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Critical behavior of the order-disorder phase transition in β-brass investigated by x-ray scattering
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β-brass exhibits an archetypical example of an order-disorder transition with a critical behavior that was
previously investigated by neutron scattering. The data were well described by the three-dimensional (3d) Ising
model but the relatively crude experimental resolution prevented an in-depth examination of the single-length
scaling hypothesis, a cornerstone in the theory of critical phenomena. With the development of synchrotron x-ray
experiments, high-resolution data could be recorded and surprisingly it was found that the single-length scaling
did not hold in most critical systems, possibly due to strain originating from surface defects and/or impurities. In
this paper we demonstrate single-length critical behavior using high-resolution x-ray scattering in β-brass. The
investigations confirm that β-brass behaves like a 3d Ising system over a wide range of length scales comprising
correlated clusters of millions of atoms. To vary the surface sensitivity, experiments have been performed both
in Bragg reflection and Laue transmission geometries but without any substantial differences observed in the
scaling and critical behavior.
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I. INTRODUCTION

β-brass is a 1:1 alloy of Cu and Zn that provides an
archetypical example of a continuous order-disorder phase
transition [1] with a critical behavior that is well described
by the Ising model [2]. Above a critical temperature TC =
739 K the occupation of lattice sites is random with equal
probabilities to find Cu and Zn atoms at a given site in the
body-centered cubic (bcc) lattice which can be thought of as
two simple cubic lattices displaced half a cube diagonal relative
to each other (lattice constant a ≈ 2.95 Å). Below TC , long-
range order (LRO) develops with Cu atoms predominantly on
one of the cubic lattices and Zn atoms predominantly on the
other one, as described quantitatively by an order parameter Sr
being +1 (−1) for right (wrong) occupation of site r in any of
the two lattices. The average value of Sr, here denoted 〈S〉, is
close to unity at room temperature but vanishes at the critical
temperature as a power law 〈S〉 ∝ (TC − T )β . The angular
brackets 〈 〉 denote a thermal average, i.e., averaging over a
large volume and/or over times much longer than a typical
time scale for occupational changes of (many) lattice sites.
This averaging is fulfilled in the experiments presented here.

In an x-ray or neutron scattering experiment the diffraction
pattern from a bcc lattice displays reflections at Miller indices
(h00), h being an even integer. The Bragg angle for the
reflection is θB = sin−1( λh

2a
), where λ is the x-ray wavelength.

In addition, below TC in β-brass superlattice reflections emerge
at (h00), where h is an odd integer. The superlattice structure
factor is proportional to 〈S〉 times (fZn − fCu), the difference
between the scattering lengths (atomic form factors) of Zn and
Cu, and the intensity is proportional to the absolute square of
the structure factor.

Although the order parameter 〈S〉 vanishes at TC , a finite
average correlation (SRO, short-range order) between the
order parameter at site 0 and site r still persists above
TC , approximately given by the Ornstein-Zernike correlation
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function 〈S0Sr〉 = e−κr/r , where κ−1 is a correlation length.
The concomitant scattering, so-called critical scattering, is the
three-dimensional (3d) Fourier transform of 〈S0Sr〉 and hence
has a Lorentzian line shape χ (q) ∝ 1/(q2 + κ2), where q is
the modular difference between the incoming and outgoing
scattering vectors k and k′ and the reciprocal lattice vector
Gh, i.e., q = |k − k′ − Gh|.

The scattering thus depends both on q and the relative
temperature difference from TC as illustrated in Fig. 1(a).
The LRO is determined by the superlattice Bragg intensity,
confined to the q = 0 half plane with T < TC (turquoise). The
critical scattering (red curve) is maximal at q = 0 where it
diverges as the power law C± × |1 − T/TC |−γ , the subscript ±
indicating temperatures above and below TC . The ratio C+/C−
is theoretically around 5.2 [3] as indicated by the asymmetry of
the full and dotted red lines in the q = 0 plane. The correlation
length relative to the nearest-neighbor distance, κ−1/ann, di-
verges at the critical temperature as a power law |1 − TC/T |−ν ,
where ann = a

√
3/2 is the distance between nearest-neighbor

atoms. Figure 1(b) illustrates reciprocal space in the (h,k,l =
0) plane with red spots indicating fundamental reflections
(h + k even) and superlattice reflections (h + k odd) shown
by blurred circles.

The theoretical predictions of the critical exponents for
the 3-dimensional Ising model are β = 0.313, γ = 1.25,
and ν = 0.643 [3,4]. These predictions hold for an infinite
bulk sample, so eventual surface effects are not considered.
The order-disorder transition in β-brass has previously been
studied in great detail by neutron scattering [5–7] on large
samples (volume of order 1 cm3), so in these studies surface
effects could safely be neglected. For an x-ray energy of 12 keV
the 1/e absorption length in Cu-Zn is ∼7 μm and surface
effects may indeed be of importance in reflection geometry
with a penetration depth of only 7 μm × sin θB

2 	 0.6 μm at
the (100) reflection.

The angular divergence of a neutron beam is typically larger
than about 0.2◦ which is two orders of magnitude higher
than for synchrotron x-ray beams, resulting in a comparatively
crude resolution in q space, so that correlation lengths longer
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FIG. 1. (a) Sketch of the scattering from β-brass where the
blue curve indicates Bragg scattering (LRO) and the red curves
critical scattering (SRO). (b) Reciprocal (h,k) plane showing the
fundamental reflections as red dots and superlattice reflections as
blurred circles. The sample crystal is shown both in symmetric Laue
(L) and symmetric Bragg reflection (B) orientations. The linear or
area detector, shown in blue, has pixels as indicated.

than ∼20 ann could not be determined in those earlier studies.
Another contribution to the q resolution comes from the
mosaicity of the single-crystal sample. As discussed in the next
section, annealing of the β-brass crystals resulted in a mosaic
width of less than 0.01◦ so in principle much longer correlation
ranges than have been determined by neutron scattering [8]
should become accessible in this experiment. A further limit
may be set by the temperature stability but if, relative to TC ,
it is ∼ 10−4 or better, correlation lengths larger than ∼200 ann

are within reach.
β-brass was not studied extensively with x-ray scattering

earlier due to the pertinent problem of dezincification close to
TC that we address in the next section. However, other critical
systems of both first and second order have been investigated
with high-resolution x-ray scattering, always resulting in the
observation of a second critical length scale much larger
than the one predicted by the Ising model. It has been
suggested that surface defects and associated strain play a role
and that the phenomenon originates from a skin layer with
several tens of microns thickness; see Cowley’s review article
[9] for additional information. Despite great efforts being
devoted to perfecting the sample preparation, neither critical
systems exhibiting displacive structural phase transformations
or magnetic transitions have yielded the expected single-length
scaling. In this paper we unambiguously show that the order-
disorder transition in β-brass indeed is exhibiting single-length
critical behavior over a substantial length scale comprising
correlated clusters of millions of atoms in comparison with
the limit of thousands of atoms from the previous neutron
scattering experiments.

The paper is organized as follows: In Sec. II the sample
preparation and initial crystal characterization are described;
the results of critical scattering experiments in Laue and Bragg
geometries are presented in Secs. III and IV, respectively.
Finally, Sec. V summarizes the results of LRO and SRO
investigations in the two different scattering geometries and
the findings are discussed in relation with the aforementioned
critical x-ray scattering results obtained in different systems.
The Appendix contains a detailed discussion of dynamical
scattering theory in Laue geometry.

II. SAMPLE PREPARATION AND INITIAL
CHARACTERIZATION

Beta brass crystal boules grown by the Bridgman-
Stockbarger technique were purchased from Metal Crystals
and Oxides Ltd. (UK) and MaTeck GmbH (Germany). Square-
shaped platelets (3.5 × 3.5 mm2) with 〈100〉 normal and a
thickness of about 50–100 μm were cut and polished from the
boule. In order to avoid loss of Zn at elevated temperatures,
the crystals must be encapsulated. This was obtained by
positioning the crystals in 330 μm deep indentations, etched
into a 〈100〉 standard Si wafer of 350 μm thickness, leaving
a Si single crystalline membrane approximately 20 μm thick
over the β-brass crystal. Subsequently, the wafer was bonded
hermetically to a 0.5 mm Pyrex glass plate by applying
500–1000 volts across the glass/Si interface at ∼620 K for
about two hours. The bonded Pyrex-Si wafer was then cut
up into 7 × 7 mm2 squares around each β-brass crystal. The
encapsulated crystal is sketched in Fig. 2, both in Bragg
reflection and Laue transmission geometry. The crystal is
under vacuum in the cavity and was neither fixed to the Si
crystal nor to the Pyrex glass, but the slanted faces of the
Si indentation and a tight fit prevented it from rattling. The
encapsulation procedure explained above was carried out by
DTU Danchip (Denmark).

The encapsulated sample was kept in a custom-made
vacuum furnace during the measurements to control the
temperature. Beam access to the sample was either provided
by transparent windows (Kapton) or by directly connecting the
furnace to the beamline’s vacuum tube. The sample holder and
environment were made of Cu, and a resistive heater connected
to a Lakeshore PID temperature controller with feedback from
a Pt-100 sensor ensured good stability. Several sensors were
mounted in the sample holder Cu block but there was no
Pt-100 directly on the sample due to its encapsulation. The
furnace was installed on the spectrometer’s sample table where
a high-precision goniometer provided access to the necessary
motions.

As explained above, during the encapsulation process the
samples were heated to about 620 K for approximately 2
hours. Before annealing the samples were mosaic crystals
with a FWHM of the (100) rocking curves of about 1.4◦.
After annealing the crystal has become nearly perfect with
a few millidegrees wide rocking curve. This evolution is
shown in Fig. 3. The width is reduced by almost 3 orders of
magnitude and the data evidence a perfect crystal structure
with a Darwin width 	λ/λ = 	θ/ tan θ on the order of
7.5 × 10−4. A Si(111) monochromator has been used for
all measurements with an intrinsic resolution of 1.4 × 10−4.
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FIG. 2. Encapsulation of β-brass crystal. A Si wafer with an
indentation fitting the β-brass crystal is bonded to a Pyrex glass
plate providing a hermetically closed container. In the Laue case (21
or 25 keV x rays) the measured absorption of the beam traversing
20 μm Si, β-brass, and 500 μm Pyrex glass was used to calculate
the thickness of the β-brass crystal, typically ∼70 μm. In the Bragg
case (12 keV x rays) absorption implies that only a ∼0.6 μm thick
near-surface layer is probed by the beam, i.e., less than 100 times the
actual crystal thickness.

Hence, the width of the β-brass reflections can be found by
deconvolution, and using a simple Gaussian approximation
one obtains 7.4 × 10−4. This is only a few times larger than
for highly perfect Si single crystals and implies that at least
the fundamental reflections should be analyzed in terms of
dynamical diffraction theory. This abnormal growth of a single
grain was observed for all the encapsulated crystals used in this
study. A similar phenomenon has previously been reported by
use of transmission electron microscopy in β-brass annealed
at temperatures close to TC [10].

We investigated the issue of dynamical diffraction and
crystalline quality in more detail at beamline P08 at Petra III
(DESY) using 25 keV x rays in symmetric Laue geometry. A
θ–2θ scan identified the positions of the reflections ranging
from (100) to (500) and additional fine rocking scans (θ
scans) were performed to characterize the individual peaks;
see Fig. 4. The setup used a Mythen linear position-sensitive
detector (PSD) mounted in vertical scattering geometry. The
pixel size in the scattering plane was 50 μm which translates
to a 2θ resolution of 2.7 mdeg. In the direction perpendicular
to the scattering plane the detector integrated all intensity
with a slit-defined pixel width of 1 mm. The x rays were
focused by a set of compound refractive lenses to reach a
beam size of about 100 × 400 μm2 (v × h). The scattered
intensity I (θ ) was determined for every position of θ by
integrating the signal in the PSD in a range of pixels covering
about four times the FWHM. The intensity outside this range
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FIG. 3. Rocking curves of the (100) reflection recorded in
symmetric Bragg reflection geometry in the initial state of the crystal
(as grown), and after the encapsulation process involving annealing.
The inset shows a zoom of the narrow rocking curve after annealing.
The two data sets were taken at beamline ID10 (ESRF) with 8 keV
x rays using different settings, so to facilitate comparison the
intensities were scaled to overlap at 	θ = 0.

was taken as background and subtracted from the signal. The
signal was normalized to the intensity after the monochro-
mator to correct for eventual drifts and variations in ring
current.

Figure 4 shows I (θ ) on a logarithmic intensity scale with the
five first crystal reflections along the (h00) direction. There is
a marked difference between the intensity of the fundamental
reflections, h even, and the superlattice reflections, h odd. Both
sets get less intense with increasing Miller index h, due to the
decay of the atomic form factor and of the Debye-Waller factor
with θ .

In the Appendix the intensity data of Fig. 4 are analyzed in
terms of dynamical diffraction theory. The results are shown in
Fig. 5 as a function of Q = |k − k′| = 4π sin θ

λ
. The integrated

intensities are reasonably well modeled by theory; particularly
the ratio between the first three reflections is about right.
A scaling factor has been applied to ensure perfect overlap
between the model and data at the (200) reflection and in this
manner the intensities of the (100) and (300) peaks are also
well predicted. The model underestimates the strength of the
(400) and (500) reflections. From this investigation it can be
concluded that the crystal is indeed nearly perfect. The ratio
between fundamental and superlattice reflections indicates
that the former are governed by dynamical diffraction while
the latter are kinematical due to the weaker structure factor
Fh ∝ (fZn − fCu) with only one electron difference between
Zn and Cu. The kinematic nature of superlattice peaks will
become even more pronounced upon approaching TC as the
intensity will decrease. Therefore, the experiment we shall
describe in the following, elucidating the short- and long-range
ordering (SRO and LRO) by monitoring the (100) reflection
close to TC , must be described in a kinematic framework
similarly to the previous neutron scattering experiments, even
if the crystal is nearly perfect.
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III. DATA TAKEN IN LAUE SCATTERING GEOMETRY

We have investigated the temperature dependence of the
(100) reflection both below and above TC (critical scatter-
ing) on two different β-brass crystals and at two different
synchrotron beamlines, namely ID10 at ESRF (21 keV) and
at P08 at PETRA III (DESY) (25 keV). The results of these
experiments are consistent with each other, as will be described
below, and also align well with the earlier neutron scattering
experiments and the theoretical predictions of the 3d bulk Ising
model.

A. Long-range order

The integrated intensity variation with temperature as the
crystal is rocked through the (100) reflection is shown in
Fig. 6. The expected theoretical power law (normalized to
fit the amplitude of the data) is shown as the green curve. The
correspondence between data and theory is good but the data
do not exhibit a sharp truncation at the critical temperature

and an ad hoc smearing of the theoretical power law is
shown in the zoom on the right panel as the blue curve.
We believe that the smearing is related to a lack of precise
long-term reproducibility in the relation between temperature
and intensity, an effect that we were never able to fully clarify.
It manifested itself in a slowly varying (several hours time
scale) difference between the actual temperature of the probed
crystal volume and the Pt-100 thermometer readout.

Figure 7 shows a typical example of the short-term intensity
variation close to TC . The scattered intensity was monitored at
fixed θ = θB while stabilizing the temperature near TC and
the observed intensity oscillations are almost synchronous
with the temperature oscillations in this range within 100 mK
from TC . The time lag between the thermometer reading and
the registered intensity is on the order of one second, or
less. On this short time scale the temperature hysteresis, if
any, is very small (∼ 20 mK) and indicated by the dashed
horizontal lines in Fig. 7. Such behavior is typical of a
continuous second-order phase transition as expected here and

24.78 24.79 24.8 24.81
0

2

4

6

8

x 10
4

 [deg]
19.59 19.6 19.61 19.62

0

5

10

15

x 10
6

 [deg]

In
t.

 [
a.

u.
]

14.56 14.57 14.58 14.59
0

2

4

6
x 10

5

 [deg]
10.17 10.18 10.19 10.2 10.21
0

1

2

3
x 10

7

 [deg]
4.81 4.82 4.83 4.84

0

5

10

x 10
5

 [deg]

In
t.

 [
a.

u.
]

(100) (200) (300) 

(400) (500) 

0 5 10 15 20 25

10
4

10
6

10
8

 [deg]

In
t. 

[a
.u

.]

(500)

(400)

(300)

(200)

(100)

(a) 

(b) (c) (d) 

(e) (f) 

FIG. 4. Two fundamental, (200) and (400), and three superlattice reflections (100), (300), and (500). (a) θ–2θ scan (logarithmic intensity
scale) on β-brass in Laue geometry (25 keV) identifying the five reflections. This scan was performed also to verify the absence of γ -phase
peaks [6] that otherwise will affect the phase transition. The much finer rocking scans (θ scans) on the (100) to (500) positions [(b)–(f)] are
superimposed on the figure for comparison. The data were taken at room temperature at beamline P08, Petra III, DESY.
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fundamental and superlattice reflections (FR and SR, respectively)
and dynamical diffraction theory with the (200) intensity used as
normalization; see the Appendix. In a pure kinematic diffraction
model the fundamental reflections would be 3 orders of magnitude
higher than the superlattice reflections, which is obviously not the
case here.

we observed it consistently both in Laue and Bragg scattering
geometries.

B. Short-range order

Short-range order data were also taken at beamline ID10
(ESRF). A scintillation NaI detector with a front aperture of
7 × 7 mm2 situated 5.5 m behind the sample recorded the
scattering. An example is given in Fig. 8 and as expected
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FIG. 6. Left: Power-law behavior of the integrated intensity of
the (100) superlattice reflection as TC is approached from below
(LRO). The Ising model prediction is given by the green curve ∝
(TC − T )2β . Right: Zoom of the near-TC region illustrating that a
Gaussian smearing (standard deviation σ = 0.2 K) of TC is required
to fit the theoretical prediction (blue line) to the data. Measurements
performed at ID10 (ESRF) in symmetric Laue geometry (21 keV
x-ray energy).
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FIG. 7. Temperature and (100) superlattice peak intensity versus
time. The intensity vanishes when the temperature is above TC and
increases (decreases) synchronously with the temperature decrease
(increase) when it is below TC . The time lag between registered
temperature and intensity is less than the integration time (1 s). The
data indicate a determination of TC to a precision better than ±0.02
K, but as explained in the text the precise relation between intensity
and temperature exhibited some long-term instability.

for an Ornstein-Zernike correlation function the line shape is
Lorentzian with a correlation length ξ = κ−1, where κ is the
fitted half-width of peak. The correlation length relative to the
nearest-neighbor distance ann versus the temperature deviation
from TC is shown in a double-logarithmic plot in Fig. 9 (black)
to illustrate the power-law behavior. The data are consistent
with the theoretical prediction of the 3d Ising model shown as
the black line both in terms of absolute value and in terms of
the critical exponent ν. The susceptibility or peak amplitude
χ (q = 0) is also shown in Fig. 9 (red) and the slope is again in
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FIG. 8. Critical scattering at a reduced temperature of t = 8 ×
10−4 normalized by the beam monitor intensity. The wave vector q is
determined by the rocking angle δ as q = Gδ. The observed intensity
(blue dots) is unfolded with the smearing produced by the finite
detector aperture (two-dimensional top-hat function) to yield the red
circles. The red full line shows the best Lorentzian fit. The resolution
width in the third dimension of reciprocal space is negligible since
the wavelength band is very narrow (	λ/λ ∼ 10−4).
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FIG. 9. Correlation range ξ relative to the nearest-neighbor
distance ann (black) and susceptibility χ (q = 0) (arbitrary units)
versus reduced temperature (T − TC)/TC (red) obtained from the
unfolded line shapes; see Fig. 8. The full black line shows the
theoretical prediction of the 3-dimensional Ising model with a slope
of −ν and ν = 0.64. The peak intensity of critical scattering is shown
by the red data points yielding a critical exponent γ = −5/4, in
accordance with the Ising model.

good accordance with the Ising model when the instrumental
resolution is taken into account; see Fig. 8.

We also performed critical scattering experiments in Laue
geometry at P08, Petra III (DESY), on a different crystal using
25 keV x rays and the setup with the PSD described in Sec. II.
Figure 10 shows examples of critical scattering that again is
modeled well with simple Lorentzian profiles. The fitted peak
intensity χ (q = 0) [Fig. 10(a)] is corrected for the resolution
function as described above taking the integration limits over
the PSD into account. Concerning κ , the peak HWHM, the
resolution-induced broadening is so small that it safely can
be neglected. Both the susceptibility χ (q = 0) and the inverse
correlation range annκ are following the expected power-law
behaviors over the entire range in reduced temperature. The
data also match the earlier neutron measurements [6] well (red
symbols in Fig. 10) and are consistent with data taken at 21
keV at ESRF on a different crystal; see Fig. 9. We conclude that
the Laue x-ray data demonstrate the Ising model for critical
scattering being valid up to more than 250 nearest-neighbor
distances in correlation length [4 × 10−3 in inverse correlation
range; see Fig. 10(b)], i.e., down to a reduced temperature
of less than 10−4. This is an important verification step that
extends the previous neutron measurements by about two
orders of magnitude and was only possible due to the high
resolution of synchrotron x ray experiments together with the
perfect crystallinity of the β-brass samples.

IV. DATA TAKEN IN SYMMETRIC BRAGG REFLECTION
GEOMETRY

The results described in this section derive from experi-
ments at beamline P10, PETRA III (DESY), taken at 12 keV
x-ray energy with a Pilatus 300k pixel detector (172 μm pixel
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FIG. 10. Critical scattering at the (100) superlattice peak.
(a) Fitted amplitude vs reduced temperature t . Neutron data [6]
are shown for comparison together with a power law with critical
exponent γ = −5/4. The inset shows two unfolded line shapes (at t =
1.1 × 10−3 and t = 1.1 × 10−2) and the corresponding Lorentzian
fits. (b) Fitted HWHM κ multiplied by the nearest-neighbor distance
ann to yield the inverse correlation range vs t . Neutron data are shown
for comparison as well as a power law with critical exponent ν = 0.64.
Data taken in Laue geometry at beamline P08, Petra III (DESY), using
25 keV x rays.

size) 5 m downstream of the sample recording the scattering.
The big difference with respect to the transmission Laue data
is the near surface sensitivity of the measurement. This occurs
due to absorption of the x rays which penetrate only about
0.6 μm into the crystal from the surface. On the contrary, in
Laue geometry the entire thickness of the crystal is probed with
a uniform sensitivity. To account for the reflection geometry,
the furnace inset that holds the sample was modified and the
position of the x-ray-transparent windows changed, but apart
from that the setup was similar to the Laue case.

At a few occasions we experienced sudden jumps of 0.3–
0.5 K in the temperature readout, presumably due to randomly
occurring changes in the thermal contact. In addition, there
was a slow drift of TC over a few days which we attribute to
a slow thermal thermalization of the system, but under stable
conditions we were able to pass through the phase transition
many times without any change in the measured TC . This
shows that the stoichiometry of the probed volume is constant;
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FIG. 11. Integrated intensity of the (100) superlattice peak as
a function of temperature taken in symmetric Bragg scattering
conditions. The solid line shows the best fit with (TC − T )2β and
yields an exponent of β = 0.29 ± 0.01. The theoretical prediction
for the 3d Ising model is 0.313. The inset shows data on a log-log
scale to better visualize the power-law behavior of the integrated
intensity.

i.e., similarly to the Laue experiments the sample remained in
the pure β phase throughout the experiment. At one occasion
the encapsulation was not tight (puncture) which resulted in
a rapid drift of TC towards smaller values, as expected for
dezincification of β-brass, which is therefore easily detectable.
The temperature was recorded for every data point in each
rocking scan (1–2 min) and the fluctuations were typically
5 mK rms, or better. However, we cannot exclude tiny glitches
in the temperature readout from one scan to the following ones.

A. Long-range order

The integrated intensity of the (100) superlattice peak
was monitored by performing rocking scans (θ scans) for
every temperature T < TC and collecting all the scattered
intensities on the detector. The data are shown in Fig. 11.
While the best-fitted exponent (0.29) is slightly smaller than
the theoretical prediction for the Ising model (0.31) there is
no substantial difference between these data taken in Bragg
reflection geometry and the data taken in transmission Laue
geometry; see Fig. 6. Similarly to the Laue data, TC is
not perfectly well determined as observed in Fig. 11 where
measurements from several temperature series are shown in
one plot. The tangent of the data at T = TC is not vertical as
ideally expected and again this can be modeled as a Gaussian
smearing of TC with a rms of ∼ 0.2 K; cf. the discussion in
Sec. III A.

B. Short-range order

Concerning the SRO measured in Bragg reflection geom-
etry the situation is different from the Laue case. Due to the
small probe volume and the almost identical scattering factors
for Cu and Zn the signal is very weak and can only be tracked in
a narrow range of temperatures above TC before it disappears
in the background. SRO data up to 0.48 K above TC are
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FIG. 12. Amplitude (top) and inverse correlation range (bottom)
extracted from the Lorentzian beam profiles (inset) of the SRO. The
lines indicate the Ising model and a good correspondence is found. In
the bottom plot the red line [identical to that of Fig. 10(b)] is the best
fit to the earlier neutron data. The detection limit is derived from the
constant background of the line profiles shown in Fig. 13. Data taken
at P10, Petra III (DESY), in symmetric Bragg reflection geometry
using 12 keV x rays.

shown in Fig. 12. The line profiles are Lorentzian and both
the inverse correlation range annκ and the susceptibility are in
good accordance with the earlier presented x-ray and neutron
scattering measurements in Laue geometry. However, due to
the limited accessible range a detailed comparison cannot be
made. This is significantly different from the Laue data in
Fig. 10 where critical scattering could be measured more than
10 K above TC .

SRO line profiles have been obtained from Pilatus 2D
detector frames assembled in 3d (the third coordinate being
	θ , the offset from the Bragg angle) and then integrated
in spherical shells to yield I vs q (Fig. 12, inset). In this
case the spatial resolution is much better than the width of
the profiles and no resolution-correction terms need to be
applied. Close to TC the line profiles, shown in Fig. 13, are a
superposition of a Lorentzian due to critical scattering and a
narrow component which we interpret as LRO Bragg scattering
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FIG. 13. Integrated line profiles to obtain I vs q for different temperature offsets with respect to TC . The narrow central component (LRO)
is fairly well modeled by a squared Lorentzian, except for the amplitude at q = 0. The SRO is following a usual Lorentzian line profile similar
to the bulk measurements. Data taken at P10, Petra III (DESY), in Bragg reflection geometry using 12 keV x rays.

(SRO-LRO coexistence below TC), although in one case the
temperature reading is 35 mK above TC (lower right panel).
The true temperature could actually be below TC because one
of the random, tiny, temperature readout glitches may have
occurred and we see no good reason to interpret this peak as
arising from a second length scale phenomenon. In all cases
the narrow component was reasonably well fitted by a squared
Lorentzian, except for the amplitude. Similar observations
of square Lorentzian peaks have been made in scattering
from other critical systems [11,12] where the q−4-like tails
were taken as signs of crystal strain. In our case the squared
Lorentzian line shape should be interpreted as a convolution
of the experimental resolution function and a possible LRO
domain structure. However, we are unable to separate these
two contributions and the fitting to a squared Lorentzian serves
only the purpose of disentangling the narrow LRO component
from the critical scattering which has a single-Lorentzian line
shape; see Fig. 13.

The integrated intensity and amplitude of the two compo-
nents are extracted and shown in Fig. 14 (as hollow circles
and stars, respectively) together with the χ (q = 0) data for
T > TC (black dots); see also Fig. 12 (top). The Ising model
predictions for LRO and SRO are shown as red and black
curves, respectively, and the correspondence with the data is
reasonably good, even in the range of coexistence. For the
central narrow component the real amplitude (not the square
Lorentzian fit amplitude) is used (red stars) to obtain the
integrated intensity and the best correspondence with the LRO
Ising model. In Fig. 14 the Ising model for LRO (red curve)

has been scaled to match the first red star data point. The open
symbols represent the fitted amplitude of the SRO for T < TC

but the accordance with the Ising model is not as good as
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FIG. 14. Summary of the SRO amplitude [χ (Q = 0)] and the
integrated intensity of the central component that is assigned with
LRO. The lines are Ising model predictions. Data taken at P10, Petra
III (DESY), in Bragg reflection geometry using 12 keV x rays.
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for the T > TC data (black dots). However, the general trend
predicted in the coexistence region with an increasing SRO
and a decreasing LRO as TC is approached from below is
evident from the data. Hence, we interpret the central line
as LRO Bragg scattering. The central line wings are then
caused by diffuse scattering from LRO domain walls where an
approximate q−4-behavior of the intensity indeed is expected
(interface scattering).

V. DISCUSSION AND CONCLUSION

We have studied critical behavior of the temperature-
induced order-disorder phase transition in β-brass, nature’s
archetypical realization of the Ising model for criticality.
With our encapsulation technique we were able to perform
high-precision measurements of β-brass without the usual
problems of dezincification. The short- and long-range order
parameters were monitored using x-ray diffraction on the (100)
superlattice reflection. A collimated and intense synchrotron
beam together with the very small mosaicity of the annealed
crystals allowed for superb resolution, so the Ising model
predictions could be studied over a wider range of correlation
lengths κ−1 than ever before (exceeding 250 ann), thus pro-
viding an important verification step. The Ising model fits the
data taken in Laue transmission scattering geometry very well
over the full range of temperatures and correlation lengths. In
transmission geometry the x rays are essentially a bulk probe,
i.e., very similar to the situation in earlier neutron scattering
experiments.

We also performed measurements in Bragg reflection ge-
ometry where the temperature range in which critical scattering
can be measured is strongly reduced. This is caused by the
weak scattering contrast between Cu and Zn and because the
finite penetration depth (< 1 μm) limits the x-ray penetration
with only the near-surface region contributing to the scattering.
Still, using powerful third-generation synchrotron beams this
study is possible. The SRO scattering that can be detected
in Bragg geometry fits well with the Ising model predictions,
particularly for T > TC . In the SRO-LRO coexistence range at
T < TC the correspondence with theory is less good but given
the long-term instability between the temperature reading and
the actual sample temperature, it is impossible to conclude any
discrepancy between data and theory. The central narrow LRO
component does not affect the SRO line shape that remains
simple Lorentzian. Hence, within the sensitivity and resolution
of the present experiment there is no measurable difference
between bulk critical scattering and the result obtained in
reflection geometry where only the topmost 0.6 μm of the
crystal is probed.

Particularly, we do not find any supporting evidence for two
diverging length scales as reported for other critical systems
above TC and often assigned to surface defects and associated
strain [13–21]. Probably, the encapsulation method used here
is an advantage and it might also induce less strain than a thin
capping layer of metal evaporated onto the crystal, a different
method frequently used to keep the stoichiometry intact.
Certainly, the excellent crystalline quality we observe after
annealing is rarely obtained in other systems and it gives a hint
that the sample is close to an ideal realization of the 3d Ising
model. Several of the previous observations of two critical

length scales were made in samples displaying structural
phase transformations. Indeed, the existence of a thick skin
layer where the order parameter is modified by surface effects
(defects, strain) appears more credible in such systems than
for order-disorder transition materials such as β-brass that
may be less vulnerable to structural distortions. However,
deeper theoretical considerations or simulations are required
to further quantify this statement. We note that in order to make
a genuine surface-sensitive measurement (few nm penetration
range) a grazing incidence diffraction geometry is required
[22,23] but then the signals would become even smaller. In
this case, a critical system with greater scattering contrast than
β-brass should be chosen to make the experiment feasible [24].
Meanwhile, until surface experiments with ultimate sensitivity
eventually have been performed, we conclude that the 3d
Ising model with a single diverging length scale holds for the
order-disorder transition in β-brass without any restrictions.

A next logical step would be to perform a coherent
scattering study of the critical dynamics [25,26] by x-ray
photon correlation spectroscopy (XPCS) [27,28]. Due to
restrictions in photon energy and sample thickness a coherent
scattering experiment is more favorably performed in Bragg
than in Laue geometry and indeed we have demonstrated a
critical scattering signal under Bragg conditions. However,
the count rate in the Pilatus detector amounts to ∼ 0.3 photons
pixel−1 s−1 on the peak of the critical scattering shown in
Fig. 12 at T − TC = 0.14 K (cyan data), in this case with an
incident beam intensity of about 5 × 1010 photons s−1. Such a
weak signal will restrict any XPCS investigations to very slow
dynamics and it is unlikely that a conclusive test of dynamical
scaling [29] can be performed in β-brass given the current
limitations in coherent flux.
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APPENDIX: DYNAMICAL THEORY FOR LAUE
DIFFRACTION

In the following we shall outline the theory for Laue
diffraction inspired by Authier [30] and Kato [31]. The
polarization P (dipole moment per volume) of an electron gas
with homogeneous density ρ subject to a homogenous field
E is P = −eρx, where x is determined from the equation of
motion of an electron: md2x

dt2 = −eE(t). Solving for E(t) =
E0 exp(−iωt) yields the susceptibility χ , defined as χ = P

ε0E
,

χ = −r0ρλ2/π, (A1)

where λ = 2πc/ω is the wavelength and r0 = e2/(4πε0mc2)
is the Thomson radius of the electron. For a homogeneous unit
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cell in a crystal this can be generalized to

χh = −r0λ
2Fh

πVc

, (A2)

where the ratio of structure factor over unit cell volume Fh/Vc

is the effective electron density. In addition to the susceptibility,
the Pendellösung length �0 is of interest in the Laue case.
The Pendellösung effect happens as a result of interference
between the diffracted and forward-scattered waves at the exit
surface of the crystal. Two waves are excited in each direction
with slightly different wave numbers due to refraction. At
periodic locations inside the crystal the two forward-scattered
waves interfere constructively while at the exact same locations
the diffracted waves interfere destructively. At the exit of the
crystal this leads to an oscillation of the diffracted intensity
vs scattering angle and sample thickness. The period of
these oscillations in known as the Pendellösung length and
Authier derives it in the symmetric Laue case (assuming a
centrosymmetric unit cell and linear polarization) to be [30]

�0 = πVc cos θ

r0λ|Fh| = λ cos θ

|χh| . (A3)

The corresponding parameter in Bragg reflection geometry
is known as the extinction depth given by

�ext = Vc sin θ

2r0λ|Fh| = Vc

4dr0|Fh| , (A4)

where d = λ/(2 sin θ ) = 2π/Qhkl is the distance between
lattice planes for the given (hkl) reflection and Qhkl is the
momentum transfer. We measure the integrated intensity Iint

from the β-brass reflections and Kato [31] derives it in the
symmetric Laue case to be

Iint = A[H (z0) − 1 + I0(ξ )],

H (z0) =
∫ z0

0
J0(z)dz, z0 = 2πt/�0, (A5)

where t is the crystal thickness and J0 and I0 denote the zeroth-
order normal and modified Bessel functions, respectively. A

and ξ are functions that depend on the susceptibility χh and
the linear absorption coefficient μ as

A = π |χh|
2 sin 2θ

exp(−μt/ cos θ ), ξ = χh

χ0

μt

cos θ
. (A6)

The integral H (z0) of the Bessel function in Eq. (A5) is
oscillating around unity but tends to zero for z0 → 0. This
is illustrated in Fig. 15 where the values of H are indicated
for the five studied reflections. For small z0, i.e., when �0 is
large—which happens in the case of weak reflections (|Fh|
small, kinematic limit)—the behavior of H is almost linear in
z0 and we have I0(ξ ) 	 1 so that Iint is proportional to Az0.
Thus, we find in the kinematic limit

Iint 	 r2
0 λ3t

sin 2θ cos θ

( |Fh|
Vc

)2

exp(−μt/ cos θ ) ∝ |Fh|2, (A7)

which holds for z0 � 1. In the opposite limit for strong
reflections and small absorption μ 	 0, the modified Bessel
function is unity, H 	 1, and hence Iint is approximately equal
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FIG. 15. Illustration of J0(z0) and H (z0) for large (top) and
small (bottom) values of z0 according to Eq. (A5). The fundamental
reflections (200) and (400) are of dynamic nature due to the high
value of z0 (top). The superlattice reflections have much smaller z0

and are hence of kinematic nature (bottom). Due to a coincidence,
the z0 values of (100) and (300) are similar, as the structure factor
and cos θ almost cancel each other. The solid black line in the bottom
plot illustrates the z0 → 0 limit where H (z0) ∝ z0.

to A, i.e.,

Iint 	 r0λ
2

2 sin 2θ

( |Fh|
Vc

)
∝ |Fh|. (A8)

Equations (A7) and (A8) contain the well known result that
for dynamic diffraction the integrated intensity is proportional
to |Fh| rather than to |Fh|2 [32,33].

Equation (A5) can be compared with our experimentally
determined integrated intensities. They are simply found by
integrating the curves in Figs. 4(b)– 4(f) and subtracting a
background determined by the signal in the PSD pixels far
away from the peak. The result of the comparison is shown in
Fig. 5.
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