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Transmission resonances anomaly in one-dimensional disordered quantum systems
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Connections between the electronic eigenstates and conductivity of one-dimensional (1D) disordered systems
is studied in the framework of the tight-binding model. We show that for weak disorder only part of the states
exhibit resonant transmission and contribute to the conductivity. The rest of the eigenvalues are not associated
with peaks in transmission and the amplitudes of their wave functions do not exhibit a significant maxima within
the sample. Moreover, unlike ordinary states, the lifetimes of these “hidden” modes either remain constant or
even decrease (depending on the coupling with the leads) as the disorder becomes stronger. In a wide range of the
disorder strengths, the averaged ratio of the number of transmission peaks to the total number of the eigenstates
is independent of the degree of disorder and is close to the value

√
2/5, which was derived analytically in the

weak-scattering approximation. These results are in perfect analogy to the spectral and transport properties of light
in one-dimensional randomly inhomogeneous media [Y. P. Bliokh et al., New J. Phys. 17, 113009 (2015)], which
provides strong grounds to believe that the existence of hidden, nonconducting modes is a general phenomenon
inherent to 1D open random systems, and their fraction of the total density of states is the same for quantum
particles and classical waves.

DOI: 10.1103/PhysRevB.94.014207

I. INTRODUCTION

In a recent paper [1], an interesting find regarding the
transmission of waves through disordered systems has been
presented. It has been shown analytically, numerically, and
experimentally that in weakly disordered one-dimensional
dielectric media, a substantial fraction of optical quasinormal
modes (QNMs) are hidden, i.e., could not be detected
by transmission measurements. Such a behavior should be
expected also for the transmission of other waves, particularly
for the electron transport in disordered conductors.

Similarly to QNMs in optics, states of an open electronic
system can also be interpreted in terms of quasinormal states
(QNSs) [2–4].

The quasinormal states analysis is a powerful tool for
investigating open systems of different physical natures, both
optical and quantum mechanical, which do not conserve
energy since energy can escape to the outside, and the
associated mathematical operators are not Hermitian [2]. From
the mathematical point of view, QNSs are the generalization
of the notion of the eigenstates of closed (Hermitian) systems,
and can be found as the solutions satisfying the outgoing-wave
boundary conditions. In the limit of zero leakage, these QNSs
reduce to the normal states of the corresponding closed system.
QNSs form a complete set, and are orthogonal under a modified
definition of the inner product, providing an eigenfunction
expansion of the Green’s function and the time-evolution
operator [4,5]. The imaginary parts of the eigenvalues of a
non-Hermitian Hamiltonian depict the lifetimes of the QNMs
[6,7], which are finite due to the flow of electrons between
leads. Therefore, recasting the classical problem considered
in [1] for electronic systems is of interest, since one can ask
additional questions regarding QNSs, which are difficult or
nonrelevant in optics.

Especially, one can probe the hidden modes (HMs) response
to nonequilibrium conditions as large applied source-drain
voltage and biased temperature, or to other effects as electron-
electron or electron-phonon interactions, etc. Moreover, many

experimental procedures use the conductance to probe and
count the electronic states of mesoscopic and microscopic
systems, such as narrow channels of semiconductors [8–12],
edge channels of quantum Hall thin films [13], carbon
nanotubes [14,15], and quantum dots [16]. As we show
here, adding even a small amount of disorder will result in
disappearance of modes. Hence, better understanding of this
nontrivial relation between eigenmodes of isolated systems
and transmission peaks in open systems is essential.

Here we study the electronic spectra of one-dimensional
disordered systems in the nonequilibrium Green’s function
(NEGF) formulation, which enables us to address the problems
unique to electronic transmission.

In partially open homogeneous structures like clean quan-
tum wires, open resonators, etc., to each QNS corresponds a
transmission resonance (TR) (peak in the frequency spectrum
of the transmission coefficient) with the resonant energy equal
to the real part of the eigenvalue [17]. This is not necessarily the
case in open disordered samples. In the presence of disorder
the position and height of the TR fluctuate, a phenomena
associated with mesoscopic conductance fluctuations [18,19].
Here we show that one-to-one correspondence between the
number of QNSs and TRs could be broken as well. Due
to complex interference between multiply scattered random
fields, in weakly disordered systems some of the QNSs become
invisible in transmission (hidden), and the number of the
transmission peaks falls to

√
2/5NQNM (where NQNM is the

total number of QNSs).
Although there is a common belief that after more than

50 years of intensive study the transport properties of 1D disor-
dered systems are clearly understood, surprisingly enough, the
existence of the hidden modes in such systems was completely
overlooked. This is perhaps because the attention was mostly
concentrated on the localization at strong disorder, while the
limit of weak impurities (ballistic regime) was deemed trivial.

In the present paper we investigate the evolution of
the transmission and of the density of states (DOS) of
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quantum-mechanical particles in a random 1D potential (tight-
binding wire), for a wide range of the disorder strengths,
from ballistic to strong localization regimes. We show that
the coexistence of two types of QNSs (ordinary and hidden)
is a rather general phenomenon intrinsic to randomly in-
homogeneous one-dimensional quantum-mechanical systems
as well. Not only do the hidden electron states exist and
manifest analogous properties as the corresponding solutions
of Maxwell equations, the relative number of hidden states for
weak and moderate disorder is also the same. Its mean value in
a given energy interval remains close to the constant 1 − √

2/5
over wide ranges of disorder strengths and of the length of the
system. The value 1 − √

2/5 follows from general statistical
properties of random trigonometric polynomials.

Furthermore, in contrast to the well-known behavior of the
localized states, the lifetime of a hidden state does not rise
with increasing fluctuations of the potential, but rather remains
unchanged or even decreases, depending on the strength of
the coupling to the leads. The eigenvectors (solutions of
the Schrödinger equation satisfying the outgoing boundary
conditions) of such modes are also very unusual. The spatial
profiles of their amplitudes are neither concentrated near
both edges of the system with a minimum in the center as
in symmetric clean systems, nor are they localized as in a
potential with strong fluctuations. On the contrary, the wave
functions of the hidden states nestle up near one of the edges
of the wire and exponentially decreases towards the other.

As the scattering strength and/or the length of the system
increase, hidden modes eventually become ordinary. An
important feature of HMs, specific for electronic systems is
that although they appear in the DOS in the same way as
the ordinary modes do, they are nonconducting, i.e., do not
contribute to the conductivity even in the ballistic regime.
The quantum mechanical treatment of these hidden QNS by
the NEGF method enables a simple analysis of their spatial
behavior. We show that the TR anomaly is directly related to
hybridization with the leads, and therefore it becomes more
subtle at higher disorder and vanishes where the localization
length is shorter than the system length.

In the next two sections we introduce the model and
overview the NEGF method. In Sec. IV we show the lateral
behavior of the hidden QNS, the counterintuitive dependence
on the strength of disorder, and the impact of temperature on
the TR counting. In the Appendix an analytical derivation of
the ratio NTR/NQNM in the single-scattering approximation is
presented.

II. THE MODEL

Here we consider a one-dimensional (1D) wire, coupled
to two semi-infinite leads on the left and on the right. The
disordered tight-binding Hamiltonian of the wire is given
by [20]

Ĥw =
L∑

j=1

εj ĉ
†
j ĉj −

⎛
⎝t

L−1∑
j=1

ĉ
†
j ĉj+1 + H.c.

⎞
⎠, (1)

where ĉj is the single-particle annihilation operator on site j

and t is the hopping amplitude, which is set to 1 throughout the
paper. The on-site potentials εj are statistically independent

random numbers homogeneously distributed in the range
[−W/2,W/2]. As long as the wire is not connected to the
leads, Ĥw can be numerically diagonalized and its eigenvalues
Ei and eigenvectors ψi(j ) may be calculated.

The left and right leads are represented by the Hamiltonians

Ĥl/r = −t

∞∑
j=1

ĉ
(l/r)†
j ĉ

(l/r)
j+1 + H.c., (2)

where ĉ
(l/r)
j is the single-particle annihilation operator on site j

of the left (l) or right (r) lead, t is the same hopping amplitude
as in the wire, and there is no on-site potential in the leads.
The left/right lead is coupled to the wire by

Ĥw,l/r = −tl/r ĉ
(l/r)†
1 ĉ(1/L) + H.c., (3)

where tl/r is the coupling amplitudes between the left/right lead
and the wire. Thus, the complete Hamiltonian of the system
composed of the wire and leads is given by

Ĥ = Ĥw + Ĥl + Ĥr + Ĥw,l + Ĥw,r . (4)

III. TRANSMISSION FUNCTION
AND THE DENSITY OF STATES

The quantities of interest, namely the transmission function
of the wire Tlr and the density of statesN (E), can be expressed
through the tensor Green’s function G, whose Gij component
represents the probability of a particle to propagate from site
i to site j as follows:

Tij ∝ |Gij |2, (5)

N (E) ∝ Tr(ImG). (6)

Therefore we first calculate the Green’s function of the
infinite wire-leads system using the NEGF method. In the fol-
lowing derivation we follow the path and notations presented
in Ref. [21].

First we present the general form of the Green’s function

Ĝ = [EÎ − Ĥ ± iηÎ ]−1, (7)

where η is an infinitesimal positive number, Î is the identity
matrix, and Ĥ is the Hamiltonian [Eq. (4)]. +iη is associated
with the retarded Green’s functions (ĜR) and −iη with the
advanced Green’s functions (ĜA). Obviously directly solving
the Green’s function requires the inversion of the infinite
matrix [EÎ − Ĥ ± iÎ η].

To proceed, we express Ĝ through the Green’s functions
of its components, i.e., the wire (Ĝw) and the left (Ĝl) and
right (Ĝr ) leads. These Green’s functions can be written in the
following form:

Ĝ =
(

Ĝl/r Ĝl/r,w

Ĝw,l/r Ĝw

)

=
(

[(E ± iη)Î − Ĥl/r ] τ̂l/r

τ̂
†
l/r [EÎ − Ĥw]

)−1

, (8)

where the matrices τ̂l/r have a single nonzero ele-
ment τ̂l(1,1) = τ̂

†
l (1,1) = tl and τ̂r (L,L) = τ̂

†
r (L,L) = tr .
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Multiplying both sides by the inverse right-hand matrix results
in two independent equations for Ĝw:

τ̂
†
l/r Ĝl/r,w + [EÎ − Ĥw]Ĝw = Î , (9)

[(E ± iη)Î − Ĥl/r ]Ĝl/r,w + τ̂l/r Ĝw = 0. (10)

Combining the two equations and taking into account both
leads one gets

Ĝw = [EÎ − Ĥw − �̂]−1, (11)

where the total self-energy equals �̂ = �̂l + �̂r and �̂l/r is
given by

�̂l/r = τ̂
†
l/r [(E ± iη)Î − Ĥl/r ]−1τ̂l/r , (12)

where +iη and −iη refer to �̂R
l/r and �̂A

l/r , respectively.
Since for a 1D lead τ̂l has only one diagonal nonzero term,

the relevant element in the left lead Green’s function Ĝl is
the (1,1) element. For a semi-infinite lead it can be calculated
analytically,

[(E ± iη)Î − Ĥl]
−1(1,1) = −1

t
e±ika, (13)

where a is the lattice constant and k is the wave number
of the electron, which obeys tight-binding dispersion relation
E = −2t cos(ka). Therefore, the self-energy has also a single
nonzero term:

�̂l(1,1) = t2
l

(
−1

t
e±ika

)
. (14)

In the same way, the single nonzero term of the right lead
self-energy �r is equal to

�̂r (L,L) = t2
r

(
−1

t
e±ika

)
.

It can be shown [21] that the transmission through the wire
is equal to

Tlr = Tr
[
�̂lĜ

R
w�̂rĜ

A
w

]
, (15)

where

�̂l/r = i
[
�̂R

l/r − �̂A
l/r

] = −2 Im
(
�̂R

l/r

)
, (16)

which results in

Tlr =
(

tl tr

t

)2

(�ν)2
∣∣ĜR

w(1,L)
∣∣2

, (17)

where �ν is the electrons’ group velocity in the leads

�ν = ∂E

∂k
= 2at sin(ka). (18)

For the calculation of the total current through the system,
the population in the leads and the applied voltage should be
taken into account. Assuming that the leads are in thermal
equilibrium at temperature T , the probabilities to find an
electron at a state with an energy E in the left (right) lead
is given by the Fermi distributions fl (fr ), and depends also
on the electrochemical potential in the leads μ (μ − V ), where
V is the voltage drop between the leads.

In order to calculate the current through the system using
the NEGF method, one defines the in and out self-energies:

�in
l/r = fl/r�l/r , (19)

�out
l/r = (1 − fl/r )�l/r , (20)

and the corresponding electron/hole Green’s functions:

Gn/p = GR�in/outGA, (21)

where

�in/out = �in/out
l + �in/out

r . (22)

Using these definitions [21], on can calculate the current
density through the wire

il/r (E) = e

h
Tr

(
�in

l/rG
p − �out

l/rG
n
)
. (23)

For the case where the temperature in both leads is equal
and there are no incoherent effects (such as electron-electron
or electron-phonon interactions) the total coherent current can
be calculated by the transmission function:

I =
∫

2e2

h
Tlr (E)[fl(E,μ,T ) − fr (E,μ − V,T )]dE. (24)

However, in the nonequilibrium case, such as when the
temperature is not equal in the two leads or finite source-drain
voltage, and in the presence of interactions, one must solve
Eqs. (19)–(23) explicitly.

In a clean wire (W = 0) with perfect coupling to the leads
tl/r = t , the transmission equals 1 for all energies in the band
−2t < E < 2t. At lower coupling to leads tl = tr < t , the
transmission, as well as the conductance, are nonmonotonic
functions of energy, peaked at the eigenenergies of the
disconnected wire. The number of peaks is equal to the number
of states in the disconnected wire, which are the electronic
equivalent of the normal modes of a closed optical cavity.

The local density of states (LDOS) for an isolated wire
whose Hamiltonian Hw is given by Eq. (1), is equal to

ρ(j,E) =
∑

i

|ψi(j )|2δ(E − Ei). (25)

Once the wire is connected to the leads the delta function
broadens and the LDOS is expressed via the spectral function
defined as

Â = i
[
ĜR

w − ĜA
w

] = −2 ImĜR
w, (26)

so that the diagonal element Â(j,j ) represents the LDOS
ρ(j,E), while its trace is the DOS

N (E) = 1

2π
TrÂ. (27)

.

IV. TRANSMISSION RESONANCES

In an isolated wire composed of L sites with random
potentials, the eigenstates vary with the on-site disorder
strength, yet each state has a real energy eigenvalue, and the
DOS N (E) follows Eq. (25).
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FIG. 1. The number of the transmission maxima NTR (magenta
squares) and the number of quasinormal modes NQNS calculated by
integration over the density of states (cyan triangles) for a disordered
1D wire as a function of the length L. The cases of: low disorder ξ ≈
10 000 (left); medium disorder ξ ≈ 100 (middle); and strong disorder
ξ ≈ 25 (right) are presented. In the low disorder case the number of
transmission peaks fits to NTR = √

2/5L (lower black dashed lines),
while the integrated density of states follows L (upper black dashed
lines). At higher disorders more transmission resonances are seen
(i.e., NTR >

√
2/5L) due to localization. The missing data of NQNS

at the higher disorder levels are due to numerical inaccuracies in
integration over the exponentially high and narrow peaks of N (E).

Once the wire is coupled to the leads the eigenvalues are
complex and states may overlap, nevertheless the DOS can be
defined [see Eq. (27)]. N (E) shows peaks at energies close
to the eigenvalues of the isolated system Ei , with broadening
which become wider as tl/r approaches 1. The total number
of quasinormal states is given by the integration NQNS =∫ ∞
−∞ N (E′)dE′. Obviously the conservation of degrees of

freedom oblige NQNS = L.
Similarly, the transmission function Tlr in the open and

disordered system shows sharp resonances located close to the
eigenenergies of the wire Ei , with exponentially low valleys
between them. Naturally, the mean value of the transmission
is attenuated as the disorder increased and can be scaled by
Tlr ∼ exp(−L/ξ ), where ξ is the localization length (in the
1D case ξ ≈ 102/W 2 [22]).

However, in contrast to the DOS, the transmission signifi-
cantly changes for an open wire, as some of the peaks which
existed for the clean wire disappear.

In Fig. 1 we present the results for the number of quasi-
normal states NQNS and for the number of the transmission
resonances [maxima in Tlr (E)] NTR, as functions of the wire
size L for different strengths of disorder (here and in the
remainder of the paper all lengths are presented in units of
the lattice constant a which is set to unity).

As can be seen, the dependence of the NTR on L is quite
different from that of NQNS. For weak disorder (ξ ∼ 104 � L),
NTR is smaller than NQNS and equal to

√
2/5L. The rest

of the QNSs are hidden, exactly as it is in optical systems
considered in Ref. [1]. As the disorder becomes stronger, the
hidden (with no transmission resonances) modes gradually
reappear as peaks in the transmission function. This can be
seen in the increase of the slope of NTR versus L dependence

FIG. 2. Upper frame: Typical density of states N (E) (top red
line) and transmission Tlr (E) (bottom blue line) spectra of a particular
realization of disorder (L = 500, W = 1, tl/r = 1). The positions of
the isolated Hamiltonian eigenvalues εi are indicated by the vertical
dashed lines. Middle frame: The squared eigenvectors |ψi(r)|2 of the
isolated Hamiltonian as a function of the position along the wire j .
The 216th eigenstate is located close to the system edge and therefore
its transmission resonance is washed out (see upper frame) when
the wire is coupled to the leads. Lower frame: The local density of
states integrated in the vicinity of the ith disconnected eigenvalue εi ,
ρi(r) = ∫ εi+�/4

εi−�/4 ρ(r,E)dE. For most states ρi(r) ∼ |ψi(r)|2, except
for the hidden mode (the 216th eigenstate) for which the local density
close to the leads is strongly suppressed.

with increasing W . For stronger disorder this ratio tends
to one.

To understand the nature of the hidden states let us juxtapose
the transmission peaks with the eigenvectors of the discon-
nected wire. In the upper panel in Fig. 2 we plot N (E) and
Tlr (E) for a typical realization of disorder in a L = 500 wire
with W = 1, ξ ∼ 102. The corresponding modulus-squared
eigenvectors for the isolated system |ψi(r)|2 are plotted in the
middle panel. It is easy to see that each transmission peak (and
the associated peak in DOS) corresponds to an eigenstate of
the isolated wire, and the peaks in N (E) and Tlr (E) are close
to the real eigenvalue εi (indicated by vertical dashed lines).
However the hidden state 216 does not show any peak in the
transmission, and the DOS exhibits only a very broad maxima
at this eigenvalue. The distinction between hidden and ordinary
states shows up also in the local density of states, which for an
ith eigenstate we define as ρi(r) = ∫ εi+�/4

εi−�/4 ρ(r,E)dE, where
εi is the level’s eigenenergy and � is the level spacing. Indeed,
while for the ordinary states the local DOS of the connected
wire is similar to the density of the disconnected wire, i.e.,
ρi(r) ∼ |ψi(r)|2, for the hidden mode (state 216) there is a huge
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FIG. 3. A color map of the local density of states ρ(j,E)
of the system described in Fig. 2. The “ordinary” modes (at
E ∼ 1.544,1.552,1.575,1.59,1.604) show relatively narrow energy
distribution, while the hidden mode originally located at E ∼ 1.58
(marked with yellow circle on the left) is significantly broadened due
to the coupling to the left lead. Similar hidden mode’s tail can be
noticed at the right end, related to a state hidden at higher energy
(long yellow circle).

difference between ρ216(r) and |ψ216(r)|2 (see lower frame of
Fig. 2).

In Fig. 3 the LDOS map of the above system in the relevant
energy range is presented. The hidden mode originally located
at E = 1.58 (216) is broadened much beyond the mean level
spacing. The spatial distributions of the two types of states
are also quite different. Namely, the hidden ones are always
nestled against an edge of the sample, so that when the wire is
coupled to the leads, these modes become strongly hybridized
with the states of the neighboring lead and do not reach the
opposite edge of the sample.

Numerical calculations show that at weak disorder, where
ξ is larger than the system size, only

√
2/5N transmission

peaks exist, exactly as it is in the case of weakly scattered
electromagnetic waves. However, for stronger disorder where
ξ < L, only a small fraction (of order 2ξ/L) of the states
hybridize with the leads. States which do not hybridize with
the leads might have very small transmission, but nevertheless,
they do have a transmission peak. Thus, we expect that
NTR/NQNS will scale with ξ/L. Indeed as can be seen in
Fig. 4, this seems to hold for different values of L and disorder
strength W .

One can cast the above argument in a more quantitative
form. The overlap of a localized state with the left lead should
be proportional to exp(−bj0/ξ ), where j0 is the center of the
localized state and b is a numerical constant of order of unity
depending on the details of the boundary condition. Averaging
over the region 0 < j0 < L/2 for the left lead and L/2<j0 <L

for the right lead, results in

f = 2

L

L/2∑
j0=1

e−bj0/ξ

=
(

2

L

)
1 − e−bL/2ξ

eb/ξ − 1
∼

(
2ξ

bL

)
(1 − e−bL/2ξ ). (28)

FIG. 4. The ratio of the number of observed transmission peaks to
the length of the wire NTR/NQNS for various disorder strength W and
wire length L. Upper inset: Systems with length L = 100 and L =
200 for various disorder values. Lower inset: Systems with disorder
strength W = 1 and W = 5 for various lengths. Main panel: The ratio
NTR/NQNS as a function of the scaling parameter L/ξ for the results
presented in the insets. All curves of NTR/NQNS fall on top of each
other. For L/ξ < 1, NTR/NQNS ∼ √

2/5 remains. Once L/ξ > 1, the
ratio increases until NTR/NQNS → 1 for large values of L/ξ , i.e.,
for strong localization all modes have transmission resonances. The
black dashed line represents the dependence of the NTR/NQNS on L/ξ

according to Eqs. (28) and (29) with b = 1/4.

Finally, the ratio of the number of transmission peaks to the
total number of states is obtained by subtracting the fraction
of hidden modes times the probability they overlap with the
leads, i.e.,

NTR/NQNS = 1 − f (1 −
√

2/5), (29)

which after fitting the parameter b reasonably matches the
numerical results (Fig. 4).

In Fig. 5 we demonstrate the evolution of the transmission
spectrum with increasing strength of disorder. As W grows,
the hidden modes gradually disconnect from the boundaries of
the wire and form transmission resonances, until all of them
become ordinary, NTR/NQNS → 1, for large W .

It is also interesting to note that the height of the transmis-
sion peak is a nonmonotonous function of W . While naively
one may expect that peaks will reduce as disorder became
stronger, this is correct only on average, and particular peaks
may actually increase when disorder increases.

The spectral broadening of the wire eigenstates (or of
the imaginary parts of the eigenvalues in the Hamiltonian
language) is inversely related to their lifetime. In disordered
open systems, as the localization length becomes shorter
(i.e., larger potential fluctuation), one can expect all modes’
lifetimes to increase. This indeed is the case for regular modes,
as seen in Fig. 6. However, the hidden states again behave in
an unusual way, and remain wide. One can show [21] that if
the self-energy term [Eq. (14)] varies slowly with E, the DOS
broadening has a Lorentzian shape:

N (E) ∝
∑

i

γi

(E − Ẽi)2 + (γi)2
, (30)

014207-5



EISENBACH, BLIOKH, FREILKHER, KAVEH, AND BERKOVITS PHYSICAL REVIEW B 94, 014207 (2016)

FIG. 5. Upper frame: The transmission Tlr (E) for a given re-
alization of disorder at different strengths W from 0.7 (top black
line) to 1.3 (bottom red line), for a L = 500 sample with tl/r = 1.
The eigenenergies of the corresponding isolated wires are marked by
circles. Two modes are hidden at low W , and become visible only at
higher disorder level (marked by arrows). Lower frame: The modulus
square of the isolated eigenvectors related the two above hidden states.
As the disorder increased, the width of the modes becomes smaller
and eventually they disassociate from the states of the wire.

where γi is the imaginary part of the ith eigenvalue, and Ẽi

is its real part, modified by the connection to the leads. This
relation allows one to evaluate the lifetime of the ith mode,
�/4γi , by fitting N (E) to Eq. (30). For the system depicted
in Fig. 6, the lifetime of the hidden mode at lower disorder
(W = 0.8, γi = 0.00165) is longer than at the higher disorder
(W = 1.2, γi = 0.00249).

FIG. 6. Density of states N (E) of the system depicted in Fig. 5 at
different energies, as disorder increases. The ordinary states become
narrower at larger fluctuations, while the hidden mode (marked with
blue arrows) widens. Fit to Lorenzian broadening in accordance with
Eq. (30) (blue patterned areas) results in γ 0.8

i = 0.00165, γ 0.9
i =

0.00168, γ 1.0
i = 0.00172, γ 1.1

i = 0.00201, and γ 1.2
i = 0.00249, i.e.,

shorter lifetime at the higher disorder level (see text).

FIG. 7. The ratio of the number of observed transmission peaks to
the number of QNS, NTR/NQNS versus lead-system coupling strength
tl/r . Top panel: W = 0.1 for different system length L. Bottom panel:
L = 100 for different disorder strength W . For both cases as tl/r → 0,
NTR/NQNS ∼ 1, while for tl/r → 1,NTR/NQNS ∼ √

2/5.

Since the number of observed transmission resonances de-
pends on both the disorder and coupling to the environment, the
ratio NTR/NQNS can be tuned by varying tl/r . As this coupling
parameter decreases, hidden modes decouple from the leads
and develop peaks in the transmission spectrum. As can be
seen in Fig. 7, at weak disorder (W = 0.01) this transition
is sharp: all hidden modes become visible for a very small
change at the vicinity of tl/r ∼ 1. As the disorder increases (or
the system becomes longer) the coupling amplitude needed
to resolve all transmission resonances becomes smaller and
the jump in the ratio NTR/NQNS broadens. This behavior is
counterintuitive, as one may think that the enhancement of
fluctuations of the potential makes the sample more “closed,”
and therefore will be more easily disconnected from the leads.
In fact, the disorder ties the electronic states strongly to their
position in the sample (the edges in the case of hidden modes)
and therefore a lower tl/r is required in order to disconnect
them.

The appearance of two time scales when the coupling to
the environment increases and QNSs begin to overlap has
been observed in a variety of regular open physical systems
[23–28]; for a review, see [29] and references therein. This
phenomenon is rather general and is known as the super-
radiance transition. Its essence is the following: At weak
coupling to the environment the lifetimes of all states goes
down as the coupling increases. As the coupling reaches
a critical value, the states separate into short-lived (super-
radiant) and long-lived (trapped) ones, much like the partition
of QNSs into ordinary and hidden modes shown in Fig. 7.
However, along with the similarity between the resonance
trapping in regular open optical and microwave structures,
and between “hiding” of some of the resonances in disordered
wires there are substantial differences as well. Indeed, crucial
for the super-radiance transition are the edge barriers that
provide tunable (from very weak and up) coupling of the
system with the environment. Super-radiant modes appear in
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FIG. 8. The ratio between the number of conductance peaks to
the number of QNS, Ncp/NQNS, for different values of temperatures
kBT and voltages V , for a system with L = 500 and small disorder
W = 0.1 (i.e., ξ � L). Ncp is calculated by counting the maxima
in the current with changing the chemical potential in the leads μ.
Both quantities are scaled by � = 4t/L, the mean level spacing of the
disconnected wire. The transition from zero temperature behavior and
infinitesimal bias Ncp/NQNS ∼ √

2/5 to the high temperature/voltage
behavior Ncp/NQNS → 0 occurs around kBT /� = 1, while even for
quite large source-drain bias V/� = 10 a finite number of modes is
still observed in the conductance at low temperatures.

regular systems regardless of disorder, which just introduces
new features (for example, the critical value of the coupling
increases with the degree of disorder [29]) but does not change
the essence of the phenomenon. In the random samples that
we consider, finite coupling is implemented by disorder, as the
result of the interference of multiply scattered random fields,
even when the system is completely open. Hidden states appear
at the very onset of disorder, when the localization length is
much larger than the size of the samples. When the disorder
increases, the states remain hidden for a wide range of the
disorder strength, and gradually transform into ordinary QNSs
as the system reaches the localized regime.

While the transmission is the natural quantity to measure
for optical systems, in electronic systems it is much more
commonplace to measure conductivity. Measuring conduc-
tivity is different than measuring transmission in several
aspects. Unlike the ease of generating a single-mode laser
beam, electrons are naturally widely distributed in the energy
domain due to thermal broadening. Therefore, observing the
modes by measuring conductance is possible only if the mean
level spacing � is larger than kBT . Thus the ratio of the
number of observable conductance peaks Ncp to total number
of states Ncp/NQNS falls to zero as kBT /� � 1. Moreover,
the applied source-drain voltage also affects the visibility
of the modes. Even when no interactions are considered
[and thus Eq. (24) could be used] an interesting difference
between voltage and temperature emerges. As can be seen in
Fig. 8. While temperature is very effective in smearing the
conductance peaks and thus once kBT ∼ � it is impossible
to observe the conductance peaks (i.e., the modes), for the
source-drain voltage even when V/� ∼ 10� most modes
are still observable in the conductance. This stems from
the fact that source-drain voltage is equivalent to a sharp
cutoff in the energy and thus more sensitive to the discrete

nature of the modes. It would be very interesting to study the
interplay of these effects in the presence of electron-electron
or electron-phonon interactions.

V. CONCLUSIONS

In this paper we discussed the effect of disorder on the
transmission and conductivity resonances. We have shown
that, similarly to disordered optical systems, in a 1D wire
with on-site random potential there exists a ballistic regime,
in which a significant amount of eigenstates do not show clear
peaks in transmission measurements. These hidden modes
have extremely broad spectral distributions which, contrary
to ordinary Anderson modes, become even broader (i.e., have
shorter lifetime) as the disorder increases. The primary cause
of this phenomena is the hybridization with the states of the
attached open leads, which falls off as the localization length
ξ becomes shorter than the system length L, or as the coupling
to the leads is reduced. For weak disorder, the averaged ratio
of the number of the hidden modes to the total number of
the electron states in a given energy interval deviates only
slightly from the constant 1 − √

2/5, as the fluctuations of
the potential and/or the length of the wire increase. This
constant coincides with the value analytically calculated in the
single-scattering approximation. The existence of the hidden
modes might substantially affect transport measurements in
quantum dots, nanotubes, and topological insulators, at weak
and moderate disorder.

APPENDIX: ANALYTICAL CALCULATION
OF THE RATIO NTR/NQNS

Assuming only single scattering process and free electron
wave propagation between scatterers, the transmission proba-
bility of an electron with momentum k in a wire with on-site
disorder can be written as

T (k) = 1 − |r(k)|2 = 1 −
∣∣∣∣∣

L∑
n=1

rne
i2kan

∣∣∣∣∣
2

, (A1)

where rn is the random reflection amplitude at site n, and
a is the lattice constant. For convenience, we introduce the
unitless length scale so that a = 1. Transmission resonances
are defined as local maxima of the transmission coefficient
T (k) so that the resonant values of the momentum kn are
the roots of the equation dT (kn)

dk
= d|r(k)|2

dk
= 0, which can be

presented as

N∑
n=1

sin(2kn)An = 0, (A2)

where

An = �N−n
l=1 rn+lrln + �N

l=nrl−nrln.

Generally speaking, Eq. (A2) is a trigonometric polynomial
with random coefficients. The statistics of zeros of such
polynomials have been studied in [30]. Using the results
of [30] it can be shown that in a certain interval �k, the
ensemble-averaged number of the real roots Nroot of the sum
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in Eq. (A2) equals to

Nroot = 2�k

π

√√√√∑N
l=1 l4(N − l)∑N
l=1 l2(N − l)

. (A3)

Calculating the sums in Eq. (A3) in the limit N � 1, one
gets [31]

Nroot ≈ 2a�kN

π

√
2

5
. (A4)

Since the total number of QNSs in the interval �k is equal
to �kLa/π, and NTR = Nroot/2, from Eq. (A4) it follows that

NTR

NQNS
=

√
2

5
. (A5)

In Fig. 1 it is clearly seen that at the limit of weak disorder
(ξ � L) this relation is perfectly followed by the numerical
quantum calculations.
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