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Modeling energy-loss spectra due to phonon excitation
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We discuss a fundamental theory of how to calculate the phonon-loss sector of the energy-loss spectrum for
electrons scattering from crystalline solids. A correlated model for the atomic motion is used for calculating
the vibrational modes. Spectra are calculated for crystalline silicon illuminated by a plane wave and by an
atomic-scale focused coherent probe, in which case the spectra depend on probe position. These spectra are also
affected by the size of the spectrometer aperture. The correlated model is contrasted with the Einstein model in
which atoms in the specimen are assumed to vibrate independently. We also discuss how both the correlated and
Einstein models relate to a classical view of the energy-loss process.
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I. INTRODUCTION

In electron energy-loss spectroscopy (EELS) on a specimen
of condensed matter, the region below approximately 100 eV
is often referred to as the low-loss region of the spectrum.
Interband electronic transitions contribute to this region
and are often superimposed on plasmon peaks, which are
present at similar energies. In the context of transmission
electron microscopy, monochromators and spectrometers with
a resolution of the order of 10 meV allow such overlapping
peaks to be resolved and details in energy-loss spectra can also
be observed closer to the zero energy loss, meaning that band
gaps and vibrational spectra associated with phonon excitation
are accessible [1]. An atomic-scale focused coherent probe in
scanning transmission electron microscopy (STEM) allows
information to be obtained from nanometer-sized regions,
making it possible, in principle, to detect localized vibrational
excitations. The phonon-loss sector is of potential importance
in materials studies since it will allow detailed studies of
interfaces, defects, bonding arrangements, and the detection
of hydrogen and other light elements [1].

Excitation of optical surface phonons by electrons in zinc
oxide was observed more than four decades ago [2] and
an electron-spectroscopic study of amorphous germanium
and silicon in the two-phonon region was reported shortly
thereafter [3]. With the ability to measure localized phonon
spectra in STEM, there have been several recent explorations
of the possibilities that this offers as well as the pertinent
experimental factors [1,4–7]. The subtraction of the zero-loss
peak is a major issue, with both Egerton and Rez pointing
out that, given the small magnitude of the scattering cross
sections, minimizing the tail of the zero-loss peak is as
important as achieving a small half-width at half-maximum,
in particular for detecting optical phonons in crystalline solids
around 50 meV [6,8]. The scattering geometry in the electron
microscope suggests that bond stretching in the specimen
plane or longitudinal optical phonons will dominate the
scattering [8]. Radiation damage is an issue for sensitive
samples, in particular organic specimens, and aloof beam
imaging conditions have been considered in this context [9,10].
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There has been considerable discussion as to whether
phonon scattering can give high-resolution images [7,11–13],
in particular since energy losses are small (of the order of meV
for single-phonon excitation). Atomic resolution is indeed
possible, as discussed in Ref. [13], and this should not come
as a surprise since atomic-resolution high-angle annular dark-
field (HAADF) imaging, also known as Z-contrast imaging,
is based on detecting electrons which have been scattered to
large angles after (multiple) phonon excitation. In HAADF
imaging we are effectively integrating the signal from those
electrons in the phonon sector of the low-loss spectrum which
have been scattered into a range of angles defined by the
HAADF detector. The possibility of obtaining time-resolved
information from meV EELS data has also been discussed [14].

Electrons scattered by the excitation of phonons to even
larger angles than in HAADF imaging have been utilized
in what has been dubbed electron Rutherford backscattering
(ERBS) [15]. In ERBS an energy-loss spectrum is obtained
for a range of scattering angles near the backward direction,
corresponding to a range of large momentum transfers.
Multiple phonon excitations are involved in inelastic scattering
to a detector spanning a solid angle in the backwards direction
and energy losses in the eV range are typical for incident
energies of tens of keV. Peaks in the spectra correspond
to the different atomic masses in the specimen [15]. The
ERBS spectra are usually explained in a classical model,
considering the recoil of electrons after quasielastic scattering
and with the inclusion of Doppler broadening (due to the
motion of the atoms). The theme of weighing individual
atoms by high-angle scattering of electrons has recently been
further explored, also in terms of classical models [16,17].
Site-specific recoil diffraction of backscattered electrons in
crystals and the effects of channeling on spectra have also been
investigated [18,19].

As early as 1955, Glauber proposed a time-dependent
correlation function to model inelastic scattering via excita-
tions of a crystal lattice [20]. General expressions for the
various orders of thermal diffuse scattering were given by
Borie [21]. Whelan [22] and Hall and Hirsch [23] examined
phonon excitation by high-energy electrons in an Einstein
model. This work was later expanded upon by Earney [24].
In this paper we discuss a fundamental approach to modeling
the phonon-loss sector of the energy-loss spectrum based on
considering the transition potentials between initial and final
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states of the phonon subsystem, i.e., the states describing the
nuclear motion. A correlated model is used for calculating the
vibrational modes of the system and these results are contrasted
with the simpler Einstein model in which atoms in the spec-
imen are assumed to vibrate independently in potential wells
provided by all the other charged particles in the specimen.
These models incorporate the effects of multiphonon scattering
(the creation or destruction of multiple phonons in a single
scattering event); multiple phonon scattering (where phonons
are created or destroyed in a series of independent scattering
events) is not considered. Low-loss spectra for silicon are
calculated for both plane-wave illumination of the specimen
and for the case of an atomic-scale focused coherent probe in
STEM, exploring the variation of the spectrum as a function
of the position of the STEM probe and how it is affected
by the size of the spectrometer aperture. We discuss how
the quantum mechanical correlated and Einstein models for
phonon excitation relate to classical models.

II. INELASTIC SCATTERING CROSS SECTION

A general expression for the cross section for inelastic
scattering of an electron in a crystal is given by [25–27]

σ = 2πm

h2k0

∫∫
ψ∗

0 (r)W (r,r′)ψ0(r′) drdr′, (1)

where h is the Planck constant and m, k0, and ψ0(r) are the
mass, wave number, and wave function of the incident electron
respectively. The nonlocal potential W (r,r′) for inelastic

scattering is given by

W (r,r′) = 2πm

h2

∑
n�=0

knH
∗
n0(r)Hn0(r′)

×
∫

k′

∫
D

e2π ik′·(r−r′)δ(kn − k′) d�k′dk′. (2)

Here kn is the wave number of the incident electron after an
inelastic scattering event which leaves the target, initially in a
state labeled 0, in a state labeled by n. The quantities Hn0(r)
are the transition potentials, defined as

Hn0(r) =
∫

a∗
n(τ )H ′(r,τ )a0(τ ) dτ , (3)

where an(τ ) is the wave function describing the nth state of
the target, τ representing the nuclear coordinates. (We restrict
our attention to modeling the states of the phonon subsystem,
since we are interested specifically in the phonon-loss sector
of the energy-loss spectrum and assume that the electronic
degrees of freedom have been integrated out [28].) In Eq. (3)
the quantity H ′(r,τ ) is the interaction Hamiltonian between
the incident electron and the nuclear subsystem. The second
line in Eq. (2) is an integration over the range of wave vectors
k′, for the scattered fast electron, into a detector D with solid
angle d�k′ , while maintaining conservation of energy. The
summation in Eq. (2) over all final states corresponding to a
particular energy loss then allows the calculation of a point in
an energy-loss spectrum via Eq. (1).

By inserting Eq. (2) into Eq. (1) we obtain

σ = 2πm

h2k0

∫∫
ψ∗

0 (r)

⎡
⎣2πm

h2

∑
n�=0

H ∗
n0(r)Hn0(r′)kn

∫
k′

∫
D

e2πik′ ·(r−r′)δ(kn − k′) d�k′dk′

⎤
⎦ψ0(r′) drdr′

= 4π2m2

h4

∑
n�=0

kn

k0

∫
k′

∫
D

[∫
ψ∗

0 (r)H ∗
n0(r)e2πik′ ·r dr

][∫
ψ0(r′)Hn0(r′)e−2π ik′·r′

dr′
]
δ(kn − k′) d�k′dk′

= 4π2m2

h4

∑
n�=0

kn

k0

∫
k′

∫
D

∣∣∣∣
∫

ψ0(r′)Hn0(r′)e−2πik′ ·r′
dr′

∣∣∣∣
2

δ(kn − k′) d�k′dk′

= 4π2m2

h4

∑
n�=0

kn

k0

∫
k′

∫
D

∣∣∣∣
∫

ψ0(k′ − q′)Hn0(q′) dq′
∣∣∣∣
2

δ(kn − k′) d�k′dk′. (4)

We have expressed the inelastic scattering cross section in
terms of the convolution between the probe wave function and
the transition potentials in reciprocal space. This formulation
is more amenable to analysis in later sections. For the case of
plane wave incidence we have ψ0(r) = exp(2πik0 · r), where
k0 is the incident wave vector, or equivalently ψ0(k′) = δ(k′ −
k0). The inelastic scattering cross section can then be expressed
in terms of the quantities Hn0(q) only, for which the modulus
squared gives the probability for a transition in the specimen
to state n initiated by a plane wave inelastically scattered into a
point detector defined by the momentum transfer hq = hk′ −
hk0 as follows:

σ = 4π2m2

h4

∑
n�=0

kn

k0

∫
k′

∫
D

|Hn0(q)|2δ(kn − k′) d�k′dk′ . (5)

To evaluate the transition potentials Hn0(q) we need to
model the initial and final states of the target in Eq. (3),
denoted by a0(τ ) and an(τ ) respectively. The interatomic
forces in a solid lead to correlated atomic motion in a
range of normal vibrational modes. Within the harmonic
approximation, these vibrational modes are decoupled and
each obeys the wave equation for a quantum harmonic
oscillator. This is the traditional approach of Born–von Kármán
lattice dynamics [29]. In the simpler Einstein model each
nucleus vibrates independently within an effective confining
potential due to all the other charged particles in the specimen.
In other words, each nucleus is assumed to be confined
in a three-dimensional potential (assumed harmonic), whose
frequencies are chosen so that the root-mean-squared (rms)
displacement of every atom from the equilibrium position
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(the electrons are assumed to move with the nucleus) matches
either experimental data or theoretical prediction. The Einstein
model has been used with great success in simulations of
transmission electron microscope images, in those imaging
modes where one is not interested in the details of the phonon
sector of the energy-loss spectrum but where integration over
some elements of the spectrum is pertinent, for example,
Refs. [30–32]. In general we do not expect the Einstein model
to yield an accurate prediction of the phonon-loss spectrum.
We will discuss later situations where the Einstein model
might be expected to yield a reasonable approximation for
the spectrum.

Lastly, in this section, we note that we are considering
incident electrons with incident energies of the order of tens
or hundreds of keV, so that relativistic effects need to be taken
into account. This is done as discussed in Ref. [33].

III. TRANSITION POTENTIALS

Replacing the generic label n in Eq. (3) explicitly with a
vector n containing the quantum numbers nj each associated
with a normal mode of vibration labeled by j , the transition
potential for exciting the lattice to the state n is given by [34]

Hn0(q) = h2

2πm

∑
κ

e−2πiq·Rκ f κ
e (q)

×
∏
j

[ − i

√
2Mj

mκ
q · εκ

j

]nj√
nj !

e− Mj

mκ
(q·εκ

j )2

(6)

and the transition probability is therefore given by

|Hn0(q)|2 = h4

4π2m2

∑
κ

f κ
e (q)2

∏
j

[
2Mj

mκ

(
q · εκ

j

)2]nj

nj !

×e−2
Mj

mκ
(q·εκ

j )2 + cross terms, (7)

where the cross terms (i.e., those terms arising from the
interference between scatter off distinct atoms) are not written
out explicitly.

In Eqs. (6) and (7) the equilibrium position of atom κ (with
mass mκ ) is denoted by Rκ . The electron scattering factors
f κ

e (q) for atom type κ are those for isolated atoms and we use
the parametrization of Waasmeier and Kirfel [35]. Since we are
assuming isolated atoms, any long-range dipole interactions
which result from charge redistribution due to bonding [12]
are neglected. Here we are considering direct interaction with
the nuclear subsystem rather than indirectly via long-range
interactions with the electronic subsystem, as is the case in
aloof beam imaging [1,10]. The Debye-Waller factors Mj are
given by [34]

Mj = π2 �

ωj

, (8)

where � is the reduced Planck constant and ωj is the frequency
of the normal vibrational mode j . In what follows, the reader
should bear in mind that all frequencies will be implicit in
the Debye-Waller factors. These Debye-Waller factors can
be modified to include the effects of nonzero temperature
according to Bose-Einstein statistics by including the factor

coth(�ωj/2kBT ) [34]. The polarization vectors εκ
j for the atom

κ in the mode j are defined in terms of eigenvectors obtained
by solving the lattice dynamical eigenvalue problem which
can be stated in the form [29]

nu∑
κ ′=1

Dκκ ′
εκ ′ = ω2εκ . (9)

Here κ and κ ′ run over the atoms within the unit cell, nu is the
number of atoms in the unit cell, εκ is an eigenvector for atom
κ , and Dκκ ′

is the dynamical matrix which describes the forces
between atoms κ and κ ′. The dynamical matrix depends on the
phonon wave vector k and the eigenvalue problem is solved
separately for each wave vector in the first Brillouin zone. The
number of eigenvalue-eigenvector pairs for each phonon wave
vector is in general 3nu (corresponding to the three Cartesian
directions in which each atom can move), except in the case of
phonon wave vectors pointing in high symmetry directions for
which degeneracies may occur [36]. Each of these 3nu pairs
is referred to as a branch. For silicon, with two atoms in the
(primitive) unit cell, there are six such branches. We use the
notation εκ

j to denote the polarization vector of the κth atom
in the mode j . These modes j are enumerated by first running
over all the phonon wave vectors k in the first Brillouin zone
for which −k is also in the first Brillouin zone, considering all
branches, and then including both classes of normal modes,
defined by m = 1,2, in the following equation:

εκ
j = im−1

√
2N

{
εκ exp

[
2πik · Ru

κ

]
+ (−1)m−1εκ∗ exp

[−2πik · Ru
κ

]}
. (10)

Here N is the number of unit cells. We note that the two classes
of modes defined by m = 1,2 arise because the eigenvectors
are in general complex and the real and imaginary parts
constitute independent modes of vibration corresponding to
physical displacements of the nuclei. The index κ in Eq. (10)
runs over all atoms in the supercell and Ru

κ refers to the origin
of the unit cell in which the atom κ sits. For the wave vectors
which are on the Brillouin zone boundary (which correspond
intrinsically to standing wave modes) we run over all branches
as before but take only one of the classes of normal modes
defined by m = 1,2. An alternative approach is to retain all
the vectors in the first Brillouin zone at the outset and take one
class of solutions [36]. In either approach, the total number of
modes will be 3nuN .

The force constant model used to define the dynamical
matrix can be fitted against experimental data, such as
neutron diffraction data [37], or it can come from density
functional theory [38]. We note that even though Born–von
Kármán lattice dynamics is a classical approach to lattice
dynamics, the procedure for determining the normal modes
of vibration and their frequencies is equivalent to working
from a fundamentally quantum mechanical approach in which
the potential for the target is written down and the Hamiltonian
diagonalized [29]. Thereafter the Schrödinger equation can be
separated to describe decoupled quantum harmonic oscillators.

In Fig. 1 we show two of the many possible transition
probabilities for the excitation of bulk phonons in a silicon
crystal, assumed infinite in all directions (so that we are
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FIG. 1. (a) Transition probability in real space |Hn0(r)|2 projected
along [001] for a longitudinal optical phonon with wave vector
k = (−0.2,0,0), for m = 1 and corresponding to an energy loss
of 63.6 meV. The image has been blurred for the purposes of
visualisation using a Gaussian kernel of FWHM 0.33 Å. The inset
is a blowup of the area indicated (encompassing one atom, position
indicated), without blurring. (b) Transition probability in reciprocal
space |Hn0(q)|2 for the phonon mode in panel (a), blurred with a
FWHM of 0.11 Å−1. (c) Transition probability in real space for a
longitudinal acoustic phonon with wave vector k = (−0.2,−0.4,0),
for m = 1 and corresponding to an energy loss of 25.2 meV,
blurred as in panel (a). The inset is a blowup of the area indicated
(encompassing one atom, position indicated), without blurring.
(d) Transition probability in reciprocal space for the phonon mode
in panel (d), blurred as in panel (b). The projected structure of the
conventional cubic unit cell is overlaid on panel (a). The scale bar on
panel (c) also applies to panel (a) and that on panel (d) also to panel
(b).

not considering surface phonons). In practice we work on
a supercell, which is a 5 × 5 × 5 tiling of the conventional
cubic unit cell, which corresponds to N = 500 primitive unit
cells, and hence there are 3000 modes j . Figure 1(a) shows the
transition probability in real space |Hn0(r)|2 projected along
[001] for a longitudinal optical phonon with wave vector k =
(−0.2,0,0), for m = 1 in Eq. (10), and which has an energy
loss of 63.6 meV. Figure 1(b) shows the transition probability
in reciprocal space |Hn0(q)|2 for the phonon mode in Fig. 1(a).
Figures 1(c) and 1(d) show analogous results to those in
Figs. 1(a) and 1(b) but now for an acoustic phonon with wave
vector k = (−0.2,−0.4,0) and m = 1 with a corresponding
energy loss of 25.2 meV. Note that the transition potentials
go to zero on the atomic site and peak to either side. This is
characteristic of potentials for single-phonon excitation [12].
These structural features are pertinent when imaging with an
atomic-sized probe, as we will discuss later.

We now consider the form of the transition potentials in
an Einstein model. For excitation of atom κ into the state
nκ = (nκ

1 ,n
κ
2 ,n

κ
3) (where 1,2,3 refer to the Cartesian directions)

we have [34]

Hnκ 0(q) = h2

2πm
e−2πiq·Rκ f κ

e (q)

×
∏

i

[ − i

√
2Mκ

i

mκ
q2

i

]nκ
i√

nκ
i !

e− Mκ
i

mκ
q2

i (11)

and the transition probability is given by

|Hnκ 0(q)|2 =
(

h2

2πm

)2

f κ
e (q)2

∏
i

[
2Mκ

i

mκ
q2

i

]nκ
i

nκ
i !

e−2
Mκ

i
mκ

q2
i . (12)

Here, the index i runs over the Cartesian directions and Mκ
i

are the Debye-Waller factors for the κth atom. As alluded to
in the previous section, these Debye-Waller factors are chosen
such that the rms displacements agree with the prediction of
the correlated model. This can be expressed as the condition

Mκ
i =

∑
j

(
εκ
ji

)2
Mj, (13)

where εκ
ji is the ith Cartesian component of the polarization

vector εκ
j .

Next we consider the case of single-phonon excitation for
both the correlated model and the Einstein model. When the
incident electron scatters via small angles, i.e., q is small
and q ≈ q⊥, it is a reasonable approximation to include only
single-phonon excitation. In this case, the transition probability
for singly exciting the j th mode within the correlated model
is given by

|H(1j )0(q)|2 =
(

h2

2πm

)2 ∑
κ

f κ
e (q)2

[
2
Mj

mκ

(
q · εκ

j

)2
]

+ cross terms, (14)

where the label 1j indicates that the final state includes a
single excitation of only the j th mode. In the Einstein model,
the probability of singly exciting the ith Cartesian mode of the
κth atom is given by

|H(1κi)0(q)|2 =
(

h2

2πm

)2

f κ
e (q)2

[
2
Mκ

i

mκ

q2
i

]
, (15)

where the label 1κi indicates that the final state includes a
single excitation of only the ith Cartesian mode of the κth
atom. It should be noted that since we are considering small
scattering vectors q, we have made the approximation that
exp[−Mj (q · εκ

j )2/mκ ] ≈ 1.
We will now show that, for single-phonon excitation,

integrating the spectra over energy yields the same result
in the correlated and Einstein models. The sum over all
single-excitation transition probabilities in the Einstein model
is found by summing over the result in Eq. (15) for each atom
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κ and each Cartesian degree of freedom i:

(
h2

2πm

)2 ∑
κ

f κ
e (q)2

∑
i

[
2
Mκ

i

mκ

q2
i

]

=
(

h2

2πm

)2 ∑
κ

f κ
e (q)2

∑
i

⎡
⎣ 2

mκ

( ∑
j

εκ
ji

2
Mj

)
q2

i

⎤
⎦

=
(

h2

2πm

)2 ∑
κ

f κ
e (q)2

∑
j

[
2
Mj

mκ

∑
i

(
qiε

κ
ji

)2

]

=
(

h2

2πm

)2 ∑
κ

f κ
e (q)2

∑
j

[
2
Mj

mκ

(
q · εκ

j

)2
]

, (16)

where Eq. (13) is used in going from the first to the second line.
The final line above is a sum over all modes j of the transition
probabilities in the correlated model as given in Eq. (14),
provided that we work within the incoherent approximation,
wherein the cross terms in Eq. (14) are neglected. This
is a reasonable approximation in practice when collecting
the inelastically scattered electrons into the range of angles
permitted by the detector, as we have verified numerically, and
which is also consistent with the results in Ref. [39]. Thus in a
single-phonon model, although the details of the spectra may
be quite different, the integrated spectra of the two models are
identical.

The proof can be extended to all orders of scattering: It
turns out to hold for every individual order of scattering; i.e.,
the integrated spectrum for two-phonon processes is identical
in the two models, and so on for three-phonon, four-phonon
processes, etc. Once again we will work within the incoherent
approximation; i.e., we ignore the cross terms in Eq. (7). For
clarity we now restrict our attention to a single atom at a time
and thus drop the κ index, and additionally write the transition
probability within the Einstein model as

|Hn0|2 =
(

h2

2πm

)2

fe(q)2Gn0 (17)

so that we have

Gn0 =
∏

i

[
2Mi

m
q2

i

]ni

ni!
e−2 Mi

m
q2

i . (18)

The total probability Pn of n-phonon scattering processes is
proportional to

∑
∑

i ni=n

Gn0 =
∑

∑
i ni=n

∏
i

[
2Mi

m
q2

i

]ni

ni!
e−2 Mi

m
q2

i

=
[ ∑

i 2Mi

m
q2

i

]n

n!
e− ∑

i 2 Mi
m

q2
i , (19)

where we have used the multinomial theorem(∑
i xi

)n

n!
=

∑
∑

i ni=n

∏
i

x
ni

i

ni!
. (20)

Substituting for the Debye-Waller factors Mi using Eq. (13)
we have

Pn ∝
[∑

i
2
m

( ∑
j ε2

jiMj

)
q2

i

]n

n!
e− ∑

i
2
m

(
∑

j ε2
jiMj )q2

i

=
[∑

j 2Mj

m
(q · εj )2

]n

n!
e− ∑

j 2
Mj

m
(q·εj )2

=
∑

∑
j nj =n

∏
j

[
2Mj

m
(q · εj )2

]nj

nj !
e−2

Mj

m
(q·εj )2

, (21)

where in going from the second line to the third line we have
once again used the multinomial theorem. The final line is
proportional to the total probability within the correlated model
of all n-phonon scattering processes. Therefore, assuming
the incoherent approximation, the integrated spectrum in the
correlated and Einstein models will be the same in general.

IV. SPECTRA FOR SILICON

A spectrum calculated in the correlated model for silicon
illuminated by a plane wave down [001] at 300 keV and con-
sidering only single-phonon excitation, which predominates
in the forward direction, is shown in Fig. 2(a). The correlated
modes which contribute in Fig. 2(a) were calculated using
Eq. (9), with the force constant parameters for the dynamical
matrix taken from Ref. [37]. We note that this spectrum
is not simply the phonon density of states for silicon (see
Ref. [40]) divided by frequency, due to the dependence of the
transition potential in Eq. (6) on the wave vector transfer q
and the polarization vectors εκ

j . The corresponding spectrum
in the Einstein model, also assuming single-phonon excitation,
is shown for comparison. The spectra in Fig. 2(a) have a
Gaussian blur with standard deviation of 1 meV applied to
simulate experimental energy broadening. While the integrated
spectra are the same, as expected from the reasoning at
the end of the last section, the details of the spectra are
substantially different. A simulation in the correlated model for
scattering in the strictly backward direction is computationally
challenging due to the very large number of multiphonon final
states associated with the different modes. Therefore we have
confined ourselves to a quantum mechanical calculation in the
Einstein model, shown in Fig. 2(b), and we have reason to
believe that the correlated model would give similar results,
as we will discuss in the next section. We have also shown
in Fig. 2(b) the spectrum predicted by a classical model of
elastic scattering from a quasifree atom, including Doppler
broadening [15]. We note that the two spectra in Fig. 2(b)
agree closely in both the location of the peak energy loss and
the width of the peak.

Next we consider the variation in the spectrum when a small
atomic-sized coherent probe, as in atomic-resolution STEM,
is scanned across the specimen and the results are recorded in
a spectrometer with a small aperture in the forward direction.
Assuming an incident energy of 300 keV, a probe forming
aperture of 15 mrad, and a detector semiangle of 5 mrad,
we see in Fig. 3 that as the probe scans across the positions
indicated on the inset (showing the projected structure of
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FIG. 2. Phonon-loss spectra for 300-keV plane-wave electrons
incident on silicon down [001], calculated at room temperature. (a)
Spectrum obtained for single-phonon excitation in both the correlated
and Einstein models, which is dominated by scattering in the forward
direction. (b) Spectrum in the strictly backwards direction for the
Einstein model, taking into account multiphonon excitation, and a
classical model incorporating Doppler broadening. The peak value
occurs at the classical recoil energy ER, indicated by the solid line. The
Einstein and classical model results in panel (b) have been normalized
to each other and are almost indistinguishable.

silicon along [001]) that not only does the overall scattering
vary as a function of probe position but the shape of the
spectrum also changes substantially. This can be understood
by examining the third line in Eq. (4), where we see the
overlap between the probe and the transition potential in
the factor ψ0(r′)Hn0(r′); clearly an atomic-sized probe will
interact differently with each transition potential at different
probe positions. This is evident from the insets in Figs. 1(a)
and 1(c). It is interesting to note that when the probe is on a
column of silicon atoms (position 1) the integrated spectrum
is considerably less than when it is just off the column
(position 2). The reason for this is that, despite there being
more overall inelastic scattering when the probe is on the
column, there is a redistribution of scattering intensity out to
larger angles when the probe is on the column, in such a way
that there is less intensity inside a small aperture than when the
probe is off the column. The size of the spectrometer aperture
will thus be an important consideration in the development of
techniques for atomic-resolution vibrational spectroscopy.

FIG. 3. Spectra (in arbitrary units) as a function of energy loss
in meV, for the four equally spaced probe positions as indicated
in the schematic of the cubic unit cell (inset, viewed along [001])
and presented in the order indicated for purposes of visualization.
All spectra are on the same absolute scale. Besides variations in
magnitude, variations in shape are evident.

V. RELATIONSHIP BETWEEN MODELS

We have already seen in previous sections some ways
in which the correlated model and the Einstein model are
related. Let us recap here. In the forward direction, unlike
the correlated model, the Einstein model will, in general,
not predict the details of the phonon-loss spectrum correctly.
However, as we have shown both analytically in the incoherent
approximation and by numerical example, the Einstein model
does give the integrated intensity, i.e., the total scattering due to
phonon excitation, correctly. An effective Einstein model can
be constructed from the detailed phonon model by matching
the mean-squared displacements of all atoms, as encapsulated
in Eq. (13). We have also seen that for the spectrum shown in
Fig. 2(b), the Einstein model spectrum has its maximum at the
classical recoil energy. Let us now explore what happens to
the correlated model spectrum for scattering to large angles.

Once again making the incoherent approximation in Eq. (7),
i.e., ignoring the cross terms, we have for atom κ that the
probability of the transition from the ground state to the final
state n = (n1, . . . ,nj , . . . ) is given by

∣∣Hκ
n0(q)

∣∣2 = h4

4π2m2
f κ

e (q)2

×
∏
j

[
2Mj

mκ

(
q · εκ

j

)2]nj

nj !
e−2

Mj

mκ
(q·εκ

j )2

. (22)

This expression is composed of factors of the form xn

n! exp(−x),
which are maximized when x ≈ n. This approximation be-
comes better as n becomes larger. In other words, Eq. (22) is
maximized when

nj ≈ 2
Mj

mκ

(
q · εκ

j

)2
. (23)
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The approximation is better at larger scattering angles, where
the total number n of phonons excited is large. When this is true
it is either the case that the nj in Eq. (23) are sufficiently large
for the approximation to be a good one or that alternatively
there are many modes j for which the right-hand side of
Eq. (23) is sufficiently similar that those modes may be
concatenated together and considered as one, leading to an
effectively large nj .

Assuming that Eq. (23) is reasonably well satisfied we have
that the total energy loss (across all degrees of freedom) is
given by

Eloss =
∑

j

nj�ωj ≈
∑

j

2
Mj

mκ

(
q · εκ

j

)2
�ωj . (24)

Using the fact that Mj = π2
�/ωj [see Eq. (8)] we can now

write

Eloss ≈ h2

2mκ

∑
j

(
q · εκ

j

)2 ≈ h2

2mκ

q2 = ER, (25)

where ER = h2q2/2mκ is the classical recoil energy. The
second approximation, that

∑
j (q · εκ

j )2 ≈ q2, is accurate for
a crystal lattice with sufficient symmetry and is exact for a
Bravais lattice with centrosymmetry such as silicon [41]. We
have also verified numerically that this is indeed the case.
This result indicates that when the approximation in Eq. (23)
is reasonable, then the spectrum will have its peak energy
loss at the classical recoil energy. As pointed out earlier, it is
computationally challenging to check this result for the present
study of silicon due to the large number of final states involved.
However, as we have seen in Fig. 2(b), the Einstein model
spectrum also agrees with the classical prediction, taking
into account Doppler broadening (i.e., the atomic motion),
as described in Ref. [15]. This is consistent with analogous
studies in neutron scattering that for a phonon density of
states sufficiently characterized by a single lattice frequency
the probability distribution for large n-phonon processes is
distributed as a Gaussian about the mean recoil energy [41].
It is reasonable to speculate that the correlated model would
coincide with both of these models in the backward direction.

Let us consider the relationship between the Einstein and
classical models in more detail. We begin by considering an
atom sitting in an isotropic harmonic well defined by a trap
frequency ω corresponding to a silicon atom in crystalline
silicon at room temperature. From Eq. (5) the differential cross
section for scattering into the solid angle � via excitation of
the target to the state n is given by

dσn

d�
= 4π2m2

e

h2
|Hn0(q)|2 , (26)

where Hn0(q) is the transition potential, given in the Einstein
model by Eq. (11). Many of the final states described by the
vectors n correspond to the same energy loss, and so we sum
over all such states to obtain the differential cross section for a
scalar n = ∑

i ni . The energy loss associated with the quantum
number n is Eloss = n�ω. There is furthermore a dependence
on the azimuthal angle φ due to the choice of coordinate system
and we thus define a differential cross section with respect to

FIG. 4. Differential cross section as in Eq. (28) for a plane
wave of incident energy 300 keV as a function of energy loss and
scattering angle, calculated for a silicon atom in an isotropic harmonic
oscillator potential with trap frequency ω = 4.6 × 1014 s−1. The
overlaid (yellow) line is the classical relationship in Eq. (30).

θ by averaging over φ:

dσn

dθ
≡ 1

2π

∫
dφ

dσn

d�
. (27)

It can be shown after some algebra that this reduces to

dσn

dθ
= f 2

e (q)
kn

k0

(2Mq2)n

n!
e−2Mq2

, (28)

where q2 is the square of the scattering vector, given by

q2 = k2
0 + k2

n − 2k0kn cos θ. (29)

Assuming a constant scattering factor (a reasonable approxi-
mation for this purpose) and maximizing Eq. (28) with respect
to θ , we find, to first order in the energy loss, the relationship

cos θ ≈ 1 − mκ

m

1

γ + 1

Eloss

E
, (30)

where γ is the relativistic Lorentz factor. This is the same result
that is found from a relativistic classical analysis, assuming
that the energy loss is the recoil energy of the target [15,16].
The small energy loss approximation is reasonable since the
energy losses are of the order of eV or tens of eV, as compared
with the typical incident energies of tens or hundreds of keV.
Equation (28) can be recast in terms of energy loss and the
scattering angle θ by substituting Eq. (29) for q2 and Eloss/�ω

for n.
Figure 4 shows what might be termed the quantum

kinematical surface, which is the differential cross section
in Eq. (28) as a function of energy loss and scattering angle,
calculated for a plane wave of incident energy 300 keV and for
a silicon atom in an isotropic harmonic oscillator potential with
trap frequency ω = 4.6 × 1014 s−1 (corresponding to a silicon
atom at room temperature in crystalline silicon). The overlaid
(yellow) line is the classical relationship in Eq. (30). The
so-called ridge of the quantum kinematical surface tracks the
classical prediction. This is a nice illustration of how quantum
mechanics goes over to classical mechanics. Furthermore, we
note that the width of the ridge, representing the extent to
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which quantum mechanics is important, becomes smaller as
the trap frequency is reduced.

VI. DISCUSSION AND CONCLUSION

We have discussed a fundamental theory to calculate the
phonon-loss sector of the energy-loss spectrum for electrons
scattering from crystalline solids based on transition potentials
between initial and final states of the phonon sector of the
target. Some properties of these transition potentials have been
elucidated. We have used a correlated model to calculate the
vibrational modes and spectra for silicon with both plane wave
illumination and an atomic-scale focused coherent probe. For
the latter case we have shown that the spectra depend on
probe position. These spectra are also affected by the size
of the aperture on the spectrometer. The correlated model
has been contrasted with the Einstein model in which atoms
in the specimen are assumed to vibrate independently. For
small-angle scattering, the spectra predicted by the correlated
and Einstein models are quite different. However, we have
shown analytically that the integrated spectra are equal.

We have also discussed how both the correlated and Einstein
models relate to a classical view of the energy-loss process.
We have found that for scattering to large angles, the spectrum
calculated within the correlated model will peak at roughly the
energy loss predicted by the classical recoil energy, and that
this will be the case at all angles in the Einstein model. The
spectrum calculated in the Einstein model for large scattering
angles (i.e., near the backward direction) has been shown to
agree with a classical model of scattering from a quasifree atom
including Doppler broadening, and there is reason to believe
that this will also hold true for smaller scattering angles.

It remains to consider the effects of channeling and multiple
inelastic (phonon) scattering (as opposed to multiphonon
scattering considered here) on the measured spectra, the impor-
tance of which is well understood for core-loss spectroscopy;
see, for example, Refs. [32,42].
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