �=β

ϕ(rαβ) + qαqβ

εrαβ

[
erfc

( rαβ

�

)
+ erf

( rαβ

�

)]

= 1

2

∑
α �=β

ϕ(rαβ) + qαqβ

εrαβ

erfc
( rαβ

�

)
︸ ︷︷ ︸

real: �̄({xα})

+ 2π

εV

∑
k �=0

1

‖k‖2
exp

(
−1

4
‖k‖2�2

)
Re

∑
α �=β

qαqβ exp(ık · xαβ)

︸ ︷︷ ︸
reciprocal: �̃k({xα})

,
(A1)

where the error function, erf(r/�), and its complement, erfc(r/�) = 1 − erf(r/�), play the role of a blending/cutoff function
with parameter � ∼ 3

√
V , and xαβ = xα − xβ is a relative position vector. Note that we have used the Fourier transforms

Fx→k[
∑

α qαδ(x − xα)] = ∑
α exp ık · xα and Fx→k[ 1

r
erf(r/�)] = 1

‖k‖2 exp (− 1
4‖k‖2�2). It follows, after dropping the species

subscripts a,b for clarity, that the per-atom energy for pair potentials is

εα = 1

2
mαvα · vα + 1

2

∑
β �=α

[
ϕ(rαβ) + qαqβ

εrαβ

erfc
( rαβ

�

)]

+ 2π

εV

∑
k �=0

1

‖k‖2
exp

(
−1

4
‖k‖2�2

)
Re

∑
β �=α

qαqβ exp
(
ık · xαβ

)
;

(A2)

cf. Ref. [[50], Eq. (8)]. Thus, the expression for the per-atom virial stress να [49–51] is

να = − 1

2V

∑
β

⎡
⎣− d

dr
ϕ(rαβ) + qαqβ

∑
k �=0

2√
π�

rαβ exp

(
− r2

αβ

�2

)
+ erfc

(
r2
αβ

�2

)⎤
⎦ 1

r3
αβ

xαβ ⊗ xαβ

− 2π

εV
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k �=0

∣∣∣∣∣∑
α

qα exp ık · xα

∣∣∣∣∣
2

1

‖k‖2
exp

(
−1

4
‖k‖2�2

)[
I −

(
2

‖k‖2
+ 1

2
�2

)
k ⊗ k

]
, (A3)

where I is the identity tensor and d
dr

erf(r/�) = 2√
π�

exp (−r2/�2); cf. Ref. [50] [Eq. (22)].
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APPENDIX B: ELASTIC MODULI AND STABILITY

Many versions of the elastic moduli tensor exist at finite deformations like those investigated in this study and the elastic
stability of crystal lattices and elastic materials has been well studied; see, e.g., Ref. [78–92]. To connect continuum, elastic
stability to atomic, phonon stability, we assume that the current positions xα are given by small time-varying displacements uα due
to phonon modes superposed on large, static deformations characterized by a homogeneous deformation of the zero-temperature,
equilibrium lattice FXα:

xα(t) = FXα + uα(t). (B1)

Since a homogeneous deformation maintains equilibrium, fα(FXα) = 0, the (linearized) Newton equation governing the phonon
modes is

mαüα =
∑

β

Kαβuβ. (B2)

Likewise, in the continuum limit, such that x = FX + u, the linearized balance of momentum

ρ0ü = ∇X · (B∇Xu) =
∑
AjB

BiAjBuj,ABei (B3)

governs the long-wavelength elastic waves. Here ρ0 is the mass density in reference configuration X. Since background stress P̄ =
P(F) is homogeneous the system is also in equilibrium at the continuum level. The elasticity tensor B of the first Piola-Kirchhoff
stress P with respect to the deformation gradient has an atomic-level definition,

B = ∂

∂F
P = 1

V0

∂2�

∂F∂F
= 1

V0

∑
α,β

[
∂2�

∂xα∂xβ

]
ij

ei ⊗ Xα ⊗ ej ⊗ Xβ = 1

V0

∑
α,β

[Kαβ]ij ei ⊗ Xα ⊗ ej ⊗ Xβ, (B4)

where Xαβ ≡ Xα − Xβ . Further manipulation leads to

B = 1

V0

∑
α,β

[
1

‖FXαβ‖2

(
∂2�

∂x2
αβ

− 1

‖FXαβ‖
∂�

∂xαβ

)
FXαβ ⊗ Xαβ ⊗ FXαβ ⊗ Xαβ + 1

‖FXαβ‖
∂�

∂xαβ

3∑
i=1

ei ⊗ Xαβ ⊗ ei ⊗ Xαβ

]

= 1

V0

3∑
A,B,C,D,i,j=1

[CABCDFiAFjC + SBDδij ]ei ⊗ EB ⊗ ej ⊗ ED, (B5)

relating B to the more familiar elasticity tensor

C = ∂

∂E
S = ∂2�

∂E∂E
= 1

4

∑
(αβ),(γ ν)

∂2�̂

∂r2
αβ∂r2

γ ν

Xαβ ⊗ Xαβ ⊗ Xγ ν ⊗ Xγ ν (B6)

of the symmetric second Piola-Kirchhoff stress S with respect to the Lagrange strain E = 1
2 (FT F − I); cf. Ref. [93] [Eq. (4.6.11)].

Using the chain rule uj,AB = FkAFlBuj,kl , Eq. (B3) can be written as

ρü =
∑
A,j,B

bikj luj,klei (B7)

based on the pushforward of B [[94], Eq. (4.2.34)],

[b]ijkl = 1

det(F)

∑
J,L

[B]iJ kL[F]jJ [F]lL = [c]ijkl + [σ ]ikδjl, (B8)

where c is the pushforward of C by the deformation gradient:

[c]ijkl = 1

det(F)

∑
I,J,K,L

[C]ijkl[F]iI [F]jJ [F]kK [F]lL. (B9)

The Legendre-Hadamard criterion for dynamic stability requires that all infinitesimal plane waves

u = a cos(k · x + ωt) (B10)

have real-valued wave speeds. Here, a and p are the amplitude and polarization of the displacement (such that a = ap),
respectively, and k and n are the wave number and propagation direction (such that k = kn). This leads to an eigenvalue problem
for the dyad n ⊗ p and the strong ellipticity condition,

(n ⊗ p)T : b (n ⊗ p) = [b]ijklnipjnkpl > 0. (B11)
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This condition is satisfied when all the eigenvalues of the square matrix b(ij )(kl) are all real and positive.
The moduli that VASP and other codes calculate are derivatives of the current, Cauchy stress with respect to small strains

about a given configuration, which is not c. To connect b to the moduli obtained from perturbing the system about a given (not
necessarily stress-free reference) configuration, we start with the derivative of the Cauchy stress with respect to a displacement
u about a deformed state F̄,

∂xσ |F̄ · u =∂x

(
1

det(F)
FSFT

)∣∣∣∣
F̄

· u

= − 1

det2(F̄)
det F̄[tr ∂xu]F̄S̄F̄T + 1

det(F)
[∂xu]F̄S̄F̄T + 1

det(F)
F̄ ∂ES̄F̄T 1

2

[
∂T

x u + ∂T
x u

]
F̄F̄T + 1

det(F)
F̄S̄F̄T (∂T

x u),

(B12)

formed from the basic Gâteaux derivatives in Ref. [[95], Eqs. (3.69), (3.71), and (3.76)]. We recognize that the third term on the
right-hand side is c and σ̄ in the other terms, so that we can form the Fréchet derivative of the Cauchy stress with respect to the
small strain measure ε = 1

2 (∂xu + ∂T
x u) as

[∂εσ |F̄]ijkl = −σ̄ ij δkl + δil σ̄ jk + δjkσ̄ il + cijkl, (B13)

which is the typical moduli calculated by finite differences or perturbation in terms of the current stress σ̄ and pushforward of
the tensor of the traditional elasticities C to the current state. Equation (B13) is identical in form to corresponding equations in
the often-cited Ref. [83], and in the independently derived Ref. [63], but differs in the interpretation as moduli about a deformed
state finitely far from the relaxed, stress-free material.

When Eq. (B13) is combined with Eq. (B8), the stability requirement (B11) can be applied to

bijkl = δklσ ij − δilσ jk − δjkσ il + δjlσ ik + [∂εσ |F̄]ijkl . (B14)

For our purposes it suffices to find the stability conditions for an orthotropic modulus tensor ∂εσ |F̄ and a diagonal stress tensor
σ = ∑

i σiiei ⊗ ei . Following Ref. [92], we obtain

C̃ii >0, i ∈ 1,6, (B15)

C̃ii C̃jj >C̃2
ij , i �= j ∈ 1,3, (B16)

C̃11C̃22C̃33 + 2C̃12C̃23C̃13 >C̃11C̃
2
23 + C̃22C̃

2
13 + C̃33C̃

2
12, (B17)

where C̃ij = Cij + 1
2 (σii + σjj ), i �= j ∈ 1,3; C̃ij = Cij − σkk, i �= j ∈ 4,6, k − 3 �= i,j ; and we have used Cij to denote the

components of [∂εσ |F̄] using traditional Voigt notation. This reduces to

C11 + 2C12 + 3p > 0, C11 − C12 > 0, C44 > 0, (B18)

for cubic symmetry and a hydrostatic pressure σ = −pI. These stability criteria differ from those in Ref. [83] and Ref. [63] in that
the shear conditions are unaffected by the pressure and the volumetric instability criterion on the bulk modulus 1

3 (C11 + 2C12) is
offset by the pressure only.
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