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Icosahedral quasicrystals (IQCs) with extremely high degrees of translational order have been produced in the
laboratory and found in naturally occurring minerals, yet questions remain about how IQCs form. In particular,
the fundamental question of how locally determined additions to a growing cluster can lead to the intricate
long-range correlations in IQCs remains open. In answer to this question, we have developed an algorithm that
is capable of producing a perfectly ordered IQC yet relies exclusively on local rules for sequential, face-to-face
addition of tiles to a cluster. When the algorithm is seeded with a special type of cluster containing a defect,
we find that growth is forced to infinity with high probability and that the resultant IQC has a vanishing density
of defects. The geometric features underlying this algorithm can inform analyses of experimental systems and
numerical models that generate highly ordered quasicrystals.
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I. INTRODUCTION

Icosahedral quasicrystals (IQCs) with extremely high
degrees of translational order have been produced in the
laboratory [1] and found in naturally occurring minerals [2].
These materials possess icosahedral point group symmetry
and quasiperiodic structure. Their diffraction patterns consist
of Bragg peaks at all integer linear combinations of a set of
six independent basis vectors pointing to the vertices of a
regular icosahedron, a dense set that includes wave vectors of
arbitrarily small magnitude. The presence of incommensurate
collinear wave vectors gives rise to “phason” symmetries that
have no analog in crystals and strongly affect the elasticity and
plasticity of the quasicrystal [3].

While the existence of IQCs is well established, the
processes by which they form are not well understood. It is
known that thermal annealing can improve the quality of a
quasicrystal [4,5], but highly developed translational order
has also been observed in rapidly quenched samples [5],
suggesting that nucleation and local growth kinetics produce
a well-ordered IQC. The kinetics of nucleation and growth
from the liquid is also thought to play an important role in
creating a sample that can be successfully annealed. (See, for
example, Refs. [6,7].) There are, however, geometric features
of quasicrystal structure and of defects associated with the
phason degrees of freedom that raise questions about how any
kinetic process can give rise to a well ordered sample.

The atomic structure of a well ordered quasicrystal alloy
can be described in terms of a space-filling tiling of two or
more types of “unit cells” [1,8]. If one imagines building the
tiling one cell at a time, a difficulty is quickly encountered: The
proper choice of which tile to add at some surface sites on the
growing cluster can depend on choices that have been made in
distant locations [9]. Growth of a perfect sample would appear
to require interactions of arbitrarily long range, without which
the growth process could not avoid the inclusion of a finite
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density of certain types of defects representative of phason
fluctuations. The problem can be mitigated to some extent by
allowing for annealing in a surface layer during the growth,
but as long as the depth of the layer is finite, some degree of
phason strain would appear to be inevitable.

In this paper we address the question of whether it is
possible in principle for nucleation and growth to produce
a perfectly ordered IQC. We find that it is possible to
produce with exceedingly high probability an IQC with a
vanishing density of defects, using a local growth algorithm for
sequentially adding tiles of two different shapes to a growing
cluster. By “local,” we mean that the choice of how to add a
tile at any selected surface site is based only on information
about the local environment at that site. The infinite growth
occurs when the algorithm is seeded with a special type of
cluster containing a defect.

The apparent requirement of nonlocality is avoided by
introducing a distinction between forced sites and unforced
sites on the surface of a growing cluster [10]. At a forced
site, the local configuration already present uniquely specifies
how a tile (or cluster of atoms) can be added. At an unforced
site, there are at least two ways of adding tiles that would
be consistent with the local environment, though possibly
inconsistent with distant parts of the existing cluster. To prevent
inconsistent additions, the probability of adding any tile to a
randomly selected surface site is taken to be zero at an unforced
site and nonzero at a forced site. In this way, information
about distant parts of a cluster can be transmitted through
locally forced additions until a tile is added near a previously
unforced site that resolves any ambiguity, converting it to a
forced one. The question is whether, even in principle, a set of
local forcing rules can be found that is sufficient to produce
infinite growth rather than terminating with a cluster whose
surface consists entirely of unforced sites.

Our results are analogous to previously published results on
the 2D Penrose tilings, which are quasicrystals with decagonal
symmetry [10-14]. Important new features arise, however, due
to the different topologies of 2D and 3D phason defects. Unlike
the 2D growth algorithm that produces a perfect Penrose tiling
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from a decapod seed that contains a single point defect [10], the
IQCs generated by our 3D algorithm necessarily contain line
defects. The number of defects, however, grows only linearly
with the cluster radius, leaving the bulk 3D sample with a
vanishingly small density of defects, which occur only along
special planes passing through the seed and correspond only
to infinitesimal fluctuations of the phason field.

Recent numerical investigations [15—18] and experiments
[19] strongly suggest that favoring certain growth sites near
the surface of a growing cluster can instill a high degree of
long-range order. It is not clear, however, how (or whether)
these growth processes manage to avoid the generation of
finite phason fluctuations or linear phason strain. The present
work shows that local growth can, in principle, account for the
high degree of order in an IQC and elucidates mechanisms for
generating nearly perfectly ordered, large samples via purely
local growth kinetics.

In Sec. II, we describe the tiling model due to Ammann that
we use as the basis for our investigation. Section III presents
a local growth algorithm in which a tile is added to a surface
vertex of a growing cluster in a manner determined completely
by the already placed tiles that share that vertex. Section IV
presents an analysis of the growth produced by the algorithm,
showing that certain seeds give rise to nearly perfect growth
that proceeds to infinity with a high probability. We conclude
with some remarks and discussion in Sec. V.

II. THE AMMANN TILINGS

The tilings considered in this paper are formed from
oblate and prolate thombohedra decorated as shown in Fig. 1.
Matching rules, which may be thought of as indicating
energetically favored local configurations, specify that dots
of the same color on a face shared by two tiles must coincide.
These tiles and the rules enforced by the decorations were
discovered by Ammann [20], and we refer to the class of
defect-free tilings that can be made from them as Ammann
tilings [8,21]. Ammann’s markings of the rhombohedral tiles
are known to be at least weak matching rules that enforce
long range quasicrystalline order [22,23]. These particular
rules have not been rigorously proven to be perfect matching
rules (i.e., to force a single local isomorphism class of tilings),
though closely related rules have been shown to do so [8,24].
We proceed here on the assumption that the Ammann markings
are indeed perfect matching rules, an assumption that is

FIG. 1. Ammann tiles decorated with matching rule markings.
The decoration of each tile is chiral, and both enantiomorphs are
needed for each tile shape. Positions of dots on the faces not visible
may be inferred from the visible dots: For the prolate tiles (left pair),
the black dot on a hidden face is located in the same corner as the
black dot on the corresponding parallel visible face. The red dot is
located at the opposite corner from that of the corresponding parallel
face. The reverse is true for the oblate tiles (right pair).
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strongly supported by our finding that there exist rules for
forcing growth of space-filling, infinite clusters.

The vertices of an Ammann tiling may be obtained by direct
projection of a subset of lattice points of a six-dimensional
hypercubic lattice onto a three-dimensional subspace called
the filing space and denoted by E)|. (See Ref. [25], Chap. 7, for
areview of projection methods for quasicrystal construction.)
The projection onto the tiling space is defined as the projection
that takes the six mutually perpendicular basis vectors of the
hypercubic lattice into the six “star vectors” pointing to the
vertices of an icosahedron.
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The projection of a hypercubic lattice point a =
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5
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The subset of points that is projected is determined by a
projection onto the orthogonal complement of the tiling space,
generally referred to as “perp-space” and denoted by £, . We
define a set of perp-space star vectors:

;_Jepry k<4
The projection of a into E is
5
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k=0

To generate the vertices of an Ammann tiling, one defines
a perp-space volume that is the projection by P, of a unit
hypercube, which forms a rhombic triacontahedron called the
“perp-space window,” designated V. The vertices of the tiling
are the projections by P of all hypercubic lattice points a
for which P (a) lies within WW. Note that the location of
W in E, can be chosen arbitrarily, with different choices
producing globally distinct Ammann tilings that are locally
isomorphic, i.e., that cannot be distinguished by examination
of local configurations of any size. Note also that V¥ has the
point group symmetry of a regular icosahedron.

Individual tiles may be constructed from the set of
projected vertices by connecting each pair of vertices with
unit separation. The above procedure yields two distinct tile
shapes: one prolate rhombohedron, with edges parallel to
(eo,e1,es) or any symmetry related triple of star vectors, and
one oblate rhombohedron, with edges parallel to (eg,e;,e;) or
any symmetry related triple.

III. ICOSAHEDRAL GROWTH ALGORITHM

Using the above matching rules, and inspired by the results
of Onoda et al. for the two-dimensional Penrose tilings [10],
we consider a growth algorithm for Ammann tilings that relies
exclusively on a local vertex rule to determine where and how
additional tiles should be added. We first compile a catalog of
all vertex configurations appearing in these tilings. A complete
specification of the catalog is presented in Table I.
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TABLE I. The complete vertex catalog. Each row represents one vertex type, and the 39 rows of the table constitute the entire catalog up to
rotations. Within each row, each column represents one face. In a given box, the two numbers specify the icosahedral star vectors [see Eq. (1)]
forming the edges of the face, with overbars denoting negative directions; ab indicates that the four vertices of the face are 0, e,, —e,, and
e, — ey,. The arrow indicates the locations of the matching rule dots: An up arrow indicates that a dot is placed near the vertex at the origin, and
a down arrow indicates that a dot is placed near the opposite vertex. The number next to the arrow indicates the location of the second dot: the
dot is placed near the vertex located at the tip of the corresponding star vector. Complete tiles can be directly inferred from these faces.
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FIG. 2. Perp-space domains corresponding to distinct vertex configurations. (a) The two types of vertex-face domains, with a fundamental
domain of WV shown in green. (b) The division of a vertex-face domain into quadrants corresponding to distinct matching rule markings. (c)
Two views of the division of a fundamental domain into cells by the union of all icosahedral group operations on the vertex-face domain
quadrants. Colors are to aid the eye, with magenta planes corresponding to quadrant divisions and gray to vertex-face domain boundaries.

To construct the catalog, we first identify the domains
within W for which the corresponding vertex is part of a
tile face with edges along two given star vectors £e; and *e;.
There are two types of such vertex-face domains, depending
on whether the angle between the two star vectors at the vertex
is acute or obtuse. The two types of domain are both rhombic
dodecahedra [24], but are positioned differently within WW. An
example of each type is shown in Fig. 2(a), which also shows a
fundamental domain of ¥ under the full icosahedral group Ij,.

The face corresponding to a given vertex-face domain may
be decorated in any of four distinct ways by the matching rules
markings; the red dot can be at either acute angle and the black
at either obtuse angle. These distinct markings correspond to
distinct domains within the vertex-face domain, which gets
divided symmetrically as shown in Fig. 2(b). (The dividing
planes are determined by tracing possible paths of edges
from the vertex until a vertex is placed that implies a tile
specifying the location of the relevant mark. See Katz [24] for a
closely related analysis associated with a set of matching rules
requiring 14 distinct decorations of the prolate rhombohedron
and 8 distinct decorations of the oblate one.) Each quadrant of
a given vertex-face domain corresponds to a distinctly oriented
and marked face attached to a tiling vertex that projects into
that domain in W. The number of distinct complete vertex
configurations, up to [, symmetry operations, is obtained by
examining a single fundamental domain of W to see how it is
subdivided into cells by the boundaries of all of the quadrants
of all of the vertex-face domains. These boundaries, shown in
Fig. 2(c), form 39 cells.

Each of the 39 cells corresponds to a unique vertex
configuration specified by a row in Table I. An entry in the
table specifies a particular face as follows. The two numbers
ij specify that the edges of the face that emanate from the
vertex of interest are e; and e;, with X indicating —e,. The
order ij indicates that there is a matching rule dot at the tip of
edge j, and the arrow indicates the location of the other dot,
with “4” indicating a dot near the vertex of interest and “|”
indicating a dot at the opposite corner of the face. Figure 3
illustrates the meaning of the first row of the table. Two of the

tiles sharing the vertex are not shown so that we can see the
vertex of interest. Consider, for example, the face 34 4. It has
a (red) dot at the corner along the e, direction, and a (black)
dot at the vertex of interest.

Each colored band of rows in the table represents a set of
cells that lie in the same set of vertex-face domains but not in
the same quadrants of all of them; i.e., a set of cells specifying
the same geometric vertex configuration but with different
matching rule decorations. As noted by Katz, there are 24 such
cells [24]. Figure 4 illustrates the difference between two rows
in the gray band of three rows at the top of the table. Again, two
tiles have been removed to make the vertex visible. The two
vertices shown are identical except for the location of the black
dot on the 53 face, which shows up in the table as a difference
in the arrow directions for the first two rows in the band. The
existence of 24 distinct vertex configuration geometries and
39 distinct configurations when matching rules are included
has been confirmed by direct computer-assisted inspection of
regions of Ammann tilings with tens of thousands of tiles.

Tiles are added to a growing cluster only at sites where
the choice of what to add is uniquely determined by the
requirement of consistency with the vertex catalog. We identify

FIG. 3. The vertex configuration corresponding to the first row of
Table I. See text for details.
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FIG. 4. Vertex configurations corresponding to the second and
third rows of Table I. See text for details.

which, if any, of the vertices in the catalog represent possible
ways of completing a given vertex. Any tiles that are present
in all of the possible complete configurations and not already
present in the cluster are labeled forced tiles. At each time step,
aforced tile is selected at random and added to the cluster. The
procedure is repeated until there are no forced tiles at any
vertex on the surface of the cluster.

In more precise terms, the algorithm may be described as
follows: Let Q,, be the set of oriented tiles comprising the
vertex w in the catalog. Let 7 (v) be the set of tiles that intersect
at a vertex v and have already been placed in a growing cluster.
If 7 (v) is a subset of Q,,, then let 7,,(v) be the complement
of T(v)in Q,;i.e., 7,,(v) is the set of tiles that must be added
to 7 (v) to complete the vertex w.

A vertex in a growing cluster is called complete if it is fully
surrounded by tiles. In almost all cases, a complete vertex will
have 7 (v) = Q,, for some w. Complete vertices for which
T (v) is not in the allowed vertex catalog are defects.

Incomplete vertices may be forced or unforced. Consider
all of the sets Q,, associated with catalog vertices that contain
7 (v) as a subset, and let 7, (v) be the intersection of all of those
Q,’s. If T¢(v) — 7 (v) is not empty, then the vertex v is forced,
as there is at least one unplaced tile in 7;(v) that exists in all
possible completions of v. The tiles in 7 (v) are called forced
tiles. If T¢(v) is the empty set, then v is an unforced vertex,
meaning that there are two or more ways to complete the vertex
that do not share any tiles that have not already been placed.

The growth proceeds by the sequential addition of forced
tiles. When a tile is added, new forced vertices may be created,
and the growth continues until no forced vertices remain. As
long as there are no defects in the cluster, the order in which
forced tiles are added makes no difference. Small differences
(discussed in detail below) can arise when the cluster contains
defects. In the present paper, the order of additions is random:
At each step a vertex is selected at random from the current set
of all forced vertices, all forced tiles at that vertex are added,
and the list of forced vertices is updated.

Note that the growth procedure does not rely on any global
information about the position of vertices within the tiling, nor
does it rely on information about the positions or orientations
of any tiles beyond those that share a vertex with the added
tile. In physical terms, the information about distant structures
in the growing cluster is tracked only through the requirement
that no tiles be added to unforced sites, and this requires only
local information at each surface site.

PHYSICAL REVIEW B 94, 014113 (2016)

FIG. 5. (a) Worm planes of opposite orientations. These two
planes are composed of different tiles, yet have the same matching rule
markings on their top and bottom surfaces. Prolate tiles are dark and
light purple; oblate tiles are dark and light gray. White rhombi are tile
faces that are not part of any tile in the worm plane. (b) Matching rule
markings on the boundary of a worm plane that specify its orientation.

IV. GROWTH DYNAMICS

A. Worm planes

A key to understanding the growth process generated by
the above algorithm is the structure we call a worm plane,
which is analogous to a linear worm in the Penrose tilings
[3,26]. A portion of a worm plane is shown in Fig. 5(a). The
crucial feature of this planar slab of tiles is that the vertices
in the interior of the slab can be moved vertically so as to
create a second version of the slab that has exactly the same
outer surfaces, including the matching rule markings, as the
original, while the markings on interior faces in two slabs
differ, as indicated in Fig. 5(b). The operation that moves all
of the interior vertices and changes all markings on the interior
faces accordingly is called a worm flip.

If a portion of the surface of a cluster corresponds to the
surface of a worm plane that has not yet been placed, it will
contain no forced vertices. The worm can be added in either of
its two possible orientations, thus there are two distinct ways
to complete any given surface vertex. Once a choice is made
for one vertex on the worm plane surface, all of the others will
be forced.

Worm planes are important structural elements for two
reasons. First, the choice of orientation of a given worm plane
must be coordinated within the worm plane itself. If different
choices are made for the orientation of the worm in two
half-planes, a line of defects will necessarily be created where
the two halves of the worm are joined. The growth algorithm
avoids such defects by filling forced vertices first. Once the
orientation of a worm plane is determined at a single vertex,
the rest of the worm plane will be filled due to forced additions
that propagate the information about the worm orientation to
the full plane.

Second, the orientations of parallel worm planes must
be correlated in subtle ways. In certain configurations, the
necessary orientation of a worm plane can be determined by the
orientation of a parallel worm plane that is far away. If arbitrary
choices were made for the two orientations, the subsequent
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addition of forced tiles might eventually lead to conflicting
choices for the orientation of a worm plane transverse to
the first two, thereby generating a line of defects somewhere
between the two original worm planes.

Our growth algorithm avoids this second problem by simply
halting when there are no forced vertices on the surface of the
growing cluster. This occurs when the surface consists entirely
of worm planes oriented such that no forced vertices occur
along edges or at the corners of the faceted cluster. (We have
characterized the possible dihedral angles and solid angles at
the corners that have no forced vertices, but we omit the details
here as they are not relevant to the main results.) To avoid this
type of arrest in the growth, we introduce special seeds that
nucleate infinite growth as described below.

A perfect, infinite Ammann tiling contains worm plane
regions with 15 different possible normal vectors, correspond-
ing to the planes of mirror symmetry of the icosahedron.
Typical worm plane regions are bounded by intersecting worm
planes with different normal vectors. At these intersections, the
orientation of one worm plane can force the orientation of the
other. There may be as many as four intersecting infinite worm
planes in the tiling.

B. Seeds for growth: Triacontapods

Consider a finite, closed surface comprised of marked
rhombic faces. If the surface can be found within a perfect
Ammann tiling, we refer to it as the surface of a “legal” cluster
of tiles. If it cannot, we call it an “illegal surface.” Given
any legal cluster as a seed, growth through the addition of
forced tiles must eventually halt. To see why, consider the
structure of the finite cluster in perp-space. Recall that distinct
positions of the window within E; specify distinct tilings.
Thus the vertices of an infinite tiling are uniquely determined
only when the location of the window is fixed. We know,
however, that any finite portion of an Ammann tiling can be
found (infinitely many times) in any Ammann tiling, which
means that the finite cluster cannot precisely fix the location
of the window. By definition, forced growth cannot rule out
any of the possible windows that contain the points in the
original cluster. In other words, forced growth can never result
in a perp-space point being placed outside the the hull defined
as the intersection of all windows W that contain the points
that have already been placed. Growth of an infinite tiling,
however, must produce perp-space points that fill an entire
window. Thus forced growth from a legal seed cannot yield an
infinite tiling.

In order for forced growth to proceed indefinitely, we must
begin with an illegal seed containing a defect that determines
the precise location of the window. Such a seed can be
constructed via analogy to the decapod seeds that generate
infinite forced growth in the Penrose tilings [10,12—14]. For the
Ammann tilings, a suitable seed is a triacontapod, a rhombic
triacontahedron with exterior matching rule markings. An
example is shown in Fig. 6.

C. Legal seeds

The markings on the triacontapod of Fig. 6 are consistent in
the sense that this configuration does appear in the Ammann
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FIG. 6. A legal triacontapod and its unfolded net of faces. There
exists an Ammann tiling in which 15 infinite worm planes intersect
at this triacontapod.

tilings, and the triacontahedron can be filled in with tiles that
obey the matching rules everywhere. There is exactly one
Ammann tiling that has 15 infinite worm planes all intersecting
to form this triacontapod. Four of these pass through the
triacontapod to form perfect worm planes; the others are
disrupted in the interior of the triacontapod but are otherwise
perfect. The orientation of each worm plane is dictated by
the markings on two opposite faces of the triacontapod, as
illustrated in Fig. 7. In more general cases (i.e., triacontapod
defects) we will assign dots on the seed’s surface manually
without worrying about whether the interior of the seed can be
consistently tiled. Thus we drop the color distinction between
the four types of tiles when showing a triacontapod. There is
only one legal triacontapod, up to symmetry operations on the
icosahedron, shown in Fig. 6. Any other pattern of marks on
the triacontapod makes for an illegal seed.

When we speak of using a triacontapod as a seed for growth,
we assume that the seed includes prolate tiles covering all of the
faces of the triacontapod. One such tile is shown in Fig. 8(a).
The red dots on a triacontapod determine the orientations of
these prolate tiles and hence the positions of 30 vertices like
the one marked by a black sphere in Fig. 8(a), whose normal
projection onto the triacontapod face in question lies within
that face. Each of these vertices lies in the interior of a worm
plane, determining its orientation. It is instructive to examine
the locations of these 30 vertices in perp-space. Figure 8(b)
shows their locations for the case of a legal triacontapod,
obtained from Eq. (4) using indices taken from Eq. (2). The
figure shows one possible perp-space window containing those
points (not to be confused with the real space triacontapod). For
the window shown, the points lie precisely on exterior facets,
and for the tiling determined by this window, the triacontapod
lies at the intersection of 15 infinite worm planes. As must
be the case for a finite legal seed, however, there exist other
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FIG. 7. Triacontapod seeds dictate the orientation of worm
planes. A seed is shown with a worm plane represented symbolically
by the horizontal gray plane. The matching rule dot circled in blue
dictates the orientation of the worm plane. To satisfy the matching
rules, tiles in the interior of the worm plane must be oriented such
that the dot (red or black) on each face perpendicular to the plane lies
on the same side of it.
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(a) A triacontapod seed

— "=

(b) Perp-space positions of
black spheres in (a)

<s=w=g==(

FIG. 8. (a) A triacontapod with a prolate tile attached. The
orientation of the tile is dictated by the covered red dot on the
triacontapod surface. The black sphere marks the vertex on the prolate
tile that lies in the interior of a worm plane. (b) Two views of a
perp-space window and the 30 projected vertices [black spheres from
(a)] for a legal triacontapod seed. The perp-space window, shown as
a transparent yellow triacontahedron (not to be confused with the real
space triacontapod), is displayed from two opposite perspectives. The
30 vertices lie in one hemisphere of the window.

windows that contain all of the points. Roughly speaking, the
points all lie in one hemisphere of the window shown, and
the window can be shifted in the direction of the pole of that
hemisphere and still contain all 30 points.

D. Illegal seeds

In order to force growth to infinity, a seed must fully
constrain the position of the perp-space window [14]. We can
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FIG. 9. An unfolded net representation of an illegal seed that
constrains the perp-space window. (Compare to Fig. 6.)

arrange for a triacontapod to uniquely determine the window
by choosing the markings such that the black dots of Fig. 8(b)
fall on facets that do not all lie in any single hemisphere. This
can be accomplished, for example, by moving the red mark
that specifies the orientation of the prolate tile in Fig. 8(a) to
the opposite corner of the face it lies on. The resulting flip
of the tile causes the black dot in perp-space to jump to the
opposite face of the window.

An example of an illegal seed is shown in Figure 9, and a
plot of the forced vertices in perp-space for the same seed is
shown in Figure 10. The location of the perp-space window is
fixed; attempting to shift the window in any direction will move
at least one vertex outside of the window. This implies that
there is at most one tiling that is consistent with the matching
rules everywhere outside the seed, and so it is possible, but not
guaranteed, that the seed forces growth to infinity.

For the 2D Penrose tilings, Onoda et al. pointed out that
there exist tilings that obey the matching rules everywhere
outside an illegal decapod and that, for some illegal decapods,
the surface of any cluster containing the decapod must always
have at least one forced vertex. (See also [12—14].) For such
decapods, the sequential addition of forced tiles never halts
and never produces a matching rule violation.

For the 3D Ammann tilings, the situation is different:
Any tiling that contains an illegal triacontapod must contain
matching rule violations outside the seed. To see this, consider
the vertices of the illegal seed shown in Figure 11. Notice that
the red dots, circled in black, are threefold symmetric about the
vertex circled in blue. Such a configuration does not appear in
any vertex in the catalog. Similarly, for the lower image, it can
be determined by inspection that while the vertex circled in
blue can be completed without any matching rule violations,
the dots circled in black will force the creation of a vertex
that cannot be legally completed. In general, growth from any
seed with either a threefold symmetric vertex, as illustrated in
the upper image, or a vertex with a chiral pattern of dots as
illustrated in the lower image, must produce additional defects.
An exhaustive search through all illegal seeds reveals that each
possesses at least two such vertices.

Though the creation of defects during the growth might be
expected to prevent forced growth from proceeding, it turns
out that the algorithm can and does accommodate these defects
and still generates a space-filling tiling by adding only to
forced vertices as originally defined. The tiles surrounding
the illegal vertices get added due to forcing from other nearby
vertices. A matching rule violation occurs on a single face
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Perp-space positions of
vertices associated
with an illegal seed

FIG. 10. Perp-space positions of projected vertices [black spheres
of Fig. 8(a)] for an illegal triacontapod seed that fully constrains the
perp-space window. The difference between this figure and Fig. 8(b)
is that two vertices have been moved to the opposite side of the
window.

shared by two tiles that get incorporated into the bulk as growth
proceeds. The precise location of the mismatch may depend
on the order in which forced tiles are added, but it must occur
somewhere along the row of tiles that share faces parallel to
the mismatched face. As new tiles are added in the vicinity of
a defect, the mismatch in worm plane orientations requires the
creation of anew defect nearby, giving rise to a meandering line
of defects sites radiating outward in the direction of growth.

Moreover, such defects do not disrupt the overall quasiperi-
odic order. It remains true that forced growth can never produce
a vertex that lies outside the perp-space hull determined by the
tiles that have already been placed. This means that the only
defects in the tiling occur outside the triacontapod seed lie
within the infinite worm planes, whose interior vertices lie
on the boundaries of the perp-space window. These defects
must manifest as vertices that lie on opposite facets of the
window. The bulk of the tiling is therefore defect free, and as
the inconsistent worm plane orientations on two halves of an
infinite worm plane meet along a line of defects, the number
of defects is expected to grow only linearly with cluster radius
and therefore have a vanishingly small density in the infinite
tiling.

PHYSICAL REVIEW B 94, 014113 (2016)

Triacontapod defects

FIG. 11. The two varieties of triacontapod vertex configurations
(circled) that force defects to appear during growth. Every illegal
triacontapod contains at least two vertices in this class.

An example of simulated growth from the seed of Fig. 9 is
shown in Fig. 12. It appears that the growth proceeds to infinity,
as will be discussed further below. Figure 13 shows Qforced, the
number of forced surface vertices divided by the total number
of surface vertices, as a function of the total number of tiles in
the growing cluster of Fig. 12. Qforceq does not show dips to
very low values that would be associated with growth spurts
between nearly completely unforced surfaces.

The defects are confined to a subset of the infinite worm
planes, as shown in Fig. 14. In this case, defects appear in the

FIG. 12. A tiling grown from the seed of Fig. 9. This cluster
contains approximately 100000 tiles. Larger clusters have been
grown from this seed, and none has yet encountered a dead surface.
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FIG. 13. Fraction of surface vertices in the cluster of Fig. 12 that
are forced, plotted as a function of the number of tiles in the cluster
during growth.

infinite worm planes because opposite faces of the seed specify
different orientations for a given plane. As growth proceeds,
the given plane is thus divided into two halves of opposite
orientation, and a line of defects forms where the two halves
meet. Figure 15 shows the number of defects as a function of
cluster radius, confirming the expected linear relationship.

E. The probability of infinite growth

Numerical simulation suggests that the seed of
Figure 9 does indeed force growth to infinity. Multiple clusters
containing several hundred thousand tiles have been grown
from this seed, and none has ever halted due to a lack of
forced sites. We cannot rule out, however, the possibility that
growth could be stopped if the order in which forced tiles
are added conspires to enclose the seed in a legal surface. A
defect line separating regions of a worm plane with opposite
orientations could bend into loop, leaving an enclosed portion
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FIG. 14. Defects confined to worm planes. Here all defective
faces are shown from a cluster of approximately 1000 tiles grown
from the illegal seed of Figure 9. The four panels show different
views of the same defect structure. Defect faces in different planes
are given different colors.
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FIG. 15. Number of defects in the cluster of Fig. 12 as a function
of cluster volume at the time a given defect appears. The volume is
measured in units of the volume of the oblate tile.

(containing part of the seed) that is flipped but showing no
deviations from a perfect worm plane on the surface of the
cluster. If the seed were hidden in this way in a legal cluster,
the relevant window for describing further growth would not
be constrained by the structure of the seed and would no longer
be uniquely specified, so growth would eventually halt for the
reasons described above. We have observed this phenomenon
in simulations, with the simplest example being the following.
There is an equatorial band around the seed, contained within
a worm plane, where five tiles on one side are oriented one
way and the five tiles completing the band on the other side are
oriented the other way. If one simply refuses to choose vertices
on any of the tiles on one side of the band as candidates for
forced additions, the growth induced by choices made on the
other side (and out of the plane in question) can add tiles that
surround the entire original band making all of the exposed
tiles in the equatorial band around the growing cluster have
the same orientation.

The probability of choosing the sequence of forced addi-
tions in a way that erases the memory of the seed is clearly quite
small and decreases rapidly as the cluster size increases. If we
assume that the cluster grows at a roughly uniform rate in all
directions, then the worm plane containing the rays of defects
is a growing disk with two points on its circumference marking
the points where the defect rays hit the surface. Each time a new
layer of tiles is added to the cluster, the defect moves randomly
on the boundary by a distance of the order of on tile edge. Thus
the two endpoints of the defect rays executing random walks
on the surface with fluctuations that grow as /r, where r is
the disk radius. The disk circumference, however, grows at
a rate proportional to r, making it exponentially improbable
that the two walks will meet unless they do so at a very early
stage. We conclude that infinite growth with only infinitesimal
phason strain occurs in this model with a probability of order
one, where the precise value increases rapidly with the size of
the cluster that is taken to be the initial seed.

The example of infinite growth shown here illustrates a
subtle feature of the growth rule. One might think that a seed
could be used for which there are no worm planes with incon-
sistent orientations on two half planes. The defect in the seed
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would be encoded in the relative orientations of intersecting
worm planes rather than any discrepancies within a single
worm plane. Indeed, the example used here begins with such a
seed, as can be seen by the fact that for every pair of opposite
faces of the perp-space window both dots appear on the same
face. (When an infinite worm plane is divided into two halves,
the interior vertices from the two different halves project onto
opposite faces of the window.) As forced growth proceeds,
however, tiles are placed that override the orientations dictated
by the original seed, creating half-plane defects.

V. DISCUSSION

We have shown that the information required to grow
a nearly perfect, infinite icosahedral quasicrystal without
any backtracking to correct mistakes can be stored in local
neighborhoods of the surface sites at all times during the
growth. The growth is nucleated by a small seed and proceeds
through the addition of new tiles to randomly selected surface
sites, where the probability of attachment is determined by
the configuration of existing tiles sharing a single vertex.
The resulting infinite cluster contains a vanishing density
of defects; its diffraction pattern would contain the dense
set of infinitely sharp Bragg diffraction peaks characteristic
of quasicrystals with icosahedral symmetry, and the relative
intensity of any diffuse scattering would vanish in the infinite
system size limit. The grown sample can be characterized
as a quasicrystal with only infinitesimal phason fluctuations
corresponding to inconsistent choices of which faces of the
perp-space acceptance window are taken to be closed, but
including no points that lie outside the closed window.

An interesting feature of the growth in the 3D icosahedral
case is the necessary inclusion of a linear density of defects
associated with a boundary between two halves of an infinite
worm plane that have opposite orientations. When growth is at-
tempted from seeds that do not induce such boundaries, it halts
at surfaces where there are no forced sites. Thus the defects
actually promote more perfect growth than can be guaranteed
in systems where they are eliminated through annealing at
early stages. Once the cluster has grown to any desired size
and growth is considered complete, it would be possible to
anneal out these lines of defects. The energy barriers involved
would be very low because motion of a line of defects can
be accomplished through sequences of flips in which it is
never necessary to create more than two extra matching rule
violations in the sample, though selecting such a sequence
through a probabilistic process would likely take a very long
time. We emphasize, however, that the as-grown sample would
still be, for all practical purposes, a perfect quasicrystal.

We conjecture that the growth of real, rapidly quenched
materials is an approximation of the ideal process described
here. The ideal process requires the probability of growth at
unforced sites to be strictly zero. A nonzero probability would
lead to occasional additions of the wrong type of tile at a
vertex, which would give rise to a finite density of matching
rule defects. There are three classes of such defects.

The first type of defect involves simple mistakes that create
illegal sites where local growth stops until other nearby forced
additions promote a correction. In the second type of defect,
two conflicting choices are made for the orientation of a portion
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of a worm plane, giving rise to additional forced additions that
propagate along the worm plane until intersecting worm planes
are reached that dictate the proper choice. In such cases, it is
possible that an incorrectly oriented portion of a worm plane
will be buried deep below the surface by the time the correct
choice is forced. Defects of this type, which are confined to the
interior of a single worm plane, do not disrupt the long range
quasiperiodic translational order unless they give rise to the
third type of defect, discussed below. The effects associated
with these first two types of defect may be minimized via
annealing of a surface layer of finite depth, with the density
of the benign intra-worm defects decreasing with increasing
depth of the solidification front. A process of this type appears
to have been observed directly by Nagao et al. in experiments
on a decagonal phase [19]. We conjecture that similar pro-
cesses occur in computer simulations of growth mechanisms
that involve an advancing solidification front [15,17].

The third type of defect presents a greater challenge to the
realization of strict quasiperiodic translational order. These
arise when the relative orientations of two different parallel
worm planes, which may be far apart, conflict with one
another. The defects associated with this type of phason
fluctuation become visible as matching rule violations only
after additional growth has filled in a bulk region between
the two planes. At that point, the existence of the phason
fluctuation is revealed, but there is no local indication of where
the real problem lies. Avoiding this type of defect requires the
introduction of an illegal seed, which allows forced growth
to dictate the proper worm orientations before an incorrectly
oriented worm grows too large. Because defects of this type,
which are not identifiable by local tests, do generate phason
strains that can disrupt the quasicrystalline order, the growth
of a perfect quasicrystal requires a strong separation of scales
between the rates of addition at forced and unforced sites.
Further study of the dependence of the size phason strains on
the ratio of the two rates and on the depth of the solidification
front should provide testable predictions for systems in which
the temperatures of the solid and supercooled liquid can be
controlled. The present work shows that the limiting case does
allow for essentially perfect growth.

We note for mathematical completeness that one could also
consider an intermediate option in which the probability of
adding at an unforced site is taken to be infinitesimal (but
nonzero), and growth is nucleated by a legal seed. Forced
growth would proceed until a completely unforced surface is
reached, at which point a random choice would be made for
the addition of a single tile, and a new burst of rapid growth
would take the cluster to the next unforced surface. Such arule
would never give rise to either of the first two types of defects
described above and could lead to very large, defect free sam-
ples. Onoda et al. found for the 2D Penrose tilings that typical
clusters would contain roughly 2°° tiles before a defect is
produced. For the Ammann tilings, we may expect something
similar, but cannot yet make reliable quantitative estimates.
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