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At variance with structural ferroic phase transitions which give rise to macroscopic tensors coupled to
macroscopic fields, criteria defining antiferroelectric (AFE) phase transitions are still under discussion due to the
absence of specific symmetry properties characterizing their existence. They are recognized by the proximity
of a ferroelectric (FE) phase induced under applied electric field, with a double hysteresis loop relating the
induced polarization to the electric field and a typical anomaly of the dielectric permittivity. Here, we show
that there exist indeed symmetry criteria defining AFE transitions. They relate the local symmetry of the polar
crystallographic sites emerging at an AFE phase transition with the macroscopic symmetry of the AFE phase.
The dielectric properties of AFE transitions are deduced from a Landau theoretical model in which ferroelectric
and ferrielectric phases are shown to stabilize as the result of specific symmetry-allowed couplings of the AFE

order parameter with the field-induced polarization.
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I. INTRODUCTION

The relation between antiferroelectricity and ferroelectric-
ity is traditionally assumed to be analogous to the relation
between antiferromagnetism and ferromagnetism. However,
there is an essential difference between the symmetry proper-
ties governing spin and dipole orderings. In the paramagnetic
state, time-reversal symmetry, which is not a symmetry
operation in real space, exists everywhere and is lost at the
transition to the antiferromagnetic or ferromagnetic states,
only surviving in combination with part of the symmetry
operations associated with the crystallographic space group
of the atomic structure [1]. By contrast, in the paraelectric
(PA) phase the symmetry operations of the crystal space group
are localized in space. As such, a paraelectric “state” does not
exist by itself in the same sense as the paramagnetic state, and
all crystal structures displaying nonpolar symmetries can be
potentially antiferroelectric.

Definitions of antiferroelectricity involve the microscopic
picture of antiparallel dipoles, the existence of an electric
field induced FE phase associated with a double hysteresis
loop relating the electric polarization and the field, and a
characteristic anomaly of the dielectric permittivity [2—4]. A
symmetry-based definition of AFE transitions is still lacking,
in spite of previous attempts [5,6] inspired from a displacive
picture, and focused on a definition for atomic displacement
patterns associated to an AFE “soft-mode” as the driving
mechanism of the PA to AFE transition. Such a definition
is not well suited for describing the many important cases of
order-disorder antiferroelectrics that represent a majority of the
well-established AFE transitions. Besides, they are not linked
to specific physical properties, so that the definition is of little
use. This led some authors to state that antiferroelectricity was
an ill-defined and hardly useful notion [7].

In this work we propose a definition of AFE transitions
which stems from definite symmetry conditions fulfilled
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exclusively in AFE materials (Sec. IT). The dielectric properties
characterizing AFE transitions are deduced from a Landau
model in which ferroelectric (FE) and ferrielectric (FI) phases
are shown to stabilize under specific field-induced couplings
of the AFE order parameter with the electric polarization
(Sec. II). In Sec. IV, the traditional analogy between anti-
ferroelectricity and antiferromagnetism, the concept of local
polarization assumed in our theoretical description, and the
nature of the AFE order parameter are discussed. Last, in
Sec. V our results are summarized and the difference of our
theoretical approach with Kittel’s model of antiferroelectric-
ity [8] is underlined.

II. SYMMETRY-BASED DEFINITION OF
AFE TRANSITIONS

PA-AFE transitions are structural transitions between
phases displaying nonpolar space groups, which exhibit under
applied electric field a typical dielectric behavior. A Landau
symmetry analysis of the order parameters associated with
the PA—AFE transitions reported experimentally shows that
the transitions occur exclusively in materials which do not
have a stable FE phase in their phase diagram at zero fields.
It indicates that their dielectric properties are purely field-
induced effects. Since only a limited number of structural
phase transitions between nonpolar space groups exhibit
such dielectric properties, PA—AFE transitions should obey
restrictive and specific conditions. These conditions have so
far not been found from the macroscopic symmetries of the PA
or AFE phases alone. The specificity of PA-AFE transitions
has therefore to be searched in the microscopic features of their
transition mechanism. Here we show that two symmetry-based
conditions have to be fulfilled for a phase transition to qualify
as PA-AFE. A first condition deals with the local changes
occurring at the transition.

Condition 1. At the PA—AFE transition, a set of crystallo-
graphic sites undergo a symmetry lowering that results in the
emergence of polar sites and gives rise to a local polarization.
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FIG. 1. Illustration of the local symmetry-breaking mechanism
corresponding to Condition 1. In the PA phase, all sites of an atomic
row have a nonpolar site symmetry 2/m. At the AFE transition at 7,
the symmetry of every other atomic site lowers to 2. The sites located
at mid distance preserve their inversion center yielding the onset of
antiparallel dipoles on the polar sites. An electric field oriented along
the dipoles favors a ferrielectric configuration. Above a coercive field
E., a FE dipolar order arises.

Figure 1 illustrates the local symmetry-breaking mech-
anism corresponding to condition 1 for a one-dimensional
toy model. In the PA phase, all sites have the nonpolar site
symmetry 2/m. At the PA-AFE transition, every other site
acquires the polar site symmetry 2 while the sites located
in between keep their inversion center, which results in the
onset of antiparallel local polarizations on the “active” polar
sites, and a nonpolar macroscopic symmetry. The principle is
the same in real systems. Figures 2(a)-2(c) show the onset
of polar sites in the well-established examples of PA—AFE
transitions reported in Cu(HCOO),.4H,0 [9], KCN [10], and
PbZrO; [11]. They involve two or four sets of independent
polar sites arising from nonpolar sites at the transitions, which
may carry antiparallel arrays of dipoles.

The emergence of polar sites and local polarization at
PA-AFE transitions constitutes a necessary condition for their
existence, but the following additional condition is required
for preserving the site symmetries at the macroscopic level,
permitting a subsequent stabilization of a FE phase under
applied electric field.

Condition 2. The AFE space group has a symmorphic polar
subgroup coinciding with the local symmetry of emerging
polar sites.

This condition derives from the property that only symme-
try operations of the AFE space group forming a symmorphic
group preserve the local site symmetries, while screw axes
and glide planes modify the symmetry of the local sites. That
the emergence of polar sites (condition 1) is not a sufficient
condition for the existence of a PA—AFE transition can be ex-
emplified by the ferroelastic transition in SrTiO3, where the di-
electric properties characterizing AFE materials have not been
detected. Figure 2(d) shows the onset of polar sites of symme-
try mm?2 at its cubic Pm3m to tetragonal 14/mcm transition.
The symmorphic polar subgroups of /4/mcm are 14, C2, Cm,
and P 1, the point groups of which differ from mm?2. Therefore,
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FIG. 2. Emerging polar sites at the AFE transitions in (a)
Cu(HCOO), - 4H,0 [30], (b) KCN [10], (c) PbZrO5 [11], and (d)
at the non-AFE transition in SrTiO;. Colored spheres indicate the
polar sites carrying antiparallel dipoles in the AFE phase, whereby
crystallographically equivalent sites are drawn in the same color. At
sites drawn in black, no local polarization can emerge.

condition 2 is not fulfilled and the transition in SrTiO3; does
not have an AFE character, in spite of the arguable existence
of a local polarization on the mm?2 sites of its tetragonal phase.

Figure 1 shows the local effect of an applied electric
field on the emerging polar sites: low fields oriented along
the preexisting local polarization favor a ferrielectric (FI)
configuration, and above a coercitive E, field a FE dipolar
order arises. The preservation of the polar site symmetry and
local polarization by a symmorphic subgroup of the AFE
space group allows realizing at the macroscopic level a similar
sequence of FI and FE phases induced from the AFE phase
under suitably oriented fields. The space group of the FE phase
coincides with the symmetry of the PA phase under applied
field; it may contain screw axes or glide planes and is always of
higher symmetry than the symmorphic subgroup of the AFE
phase. Depending on the orientation of the field, the FE phase
may involve symmetry operations which do not belong to the
AFE space group. The space group of the FI phase is acommon
polar subgroup of the AFE and FE space groups; it may also
have a higher symmetry than the symmorphic space group.

A verification of Conditions 1 and 2 for confirmed AFE
materials is summarized in Table I. It shows that the two
conditions are unambiguously verified for the correspond-
ing PA-AFE transitions, the highest polar site symmetry
coinciding with the maximal symmorphic polar subgroup of
the AFE space group. The table indicates the orientation of
the electric fields stabilizing a FE phase. Also listed are a
number of materials (BiVOy, TeO,, NdPsO,4) which undergo
transitions fulfilling conditions 1 and 2 but have not yet been
recognized as antiferroelectric. It contains as well examples of
transitions that do not verify condition 1 (NH4Cl) or condition
2 (SrTiOs3). For some of the listed materials (DyVO,, TeO,,
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TABLE 1. Verification of conditions 1 and 2 for selected structural transitions in AFE and other materials listed in column (a). Other
columns have the following meaning. (b) Space-group changes occurring at the transitions. (c¢) Crystallographic sites undergoing a lowering
of their local symmetry to a polar point group. (d) Symmorphic polar subgroups of the low-symmetry phase space groups coinciding with
the emerging polar site symmetries. (e) Couplings between the AFE transition order parameter and the polarization allowing emergence of
a field-induced polar phase. (f) Corresponding orientation(s) of the electric field. (g) Space group of the FE phase. In (e) and (f) except for
CsH3(Se0s3), only couplings corresponding to nongeneral directions of P and E are given. In (e), 1, and 7, are two components of the same
transition order parameter except for PbZrO; where they correspond to different order parameters.

(@) (b) (©) (d) (e) () (&
CsH;(Se03), Pl — P1 la:1—1 Pl n*P? E Pl
Cu(HCO00),.4H,0  P2,/a — P2,/a 2a,2b,2¢,2d : 1 — 1 P1 n*P? E. P2,
KCN Immm — Pmmn 2a,2¢ : mmm — mm?2 Pmm?2 nszz E, Imm?2
C4O4H, I14/m — P2;/m 2a,2b :4/m — m Pm,P1 (771772,1712 — n%) E,, Cm
4¢:2/m —m X(P Py, P} — P)),
4d 14— 1 (n} +n3)P? E. 14
NH,H,PO, 142d — P2,2,2, 4a,4b 4 — 1 Pl idem E..E, Cc,Fdd?2
DyVO, 14, /amd — Imma 4a,4b : 4m2 — mm?2 Imm?2,P1 nzPZ2 E, 14ymd
16h : 2,y — 1 n(P? — Pyz) E,, Imm?2
BiVOy, I14,/a — B2/b 4a,4b 14 — 2 Cc2 r;zPZ2 E. 14,
n(P. Py, P} — Pyz) E,, Cc
TeO, P4,2,2 - P2,2,2; da 12— 1 P1 nszz E. P4,
8h:1—1 n(P? — Pyz) E,, C2
PbZrO; Pm3m — Pbam 3d : 4/mmm — m,2 Pm,P2 (”%’”%)sz.y,z E,,. P4mm
la,1b : m3m — m,1 P1 )P o Eiyyee  Amm2
NdPsO4 Pmna — P2,/b dedf 2 — 1 Pl NP P, E,, Pnc2
4h:m — 1 n?P? E. Pmn2,;
NH,ClI Pm3m — P43m none
SrTiO; Pm3m — 14/mcm 3d :4/mmm — mm?2 14,C2,Cm,P1 none

NdPsO,4), the local polarization emerging at the transition
results from a symmetry lowering on sites with an already
polar site symmetry in the PA phase, which illustrates the
property that PA and AFE “states” do not exist per se but can
only be defined in the context of a PA-AFE phase transition.
As will become apparent in the following, a variety of
situations have to be taken into account in real systems. For
instance, due to the high energy barrier that may exist between
the FI and FE phases, the latter may not always be stabilized at
high fields (Sec. IV). Moreover, for specific couplings of the
PA—AFE transition order parameter with the polarization, the
FE phase becomes unstable, the field-induced FI-FE sequence
of phases being replaced by a sequence of two isostructural FI
phases (Sec. III). Accordingly, the emergence of a FE phase is
not a prerequisite for PA—AFE transitions, and the realization
of a double hysteresis loop under high fields can be effective
or latent. Therefore, our theoretical analysis allows proposing
the following symmetry-based definition which encompasses
the variety of experimental situations: PA-AFE transitions
are structural transitions between nonpolar phases where the
symmetry of crystallographic polar sites emerging at the local
scale coincides with the symmetry of a polar symmorphic
subgroup of the AFE space group, allowing the emergence of
an electric field induced polar phase at the macroscopic scale.

III. DIELECTRIC PROPERTIES OF AFE TRANSITIONS

Application of an electric field E to a nonpolar AFE phase
induces a coupling between the AFE order parameter, here
labeled n, and the polarization P. The lowest degree coupling

between 1 and P determines the stability and symmetry of
a field-induced FE phase, and the orientation of the electric
dipoles in the AFE phase. It also establishes the link with the
dielectric anomalies typifying AFE transitions. Only couplings
of the n?>P? or nP™ (n > 2) types can be associated with
an AFE transition, since only such couplings reflect the
remarkable property of AFE transitions to occur in materials
which do not have a stable polar phase at zero fields. For a
biquadratic n*>P? coupling, the dielectric properties of AFE
transitions derive from the Landau potential:

o B Y P2
P.T)=¢o(T)+ =n* + =n*+ =n° + —
o(n ) = ¢o( )+2n +4n +6n +2X0

S 2p0
+§nP EP, ey

where « = a(T — T'¢), and the other phenomenological coef-
ficients are constant. This order-parameter expansion differs
from the seminal model by Kittel [8] as it involves a single
symmetry-breaking AFE order parameter n, the polarization P
being a field-induced order parameter. It expresses the property
that a polar phase requires the mediation of the AFE order
parameter to be stabilized upon application of an electric field.

Minimizing ¢ with respect to n and P yields the equations
of state:

n(a + B>+ yn* + 8P =0, 2)

P(1+8x0n*) = xoE. 3)
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FIG. 3. Theoretical temperature-electric field (7-E) phase dia-
gram associated with the free energy given by Eq. (1) for 8 > 0 and
8 > 0. Hatched and hatched-dotted curves represent, respectively,
second-order transition and limit of stability curves. The thermody-
namic paths for T > T, T, > T > Ty, and T < Tj are described in
the text.

At E = 0, Egs. (2) and (3) yield two possible stable phases:
the PA phase (n = 0, P = 0) and the AFE phase (n # 0, P =
0). For E # 0 two phases are stabilized: a FE phase (n = 0,
P #0) in which the AFE antiparallel dipole configuration
is absent, and a phase in which the AFE ordering (1 # 0)
has a nonzero total polarization (P # 0), i.e., having either a
ferrielectric (FI) dipolar order or a “weak” ferroelectric (WF)
order with a canting between antiparallel arrays of dipoles.

Figure 3 shows the location of the PA, AFE, and field-
induced FE and FI or WF phases in a theoretical temperature-
field T—E phase diagram. For T > T, the PA phase (n = 0,
P = 0) stable at E = 0 transforms into the FE phase (n = 0,
P = yoE) for E #0. For T, > T > Ty the AFE phase [ =
:t(—%“)'/z,P = 0] stable at E = 0 transforms into a FI (or
WF) phase for E # 0, in which the equilibrium values of n
and P are given by n = £[(—a — §P?)/B]"*, where P is a
real root of the Cardan equation

82 1 ab
—P3—<———>P+E=0. 4
B X0 B @

With increasing field the FI phase transforms across the
second-order transition curve

(-5
E=+—(-2 )
X0 )

into the FE phase, which implies that the FI space group is a
subgroup of the FE space group. For T < T the transformation
of the FI into the FE phase becomes first order, crossing the
region of coexistence of the FI and FE phase. With increasing
field the FI phase transforms discontinuously into the FE
phase, the limit of stability of the FI phase corresponding
to the curve E.|, the equation of which is given by the

condition 97, ®-07,P — [agpcp]2 =0 with (n#0, P #0)
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(b) X

FIG. 4. Temperature dependence of the dielectric susceptibility
x(T) given by Eq. (4) across a second-order (a) and first-order (b)
transition.

corresponding to
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The E.|(T) curve is obtained by introducing a real root of
Eq. (4) into Eq. (6). With decreasing field the FE phase reaches
its limit of stability on the E, curve corresponding to Eq. (5).
The merging point of the E.; and E, curves provides the
values of Ty and Ej. The first-order transition curve between
the FI and FE phases, not shown in Fig. 3, is located between
the E;; and E, curves below Ty. Its equation is given by
D(Prr, ) = O(Prg,0), where Prg = xoE, Pgr is a real root
of Eq. (4), and e = +[(—a — 8P2)/B1".

One can deduce from Eq. (3) the temperature dependence
of the dielectric susceptibility at the PA-AFE transition. For a
second-order transition (8 > 0) one gets below T,

X0

x(T) = ———F—7> )
078

14 day

the temperature dependence of which depends on the sign of §
[Fig. 4(a)]. Figure 4(b) shows x (T) for a first-order transition
(B < 0) occurring at T} > T, which involves an upward (§ <
0) or downward (6§ > 0) discontinuity. AFE transitions verifiy
the preceding temperature dependences of x(7") for § > O,
with a downward discontinuity at 7} for CsH3(SeO3), [12],
Cu(HCOO), - 4H,0 [9], KCN [13,14], NH4H,PO, [15], and
PbZrO; [16] and a decrease below T, for C4O4H, [17].

Equation (4) provides the electric field dependence P(E)
of the polarization. It corresponds to a double hysteresis loop
which, as shown in Fig. 3, can be observed for a second-order
AFE transition below a temperature Ty < T, [Figs. 5(a)-5(d)],
whereas for a first-order AFE transition it is observed below
T, > T, [Figs. 5(e) and 5(f)]. Characteristic double AFE loops
have been observed in a number of AFE transitions, e.g., in
CsHj3(Se0s), [12], Cu(HCOO), - 4H,0 [9], or PbZrO3 [16].
Double hysteresis loops are also reported at first-order FE
transitions, as for example in BaTiO; [18]. However, at
variance with AFE transitions the two loops are observed
within the region of stability of the PA phase and merge into a
single loop at the transition to the FE phase.

A biquadratic 87*>P? coupling always exists at AFE
transitions. However, a unP" (n > 2) coupling can also be
permitted by symmetry, which modifies the previous results.
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FIG. 5. E(P) and E.(T) curves deduced from Eqgs. (2) and (3)
for a second-order PA—AFE transition (a)-(d) and a first-order
transition (e)—(g). At low fields the linear behavior of P(E) indicates
a progressive transformation of the AFE phase into a FI or WF dipolar
order. At a coercive field E,.; a discontinuous transition occurs to a
FE phase. Reversing the field, P(E) decreases along a different path
below a coercive field E., < E.; forming a loop before reaching the
linear regime.

The corresponding equations of state

n(e+ n* +yn* +8P*) + uP" =0, (8)
1 2 n—2 2

Pl —+én"4+nunP" “+vP" | =FE ®
X0

do not allow a stable FE phase under applied field but only FI or
WF (n # 0, P # 0) phases, the stabilization of which requires
taking into account an additional 3 P*invariantin ®. A double
hysteresis loop can occur at a first-order field-induced phase
transition between two isostructural FI or WF phases having
different regions of stability. The temperature dependence of
the dielectric susceptibility x(7) has a similar shape than for
a 8n”> P? coupling.

nP? couplings exist exclusively for “proper” ferroelastic
transitions [19], where 1 has the symmetry of a sponta-
neous strain. Phase transitions in DyVO, [20,21], TeO, [22],
BiVOy [23], and NdPs0O,4 [24] verify this property. As shown
in Table I application of electric fields to the ferroelastic phases
of the four compounds induce a n P? coupling for E,, fields,
with the emergence of FI or WF phases, or only a n?P?>
coupling for fields along z, giving rise to a FE phase. AFE
dielectric anomalies have been reported at the transitions in
DyVO, [20,21] and TeO, [22]. nP3 couplings are allowed
at ferroelastoelectric transitions [25] where the AFE order
parameter has the symmetry of a third-rank piezoelectric tensor
component. n P* couplings are found in proper ferrobielastic
transitions [25] where the order parameter has the symmetry
of an elastic stiffness.

IV. DISCUSSION

Our extended investigation of structural transitions to non-
polar phases shows that although conditions 1 and 2 are satis-
fied in a large number of materials, the emergence of a FE phase
above a coercive field may not always occur because of the
large energy difference between the low-field FI and high-field
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FE phases. This is due, in particular, to the additional strains
possibly required for stabilizing the FE phase. For example,
at the AFE transition in NH4H,PO,, a double hysteresis loop
could not be observed [16], the onset of a FE phase implying
an orthorhombic deformation of its monoclinic or triclinic FI
phase. Therefore, antiferroelectrics presenting all the dielectric
features currently assumed for PA—AFE transitions should not
constitute a widespread class of materials, as compared to
ferroelectrics. This is in contrast to antiferromagnets which
form the largest class of magnetically ordered materials.
However, our proposed definition of PA-AFE transitions,
given in Sec. II, does not imply the stabilization of a FE phase
under applied field or a double hysteresis loop, and extends
the current characterization of antiferroelectrics to the larger
class of materials in which a polar (FI or WF) field-induced
phase emerges from a nonpolar phase.

The analogy between antiferromagnets and antiferro-
electrics is usually invoked because both antiferromagnetic and
AFE structures display antiparallel arrays of spins or dipoles
and because ferromagnetic or FE phases emerge above coer-
cive fields. Our work underlines a deeper analogy consisting
of the common microscopic nature of the symmetry-breaking
order parameter in the two classes of materials: the emergence
of a discrete array of local dipolar sites, which constitutes in
our approach the microscopic symmetry-breaking mechanism
for the formation of an AFE phase, is the structural analog
of the continuous microscopic spin-density waves which are
the symmetry-breaking order parameters at antiferromagnetic
transitions. It can be questioned if the analogy extends at the
level of the interactions between dipoles, i.e., if there exists a
physical criterion characterizing AFE interactions, similar to
the negative sign of the exchange interaction typifying antifer-
romagnets. In this respect it can be noted that all experimental
examples of AFE transitions show a decrease of the dielectric
permittivity, corresponding to a positive sign of the coupling
coefficient § between n and P. Such repulsive coupling is nec-
essary for compensating the attractive (negative) interactions
existing between antiparallel dipoles [26] and results from the
different types of repulsive forces [27] between permanent
and induced dipoles. By contrast, the dielectric permittivity
at improper ferroelectric transitions undergoes an upward
discontinuity [28] reflecting the attractive coupling between
n and P required for compensating the repulsive interactions
between parallel dipoles. Although such considerations need to
be substantiated by a detailed theoretical analysis they suggest
that the decrease of the dielectric permittivity at a structural
transition to a nonferroelectric phase denotes the presence
of AFE interactions, in the same way that the shape of its
magnetic susceptibility typifies an antiferromagnetic ordering.

The essential difference, noted in the Introduction of this
article, between the time-reversal symmetry involved in mag-
netic transitions and the localized symmetries characterizing
structural transitions, does not preclude a formal analogy
between the theoretical approaches to magnetic and structural
transitions, and this analogy can be used for deducing the still
unknown fundamental properties of antiferroelectrics from
the well established properties of antiferromagnets. However,
one should keep in mind that although spin densities are
localized, electric dipole densities localized at polarizable sites
represent only a conceptual image which has been used for
establishing the dielectric properties of polarized insulators.
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In the case of AFE transitions this image can be specified
in two different ways depending on the symmetry breaking
mechanism occurring at the transition. If the transition induces
a breaking of the translational periodicity associated with
a wave vector k # 0, the AFE structure can be considered
as formed by an alternation of unit cells having antiparallel
local polarizations. For transitions without modification of the
crystal unit cell (k = 0) one can separate in each unit cell two
regions corresponding to antiparallel polarizations. In both
cases the dipoles are assumed to be located at sites consistent
with the symmetry operations of the AFE structures and
represent the polarization of the entire surrounding volumes
(unit cell or region of a unit cell).

The relation of the AFE order parameter n with the
local distribution of dipoles can correspond to two different
transition mechanisms, similar to the different mechanisms
characterizing “proper” and “improper” ferroelectric transi-
tions [28,29]. For proper AFE transitions n can be directly
expressed in terms of the local dipole distribution either in a
continuous formalism, as a polarization wave amplitude, or
in a discrete formalism, as a linear combination X(p; — p;)
of local dipoles belonging to antiparallel arrays of emerging
polar sites. For improper AFE transitions n represents a
structural (displacive or ordering) mechanism which typifies
the lowering of symmetry at the transition, the emergence of
an antiparallel polarization wave amplitude being an induced
secondary effect of the preceding primary mechanism.
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V. SUMMARY AND CONCLUSION

In summary, AFE phase transitions have been shown
to occur under combined local and macroscopic symmetry
conditions, which provide a symmetry based definition of this
class of structural transitions. A Landau theoretical description
of their dielectric properties has been given by taking into
account the electric-field induced couplings existing between
the AFE and polarization order parameters. This description
leads to properties of AFE materials differing essentially
from the properties deduced from Kittel’s model of antiferro-
electrics [8]: the FE phase is absent from the phase diagram at
zero field, its emergence as a purely field induced effect being
conditioned by symmetry requirements. Furthermore, the AFE
order parameter n may represent a structural mechanism
inducing indirectly the antiparallel dipole lattices (improper
antiferroelectricity), or can be expressed directly in terms of
antiparallel dipoles (proper antiferroelectricity) as assumed by
Kittel.
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