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Acoustic carpet cloak based on an ultrathin metasurface
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An acoustic metasurface carpet cloak based on membrane-capped cavities is proposed and investigated
numerically. This design has been chosen for allowing ultrathin geometries, although adapted to airborne sound
frequencies in the range of 1 kHz (λ ≈ 30 cm), surpassing the designs reported in the literature in terms of
thinness. A formulation of generalized Snell’s laws is first proposed, mapping the directions of the incident and
reflected waves to the metasurface phase function. This relation is then applied to achieve a prescribed wavefront
reflection direction, for a given incident direction, by controlling the acoustic impedance grading along the
metasurface. The carpet cloak performance of the proposed acoustic metasurface is then assessed on a triangular
bump obstacle, generally considered as a baseline configuration in the literature.
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I. INTRODUCTION

Metasurfaces, first proposed in the electromagnetic realm,
are artificially engineered surfaces composed of subwave-
length unit cells which manipulate the reflected and (or) trans-
mitted wavefronts in a preferred, predefined, and unconven-
tional way. The peculiar macroscopic behavior of metasurfaces
in response to incident waves led to the revisitation of the laws
of reflection and refraction, and the generalized Snell’s law
was proposed to deal with such surfaces [1]. In addition to the
wavefront manipulation [2], the functionality of these surfaces
can be extended to wave absorption engineering [3], polar-
ization tailoring [4], frequency filtering [5], and metasurface
carpet cloaking [6–9].

Recently, the concept of acoustic metasurface has been
proposed to manipulate the reflected or transmitted wavefronts
of the impinging acoustic wave [10] and the functionality
of these surfaces has been extended to acoustic match-
ing [11], unidirectional transmission [12,13], lensing [14],
absorbers [15,16], and cloaking [17,18].

Shaping wavefronts using an acoustic metasurface requires
one to control the phase of the transmitted/reflected wave. In
several studies on acoustic metasurfaces [19–22] the phase
control has been achieved using a unit cell presenting a space
coiling structure [23]. Space coiling is a technique where the
phase control is done by the accumulation of the phase along
the sound path in a labyrinthine-type structure [24]. Thus, the
acoustic wave travels an effective acoustic path to ensure a
certain phase lag/lead (compared to a predefined reference
phase) to the price of relatively bulky unit cells [25,26].
Another technique is to use various materials with differ-
ent refractive indices but similar acoustic impedances [27].
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Recently, Helmholtz resonators [28–30] and membrane [32]
and pentamode metamaterial [33] based unit cells have been
proposed as acoustic metasurface unit-cell designs to control
the phase of the acoustic wave. However, most of these
studies on metasurface unit-cell designs still suffer from being
bulky, having limited bandwidth, high losses, and nonuniform
reflected/transmitted wave amplitude and do not present the
aptitude for reconfigurability.

According to the impedance-governed generalized Snell’s
law of reflection [34], the acoustic impedance of the surface
can be envisaged as the controlling factor to engineer the
reflection phase. Thus, using a surface impedance strategy,
a unit-cell design is proposed, aiming at saving space and
providing much thinner geometries than the ones reported so
far. To achieve the desired thin acoustic metasurface, lumped
element acoustic modules representing acoustic impedances
should be proposed with an easily tunable mass/compliance
(inductive/capacitive) behavior.

In this paper, a new type of unit cell is proposed, owing to
an acoustic impedance-based design, for use in a reflector-type
acoustic metasurface. The phase of the reflected wave for
such a unit cell is controlled based on the inductive and
capacitive nature of constituent elements. The proposed unit
cell is composed of a hard wall cavity which is capped with
a membrane clamped at the edges. The cavity contributes
to the compliance (capacitive) part of the total acoustic
impedance while the clamped membrane presents compli-
ance/mass (capacitive/inductive) behavior in response to the
impinging acoustic wave [35]. Since the impedance of a
clamped membrane is a function of the geometrical dimensions
and material properties, it can be easily modified, e.g., by
varying the thickness of the membrane [36]. Thereby, the total
surface acoustic impedance of the unit cell can be easily tuned
to desired values. The proposed ultrathin unit cell (λ/30)
is deployed within a reflectarray-type metasurface allowing
the manipulation of reflected wavefronts. The introduced
flat surface may be used to replace a curved reflector as a
secondary antenna or be used for deflecting or concentrating
sound in a point. Finally, it is shown that the functionalities
of acoustic metasurfaces can be extended to acoustic carpet
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FIG. 1. Acoustic wave impinges a surface with nonzero phase
gradient.

cloaking, exactly like in the electromagnetic counterpart. The
proposed surface impedance based unit cell is sufficient to
design skinlike cloaks and create the illusion of bare ground
when an object is covered by such a metasurface based cloak.

II. REFLECTOR-TYPE ACOUSTIC METASURFACE

Acoustic reflectarray metasurfaces, aiming at manipulating
the reflected wavefronts, do not obey Snell’s law at the
macroscopic level. To mathematically describe these surfaces,
Snell’s law should be revisited. In optics this modification
has been done using Fermat’s principle under the name of
generalized laws of reflection and refraction [1], while in
acoustics it was treated using Green’s function under the name
of the impedance-governed generalized Snell’s law [10]. Here,
Fermat’s principle is used to derive the generalized Snell’s law
for acoustic reflector-type metasurfaces.

A. Fermat’s principle

Let us suppose that a monochromatic acoustic plane
wave, propagating in a fluid medium, impinges a lossless
inhomogeneous surface with subwavelength reflection phase
discontinuity. According to Fermat’s principle, the path trav-
eled between two points A and B by the sound wave is the
path that can be traversed in the least time. The mathematical
interpretation of Fermat’s principle, illustrated in Fig. 1, is

τtotal = OA + OB

c
+ ψ(x,y)

ω0
(1)

where A, O, and B are the source location, intersection
between the ray and the surface, and observation point,
respectively; c is the speed of sound in the fluid domain; and
ψ(x,y) is the surface phase function (phase of the reflection
coefficient). Fermat’s principle dictates that the effective
trajectory followed by the wave between two fixed points,
A and B, should be minimal. This can be mathematically
interpreted as finding the critical points of Eq. (1) based
on ∂τtotal

∂x
= 0 and ∂τtotal

∂y
= 0. After simplification, Fermat’s

principle is summarized as a generalized Snell’s law for
acoustic waves:

sinθrcosφr + sinθicosφi = −1

k

∂ψ(x,y)

∂x
, (2a)

sinθrsinφr + sinθisinφi = −1

k

∂ψ(x,y)

∂y
(2b)

where φ is the azimuth angle with respect to x-axis, θ is the
elevation angle with respect to z-axis, k is the wave number
and the subscript i and r are indicating incident and reflected
waves, respectively. Eq. (2) reveals that the gradient of the
phase over the surface determines the reflected wave direction.

B. Acoustic impedance and generalized Snell’s law

Let us discretize the surface of Fig. 1 into subwavelength
rectangles of dx × dy in the xy plane, denoted as unit cells.
Equation (2) can be reformulated and presented as a single
equation which describes the discretized phase function over
the surface for predefined incident and reflected wave angles:

ψ(xm,yn) = −kdxm(sinθrcosφr + sinθicosφi)

− kdyn(sinθrsinφr + sinθisinφi) (3)

where m and n are integers and represent the indices of the
discrete unit cells along x and y, respectively. Considering ψ

as a surface phase function to achieve predefined reflection
angle (θr ,φr ), the phase of the surface reflection coefficient
should be engineered accordingly.

Since the reflection coefficient of the surface is governed by
its acoustic impedance, the phase function of the metasurface
can be attributed to the acoustic impedance of the surface.
Thus, by properly choosing the acoustic impedance of each
unit cell on the surface, a metasurface with anomalous
reflection behavior can be designed. In order to realize a
nonzero phase gradient surface to fully control the reflected
wave, a unit-cell configuration which can produce a full phase
range (0–2π ) reflection coefficient is proposed in the next
section, where the acoustic impedance is easily tuned by slight
changes in the geometry.

III. METASURFACE UNIT CELL

To design a unit cell which covers the full phase range
for reflected waves, an acoustic configuration with both
mass/compliance behavior (inductive/capacitive nature) is
required. The most straightforward acoustic module with an
inductive/capacitive reactive part is a Helmholtz resonator,
where the cavity presents compliant behavior and the nar-
row neck represents the mass [28–31]. However, Helmholtz
resonators are relativity bulky modules and their acoustic be-
havior highly depends on their dimensions. Hence Helmholtz
resonators are not good candidates for ultrathin metasurfaces.

A. Analytical modeling

The proposed metasurface unit cell is composed of an
air-filled cubic cavity with acoustically hard walls and a
vibrating membrane which is clamped at its edges to the cavity,
in which the damping will be first neglected (the effects of
damping will be further discussed in Sec. V B). The cavity
with subwavelength dimensions can be modeled as an acoustic
compliance (capacitance):

Cab = Vb

ρairc2
air

(4)

where Vb is the volume of the cavity and (ρair,cair) are
the mass density and sound velocity of the air, respec-
tively. The membrane contributes to both mass/compliance
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FIG. 2. (a) Acoustic metasurface unit cell and corresponding
transmission-line model. The unit cell is composed of a cavity
(gray) with acoustically hard walls which is capped with a clamped
membrane (yellow). The reflection phase study zone is shown in
red dashed lines. (b) To retrieve the phase profile of the unit cell,
it is placed in a waveguide simulator. (c) Eigenmodes of the unit
cell for high and low thickness membranes (i) tm = 266 μm and
(ii) tm = 86 μm.

(inductive/capacitive) behavior depending on its geometrical
dimensions, material properties, and operating frequency. The
lossless clamped rectangular membrane vibrating on its first
mode can be modeled with the lumped element circuit model
of Fig. 2(a), the values of equivalent acoustic mass mae and
compliance Cae being given by

Cae = 1

(ab)2

(
a3(1 − ν2)

π4Et3
mb

[
1 + 2

3 (1 − ν)
(

a
b

)2 + (
a
b

)4]
)

(5a)

mae = 1

(ab)2

9

4
ρmtmab (5b)

where (a,b,tm) represent the membrane length, width, and
thickness and (ρm,E,ν) are the mass density, the bulk modulus,
and the Poisson ratio of the membrane, respectively (see the
Appendix).

Using the transmission-line model of Fig. 2(a), the total
acoustic impedance of the proposed unit cell Zat is calculated
by

Zat = jωmae + 1

jωCae

+ 1

jωCab

. (6)

This analytical model of the unit-cell acoustic impedance
is illustrated in Fig. 3 and compared to a numerical model
achieved with finite element software (Comsol Multi-Physics),
further described in the following. It shows that the analytical
model of Zat qualitatively follows the numerical results for
thick membranes. However, the model tends to diverge from
numerical results for unit cells with thinner membranes. This
is due to the excitation of higher-order modes for unit cells
with thin membranes. The unit-cell membrane vibrates in its
first mode [Fig. 2(c-i)] for the thickness >120 μm as shown
in an eigenfrequency study in the inset of Fig. 3 and this

FIG. 3. Imaginary part of the acoustic impedance of the unit cell
at f = 1082 Hz: numerical vs analytical method. (Inset) First six
eigensolutions of the unit cell vs thickness of the membrane. The unit-
cell dimensions are 23 × 23 × 10 mm capped by a Kapton membrane.

is consistent with the first mode excitation assumption to
derive Eq. (5). However, the assumption is violated for thin
membranes (<120 μm) as shown in Fig. 2(c-ii). Moreover,
the dependency of the unit-cell impedance to the incident
angle is neglected in the analytical model of Zat . Considering
the angular dependency of the total impedance, the reflection
coefficient of the unit cell is found to be

�(θi,φi) = Zat (θi,φi) − Zac

Zat (θi,φi) + Zac

(7)

where Zac = ρaircair

ab
is the acoustic characteristic impedance of

the medium in the waveguide of section ab and Zat (θi,φi) is the
direction dependent total acoustical impedance of the unit cell.

A close study of Eqs. (4)–(7) reveals that the phase of the
reflection coefficient is a function of geometrical dimensions
and material properties of the unit cell, operating frequency,
and direction of wave incidence. Moreover, encapsulated in
Eq. (5), the inductive/capacitive nature of the membrane highly
depends on its thickness (tm). Thus, the phase of the reflection
coefficient can sweep the full phase range by varying the
thickness of the membrane in the range of a few hundreds of
micrometers. Using the proposed configuration, the designed
unit cells of almost similar geometrical dimensions but
different impedances can cover a surface of any shape, like
LEGO pieces. Moreover, by replacing the passive membranes
with active ones, tunable unit cells can be designed [37].

Although the presented analytical modeling provides a
qualitative description of the membrane capped unit cell, as
discussed it is only valid for the first vibrational mode of
the membrane in the normal incident condition. A full wave
simulation of the structure should be performed to retrieve
the unit cell accurate reflection coefficient values, taking into
account the incident direction and the higher-order modes.

B. Numerical simulation

The above-mentioned finite element software (Comsol
Multi-Physics) is used for the numerical simulations of the
unit cell. An acoustic-shell interaction physics module is used
to extract the phase of the reflection coefficient. The unit-cell
cavity is set to “sound hard boundary conditions” and the
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membrane is assumed to be clamped at four edges to the cavity.
The simulation geometry is completed by placing the unit cell
within a waveguide of rectangular section ab [see Fig. 2(b)].
In order to consider effects of adjacent unit cells (mutual
coupling) for the case of slant incident waves, the boundaries
of the waveguide simulator are set to “Floquet boundary
condition” while the radiation boundary condition is assigned
to the upper extremity of the waveguide. The dependence of the
unit cell Zat (θi,φi) to the direction of the incident wave is also
accounted for by sweeping it in both the azimuth and elevation
plane. For a square cavity (a = b) there are four symmetry
lines [Fig. 2(a)] and the reflection phase study zone is reduced
to (0 < φ < π

4 , 0 < θ < π
2 ). The reflection coefficient is

retrieved using a two-microphone measurement method [38].
The unit-cell dimensions are designed to be

23 × 23 × 10 mm capped by a Kapton membrane with
the following material properties: E = 2.758 GPa, ν = 0.34,
and ρm = 1420 kg/m3. The membrane is considered lossless
for the time being, the effects of losses being assessed in
Sec. V B. The operating frequency is set to f = 1082 Hz,
and the fluid medium is air with cair = 340 m/s and
ρair = 1.188 kg/m3. In the proposed unit cell the thickness
variation of 70 to 300 μm results in a phase profile which
covers the full reflection phase range. Since, the mentioned
thickness range is negligible compared to the total height of the
unit cell (10 mm), the unit cells will be geometrically identical
but with different reflection phases and consequently a thin
and flat metasurface can be achieved. The phase profile of the
proposed unit-cell versus membrane thickness is depicted in
Fig. 4 for (φ = 45◦,0◦ and 0 < θ < π

2 ) incident angles. The

FIG. 4. Phase profiles of the proposed unit-cell [∠�(θi,φi)] vs
membrane thickness for an acoustic pressure wave with an incident
azimuth angle of (a) φ = 0◦ and (b) φ = 45◦ and elevation angle of
0◦ < θ < 75◦.

close study of the unit-cell geometry and phase profile for the
full study zone reveals that the dependence of the phase profile
to azimuth angle φ and elevation angle θ is relatively small.
This means, bearing some tolerances, the phase profile of
the normal incidence can be used for the metasurface design.
However, in order to achieve accurate results the phase profile
of the prescribed incident direction should be retrieved.

IV. REFLECTARRAY METASURFACE

To validate the functionality of the proposed configuration a
30 × 30 unit-cell reflectarray metasurface operating at f =
1082 Hz is designed. Using such a unit cell in metasurface
design, the bulky acoustic elements are replaced by the
subwavelength and ultrathin ones. In the following section
the acoustic reflectarray metasurface aiming at deflecting the
incident acoustic wave in an anomalous way is designed and
a step by step design procedure is presented.

A. Design methodology

To design a reflectarray metasurface the incident (θi,φi)
and the desired reflection (θr ,φr ) angles, operating frequency,
and metasurface array factors dx and dy (in this case a and
b) should be defined. Plugging these variables into Eq. (3)
yields the surface phase function, allowing the manipulation
of the reflected sound wavefront for a predefined incident
direction. This surface phase function defines the required
phase gradient which should be assigned to each individual
unit cell with (m,n) index located in (mdx,ndy). Then, the
membrane thicknesses (tm) are set based on this surface phase
function, for the specified direction of incidence (θi,φi).

B. Numerical simulation

Acoustic reflectarray metasurfaces are designed in three
different scenarios to deflect the incident sound wave (θi,φi)
to the (θr ,φr ) direction and it is simulated using Comsol.
The acoustic-shell interaction physics module is used to
simulated the structure, and a spherical perfectly matched
layer (PML) is applied around the metasurface to truncate the
simulation domain and simulate an unbounded medium. The
thickness of the membranes are set to the designed values and
the background pressure field is assigned to the simulation
domain, representing an incident acoustic plane wave with
a given incident angle. The near-field and far-field radiation
pattern of the acoustic reflectarray metasurface are depicted in
Fig. 5 for three distinct and predefined incident and reflected
angles. Close study of the metasurface far-field radiation
pattern reveals that the designed metasurfaces for predefined
reflection directions of (a) (θr = 45◦,φr = 120◦), (b) (θr =
31◦,φr = 212◦), and (c) (θr = 31◦,φr = 30◦) deflect the sound
waves to (θr = 44◦,φr = 116◦), (θr = 30◦,φr = 210◦), and
(θr = 34◦,φr = 26◦), respectively. The small discrepancy of
maximum 4◦ between defined goals and designed values
confirms the validity of both the design procedure and the
unit-cell design. It is clear that the proposed metasurface is
capable of handling the incoming waves with different incident
angles in elevation and azimuth, and deflecting the sound wave
to a predefined direction in elevation and azimuth. Moreover,
investigating the far-field radiation pattern of the metasurface
inset of Fig. 5 reveals that this structure has directive radiation
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FIG. 5. The near-field scattered pressure (main) and the far-field radiation pattern (inset) for the acoustic reflectarray metasurface
at f = 1082 Hz for three different incident and reflection angles: (a) (θi = 30◦,φi = 0◦) → (θr = 45◦,φr = 120◦), (b) (θi = 0◦,φi =
0◦) → (θr = 30◦,φr = 210◦), and (c) (θi = 60◦,φi = 45◦) → (θr = 30◦,φr = 30◦). Direction of the incident acoustic wave is shown by
the arrow.

which can be an alternative for acoustic reflectors. The
presented acoustic metasurface is in the order of λ/30, which
is much smaller than conventional labyrinthine type structures,
usually in the order of λ/3 to λ/2. This highlights the advan-
tage of using membrane-based, rather than labyrinthine-type,
unit cells, with a view to designing ultrathin metasurfaces.

Such design can then be employed for acoustic noise reduc-
tion/cancellation purposes, or for acoustic wave concentration
for biomedical applications or even acoustic levitation. In the
next section the proposed reflectarray metasurface is leveraged
to design an acoustic carpet cloak.

V. METASURFACE CARPET CLOAK

When an acoustic wave impinges a flat surface the distri-
bution of scattered (locally reflected) pressure field follows
Snell’s law. However, applying a slight modification to the
surface, such as placing an object on it, the scattered field
is perturbed. A target can be detected by studying the
mentioned perturbed scattered field which is the principle of
radars/sonars. To hide an object from an acoustic field, the
scattered field distribution should be manipulated in a way that
the pressure field perturbation due to the object is canceled,
mimicking wave scattering from bare ground.

A. Analytical description

Such a reflectarray metasurface can be used as an acoustic
carpet cloak to manipulate the scattered field from a scatterer,
placed over the ground, and create the illusion of bare ground
reflection. Let us suppose an acoustic scatterer is placed over
an acoustically hard flat surface (bare ground). The proposed
configuration is a triangular bump in the xz plane which is
invariant in y direction (Fig. 6). If an acoustic plane wave
(pi,ki) with the incident angle θ impinges the scatterer (Fig. 6)
with the slant angle δ from the ground, the reflected field
locally follows Snell’s law (γi = γr ). However, covering the
scatterer with a metasurface cloak, the incident field is reflected
following (γr1 = γi1 + δ) and (γr2 = γi2 − δ), in the left and
the right side of the scatterer, respectively. The modification
of the reflected wave angle by δ is to compensate the effect
of the scatterer on the reflected wavefronts. Neglecting the
diffractions from the edges, the perturbation in the scattered
field due to the triangular bump is related to the local height

of each point over the scatterer and this can be compensated
using the reflectarray metasurface. As the reflection coefficient
of an acoustic hard surface (presenting the background of the
cloak) is � = +1, the phase discontinuity

ψ(xm) = −2khmcos(θ ), (8)

due to the local height of the scatterer hm, should be
compensated (Fig. 6) where k is the wave number and θ

is the angle of incidence with respect to the normal and
m is the index of surface discretization. Note that this relation
is different from the electromagnetic metasurface carpet cloak
over perfect electric conductor ground, where � = −1 and
the phase gradient of the metasurface carpet cloak follows
ψ(xm) = π − 2khmcos(θ ).

B. Numerical simulation

To verify the behavior of the acoustic metasurface cloak,
the geometry of Fig. 6 is numerically investigated for the cases
of bare ground, bare scatterer, and cloaked scatterer exposed
to the normal and slant impinging acoustic waves. The total
pressure field of the isosceles triangular cloaked/uncloaked
bump is studied for an acoustic incident wave using the
acoustic-shell interaction module. To achieve such a design,
one stack of metasurface unit cell covers a triangular bump,
truncated by two parallel periodic boundary conditions in the
xz plane which ensures the setup is invariant in the y direction.
The back plane of the simulation domain representing the

FIG. 6. A triangular bump as an acoustic scatterer (black line)
cloaked with a thin acoustic metasurface (yellow).
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FIG. 7. Absolute acoustic pressure field at f = 1082 Hz for (a) vertical incident and a bump with slant angle of δ = 30◦ and (b) 45◦

incident angle and a bump with slant angle of δ = 15◦: (i) acoustic hard surface, (ii) bare bump, (iii) cloaked bump neglecting damping, and
(iv) cloaked bump including the damping (ηs = 0.1).

ground as well as lower surface of the metasurface representing
the cavities are set to the acoustic hard boundary condition, and
the upper plane of the metasurface is composed of membranes
with different thickness which are defined by Eq. (8). Finally,
the simulation domain is truncated by a PML semicylinder to
ensure a free-space radiation condition.

The absolute acoustic pressure field is presented in Fig. 7(a-
ii) for a triangular scatterer with the slant angle of δ = 30◦
which is illuminated by a normal incident acoustic plane wave.
Then, this scatterer is covered with a metasurface composed
of 30 membrane based unit cells and the absolute acoustic
pressure field is presented in Fig. 7(a-iii), which is similar to
the distribution of absolute pressure field over a bare ground
depicted in Fig. 7(a-i). For the second scenario, the slant angle
of the scatterer is chosen to be δ = 15◦ and it is covered with
a 30 unit cells (the same dimension as in Sec. III) metasurface
cloak and the incident angle is set to θ = 45◦. The absolute
pressure field is compared in three different cases of scatterer
with/without cloak and bare ground. Comparing the absolute
pressure field over the scatterer in Fig. 7(b-ii) and over bare
ground in Fig. 7(b-i) reveals that the field scattered from
the uncloaked bump perturbs the absolute field and creates
a shadow region. However, covering the scatterer with a thin
metasurface cloak as in Fig. 7(b-iii) actually creates the illusion
of the bare ground situation, showing that cloaking is also
effective for slant incident angles.

Last, in order to consider the effects of viscoelastic
losses, an isotropic structural loss factor (ηs = 0.1) is taken
into account in the simulation. It should be noted that the
value of structural damping does not only depend on the
material properties but also on the boundary conditions and

the setup configuration, and it is usually determined from
measurements. However, realistic values of ηs lie within the
range 0.01 < ηs < 0.1 for the type of elastic membranes used
in the simulations [39]. Considering the upper limit of ηs = 0.1
as a worst case, and performing the same set of simulations as
in the preceding, Figs. 7(a-iv) and 7(b-iv) show that structural
losses do not affect much the functionality of the carpet cloak,
even with a rather high value of damping.

Comparing Figs. 7(a-iii) and 7(a-iv) (or 7(b-iii) and 7(b-iv))
shows that the effect of the damping factor is more dominant
in the near field and it decreases as we go farther from the
cloak. Then, the carpet cloak keeps its functionality even with
introducing a high level of losses. The effect of losses has
also been studied for the electromagnetic metasurface carpet
cloak [8] and it was shown that, even for very large values
of tan δ (substrate loss), the cloaking metasurface is able to
recover the far-field pattern. This is consistent with the results
achieved on the acoustic metasurface carpet cloak proposed
here, the pressure amplitudes in the far-field presenting the
same color range in Figs. 7(a-iii) and 7(a-iv) (or 7(b-iii) and
7(b-iv)). A close look at the wavefronts in the top of Figs. 7(a)
shows that the maximum pressure amplitude is 2.4 Pa (yellow
color range) for the undamped case [Fig. 7(a-iii)], where it
is 2.15 Pa (a bit greener) for the damped case [Fig. 7(a-iv)].
The level difference is then lower than 1 dB, which is
considered negligible. This result confirms that, with such
membrane-based unit cells, the losses can be neglected without
affecting the performance of the metasurface. Moreover, the
choice of membrane-based metasurfaces does not only allow
the design of ultrathin carpet cloaks, but it also overcomes the
damping issues that are inherent to labyrinthine-type unit cells.
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VI. CONCLUSION

A skinlike acoustic metasurface carpet cloak has been
suggested, formulated, and numerically validated using the
proposed ultrathin membrane capped cavity unit cells. The
proposed cloak was leveraged to manipulate the scattered wave
field in such a way to hide a target to the acoustic waves.
Since the metasurface carpet cloak is easy to design and the
design parameters are usually realizable in practice, it should
become a good alternative to transformation based cloaks,
which usually confront feasibility challenges. Moreover, this
type of cloak is very versatile and can be turned into active and
tunable configurations if the passive membranes are replaced
by semiactive or active electroacoustic transducers [40,41].

The proposed ultrathin unit cell was also used to design an
acoustic reflectarray metasurface in the audio frequency range.
This very thin metasurface (∼λ/30) is able to manipulate
acoustic reflected waves in a prescribed direction. This may
find applications in noise engineering and biomedical imaging.
Furthermore, acoustic reflectarray metasurfaces may be used
as an alternative to acoustic shaped reflector antennas.

To provide the mathematical tool for wavefront engineer-
ing, the generalized Snell’s law for reflected acoustic waves
was rederived using Fermat’s principle and the wavefront of
the reflected wave has been related to the phase gradient of the
surface of incidence. Then, the relation between nonzero phase
gradients and inhomogeneous acoustic surface impedance has
been discussed.

The phase manipulation of the reflected wave using surface
impedance control has led to a new design of ultrathin unit cells
using membrane capped cavities. Unlike most metasurface unit
cells found in the literature, where the phase manipulation
relies on the effective acoustic path, here the control of the
reflected wave phase lag/lead is simply achieved through
surface impedance changes, thus resulting in ultrathin unit
cells. Due to the high sensitivity of the unit-cell impedance to
the membrane thickness, unit cells with similar geometries
and dimensions but distinct impedances can be designed.
Therefore, this type of unit cell is very versatile, can be used
in many different designs, and will be compatible with the fast
growing three-dimensional (3D) prototyping technology when
the resolution of 3D printers will reach the micrometer scale.
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APPENDIX: MECHANICAL IMPEDANCE OF THE
RECTANGULAR MEMBRANE

To deal with lossless vibration of the clamped, isotropic,
homogeneous membrane the biharmonic vibration equation

∇4ξ + k4
m

ω2

∂2ξ

∂t2
= �p

D
(A1)

with the following boundary conditions on the clamped edges,

ξ = 0
(A2)

dξ

dr
= 0,

should be solved [35], where ξ is the deformation of the plate,

D = Et3
m

12(1−ν2) defined as the flexural rigidity, �p is the net
pressure exerted on the plate, km is the propagation constant

and defined as k2
m = ω

√
ρmtm
D

, E is the Young’s modulus,
ν is Poisson’s ratio, ρm is the mass density, and tm is the
thickness of the plate. To find the mechanical impedance
of the membrane Eq. (A1) should be solved. However, the
closed-form solution for the clamped rectangular case only
exists in series format [42]. Here, an indirect method is
proposed to find the equivalent mass and compliance of the
rectangular membrane.

If the deformation of the membrane vibrating in its first
mode is modeled by [43]

ξ = A

(
cos

2πx

a
− 1

)(
cos

2πy

b
− 1

)
(A3)

and by neglecting the losses the energy of the vibrating plate
is transformed between kinetic and potential energies:

U = 1

2

∫∫
D

{(
∂2ξ

∂x2

)2

+
(

∂2ξ

∂y2

)2

+ 2ν

(
∂2ξ

∂x2

)(
∂2ξ

∂y2

)

+ 2(1 − ν)

(
∂2ξ

∂x∂y

)2}
dxdy, (A4)

K =
∫

ω2

2
dmξ 2 (A5)

where dm = ρmdV , V is the membrane’s volume. Using the
average deformation of the membrane the kinetic and potential
energy can also be described by equivalent values:

U = 1

2

ξ 2
eq

Ce

, (A6)

K = ω2

2
meξ

2
eq (A7)

where me and Ce are the equivalent mechanical mass and
compliance, respectively, and ξeq is the equivalent deformation
of the vibrating membrane:

ξeq = 1

S

∫
ξdS. (A8)

By equating two relations for potential energy, Eqs. (A4)
and (A6), the equivalent mechanical compliance (Ce) is
calculated. Following the same procedure for kinetic energy
the equivalent mechanical mass (me) is found as Eq. (5).
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