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Dynamics of charge carriers on hexagonal nanoribbons with vacancy defects
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We develop a general model to investigate the dynamics of charge carriers in vacancy endowed honeycomb
two-dimensional nanolattices. As a fundamental application, results concerning the influence of vacancies placed
on different sites of semiconducting armchair graphene nanoribbons (AGNR) over the transport of polarons are
presented. It is observed that the positioning of vacancies plays a major role over the scattering of the charge
carriers, in the sense that their overall mobility is determined by where the defect is allocated. By considering
different structural configurations of the system, the arising polaron can either move freely or be reflected.
Therefore, our work provides a phenomenological understanding of the underlying mechanism responsible for
the change of conductivity experienced by systems in which structural defects are present, a fact that has been
reported for different nanostructures of the same symmetry. Because vacancies are one of the most common kinds
of defects and are, in practice, unavoidable, the kind of description proposed in the present paper is crucial to
correctly address transport and electronic properties in more realistic electronic devices based on two-dimensional
nanolattices.
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I. INTRODUCTION

Low-dimensional solid state nanosystems are composed
of nanostructures in which at least one of their dimensions
are small when compared to the others. In such structures,
electrons and holes present quantized energy levels in the
smaller of the directions, but are free to move in the others,
as the energy is spanned into the continuum for the extended
system. This confinement of the electronic wave function is
what typically allows these systems to exhibit very diverse
properties when compared to traditional three-dimensional
structures, usually well described by conventional condensed
matter physics. Recently, such properties have been very well
exploited from the technological point of view to give rise
to a novel generation of devices and applications whose
unique traits arise from the peculiar behavior that charge
presents in these systems. As examples of low-dimensional
structures with important technological appeal one can cite:
conducting polymers, one-dimensional systems currently used
in the development of an organic photovoltaic technology
[1]; carbon and boron nitride nanotubes, interesting quasi-
one-dimensional candidates to gas sensing and arrest [2,3];
two-dimensional transition metal dicalcogen alloys, used in
optoelectronics applications and hydrogen catalysis [4]; quasi-
two-dimensional high temperature organic superconductors,
such as BEDT-TTF [5] and, naturally, graphene nanoribbons
[6]. Although very diverse in nature, these systems have in
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common the fact that their peculiar properties cannot be fully
explained but in terms of a many-body effect picture. The
main idea of this approach is to realize that electrons cannot
be viewed as independent entities, but rather—as they are
continuously interacting with other electrons, nuclei, defects,
and excitations such as phonons and photons—as collective
excitations or quasiparticles [7].

The concept of quasiparticle has since long been employed
in solid state physics due to the difficulty to address exactly
the many body problem for these systems. Based on the
success that quantum field theory previously presented, this
new picture has been applied to condensed matter problems
with extreme success since the mid 50’s. By describing
the real interacting particles as approximate noninteracting
fictitious entities (the quasiparticles) in the scope of an
independent particle approach, Drude and Sommerfeld [8]
have presented a very elegant and manageable description
for the problem. Depending on the nature of the system as
well as its environment and the excitations that act upon
it, different quasiparticles—with rather different properties—
might take place. Of particular interest to the understanding
of the behavior of low-dimensional solid state nanostructures
is the interaction between electrons (or holes) and phonon
modes. This interaction can create a number of different
quasiparticles, one of the most important being the polaron.
A polaron is an entity that results from the movement of a
charged quasiparticle that polarizes the lattice thus causing
structural distortion. It is thus a collective excitation that
couples the vibrational modes of the crystal lattice (phonon)
with the charge (electron or hole). A polaron is able to respond
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simultaneously to electric and magnetic field inasmuch as it
possesses ±1/2 spin and ±e charge [9]. This structure can
be spontaneously formed in the lattice or, alternatively, can
be induced by the presence of impurities, photoionization, or
photoexcitation processes or by stress.

As quasiparticles are known to be the usual charge carrier in
low-dimensional solid state structures, a considerable amount
of work concerning the dynamics of these excitations in
different systems has been performed throughout the years
[10,11]. Particularly, the interaction between several quasi-
particles [12] and between quasiparticles of different natures
[13] in the same lattice has been previously discussed. In
one of these early works, for instance, Okuno and Onodera
proposed the coexistence of a soliton and a polaron in a single
conducting polymer chain by means of a continuum model
[14]. The interaction between these quasiparticles was then
investigated. More recently, a number of scattering processes
between different quasiparticles in conjugated polymers were
considered in the scope of modified versions of the SSH
model [15]. As reasoned in the previous paragraph, the very
nature of a polaron requires a certain level of lattice distortion.
Therefore, whenever such a quasiparticle is present, one has
to deal with a structural defect. In this sense, the interaction of
more than one quasiparticle in a single chain can be viewed as
(although should not be restricted to) the interaction between
a modified quasiparticle and a lattice distortion.

Indeed, although the last few decades were very prolific
as far as the synthesis of low-dimensionality nanomaterials is
concerned, methods of creating pristine lattices remain rather
restricted [16–19]. As already discussed, the nature of charge
carriers in these systems actually prevent this being the case.
One thing that was learned, however, is that the presence of
defects must be very carefully investigated for it is not only
unavoidable but rather gives rise to effects that might enhance
or harm the system’s performance. For instance, Scuzeria and
co-workers conducted an interesting study concerning boron
nitride nanotubes as gas sensors. In their work, it was shown
that the inclusion of mechanically induced vacancy defects in
the lattice lead to the formation and dislocation of dipoles on
the structure’s walls [20], thus potentially raising its chemical
reactivity regarding the capture of gas molecules. The reason
for this has to do with the fact that the presence of the vacancy
tends to cause a charge redistribution towards raising the
concentration of electrons or holes around the defect [21,22].
On the other hand, Stafström has shown that depending on the
concentration of vacancies, carbon nanotubes can have their
conductivity substantially lowered, due to a high probability
of charge carriers scattering in the lattice [23]. His work
has shown that the conductivity is modified not only as a
function of the vacancy concentration itself but also of its
relative positions in the lattice. It was reasoned that different
vacancy distributions could give rise to stronger or weaker
scattering depending on the structure of the carrier’s wave
function. Be that as it may, a decrease of conductivity is
expected to be undesired for applications such as optics or
electronics.

The analysis of these results leads to some important
conclusions. First, it is clear that in order to predict whether
the presence of defects shall improve or harm the efficiency of
the system, it is fundamental to first understand the underlying

mechanism of interaction between charges and the defects.
Second, we observe that the change of the system’s efficiency
in opposite directions was mainly due to each application
rather than to the nature of the lattice. Both systems described
were hexagonal tiling honeycomb nanotubes, but whose unit
cells were composed of different atoms. Note, however, that
the presence of the defect plays the same roles in both
cases: It simultaneously create dipoles (which is good for gas
adsorption) and increases the scattering (which is harmful for
optics and electronic purposes). Third, one should be interested
to investigate if the importance of relative positioning of the
defect in the chain (as reported by Stafström) is a general
pattern, i.e., if it still plays a role in modifying the interaction
between charge and defects in other systems. To summarize
these conclusions, it can be said that it is mandatory to perform
a thorough investigation on the fundamental aspect regarding
the interaction between charge and defects (including the
effects of the defect position) for low-dimensional solid state
systems with different topological configurations.

We have recently developed a study on the effects of
impurity-type defects in armchair graphene nanoribbons [24].
It was shown that these defects strongly affect the dynamics of
quasiparticle in these materials, either by trapping the charge
carriers or by affecting their stability. Nevertheless, a similar
theoretical investigation concerning the effects of structural
defects, such as vacancies, had not yet been conducted in
these two-dimensional systems. The aforementioned works
on vacancies in nanotubes whose atoms are distributed in a
honeycomb symmetry (BNNTs and CNTs) encourage us to
tackle real two-dimensional systems with the same symmetry.
As several examples we can consider boron nitride sheets,
germanene, silicene, alloys such as WS2, MoS2, WSe2, and
MoSe2, and graphene nanoribbons. In the present paper, we
develop a parametric model based on a tight-binding approach
with lattice relaxation in a first order expansion to treat the
charge carrier dynamics in these systems. Although the results
presented here are obtained by using parameters that simulate
armchair graphene nanoribbons, the model is general and
could, in principle, be re-parameterized to comprise other
hexagonal two-dimensional lattices, such as those described.
However, taking into consideration that, as in the comparative
example between Scuzeria and Stafstrom’s works, the results
for different species are expected to be qualitatively the
same—provided the same symmetry is preserved—we have
chosen to adopt a more general and qualitative picture of
the interacting process, so that a specific reparametriza-
tion for other systems is out of the scope of the present
paper.

The choice of presenting results specifically for armchair
graphene nanoribbons is due to the fact that these structures
are representative examples of flat honeycomb lattice with
a huge technological appeal. It is well known that graphene
nanoribbons of the armchair chirality present a semiconduct-
ing character, which makes it even more interesting from the
point of view of applications in electronics. For instance,
it is observed some devices built out of GNRs presented
high permittivity and low loss in the radio and microwave
frequencies, which is a critical feature for miniaturization of
electronic components and for their use in antennas and other
military applications [25]. GNRs have also been successfully
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used as electrode materials for batteries and supercapacitors
[26], as well as a substrate to grow polyaniline nanorods
with enhanced mechanical properties [27]. These works show,
from the experimental point of view, the importance of
studying both electronic and structural properties in this kind
of system. Nevertheless, no theoretical work has discussed
these two features together, i.e., the effects of the presence of
vacancies as well as of their positioning on the lattice, over the
transport properties that provide interesting features to GNRs.
Therefore, besides presenting a general qualitative discussion
over the role vacancies defects play on the electronic transport
in two-dimensional honeycomb structures, the present paper
provides a highly desired specific insight over the polaron
transport mechanism in armchair graphene nanoribbons of the
two most important families [28], i.e., 3p and 3p + 1.

The present paper is organized as follows: In Sec. II we
discuss the main remarks of the model used to simulate the
charge carrier dynamics in two-dimensional lattices, Sec. III
contains our results as well as their analysis, and we summarize
our findings in Sec. IV.

II. MODEL AND METHOD

The nature of our model follows that of the quasiparticles of
which we are concerned in the present paper: It is described by
a hybrid Hamiltonian with classical terms to take the phonon
modes into account, quantum terms to describe the π electrons,
and terms that are responsible for the coupling between the two
realms. The goal is to simulate a two-dimensional “masses
and springs” lattice whose π -electron clouds are connected
to the displacement of the cores. We should emphasize that
although this kind of approach seems to be almost naively
simple, it has indeed been employed with remarkable success
with the description of several different solid state systems
[29,30]. Figure 1 presents the sites labeling for the honeycomb
two-dimensional hexagonal lattice treated in this paper.

For such a chain, we choose to treat the vibrational modes
in a harmonic approximation, which is known to be accurate
in the case of nanostructures whose lattice displacement is no
greater than 2%, as is the case for AGNRs. The same small
displacement consideration supports the adopted approxima-
tion of expanding the π electrons hopping integrals up to first
order in the displacement coordinate for the electron-phonon
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FIG. 1. Schematic labeling of an armchair GNR.

coupling part of the Hamiltonian. The π electrons themselves
are treated with a second quantized formalism of quantum
mechanics in the scope of a nearest-neighbor tight-binding
approximation. The complete Hamiltonian considered, thus,
takes the form:

H = −
∑

〈i,j〉,s
[e−iγAi,j (t0 − αyi,j )C†

i,sCj,s

+ eiγAi,j (t0 − αyi,j )C†
j,sCi,s]

+ 1

2

∑
〈i,j〉

K(yi,j )2 + 1

2

∑
i

P 2
i

M
. (1)

In this expression, i and j index two arbitrary neighboring
sites on the chain. yi,j represents the variation on the existing
bond distance between two such sites. Ci,s is the annihilation
operator of a π electron with spin s in the ith site and C

†
j,s

the corresponding creation operator at site j . t0 is the transfer
integral usually employed in pure tight-binding models. α is
the electron-phonon coupling constant, which is responsible
for including the interdependency between the electron and
the lattice degrees of freedom.

As already mentioned, our model adopts the hopping
integral as being defined by taking lattice relaxation into
account. Therefore, terms such as (t0 − αyi,j )C†

i,sCj,s , that
appear in the first sum of the Hamiltonian, describe the hopping
of an electron from site j to site i, for the term under brackets
represents the amplitude of probability of finding an electron
originally from site j in site i. The multiplicative term e−iγAi,j

(e−iγAi,j = e−iγ A·r̂i,j , where r̂i,j is the unit vector pointing from
site j to i) appears because we consider an external electric
field by including the time-dependent vector potential A(t)
through a Peierls substitution of the phase factor to the hopping
integral [31], with E(t) = −(1/c)Ȧ(t). In this exponential,
γ ≡ ea/(�c), a is the lattice parameter, e the absolute value
of the electronic charge, and c the speed of light. The second
sum of Eq. (1) is related to the effective potential associated to
the σ bonds in a harmonic approximation, K being the Hooke
constant. Denoting Pi as the momentum of the ith site with
mass M , the third term accounts for the kinetic energy of the
lattice.

The solution procedure begins by considering an initial set
of coordinates {yi,j } and constructing a stationary electronic
Hamiltonian from the first term of Eq. (1). The diagonal-
ization of such Hamiltonian provides eigenvalues—Ek—and
eigenvectors—ψk,s(i,t = 0)—of the electronic part of the
system for the initial time. As a result, the quantities are related
as

Ekψk,s(i,t = 0) = −ti,jψk,s(j,t = 0) − ti,j ′ψk,s(j
′,t = 0)

− ti,j ′′ψk,s(j
′′,t = 0), (2)

where i, j , j ′, and j ′′ stand for neighboring sites.
As for the lattice, we employ the classical approach of

solving the Euler-Lagrange equation. In order to do so, we
evaluate the Lagrangian’s expectation value 〈�|L|�〉, using
the total wave function obtained from the diagonalization of
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the electronic Hamiltonian. This procedure results in:

〈L〉 = 1

2

∑
i

P 2
i

M
− 1

2

∑
〈i,j〉

K(yi,j )2

+
∑

〈i,j〉,s
[(t0 − αyij )Bi,j + c.c.],

where

Bi,j ≡
∑
k,s

′e−iγAi,j ψ∗
k,s(i,t)ψk,s(j,t) (3)

is the term responsible for coupling the classical and quantum
parts of our solution. Note that the prime means the sum is
carried out over the occupied states only, following a Fermi-
Dirac distribution function. Since a positively charged polaron
has spin 1/2, we sum up to the last occupied levels, with the
number of up spin levels being bigger than the number of down
spin by one.

One can now make use of the calculated Lagrangian to solve
the Euler-Lagrange equation under the condition Pi = 0. This
solution will give rise to a new set of yi,j values; this new
set can be plugged into a new electronic Hamiltonian whose
diagonalization yields new wave functions and energies as in
Eq. (2); these new wave functions are used to obtain yet another
Lagrangian that can be used for the solution of the new Euler-
Lagrange equation. The procedure is to be self-consistently
performed until a given convergence criteria is achieved.

After convergence, one can say that the obtained initial state
is self consistent for the degrees of freedom of both electrons
and lattice. Therefore, the time evolution of this initial state
can be performed according to the time dependent Schrödinger
equation. By expanding the wave function |ψk,s(t)〉 in terms
of {|φl,s(t)〉}, a basis set of eigenstates of the electronic
Hamiltonian at a given time t , the time evolved wave function
from instant t to instant t + dt turns out to be:

|ψk,s(t + dt)〉 = e− i
�

∫ t+dt

t
dt ′H (t ′)|ψk,s(t)〉

= e− i
�

H (t)dt
∑

l

|φl,s(t)〉〈φl,s(t)|ψk,s(t)〉

=
∑

l

〈φl,s(t)|ψk,s(t)〉e− i
�

εl (t)dt |φl,s(t)〉, (4)

where εl(t) denotes the eigenenergy corresponding to the
eigenstate |φl,s(t)〉.

The lattice dynamics is obtained from the solution of
Eq. (4), which we compute numerically [11] and employ to
the calculation of the expectation value of a new Lagrangian.
Thus, the solution of the Euler-Lagrange equation is coupled
with the electronic part of the system and results in the
following Newtonian equation type expression for bonds with
four neighboring bonds (as yij in Fig. 1):

Fij (t) = Mÿij = 1
2K[yil + ymi + yjp + yqj − 4yij ]

+ 1
2α[Bil + Bmi + Bjp + Bqj − 4Bij + c.c.]. (5)

For bonds with three neighboring bonds (ynm in Fig. 1) the
lattice equation of motion is

Fnm(t) = Mÿnm = 1
4K[3ynr + 2ykm + 2ymi − 7ynm]

+ 1
4α[3Bnr + 2Bkm + 2Bmi − 7Bnm + c.c.]. (6)

For bonds with just two neighboring bonds (ynr in Fig. 1) the
expression is

Fnr (t) = Mÿnr = 1
4K[3ynm + 3yrq − 6ynr ]

+ 1
4α[3Bnm + 3Brq − 6Bnr + c.c.]. (7)

It should be pointed out that ions do not necessarily react
instantaneously with the electronic cloud deformation at each
step. They react following their equations of motion that
depend on the expectation values associated with the electronic
part, at the due time. All we are doing is not to assume a priori
that this change is negligible. We allow the equations to tell
how small the changes are.

As a final remark of the model, we should dedicate a few
words to the inclusion of the time dependent electric field.
As we wanted our results to be a loyal manifestation of
the interaction between the quasiparticles and the structural
defects, we decided to include electric field adiabatically in
the system. This kind of procedure avoids artificial numerical
oscillations that usually appear due to an otherwise abrupt
implementation of the electric field and has shown to present
very good results [32]. Our adiabatical implementation of the
electric field is carried out according to the time dependent
scheme:

A(t) =

⎧⎪⎨
⎪⎩

0 if t < 0,
−1
2 cE

[
t − τ

π
sin

(
πt
τ

)]
if 0 � t < τ,

−cE
(
t − τ

2

)
if τ � t � tf .

(8)

Here, tf is the total simulation time, tf = 60 fs. τ denotes the
instant where electric field reaches its maximum, τ = 20 fs.

The Hamiltonian of Eq. (1), as well as the method hitherto
described, is completely general for the symmetry presented
in Fig. 1. So far, no distinction between what is the particular
species concerned has been made. In other words, this same
scheme can be followed to treat any kind of two-dimensional
hexagonal lattices mentioned in the introduction with addi-
tional improvements in the Hamiltonian if necessary. We have
reached the point, however, to particularize our description in
favor of obtaining the correct numerical values for a particular
system, namely AGNR. One should bear in mind, however,

FIG. 2. Charge density distribution for 6 × 200 nanoribbon (a)
and 7 × 200 nanoribbon (b) AGNRs.
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FIG. 3. Dynamics of a polaron (a) in a lattice with a vacancy
positioned as in (b).

that although a certain choice of parameters is to be made to
obtain the correct quantitative values for the respective kind
of system, our results are expected to be qualitatively valid for
the other systems as well.

The first distinction we make in favor of AGNR is to con-
sider periodic boundary conditions in the vertical direction of
Fig. 1. In this kind of system, edge effects should be mitigated
in this direction, for nanoribbons consist of long lattices in their
length when compared to their width. Concerning the model
parameters, in our paper the values used for the constants t0 and
α were, respectively, 2.5 eV and 4.1 eV/Å [33]. We chose these
values after performing preliminary simulations considering
values of α that lie in the range from 3.5 to 10 eV/Å. The
results show that the existence of polarons is conditioned to the
presence of the electron-phonon coupling for these systems.
Nevertheless, for electron-phonon constants between 4 and
6 eV/Å, the dynamics are rather insensitive to the change of
this variable. According to the literature, these are suitable
values for GNRs [34]. A similar analysis was carried out in

terms of the harmonic elastic constant K , with K = 21 eV/Å
2

[33]. As M is just C core’s mass, it was set up to be that of the
most stable carbon isotope.

III. RESULTS AND DISCUSSION

As we have previously discussed, although our model
is expected to be suitable for different two-dimensional
nanolattices, we present results specifically for armchair
graphene nanoribbons. In order to eliminate edge effects on
the undesired direction, we consider nanoribbons of 200 sites
length with periodic boundary conditions. This considerable
size is important to comfortably accommodate the large
polarons that usually arise in this kind of system [35]. We
are mainly interested in investigating structural effects over
the charge carrier transport mechanism. It is, thus, reasonable
to consider the two structurally different families that are
known to present polaronic transport in these materials.
Therefore, results of a 6 × 200 nanoribbon (3p family) and
of a 7 × 200 nanoribbon (3p + 1 family), in which vacancies
are constructed by extracting carbon atoms from different sites
are presented.

Before studying the effect of the vacancy over the polaron
dynamics, it is instructive to perform a characterization of the
polaron from a static point of view in the two different chains
without vacancies, i.e., with all the carbon atoms attached.
The idea is to provide a picture of how a polaron arises in a
pristine chain in order to better appreciate the effects of the
vacancies in the following simulations for the two different
families. Throughout the present paper, a polaron is created
by extracting an electron from the highest occupied energy
level. The polaron is initially positioned on the top part of
the ribbon. We should stress that this is an arbitrary choice
made to better present the transport picture. Since periodic
boundary conditions in the nanoribbon length are considered,
the only really important factor is the relative distance between
the polaron and the vacancy. The initial localization of the
polaron in the ribbon is obtained by moving ions slightly
(|yi,j | ∼ 0.01 Å) from the equidistant position only in the
upper part of the nanoribbon in the initial guess of the iteration
procedure. The iterative procedure is performed until self
consistency is achieved. Figure 2 presents the comparison
between the charge distribution on the 6 × 200 [(a)] and
7 × 200 [(b)] nanoribbons. One can clearly see that two
different patterns arise to match the symmetry of each chain.
Whereas for the 6 × 200 nanoribbon two different centers

FIG. 4. Vacancy state charge density: (a) before the collision (4 fs), (b) during the collision (36 fs), and (c) after the collision (60 fs). (With
a zoom in the scattering region.)
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FIG. 5. Dynamics of a polaron (a) in a lattice with a vacancy
positioned as in (b).

of charge distribution are symmetrically concentrated near
the edges of the nanoribbon, the 7 × 200 case presents three
such centers, including one exactly over the carbons that lie
in the fourth column of the nanoribbon, i.e., the middle of
the lattice width. This behavior of the charge distribution is
a consequence of the parity of the number of sites in the
nanoribbon width, and is a feature already observed in other
works of the literature. Notwithstanding it is important to keep
these results in mind, so that we can evaluate the impact of
differently placed vacancies to be discussed in the following
paragraphs.

We begin by analyzing the dynamics of the polaron in
vacancy endowed 6 × 200 lattices. As both sides of the
nanoribbon are symmetric, there are, in principle, only two
different possibilities for positioning a single vacancy in the
chain related to the polaron. The vacancies can be obtained
as follows: We either extract one carbon from sublattice
A (we call this the up configuration) or we extract one
carbon from sublattice B (similarly, we call this the down
configuration). A graphical representation of the up and down
configurations of vacancies is presented in Figs. 3(b) and
5(b), respectively. Figures 3(a) and 5(a), to be discussed in
the following, consist on the time evolution of the polaron

(a) (b)

(c) (d)

FIG. 7. Different vacancy position for 7 × 200 AGNR: (a)
central-up, (b) central-down, (c) side-up, (d) side-down.

position in chains with vacancies positioned according the
two different configurations. The polaron movement results
from the application of a 0.065 mV/Å electric field oriented
to move the quasiparticle directly towards the vacancy. One
should note that the change of slope that is clearly observed in
the trajectory of the polaron from the initial time steps towards
the rest of the simulation is due to the adiabatical application
of the electric field. After the transient expressed by 8, the
value of 0.065 mV/Å is maintained.

Figure 3(a) presents the case of an up vacancy. The
first thing we notice is the difference between the charge
distribution at the initial instant here with that of Fig. 2(a),
i.e., the case without vacancy. One can clearly see that,
although the same pattern of charge distributed in two centers
along symmetrically displaced columns arises, the vacancy
concentrates charge around itself so that we can no longer
observe the symmetrical distribution along the length of the
nanoribbon. Similar results are obtained for other defects
such as impurities, and they are to be attributed to a natural

FIG. 6. Vacancy state charge density: (a) before the collision, (b) during the collision, and (c) after the collision. (With a zoom in the
scattering region.)
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FIG. 8. Dynamics of a polaron in a 7 × 200 lattice with a central-
up vacancy [positioned as in Fig. 7(a)].

symmetry breaking both impurities or vacancies cause in the
lattice. Next, we gather our attention to the movement of the
polaron itself. As the electron field accelerates the polaron
towards the defect, we can see that some of its charge is
spread throughout the lattice. Also, we can note that some
of the polaron’s charge is imprisoned by the sites around the
vacancy. This partial charge trapping is easily observed when
the actual collision takes place, i.e., when the polaron moves
over the vacancy. One can observe that even after that instant,
the defect remains with accumulated charge but it gradually
releases some of it as the electric fields continue to act.

We have thus seen that the movement of the polaron over
the vacancy changes its charge distribution. In order to have a
more accurate view of how this change takes place, we present
in Fig. 4 a series of snapshots focused in the region of the
collision at three instants: before the collision (4 fs), at the
collision (36 fs), and after the collision (60 fs). The change of
the charge distribution on the region of the vacancy is pretty
clear. Also we can conclude that its surroundings end up being
slightly more charged with the scattering process, the excess
charge originally coming from the polaron. In other words, the
polaron delocalization is closely related to a certain degree of
charge trapping by the vacancy. We should emphasize that this
charge redistribution around the vacancy is a general effect.

Indeed, a clear indication of this fact can be appreciated by
considering that a similar phenomena takes place in vacancy
endowed graphene sheets, as recently reported in the literature
[36]. This redistribution of charge density actually is also the
kind of process that explains the features described by Scuzeria
[20] as far as the gas adsorption properties are concerned.

Figure 5(a) presents the case of a vacancy positioned
according to the second configuration (down configuration).
The most important feature concerning Fig. 5(a) is that it is
identical to the one obtained for the up configuration, i.e.,
Fig. 3(a). As expected, this should indeed be the case. Because
of the symmetry of this even nanoribbon, the extraction of a
carbon atom makes the vacancy state occupy the whole width
of the ribbon. Added to this is the fact that the difference
between the configurations up and down is merely that one is
upside down in relation to the other, so that the polaron faces
the exact same potential barrier when it reaches the point of
crossing the defect, the difference being the orientation of the
potential barrier.

To confirm this point we present, in Fig. 6, the snapshots
before, during, and after the collision represented by Fig. 5.
One can readily see that the pattern observed in Fig. 6 is
nothing but an inverted version of what is seen in Fig. 4, thus
confirming what was said about the invariance of the polaron
interaction with the differently positioned vacancies. In other
words we can conclude that for an AGNR of even width,
provided the vacancy state is spread over its width center, its
position does not play an important role over the behavior of
the polaron’s dynamics. As this property arises from symmetry
considerations, it is clear that this result is valid for other
two-dimensional lattices of the same symmetry as well.

A completely different pattern is found for the more
complex case of an odd width nanoribbon, as is the case of
the 7 × 200 member of the 3p + 1 family, to be henceforward
discussed. To begin with, in this case we observe that there
are not two but four potentially different positions to create a
vacancy related to the polaron. Figure 7 present the different
possibilities. Our notation here is a generalization that follows
from the one adopted in the previous paragraph: The vacancy
depicted in Fig. 7(a) is called central-up; in 7(b) we have a
central-down vacancy. 7(c) is described as a side-up defect,
and 7(d) is the side-down case. Symmetry arguments allow
us to assess conclusively that no distinction is to be made of
the side from which the carbon is extracted. Also, following
the same arguments discussed in the previous paragraph we

FIG. 9. Before (4 fs), during (36 fs), and after the collision (60 fs): a zoom in the scattering region.
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FIG. 10. Dynamics of a polaron in a 7 × 200 lattice with a side-up
vacancy [positioned as in Fig. 7 (c)].

can readily rule out the possibility of (a) and (b) presenting
qualitative different results whatsoever. Again, what we have
is a symmetrically displaced vacancy that is perceived by the
polaron in the same way. Note that both (a) and (b), which are
positioned in the center of the ribbon, make their surrounding
likely, so that we have the same response as observed in the case
of 6 × 200 concerning the difference between up and down
configurations. Naturally, we do not expect the results from
6 × 200 to be in any way similar to the ones from 7 × 200,
as the family and the size of the nanoribbon are known to
play an important role over the quasiparticle transport. As
for (c) and (d), although one can see that they too differ
by i symmetry operation, the vacancy state does not occupy
the lattice width symmetrically. The difference between these
latter situations can be understood by imagining the polaron
flowing in opposite directions in one of the cases. The effective
potential barrier it must surpass is, in principle, expected to be
different, because the space is occupied differently. Therefore
one has no reason to expect the same results.

Figure 8 depicts the dynamics of a polaron in a 7 × 200
lattice in which a central-up vacancy is considered, i.e.,
a defect represented by Fig. 7(a). A somewhat different
scattering mechanism takes place in this case. Again the
polaron is accelerated directly towards the vacancy, and

FIG. 12. Dynamics of a polaron in a 7 × 200 lattice with a side-
down vacancy [positioned as in Fig. 7(d)].

the electric field provides some extra delocalization to the
quasiparticle, as can be observed from the increasing spreading
of its charge. However, this time the polaron is not able to pass
directly through the defect but rather bounces back to the
original direction. The similar absolute value of the slope of
the polaron’s trajectory around the scattering region suggests
that an almost elastic collision took place. Interestingly, in
doing so, it extracts some of the charge that was concentrated
around the defect and ends up being slightly more charged, as
can be seen from the more reddish pattern that appears over its
structure. It should be pointed out that the electric field is still in
the same direction and acts on the polaron decelerating it. This
can be seen by the curve it makes after the collision. The point
is that, differently from the previous case, the polaron did not
pass through the vacancy in the first interaction between the
structures. Even if it is for the polaron eventually surpassing
this potential barrier due to fluctuations, one can clearly see
that the overall system’s charge mobility in this case is much
smaller than in the previous case.

This later effect can be better visualized by focusing on the
vacancy region and analyzing its charge distribution before,
during, and after the collision. From Fig. 9 one can clearly
see that a considerable amount of the charge that was initially
over the vacancy region vanishes from it after the polaron’s

FIG. 11. Before, during, and after the collision: a zoom in the scattering region.
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FIG. 13. Before, during, and after the collision: a zoom in the scattering region.

collision. Although some of the lost charge is simply spread
over the lattice, a considerable amount is coupled by the
polaron that, as it turns out, is responsible for the decrease
of charge of the defect. The results here discussed are of
fundamental importance, particularly when taking those of
the 6 × 200 case into consideration. Particularly, symmetry
arguments allow us to trace a parallel between the structures
from Fig. 7(a) and those of Fig. 3(b). However, the respective
results of Figs. 8 and 3(a) strongly differ. This is important
evidence that, no matter how similar are the defects, the family
of the nanoribbon (and its size, thereof) plays an important role
on the transport mechanism of polarons, and how they interact
with vacancies. Here we have an example of the kind of process
that explains Stafström’s [23] conclusion concerning the loss
of conductivity nanostructures may present when vacancies
are considered.

We now move further to the interesting cases of lateral
defects, beginning with the so-called side-up vacancy of
Fig. 7(c), whose dynamics is presented in Fig. 10. One can
clearly see that, for this simulation, the polaron was able to
pass through the vacancy. A comparison between the results
from the currently analyzed simulations with those of Fig. 8
shows that, indeed, the positioning of the vacancy is of
fundamental importance to the transport mechanism of the
polaron. For instance, the fact that this configuration allowed
for a transmission of the polaron through the lattice suggests

FIG. 14. 3D representation of the charge density associated with
the vacancy state.

that this kind of vacancy results in a system in which the
quasiparticle has more mobility, which ultimately may affect
the conductivity of the system.

In the process of passing through the vacancy, we can see
that, again, the emerging polaron is more charged than before
the collision. Figure 11 presents the snapshots concentrated in
the vacancy region. After the collision, the diminishing of the
charge concentrated in the vacancy is quite clear. Again, the
simulation suggests a quasielastic collision. Note the similarity
between the charge distribution before and during the collision.
From that we conclude that the polaron drags some of the
vacancy charge as it moves away from the defect after the
scattering process.

We are in the point of presenting the final system considered
in the present paper: the 7 × 200 AGNR with a side-down
type vacancy according to Fig. 7(d). Figure 12 depicts a very
similar pattern for this case. The analysis of the region around
the defect presented in Fig. 13 shows an analogous behavior
for the vacancy state after the collision.

In order to provide a clearer visualization of the process, we
present, in Fig. 14, a 3D representation of the polaron dynamics
over the AGNR with the side-down vacancy. The nanoribbon
lies in the xy plane, whereas the z height is a measure of the
charge density at that point. After the collision, we can see a
charge scattering around the vacancy. In fact, comparing the
charge density before the collision, the charge spreads over a
larger region. This can readily be seen from the more uniform
size of the peaks after the collision.

IV. CONCLUSIONS

In summary, we have developed a model to describe charge
transport on two-dimensional honeycomb hexagonal lattice
nanostructures in the presence of vacancy defects. Specifically
we parametrize our model to describe narrow AGNRs of the
two semiconducting families (3p and 3p + 1). We observe
that, in general, the position of the vacancy on the lattice
is fundamental to define the kind of scattering process of
the polaron by the vacancy. As expected, the width of the
nanoribbon is also important in defining the behavior of the
system. We found that the parity of the width and vacancy
positions can have such critical importance that their effects
span from allowing a polaron to freely move through the
lattice to being reflected by the collision with the vacancy.
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They also control the trapping and releasing of charge process
between the quasiparticle and the vacancy, thus defining the
structure that ends up being more charged after the scattering
process. As we have seen that both the dynamical scattering
process (including the behavior of the arising charge carrier)
and the charge distribution of the system is differently affected
depending on structural properties of the system, the generality
of our model allows us to provide a qualitatively important
description on how these effects might play a role over
the performance of systems based on several different two-
dimensional nanostructures. As an example—as is the case
of the AGNRs results that we have discussed—our approach
can be used to predict whether a higher or lower conductivity

is to be expected depending on the kind of defects present,
therefore being of major interest to the molecular electronics
community.
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