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Energy transport in the Anderson insulator
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We study the heat conductivity in Anderson insulators in the presence of a power-law interaction. Particle-hole
excitations built on localized electron states are viewed as two-level systems randomly distributed in space and
energy and coupled due to electron-electron interaction. A small fraction of these states form resonant pairs that
in turn build a complex network allowing for energy propagation. We identify the character of energy transport
through this network and evaluate the thermal conductivity. For physically relevant cases of two-dimensional
and three-dimensional spin systems with 1/r3 dipole-dipole interaction (originating from the conventional 1/r

Coulomb interaction between electrons), the found thermal conductivity κ scales with temperature as κ ∝ T 3 and
κ ∝ T 4/3, respectively. Our results may be of relevance also to other realizations of random spin Hamiltonians
with long-range interactions.
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I. INTRODUCTION

Wiedemann-Franz law (WFL) [1] establishes a universal
relation between the electric and thermal conductivity of
metals. WFL is strictly valid in a model of noninteracting
electrons elastically scattered by impurities [2]. Inelastic
scattering as well as quantum corrections due to the interplay
of interaction and disorder [3–9] violate the WFL but the
deviations are usually small.

In this paper we address the problem of thermal conductiv-
ity in the Anderson insulator. Anderson localization [10] drives
electrons in a disordered metal into an insulating phase, thus
strongly suppressing the electric transport at low temperature
T . In this situation transport is typically of a variable-range
hopping or activated nature so that the suppression of electrical
conductivity is exponential. We show below that, in the
presence of a power-law interaction, the thermal conductivity
is a power-law function of T , so that the WFL is very strongly
violated. We calculate κ for arbitrary spatial dimensionality
and for an arbitrary exponent of the interaction law. Our results
for the physical situation of the 1/r Coulomb interaction in
two-dimensional (2D) and three-dimensional (3D) systems
should be of experimental relevance.

One of the motivations for our work was provided by exper-
iments on 2D systems in the regime of integer and fractional
quantum Hall effect (QHE). The Anderson localization of
charged bulk excitations plays a crucial role in the outstanding
accuracy of QHE quantization. In other words, these systems
are perfect insulators with respect to electric current. On
the other hand, recent measurements of energy transport via
quantum dot [11,12] and shot noise [13] thermometry detected
a considerable thermal conductivity flowing through the bulk
of fractional QHE with various filling fractions ν [11,13] and of
ν = 1 integer QHE [12]. Since the bulk thermal transport was
absent at filling fractions ν = 2,3, it was definitely a property

of the electronic system. Related results on a mysterious
leakage of energy from the edge at ν = 1 were obtained in
Ref. [14]. These findings prompted us to explore a state of the
electronic system which is a charge insulator and an energy
conductor at the same time.

We consider a system deep in the Anderson insulator phase,
with all single particle states being localized. Electron hops
on distances considerably exceeding the localization length
ξ are exponentially suppressed and will be discarded in our
consideration. In this approximation, the full Hilbert space of
particle-hole excitations reduces to a subspace built by small
(of size ∼ξ ) two-level systems which can be represented in
terms of spin-1/2 operators Si . As all other relevant spatial
scales will be much larger than ξ at sufficiently low tem-
peratures, one can view these spins as pointlike objects. The
electron-electron interaction leads to an interaction between
the spins, leading to an effective Hamiltonian of the form
[15–18]

H =
∑

i

εiS
z
i +

∑
ij

tij

rα
ij

(S+
i S−

j + H.c.) + Vij

r
β

ij

Sz
i S

z
j . (1)

This spin model is characterized by exactly zero electrical
conductivity, while the energy transport may still be finite.

If one starts from the conventional 1/r Coulomb inter-
action, the particle-hole pairs separated by a large distance
(�ξ ) exhibit a dipole-dipole interaction with α = β = 3. It
is instructive to consider, following Ref. [18], a more general
case, allowing for arbitrary

α � β > d. (2)

For d > 2 our results will be also applicable in the borderline
situation α � β = d, including the important case of dipole-
dipole interaction in 3D systems. We assume spin positions
i with uniform spatial distribution with density ρ and the
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random Zeeman fields (splittings of two-level systems) εi

uniformly distributed over the energy interval (−W/2,W/2).
The matrix element prefactors tij and Vij are in general random
(in particular, have a random sign) with characteristic values
tij ∼ t , and Vij ∼ V . For α = β we will assume that V � t .

While the assumption of uniform distribution of energies
εi is natural in other realizations of the spin Hamiltonian
(1) (some of them will be discussed below in this section),
it requires a comment in the case when this Hamiltonian
represents an effective description of an interacting fermionic
system. Indeed, for free fermions the density of states of dipole
(particle-hole) excitations on top of the ground state (filled
Fermi sea) is not constant for small energies ε but rather is
linear in ε. This is an immediate consequence of the fact that, in
order to have a particle-hole pair with an energy ε, the particle
and the hole should both have energies below ε. However, the
Coulomb interaction essentially modifies this result, leading
to a constant density of states of dipole excitations at not too
high energies [19]. This justifies our assumption of constant
density of energies εi [20].

In addition to the electronic realization discussed above, the
spin Hamiltonian (1) arises in several other physical contexts.
We briefly discuss some of them.

An important realization of the Hamiltonian (1) is provided
by amorphous materials (glasses) which show remarkable
peculiarities in thermal transport and specific heat [21,22]. To
explain these anomalies, a model of two-level systems—atoms
or groups of atoms that can tunnel between two nearly
degenerate configurations—was proposed in Refs. [23,24].
Later work emphasized the importance of interactions between
the two-level systems [16,25–28]. Recent experiments with
superconducting circuits [29,30] provided a direct way to
monitor the two-level systems and demonstrated a crucial
role of interactions between them. We refer the reader to
Refs. [28,31] for applications of the model (1) (in spatial
dimensionality d = 3 and with dipole interaction, α = β = 3)
to the analysis of relaxation in glasses at low temperatures.

Further, as discussed in Refs. [18,32,33], the Hamiltonian
(1) arises as a description of an ensemble of dipolar molecules
in an optical lattice or of spin defects in a solid-state system.
An experimental implementation of the dipolar-molecule setup
was reported in Refs. [34,35]. Experimental realization of a
one-dimensional system of trapped ions with tunable long-
range interaction [36] that can be approximated by a power law
with a tunable exponent has been reported in Refs. [37,38].

The structure of this paper is as follows. In Sec. II, following
Refs. [15–18], we identify the basic low-energy delocalized
degrees of freedom (“networks”) in the Hamiltonian (1)
for various values of the exponents α and β. We find the
criterion for the phase transition into the many-body localized
phase and summarize the phase diagram of the system.
Sections III–VI are devoted to the quantitative analysis of the
heat conductance in the parameter regime d > αβ/(α + β)
within the approximation that neglects the “spectral diffusion”
phenomenon [28,39,40] discussed later in Sec. IX. They deal
with the thermal transport by the “optimal” low-energy degrees
of freedom (Sec. III), optimal-network-assisted transport by
high-energy excitations (Sec. IV), as well as with transport due
to ultra-low-energy networks (Sec. V) and the power-law tails
in the hopping (Sec. VI). Among all those mechanisms for heat

conductance we find the optimal-network-assisted transport to
dominate in most cases. In Sec. VII we deal with the thermal
transport in the situation when the parameters of the model
satisfy β/2 < d < αβ/(α + β). This parameter range (which
does not exist for α = β and, in particular, in the physically
most interesting case of dipole-dipole interaction, α = β = 3)
requires the analysis of a more complicated network as
compared to the more conventional situation d > αβ/(α + β)
explored in Secs. III–VI. In Sec. VIII we discuss the scaling
of the localization threshold for the many-body states with the
system size and include in consideration the spectral diffusion
whose implications for the thermal transport are analyzed in
Sec. IX. We close the paper by summarizing our results in
Sec. X.

II. RESONANT SPIN NETWORKS

In this section we summarize the phase diagram of
the system described by the Hamiltonian (1) as derived
in Refs. [15–18]. We identify the delocalized low-energy
excitations in the system (that exist for β < 2d) and establish
the corresponding effective theory. We focus on the case of
low temperature and strong disorder, assuming that T � W

and tρα/d � W .

A. Direct spin network

To analyze whether the system is in conducting or insulating
phase, one first performs a counting of resonant spins in the
spirit of Ref. [10]. Two spins i and j form a resonant pair
under the condition

|ε̃i − ε̃j | � t

Rα
ij

, (3)

where Rij = |ri − rj | is a distance between them and ε̃i ≡ εi +∑
k VikS

z
i S

z
k/r

β

ik is the energy of the spin i with the contribution
of its interaction with the neighboring spins taken into account.
The interaction-induced correction to εi makes the definition
of resonance for two spins dependent on the state of other
spins in the system. While this may influence the thermal
transport via the “spectral diffusion” phenomenon, it is of no
importance for the power-counting arguments involved in the
determination of the phase diagram of the system. Indeed, in
the many-body localized phase the spins are essentially frozen.
Thus, discussing the stability of the localized phase and the
basic delocalization mechanisms we can safely ignore the fact
that the definition of resonances depends on the state of the
system. We will proceed in this way in Secs. II–VII (and drop
the tilde in ε̃i), returning to the effect of spectral diffusion in
Secs. VIII and IX.

If one chooses a particular spin, the average number of its
resonant partners within the layer R < |ri − rj | < 2R is given
by

N1(R) ∼ ρRd t

WRα
= tρ

W
Rd−α. (4)

Here the factor ρRd is the total number of spins within the
volume Rd around the chosen one, while the factor t/WRα

takes into account the resonance condition. When the average
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is small, N1(R) � 1, it has a meaning of the probability for a
spin to have a resonant partner within the above layer.

For d > α the number N1(R) grows with R and an infinite
network of resonating spins emerges so that the system is in the
delocalized phase. On the other hand, for d < α the number
N1(R) decreases with R. In this case the spin is on average in
resonance only with a finite number of spins,

Ntotal ∼
∫ ∞

ρ−1/d

dR

R
N1(R) = tρα/d

W
. (5)

In the assumed regime of strong disorder, the average number
of resonant partners (or, equivalently, the probability for
a given spin to participate in a resonant pair) satisfies
Ntotal � 1. For a noninteracting problem this implies Anderson
localization [10]. The dimension d = α is critical in the
noninteracting case. The corresponding model was previously
studied in a number of works [10,15,41,42] and is known to
show a fractal behavior, in particular, an anomalous diffusion
with time dependence of the typical displacement of the form
r ∼ t1/d .

Below we focus on the case d < α (and Ntotal � 1), in
which a noninteracting system is in the insulating phase.
It turns out, however, that the counting argument presented
above is insufficient for the spin problem (which corresponds
to an interacting fermion problem). As was pointed out in
Refs. [17,26,43,44], there is a more efficient way of building a
connected spin network and d = α is not a critical dimension
in the interacting problem. We give an account of the procedure
in Secs. II B and II C.

B. Pseudospin network

To proceed further one first selects pairs of spins i,j that are
at resonance. Each such resonant pair has four energy levels.
One considers two of them that correspond to Sz

i + Sz
j = 0;

their energy splitting is ∼t/Rα
ij . This two-level system can be

described by a new pseudospin τa with spatial size Rij and
energy Eij ∼ t/Rα

ij . To participate in the dynamics at a given
temperature T , the pseudospin should be built out of spins
with energies within the temperature stripe, |εi |,|εj | � T .
While two high-energy spins |εi |,|εj | � T can also form
a resonant pair with a small splitting, Eij � T , thermal
occupation numbers of both states of such a pseudospin
will be exponentially suppressed. Such exponentially small
contributions are of no relevance for our consideration and
will be neglected. Below we only consider the pseudospins
that are “active” at a temperature T .

After pseudospins are constructed, one analyzes their con-
nectivity (see Fig. 1). The interaction between the pseudospins
is provided by the last term in the Hamiltonian (1). A pair of
pseudospins of a spatial size R1 is at resonance if

V

R
β

2

� |E12 − E34| ∼ t

Rα
1

. (6)

The condition (6) determines a spatial distance R∗
2 within

which a pseudospin of the size R1 is at resonance with any
other pseudospin of the same size,

R∗
2 =

(
V

t
Rα

1

)1/β

. (7)

R1

R1

R2

S

S

S

S

τ

τ

FIG. 1. Formation of a resonant network of pseudospins
(Sec. II B). Each pseudospin τ consists of two (resonating) spins 	S at
distance R1. Two pseudospins at distance R2 are at resonance provided
that the condition (6) is fulfilled. To construct the pseudo2-spin
network, this construction is iterated once more (Sec. II C).

Since β � α (and V � t for α = β), the distance between
pseudospins is larger than (or of the order of) their size, R∗

2 �
R1. Next, one chooses a pseudospin of the size R1 and counts
the pseudospins that are at resonance with it inside the shell
R2 < R < 2R2. We denote this number N2(R1,R2), adopting
the notations of Ref. [18]. The total number of (“active”)
pseudospins of size R1 in this volume is ∼(T/W )ρRd

2 N1(R1).
Though the spatial density of pseudospins ρps is lower than
the density ρ of the original spins,

ρps(R1) ∼ ρN1(R1)T/W ∼ tρ2T Rd−α
1 /W 2, (8)

the pseudospins are distributed over a narrow energy interval
t/Rα

1 . For V/R
β

2 � t/Rα
1 all R1 pseudospins in the considered

volume are at resonance; in the opposite case, the fraction
of pseudospins that are at resonance with a given one is
(V/R

β

2 )/(t/Rα
1 ). This yields

N2(R1,R2) = ρps(R1)Rd
2 min

{
1,

V/R
β

2

t/Rα
1

}
. (9)

For β < d the number of resonant pseudospins N2(R1,R2),
Eq. (9), diverges as R2 → ∞ at fixed R1. Thus, in full analogy
with Sec. II A, the pseudospins with any given R1 form infinite
resonant networks that support delocalized excitations.

The delocalization occurs in a slightly more complicated
fashion for β > d, the case of our primary interest. As
illustrated in Fig. 2, the number of resonant pseudospins
N2(R1,R2) has in this situation a sharp maximum as a function
of R2 at R2 � R∗

2 . At the optimal distance R∗
2 , the typical

number of resonant pseudospins of the size R1 is

N2(R1,R
∗
2 (R1)) ∼ tρ2T

W 2

(
V

t

)d/β

R
(dα/β)+d−α

1 . (10)

For

d > αβ/(α + β) (11)

this function monotonously increases with increasing R1, and
the system is in the energy-conducting phase. Therefore,
Eq. (11) is the condition for the delocalization of the pseu-
dospin network. For α = β this condition reduces to d > α/2,
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FIG. 2. Number of pseudospins of size R1 in the shell R2 < r <

2R2 that are in resonance with a given pseudospin of size R1.

which is the result obtained in Ref. [17]. The generalization
(11) was found in Ref. [18].

If d < αβ/(α + β), the pseudospins fail to form a con-
nected network (at least, at low enough temperatures). How-
ever, it does not yet mean that the system is necessarily an
insulator, as the next step of the hierarchical construction
reveals.

C. Pseudo2-spin network

In order to explore the possibility of delocalization for
d < αβ/(α + β), we follow Ref. [18] and go to the next level
of hierarchy, proceeding once more in the spirit of Secs. II A
and II B. We identify (rare) resonant pairs of pseudospins
and replace them by the effective pseudo2-spins σ . Each
pseudo2-spin σ is an object of some size R2 consisting of
two pseudospins of size R1 satisfying the resonance condition
(6).

The spatial density of pseudo2-spins is

ρp2s ∼ ρps(R1)N2(R1,R2) ∼ (T/W )ρN1(R1)N2(R1,R2),
(12)

and their energy distribution has a width ∼V/R
β

2 . Further,
two pseudo2-spins at a distance R3 have a typical interaction
energy ∼V/R

β

3 .
We estimate now the number of pseudo2-spins at resonance

with a given pseudo2-spin σ of size R2 (built out of spins of
size R1) and at a distance R3 � R2 from it. In analogy with
Eq. (9), we get

N3(R1,R2,R3) ∼ ρp2sR
d
3

V/R
β

3

V/R
β

2

∼ t2ρ4T 2

W 4
R2d−2α

1 Rd
2 min

{
1,

V/R
β

2

t/Rα
1

}
R

d−β

3 R
β

2 .

(13)

Clearly, the analysis of the pseudo2-spin network is of
particular interest in the case d < αβ/(α + β), when the pseu-
dospins do not form by themselves a resonant network. As will
be discussed below, this analysis in fact makes sense already
under weaker conditions, d < β and d < α/2. (We recall
that we always assume α � β.) Using the inequalities d < β

and d < α/2, we find that N3(R1,R2,R3) is a monotonously

decaying function of R1 and R3 attaining its maximum value

N3(R1,th,R2,R2) ∼ tVρ4T 2

W 4
R2d−α

1,th R
2d−β

2 (14)

at R3 = R2 and R1 = R1,th(T ), with

R1,th(T ) ∼ (T/t)−1/α (15)

being the thermal pseudospin size determined by t/Rα
1,th = T .

Equation (14) implies that the pseudo2-spins form a
connected resonant network, and thus the system is in the
delocalized state for

d > β/2. (16)

Under the opposite condition, d < β/2, the system is an
insulator, at least on the level of pseudo2-spins.

The critical dimensionality d = β/2 was found in
Refs. [26,28,44] in a model of spins in a randomly directed
Zeeman field and with long-range Ising couplings (exponent
β). In this model, the dynamics occur only due to local fields,
which places it into the same “universality class” as Eq. (1)
with α = ∞. In Ref. [17] the result d = β/2 for the critical
dimensionality was derived for the model (1) with α = β.
More recently, Ref. [18] obtained the critical dimensionality
d = β/2 for the model (1) with arbitrary β � α.

In order to study the regime β > 2d one may be tempted
to further iterate the construction. It was, however, argued in
Refs. [18,26] that this does not lead to any further reduction
of the critical dimensionality. Thus, the line d = β/2 marks
the true phase transition to the (low-temperature) many-body
localized phase.

The phase diagram of the system is summarized in Fig. 3.
We concentrate on the parameter range α � β, i.e., the part of
the phase diagram limited by the dotted line. The full line β =
2d designates the phase transition to the many-body localized
phase. The thick dashed lines divide the delocalized phase into
three regions I, II, and III that differ in the basic delocalized
low-energy degrees of freedom. Specifically, in region I, a
connected resonant spin network can be built. In region II,
spins do not form a connected network but pseudospins do
form it. Similarly, in region III, neither spins nor pseudospins
form a connected network, but it can be built out of pseudo2-
spins.

Region II is further subdivided by thin dashed lines into
several parts. As was already mentioned in Sec. II B, the line
β = d separates the regions with different structure of the
connected pseudospin networks. In region IIa (with β < d),
the pseudospins of any size become delocalized by themselves,
in full analogy with delocalization of spins in region I.
On the other hand, in parts IIb and IIc of region II where
the delocalization mechanism is much more intricate, only
pseudospins of sufficiently large size R1 become connected.
In this paper, we focus on regions IIb, IIc, and III.

The construction of the connected pseudo2-spin network is
particularly clear in region III of the phase diagram where no
connected pseudospin network exists. It turns out, however,
that the pseudo2-spin network is also meaningful in region
IIc of the phase diagram, despite the existence of a connected
pseudospin network. The reason for this is as follows. The
conducting pseudospin network is built of pseudospins of
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d 2d α

d

2d
2dd

d

Many body
Localized

cb

a

FIG. 3. Phase diagram of the system. We concentrate on the
parameter range α � β, which is the part of the phase diagram limited
by the dotted line. The full line β = 2d designates the phase transition
to the many-body localized phase. Thick dashed lines divide the
delocalized phase into the regions I, II, and III that are distinguished
by the basic delocalized low-energy degrees of freedom. Specifically,
the lowest-level resonant network is that of spins in region I, of
pseudospins in region II, and of pseudo2-spins in region III. Thin
dashed lines subdivide region II into regions with different structure
of the optimal pseudospin and/or pseudo2-spin networks. In region
IIa, the pseudospins of any size become delocalized by themselves,
in full analogy with delocalization of spins in region I. In parts IIb

and IIc the delocalization mechanism is much more intricate, and only
pseudospins of sufficiently large size R1 become connected. In region
IIc delocalized pseudospin and pseudo2-spin networks coexist. In this
paper, we focus on regions IIb, IIc, and III.

large size R1 such that N2(R1,R
∗
2 (R1)) � 1. On the other

hand, the conducting pseudo2-spin network is built out of
pseudospins with a much smaller size R1 ∼ R1,th(T ) for
which N2(R1,R

∗
2 (R1)) � 1. Such small (or, equivalently, high-

energy) pseudospins do not form by themselves a resonant
network. Thus, in region IIc the pseudospin and pseudo2-spin
networks coexist, as they are formed by pseudospins with
parametrically different sizes (or energies).

The situation is different in region IIb, where the function
N3(R1,R2,R3) achieves its maximum at R3 ∼ R2 ∼ R∗

2 (R1).
Thus, in this region, the connected networks of pseudo2-spins
would be just the same as the connected pseudospin networks.
Therefore, the extension of the hierarchical construction to the
pseudo2-spin level does not bring anything new in region IIb,
and one should stop at the pseudospin level.

Numerical analysis of the one-dimensional (1D) problem
(1) in Ref. [18] with α = β supported the existence of
a transition at a critical value of the exponent satisfying
1 < αc < 3, consistent with the analytical prediction αc = 2.
In Ref. [45] the 1D model (1) was numerically studied
for α = β = 3 and 5, and the many-body localization was
confirmed. A subsequent detailed study in Ref. [46] provided
further numerical evidence in favor of αc = 2.

The phase diagram of Fig. 3 will guide our discussion of
thermal transport in the rest of the paper. In Secs. III–V we
focus on region II of the phase diagram (more precisely, in

subregions IIb and IIc) and analyze the heat conductivity due
to a connected pseudospin network. In Sec. VII we investigate
the thermal transport caused by the connected network of
pseudo2-spins, which is of primary importance in region III
of the parameter space. We then also discuss the influence of
pseudo2-spins on the transport in the region and IIc.

In Secs. III–VII we will consider pseudospins and pseudo2-
spins as rigid entities and discard other degrees of freedom.
The effects of spectral diffusion which leads to modification of
resonant spin pairs forming pseudospins [see discussion after
Eq. (3)] are considered in Sec. IX.

It is worth emphasizing at this point that we aim to
describe the energy transport at the delocalized phase, d >

β/2. We will not study properties of the system at the
critical dimensionality d = β/2. It is expected that observables
show at criticality a multifractal behavior requiring a careful
analysis of full distribution functions, as has been performed
for noninteracting problems in Refs. [15,41,42]. We leave
the investigation of this critical regime as an interesting
prospect for future research. On the other hand, away from
criticality (on the delocalized side), conducting networks are
formed that lead to conventional diffusive energy transport.
Typical parameters of these networks and resulting transport
characteristics can be obtained by a scaling analysis presented
in this paper. Of course, local characteristics (such as, e.g.,
a distance between two nearest-neighbor pseudospins in a
network) do fluctuate but the magnitude of these fluctuations
is of the order of the typical value. Such fluctuations are
expected to influence only numerical prefactors in expressions
for transport characteristics. We do not try to evaluate such
prefactors in this paper and omit them in the formulas below.
We keep, however, the dependence on all physical parameters
of the problem.

III. THERMAL TRANSPORT: OPTIMAL NETWORK

We begin our study of thermal transport with an analysis
of thermal conductivity originating from pseudospin networks
in the parameter range αβ/(α + β) < d < β (regions IIb and
IIc of the phase diagram in Fig. 3). To study thermal transport,
we model the system by a set of pseudospin networks. Each
network consists of pseudo-spins of approximately the same
size (within a factor of 2). We will first discard coupling
between the networks and will discuss its role later on. The
Hamiltonian of a network of pseudospins of a size ∼R1 is
given by [18]

H =
∑

i

(
Ex

i τ x
i + Ez

i τ
z
i

) +
∑
i,j

uij τ
z
i τ z

j . (17)

The energies of pseudospins are randomly distributed over the
band of the width t/Rα

1 ,

Ex
i ∼ Ez

i ∼ t/Rα
1 , (18)

and their density in space is given by Eq. (8).
The interaction between the pseudospins is random and has

the magnitude uij ∼ V/|ri − rj |β . As explained in Sec. II, the
dominant role is played by interactions at the scale ∼R∗

2 (R1)
where N2(R1,R2) has a maximum as a function of R2. We can
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thus approximate the pseudospin interaction by

uij ∼
{

V
[R∗

2 (R1)]β ∼ t
Rα

1
, |ri − rj | < R∗

2 (R1)

0, otherwise.
(19)

While the neglected terms with |ri − rj | � R∗
2 (R1) are of no

importance for delocalization (since they decay as |ri − rj |−β

with β > d), one still should check what their contribution is to
the transport. Indeed, it is known that a power-law hopping may
lead to superdiffusive behavior (Levy flights). We will return
to this question in Sec. VI and show that the superdiffusive
behavior does not arise (in the considered range of α and β) in
the cases of our main interest d = 2,3 but may be important
for 1D systems.

It is convenient to perform a unitary transformation such
that the “Zeeman field” for each pseudospin points in the z

direction. The Hamiltonian then takes the form

H = 1

2

∑
i

εi τ̃
z
i + 1

2

∑
i,j

uij (	ni
	̃τi)(	nj

	̃τj ), (20)

with random energies εi ∼ √
(Ex

i )2 + (Ez
i )2 ∼ t/Rα

1 , random
interactions uij , Eq. (19), and random unit vectors 	ni in the
x-z plane.

By virtue of the Jordan-Wigner transformation, the spin
problem can be mapped onto that of interacting fermions.
Let us first neglect the fermion interaction; we will return
to it below. We then get a random matrix problem with the
Hamiltonian belonging to a d-dimensional version of a random
banded matrix ensemble (see Fig. 4). Each box in this figure
represents a random matrix of size N2[R1,R

∗
2 (R1)]; it contains

matrix elements between sites i located within the volume
R∗

2 (R1). All diagonal entries are εi ∼ t/Rα
1 . Nondiagonal

entries within each box as well as matrix elements between

0RM RM

RM RM RM

RM RM

RM

RM

RM
0

FIG. 4. Schematic representation of the random banded matrix
approximation to the Hamiltonian of the network of pseudospins of
a given size R1. Each block has a size R∗

2 (R1). Pseudospins within
each block and between adjacent blocks are strongly coupled by
interaction. Couplings at longer distances are neglected.

adjacent boxes are random hopping amplitudes uij ∼ t/Rα
1 .

All other matrix elements have been neglected.
The key dimensionless parameter characterizing the con-

nectivity of the network is N2[R1,R
∗
2 (R1)], which is noth-

ing but the dimensionless conductance at the “ultraviolet”
scale R∗

2 (R1). If this number is large, N2[R1,R
∗
2 (R1)] � 1,

the network is conducting (“connected”); if it is small,
N2[R1,R

∗
2 (R1)] � 1, the network is in the localized regime

(“disconnected”). These two regimes are separated by a critical
value N2[R1,R

∗
2 (R1)] ∼ 1, which corresponds, according to

Eq. (9), to the following size of pseudospins:

R1(T ) ∼
[
T tρ2

W 2

(
V

t

)d/β]−{β/[(α+β)d−αβ]}
. (21)

As follows from Eq. (9), the number N2[R1,R
∗
2 (R1)] is a

monotonously growing function of R1. Thus networks made of
pseudospins of size larger (smaller) than R1(T ) are connected
(respectively, disconnected) [47].

The above conclusion of the delocalization transition that
takes place with increasing dimensionless conductance N2 is
obvious in a three-dimensional system (or, more generally,
for d > 2). On the other hand, it is less trivial for d � 2,
since the noninteracting system is always localized in these
dimensionalities. (For d = 2 this concern is, in fact, somewhat
academic, since the localization length grows exponentially
with N2 and becomes larger than any realistic sample size
for the conductance N2 � 5.) At this point one should recall,
however, that our system is, in fact, interacting and the
dephasing length due to inelastic processes is of the same
order ∼R∗

2 (R1) as the localization length for the network with
N2 ∼ 1. This is because the network with N2 ∼ 1 does not
have any small dimensionless parameter: all relevant energy
scales are of the same order. With N2 increasing beyond
unity, the localization length increases and becomes much
larger than the dephasing length, which, according to common
wisdom [48], ensures delocalization. Thus, the condition
N2 ∼ 1, or equivalently, Eq. (21), marks the transition from
connected (delocalized) to disconnected (localized) networks,
independently of the spatial dimensionality d.

We will term a delocalized network with R1(T ) given by
Eq. (21) (with numerical coefficient different by, say, a factor
of 2 from the critical value) the optimal network. We will show
below that, under certain conditions on the exponents α and
β, the thermal transport is dominated by this network.

The contribution to the thermal conductivity from a con-
nected network can be estimated as follows:

κ(R1) ∼ E3(R1)

T 2
N2[R1,R

∗
2 (R1)][R∗

2 (R1)]2−d , (22)

where E(R1) is the typical energy carried by excitations on
the network with given pseudospin size R1. Two powers
of excitation energy, E2(R1), in Eq. (22) come from the
energy vertices in the linear-response calculation. Further, an
additional small factor of E(R1)/T reflects reduced sensitivity
of the distribution function to temperature variations in the
situation when the bandwidth is much smaller than the
temperature, i.e., it originates from the product of the derivative
of the Fermi function ∼1/T and the bandwidth ∼E(R1).
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For the optimal network we have N2 ∼ 1 and Eq. (22)
reduces to

κ∗ ∼ E3
∗

T 2
{R∗

2 [R1(T )]}2−d, (23)

where

E∗ = t/Rα
1 (T ) (24)

is a typical energy of delocalized modes on the optimal
network. Let us emphasize that, in view of d < 2αβ/(α + β)
[which follows from the conditions (2)], this energy is
parametrically smaller than the thermal energy, E∗ � T .
According to Eq. (23), the heat conductance of the optimal
network has the temperature dependence

κ∗ ∝ T μ∗, (25)

with the exponent

μ∗ = 5αβ − (2 + d)α − 2dβ

(α + β)d − αβ
. (26)

For the physically relevant case of d = 2 and α = β = 3, we
find μ∗ = 7 and the thermal conductivity

κ∗ ∼ t6V 6ρ18

W 18
T 7. (27)

In the case of d = 3 and α = β = 3, the above calculation
yields μ∗ = 4/3 and

κ∗ ∼ V 3

(
tρ2

W 2

)10/3

T 4/3. (28)

However, this is not the end of the story. What we have
calculated by now is the contribution to κ from the network that
we called optimal. It remains to be seen, however, whether (and
under what conditions) it is optimal indeed. This amounts to
evaluating contributions of networks with pseudospin sizes R1

much smaller and much larger than the optimal one, R1(T ) (see
Fig. 5 for the summary of the energy and spatial scales in the
problem). Furthermore, we remind the reader that the case α =
β = d = 3 is on the borderline of the region of applicability
of the theory [see the conditions (2)]. We should thus clarify
whether the obtained results retain validity for this physically
important case.

E ETW

TR1,th R1R1T

ultra low energy
excitations

op
tim
al

ne
tw
or
k

"high energy"
excitations

FIG. 5. Characteristic energy scales (W : disorder; T : tempera-
ture; E∗: excitation energy in the optimal network) and corresponding
pseudospin sizes. The optimal network is constructed and studied
in Sec. III. Transport by “high-energy” excitations (which get
delocalized only via the interaction with the optimal network) is
explored in Sec. IV. The ultra-low-energy excitations are discussed
in Sec. V.

IV. THERMAL TRANSPORT: HIGH-ENERGY
EXCITATIONS

In Sec. III we considered separately networks correspond-
ing to different pseudospin sizes R1. We have shown that in
this approximation there is a localization transition at a value
R1(T ) corresponding to an energy E∗: excitations with smaller
R1 (or, equivalently, larger energies) are localized. However,
in the full Hamiltonian there are also contributions that couple
pseudospins with different R1. These terms have the same
structure as given by the second term in Eq. (20), but now with
pseudospins 	σi and 	σj having essentially different R1 (and thus
energies). This coupling, once taken in second (or higher) order
of perturbation theory allows for decay processes of a high-
energy excitation in two (or more) lower-energy excitations.
These are real decay processes since the excitations with
energy �E∗ are delocalized and thus form a continuous
spectrum. Therefore, coupling to the low-energy excitations
dephases excitations with higher energies and leads to their
delocalization. Thus, excitations with energies higher than E∗
are also mobile and will contribute to the thermal transport.
Clearly, pseudospins with small R1 have low mobility: the
interaction-induced decay rate of these “nearly localized”
states is relatively long. On the other hand, the concentration
of pseudospins with energies higher than E∗ is much larger
than the concentration of pseudospins on the optimal network.
Thus, it is not immediately clear which range of energies will
give a dominant contribution to the transport.

To estimate the lifetime of a pseudospin with a size much
smaller than R1(T ) (and thus the energy much larger than
E∗), we have to find the most efficient interaction process that
allows one to flip this pseudospin. One type of such process
involves energy conversion from a pseudospin with an energy
E to two pseudospins of approximately equal energy: E =
E1 + E2, where E1 � E2 � E/2 (see Fig. 6). Pseudospins
of energy �E/2 get in turn a finite lifetime due to decay in
pseudospins of energy �E/4, and so on, until the energy E∗
is reached. In Appendix B we calculate the decay rate of a
pseudospin with energy E due to this type of process. It turns
out that this channel of decay is very slow and plays no role in
energy transport.

The most efficient way of energy transfer involves two
pseudospins with high energies E,E − ω � E∗ that are
separated by an energy difference corresponding to the optimal
network, |ω| ∼ E∗. In this case the set of delocalized states

E/2

EE

E/2 E/2 E/2

FIG. 6. A process contributing to dephasing of high-energy
pseudospins by those with lower energies. Here a spin with a
high energy E is dephased by a decay into two spins of roughly
equal energy ∼E/2. This process gives a subleading contribution in
comparison with that in Fig. 7.
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1R RR R

R(T)
11

R(T)

1 1 1

FIG. 7. Dominant process responsible for delocalization of net-
works of high-energy pseudospins. This is a “flip-flop” process of two
high-energy (small R1) spins assisted by an excitation of the optimal
network [R1(T )].

of the optimal network acts as a bath that assists the energy
transfer between pseudospins in the network with energy
E∗. The typical sizes of the high-energy pseudospins R1 ∼
(t/E)1/α are approximately equal; they are much shorter than
the size of the optimal pseudospins, R1 � R1(T ) (see Fig. 7).
The matrix element A of the pseudospin flip-flop process is
estimated as (see Appendix A)

A ∼ 1

ω

V 2

r
β

12r
β

13

, (29)

where ω ∼ E∗ and the typical distances between the high-
energy spins and between the high- and low-energy spins are

r12 ∼
(

V

t

)1/β
R1(T )

R1
R

α/β

1 (T ) (30)

and r13 ∼ R∗
2 [R1(T )], respectively. When obtaining Eq. (30),

we used expression (8) for the density ρps(R1) of R1 pseu-
dospins. The density of those pseudospins whose energy
is within the window of the width E∗ around E is thus
(E∗/E)ρps(R1), which yields Eq. (30).

The typical transition rate can be found using the Fermi
golden rule [49]:

1

τ
∼ A2

�
, (31)

where � ∼ E∗ is the characteristic level spacing of the bath
(optimal network) pseudospins per volume with the linear size
∼R1(T ). Employing Eqs. (29)–(31), we find

1

τ (R1)
∼ E∗

(
R1

R1(T )

)2β

. (32)

The contribution of these processes to the thermal conductivity
is given by

κloc ∼ 1

T 2

∫ R1(T )

R1,th(T )

dR1

R1
ν(R1)E3(R1)

r2
12(R1)

τ (R1)
. (33)

Here ν(R1) is a density of states for pseudospins of the size
R1 with the energy E(R1) ∼ t/Rα

1 , and R1,th(T ) is the thermal

pseudospin size defined in Eq. (15). Using

ν(R1) ∼ ρps(R1)

E(R1)
∼ 1

rd
12

E(R1)

E∗

1

E(R1)
= 1

rd
12

1

E∗
,

we obtain, after a straightforward algebra,

κloc ∼ κ∗
∫ R1(T )

R1,th(T )

dR1

R1

(
R1

R1(T )

)d−2−3α+2β

. (34)

Here κ∗ is the thermal conductivity of the optimal network
(23) that scales with temperature as T

μ
∗ with the exponent μ∗

given by Eq. (26).
It is easy to see that

d − 2 − 3α + 2β < 0, (35)

in the entire parameter region α > β > d. Thus, the integral
(34) is dominated by its lower limit, which implies that the
energy transport by thermal pseudospins is more efficient than
the one by the optimal network. The resulting heat conductivity
is given by

κ ∼ κ∗

(
R1,th(T )

R1(T )

)d−2−3α+2β

(36)

and scales with temperature as

κ ∝ T μ, (37)

where

μ = μ∗ − δ,

δ = 2αβ − d(α + β)

α[(α + β)d − αβ]
(3α − 2β − d + 2). (38)

In the physically relevant situation of d = 2 and α = β = 3
(which, in particular, corresponds to a 2D Anderson insulator
with Coulomb interaction), Eqs. (36) and (27) yield the
exponent

μ = 5 (39)

and the thermal conductivity

κ ∼ t4V 4ρ12

W 12
T 5. (40)

Let us now turn to the case α = β = d, with d = 3 having
important physical applications. In this case, we are on the
border of the regime set by inequalities α,β > d [see Eq. (2)].
As has been already mentioned in Sec. II, the noninteracting
system in such a situation is critical [10,15,41,42] and exhibits
an anomalous diffusion of the form r ∼ t1/d . For d = 3 (or,
more generally, d > 2) this is a subdiffusion, which is not
sufficient to yield a nonzero dc transport coefficient (thermal
conductivity). Therefore, the interaction-induced mechanism
of establishing thermal transport, as explored in this work,
retains its importance in such a situation as well. It follows
from Eq. (21) that for α = β = d = 3 the optimal pseudospin
size R1(T ) scales with temperature as T −1/3, i.e., in the same
way as R1,th. However, under the assumption of relatively
small density of spins, ρ2V t/W 2 � 1, these two scales remain
different,

R1(T )

R1,th
∼

(
ρ2V t

W 2

)−1/3

� 1. (41)
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Again, the dominant contribution to transport is provided by
thermal excitations. This yields the thermal conductivity (36)
with κ∗ given by Eq. (28). Using Eq. (41), we find

κ ∼ V 7/3

(
tρ2

W 2

)8/3

T 4/3 , (42)

which has the same temperature dependence as the optimal-
network contribution (28) but an enhanced prefactor.

V. THERMAL TRANSPORT: LOW-ENERGY EXCITATIONS

Finally, we estimate the transport via a network of
large pseudospins, with a typical size R1 � R1(T ). Each
one of them is connected to a large number of partners,
N2(R1,R

∗
2 (R1)) � 1, which sets the size of the random-matrix

blocks in Fig. 4. Therefore, the characteristic excitation
energy is E(R1) = N

1/2
2 [R1,R

∗
2 (R1)]t/Rα

1 . The corresponding
contribution to the heat conductance is given by Eq. (22).
Preforming straightforward algebraic calculations, we find

κ(R1) � t11/2ρ5T 1/2

W 5

(
V

t

)(4+3d)/2β

×R
[α(4+3d)+5dβ−11αβ]/2β

1 . (43)

The total contribution of low-energy dipoles (the “infrared
contribution”) to the thermal conductivity is obtained by
summing over networks with R1 � R1(T ),

κIR ∼
∫ ∞

R1(T )

dR1

R1
κ(R1). (44)

This contribution is infrared convergent if

d <
α(11β − 4)

3α + 5β
, (45)

or equivalently,

β >
α(3d + 4)

11α − 5d
, (46)

and divergent otherwise. For physically interesting situations
condition (45) is fulfilled, so that big dipoles do not play any
important role. In particular, for α = β = 3 the inequality (45)
amounts to d < 29/8, which is fulfilled in view of Eq. (2).

On the other hand, if we consider the whole range of
parameters α,β,d, satisfying conditions (2), we find some
regions where the inequality (45) is violated. More precisely,
for d < 4/3 this happens in a small part of the IIb region
of the parameter space adjacent to the point α = β = d.
As an example, for d = 1 and α = β this is the case in
the interval 1 < α < 12/11. In this situation, the thermal
conductivity diverges due to very efficient propagation of
low-energy modes. The situation is somewhat analogous to
those encountered in phonon energy transport in dielectrics
[50] and plasmon energy transport in disordered Luttinger
liquid [51]. As has been already stated, we are not aware of any
physical realization of such a regime in the present problem.

At this point, we remind the reader that there is an
alternative potential mechanism for an infrared divergence of
the thermal conductivity. These are the power-law tails that
have been neglected in Eq. (19). We will analyze their effect
in the next section.

VI. POWER-LAW TAILS AND LEVY FLIGHTS

In the previous sections, we have analyzed the transport in
a set of pseudospin networks with the approximation Eq. (19)
for the pseudospin interaction. As was mentioned below
Eq. (19), the power-law tails discarded there [interactions
at distances larger than R∗

2 (R1)] may potentially lead to a
divergent contribution to the thermal conductivity. In this
section, we will analyze under what condition this mechanism
of superdiffusive energy transport becomes operative.

Let us consider the optimal network (or any other conduct-
ing network) and include the power-law tails perturbatively.
Since the states on the network are delocalized (and thus
broadened), we can consider the effect of the corresponding
long-distance hopping processes on a classical level (i.e.,
without looking for resonances). The probability of a jump
to a distance r will then be proportional to the squared
absolute value of the corresponding matrix element V/rβ .
The contribution of these processes to the thermal diffusion
coefficient (and thus to thermal conductivity) will thus be given
by the following integral over r:

κtail ∝
∫

ddr r2|V/rβ |2 ∝
∫

ddr r2−2β. (47)

Here we have only kept powers of r , since we are only inter-
ested in the possible infrared divergence of the r integration.
The condition for infrared convergence of this integral is
d < 2β − 2, or equivalently,

β > 1 + d/2. (48)

If this condition is not fulfilled, the thermal conductivity is
infinite.

It is easy to check that in the whole region of our interest,
α � d, the condition (46) follows from the inequality (48).
Therefore, the power-law-tail mechanism of the infrared
divergence of the thermal conductivity (studied in this section)
is more efficient than the one due to ultra-low-energy networks
(considered in Sec. V).

The inequality (48) is always satisfied in our problem
in spatial dimensionalities d � 2, since we assume β � d

(and the strict inequality β > 2 for d = 2). If, however, the
spatial dimensionality d is lower than 2, a region emerges,
β < 1 + d/2, where the thermal transport is of superdiffusive
(Levy-flight) character. Specifically, the displacement then
scales with time as r ∼ t1/z, with the dynamical exponent
z = 2β − d. In particular, for d = 1 the superdiffusion occurs
under the condition β < 3/2.

VII. PSEUDO2-SPIN NETWORKS
AND THERMAL TRANSPORT

In Secs. III–V we have presented a detailed analysis of
the thermal conductivity due to pseudospin networks. In
the present section we consider the energy transport at the
next level of hierarchical construction, i.e., the transport via
pseudo2-spin networks. As has been explained in Sec. II C,
this mechanism is operative in regions III and IIc of the phase
diagram of Fig. 3. In region III the pseudo2-spins provide the
only mechanism of transport. The situation is more intricate in
region IIc where the connected pseudospin and pseudo2-spin
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networks coexist, as has been already discussed in the end
of Sec. II C. We will return to the question of implications
of the existence of delocalized pseudo2-spin networks for the
transport phenomena in region IIc in the end of this section.

The logics of the analysis of the thermal transport due
to pseudo2-spins is essentially the same as for pseudospins
(Secs. III–V): we will first calculate the contribution to the
thermal conductivity due to the optimal connected network
and then will analyze contributions of high-energy and low-
energy pseudo2-spins. In view of this similarity, we keep the
exposition in this section relatively concise.

In analogy with Sec. III, we first consider the thermal
conductance due to the optimal pseudo2-spin network defined
by the condition

N3(R1,th,R2,R2) ∼ 1, (49)

which determines, together with Eq. (14), the optimal size of
pseudo2-spins,

R2(T ) ∼
(

W 4

tVρ4T 2

)1/(2d−β)

R
(α−2d)/(2d−β)
1,th

∼
(

W 4

Vρ4

)1/(2d−β)

t−[2d/α(2d−β)]T −[(3α−2d)/α(2d−β)].

(50)

It is easy to see that at low temperatures R2(T ) � R1,th(T ) as
long as α > 2d and β < 2d, which is the case in regions IIc

and III of the phase diagram.
To determine the temperature scaling of the thermal

conductivity due to the optimal pseudo2-spin network, we use
the analog of Eq. (23). Substituting there the characteristic
energy of excitations on the optimal pseudo2-spin network,
E

(2)
∗ ∼ V/R

β

2 (T ), we find

κ (2)
∗ ∼ [E(2)

∗ ]3

T 2
[R2(T )]2−d ∝ T ν∗ , (51)

with the exponent

ν∗ = (3α − 2d)(3β + d − 2)

α(2d − β)
− 2. (52)

We now take into consideration the high-energy pseudo2-
spins and study the energy exchange between two such
pseudo2-spins assisted by the delocalized modes in the optimal
network (cf. Sec IV). The typical distance over which the
energy is transferred in such a process is

r12 =
(

1

ρp2s(R1,R2)Rβ

2 /R
β

2 (T )

)1/d

, (53)

where ρp2s(R1,R2) is the density of pseudo2-spins given by
Eq. (12). Under the assumption R1 < R∗

1 (R2) ≡ (tRβ

2 /V )1/α ,
we have

ρp2s(R1,R2) ∼ ρ4tV T 2

W 4
R2d−α

1 R
d−β

2

∼ 1

Rd
2

(
R1,th(T )

R1

)α−2d(
R2

R2(T )

)2d−β

. (54)

Thus,

r12 ∼ R2
2(T )

R2

(
R1

R1,th(T )

)(α−2d)/d

. (55)

Further, the matrix element for the pseudo2-spin flip-flop
process is estimated as [cf. Eq. (29)]

A ∼ 1

ω

V 2

r
β

12r
β

13

∼ V

r
β

12

, (56)

and the density of states in the optimal network in a volume
with a linear size R2(T ) is given by

1/� ∼ 1/E(2)
∗ ∼ R

β

2 (T )/V . (57)

Substituting Eqs. (55), (56), and (57) in the golden-rule
formula (31), we find the characteristic lifetime of the high-
energy pseudo2-spins,

1

τ
∼ V

R
β

2 (T )

(
R2

R2(T )

)2β(
R1,th(T )

R1

)2β(α−2d)/d

. (58)

The contribution of the high-energy pseudo2-spin excitations
to the heat conductivity is thus

κ
(2)
loc ∼ 1

T 2

∫ R2(T )

R2,th(T )

dR2

R2

∫ R∗
1 (R2)

R1,th(T )

dR1

R1

× ν(R1,R2)E3(R2)
r2

12(R1,R2)

τ (R1,R2)

∼ V 3

T 2
[R2(T )]2−d−3β

∫ R2(T )

R2,th(T )

dR2

R2

∫ R∗
1 (R2)

R1,th(T )

×
(

R1,th(T )

R1

)(α−2d)(d+2β−2)/d(
R2(T )

R2

)β−d+2

.

(59)

Here we have taken into account that the characteristic energy
of pseudo2-spins of size R2 is E(R2) ∼ V/R

β

2 and introduced
the short-distance cutoff for the R2 integration, R2,th(T ) ∼
(V/T )1/β .

It is easy to see that for d > 2/3 and for α and β within
regions III and IIc of the phase diagram, the integral in
Eq. (59) is dominated by short distances. Correspondingly,
the energy transport by high-energy pseudo2-spins dominates
over that by the optimal pseudo2-spin network, and the thermal
conductivity of the system is given by

κ (2) ∼ κ (2)
∗

(
R2(T )

R2,th(T )

)β−d+2

∼ T ν, (60)

with the exponent

ν = ν∗ − 2
[2αβ − d(α + β)](β − d + 2)

αβ(2d − β)
. (61)

Let us finally discuss the third possible transport mechanism
in the system: transport via pseudo2-spins of very low
energies [i.e., with sizes R2 � R2(T )] that build networks
with N3(R1,th,R2,R2) � 1. A consideration analogous to the
one in Sec. V leads to the estimate

κIR ∼
∫ ∞

R2(T )

dR2

R2
κ(R2) (62)
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with

κ(R2) ∼ V 3

T 2

1

R
3β+d−2
2

N
5/2
3 (R1,th,R2,R2)

∼ R
(8d+2−11β)/2
2 . (63)

Since 8d + 2 − 11β < 0 for all β > d > 4/7, the ultra-low-
energy networks of pseudo2-spins are not important for the
transport in physically relevant spatial dimensions (d � 1).

The analysis of power-law tails (∼1/rβ) of the interaction
performed in Sec. VI for the case of a pseudospin network fully
applies to delocalized pseudo2-spin networks. Specifically,
under the condition (48) no infrared divergence of the
thermal diffusion constant occurs; otherwise, the transport is
superdiffusive.

The thermal conductivity due to the pseudo2-spin network,
Eqs. (60) and (61), constitutes the main result of this section.
This mechanism controls the thermal transport in region
III of the phase diagram, so that Eqs. (60) and (61) yield
the final result for the thermal conductivity in this region.
The pseudo2-spin mechanism of thermal transport is also
relevant in region IIc but there the physics is more involved,
in view of the coexistence of pseudospin and pseudo2-spin
networks (see Sec. II C). The first idea then would be simply
to consider them as parallel transport channels and to add
the corresponding contributions to the thermal conductivity,
i.e., the pseudospin contributions (37), (38) and the pseudo2-
spin thermal conductivity (60), (61). The larger of the two
contributions would then win. We expect, however, that in a
part of the region IIc the situation may be still more intricate.
Specifically, the pseudospin transport mechanism described in
Sec. IV relies on flip-flop processes of thermal pseudospins
assisted by the optimal pseudospin network. The correspond-
ing time scale is given by Eq. (32) and diverges at the line
d(α + β) = αβ, which is the border of the IIc regime. The
connected pseudo2-spin network will provide an alternative
decay channel for the thermal pseudospins. The corresponding
time scale, τ ′, is expected to be longer than the time (58)
(which controls the decay of pseudo2-spins). However, the
time τ ′ will stay finite at the line d(α + β) = αβ. Thus, in a
part of region IIc close to this line, the pseudospin relaxation
time will be determined by pseudo2-spins. Therefore, the
contribution of pseudospins to the thermal conductivity will
be determined by a mixed transport mechanism—flip-flops
of thermal pseudospins assisted by the optimal pseudo2-spin
network. We expect that this transport mechanism may give a
dominant contribution to thermal conductivity (and will thus
control its temperature scaling) in a certain part of region
IIc near the boundary with region III. We do not explore
this question in the present paper, leaving it as an interesting
direction for future research.

We remind the reader that, as was pointed out in Sec.
IIA, the results for the thermal conductivity in Sec. III–V
and VII were obtained within the approximation that neglects
the spectral diffusion. In the remaining part of the paper, we
take the spectral diffusion in consideration and analyze its
implications.

VIII. LOCALIZATION THRESHOLD

While the main goal of this paper is the analysis of the
thermal transport, in the present section we discuss another
related aspect of the problem. Specifically, we will analyze the
system-size scaling of the total energy (with the ground-state
energy set to zero) representing the localization threshold for
many-body states [52]. To set the stage for this discussion,
let us first remind the reader about two known types of such
scaling in fermionic many-body systems:

(i) If there is a delocalization transition in the noninteracting
system, the corresponding threshold Ec will be independent
of system size L in the limit L → ∞. This is the most
conventional case of mobility edge of the Anderson transition.

(ii) If all single-particle states are localized and the
interaction is of short-range character, the system may undergo
a transition between the low-temperature localized phase
[53] and the high-temperature delocalized phase [48] at a
certain critical temperature Tc (see Refs. [54–57] for analytical
predictions and numerical simulations, as well as Refs. [58,59]
for experimental realization of the transition in 1D and 2D
cold-atom systems). In this situation, a many-body state is
delocalized if its energy is above the threshold Ec ∝ T 2

c Ld ,
which scales as Ld with the system size.

(iii) An interacting electronic system in a quantum dot is
described by a Hamiltonian characterized by the single-particle
mean level spacing � ∝ L−d and the typical value �/g of the
matrix element of interaction, where g is the dimensionless
conductance. For the given value of g � 1 (viewed as an
independent parameter), the system undergoes the localization
transition in the Fock space at the threshold energy Ec ∝ L−d

(see Refs. [60–64]).
Let us show that the system studied in the present work

exhibits a behavior which is intermediate with respect to cases
(ii) and (iii) above. Indeed, let us consider our system at a
certain temperature T in a box of finite size L. We begin
by considering the situation in which the delocalization is
governed by pseudospin resonances. (The corresponding result
will be applicable in region IIb and potentially in a part of
region IIc.) We know that the delocalization is achieved due
to the coupling of pseudospins at a distance R∗

2 [R1(T )]. If
the system size L is reduced to a value much smaller than
this distance, no resonance couplings between pseudospins,
and thus no delocalization will take place. We thus find the
following condition for the localization threshold:

R∗
2 [R1(Tc)] ∼ L, (64)

where R∗
2 is given by Eqs. (7) and (21), which yields the scaling

of the critical temperature Tc with the system size and disorder

Tc ∝ W 2L−[(α+β)d−αβ]/α. (65)

This result can be translated into critical energy

Ec ∝ Ld T 2
c

W
∝ W 3L[2β(α−d)/α]−d , (66)

which yields the minimal energy of a delocalized excitation
in a finite-size system at zero temperature. It is easy to check
that, by virtue of inequalities (2) and (11), the exponent γ
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determining the scaling of Ec with L,

γ = 2β(α − d)

α
− d, (67)

satisfies −d < γ < d everywhere in regions IIb and IIc, so that
we are indeed in a situation intermediate between the above
cases (ii) and (iii).

An important question which we are now going to address
is the character of the many-body state on the delocalized side
of the transition. To be specific, let us fix temperature T and
study the delocalization (e.g., the evolution of level statistics
for many-body states) upon increase of the system size L. For
L smaller than the delocalization length Lc(T ) ≡ R∗

2 [R1(T )]
the statistics is clearly of Poisson form since all degrees of
freedom are localized. As discussed above, at L ≈ Lc the first
resonant pair of spins of optimal size R1(T ) appears. How
does the delocalization proliferate upon further increase of L?
We argue now that already at the length of a few Lc (where
“a few” means above some critical number of order unity) all
spin degrees of freedom become delocalized. Indeed, in such
a system we have a few coupled resonant spin pairs (i.e., a
few coupled pseudospins). Flipping any of them yields a new
many-body state that is well connected (matrix element larger
or of the order of the energy splitting) with the original one.
This state again possesses a few resonant spin pairs and thus
is well connected with a few other many-body states, etc. We
argue now that this yields a Bethe-lattice structure. The key
point is that resonances are efficiently “eliminated” by flipping
other pairs. Specifically, consider a certain resonant spin pair 1
that existed in the original state. If we flip another spin pair 2,
the energy of pair 1 is shifted by ∼E∗. After p steps, we will
flip p pairs, and the spins participating there will be distributed
in space roughly uniformly within the length Lc. The shift of
the energy of pair 1 will be determined, in view of β > d, by
the SzSz interaction [see discussion after Eq. (3)] with the spin
closest to one of the spins within pair 1. The corresponding
distance is ∼Lcp

−1/d . This yields the shift

�(p)E ∼ E∗pβ/d, (68)

and thus the return probability ∼p−β/d to the resonance
window of width E∗. Since β > d, the “return probability”
obtained by summing ∼p−β/d over p, converges [65]. Thus,
with the probability of order unity, pair 1 never returns to
the set of resonance pairs. Therefore, it appears to be a
good approximation to consider the emergent structure in
the many-body Hilbert space as a Bethe lattice. Clearly, the
Bethe-lattice approximation works only until all available
(thermal) many-body spin states are exhausted; beyond this
generation the effective lattice in the many-body space gets
“compactified.’ In this sense, one may approximately view the
effective lattice in the Fock space of the system as a treelike
structure without the boundary, such as a random regular graph
[66].

This argument implies that the length Lc marks the
many-body localization transition for our finite system (“spin
quantum dot”). In particular, the statistics of many-body
excitations is Poisson on one side and Wigner-Dyson on the
other side of the transition. Of course, the transition becomes

sharp only in the limit of a large number of involved spins,

Ns ≡ Ld
c ρT /W � 1, (69)

which is fulfilled in view of our assumptions of low tempera-
ture and strong disorder, T � W and tρα/d � W .

Some available numerical studies support these expecta-
tions. In particular, in Ref. [46] a numerical analysis of the
finite-size delocalization transition was performed for the
case of infinite T for d = 1 and α = β. The infinite-T limit
corresponds to setting T ∼ W in Eq. (65), which yields, for
d = 1 and α = β, the critical disorder Wc ∝ L2−α . Numerical
results of Ref. [46] supported the existence of a delocalization
transition (which became sharper with increasing L) around
this Wc.

We turn now to a similar analysis for the case when
the delocalization is due to pseudo2-spin resonances. The
condition for the localization threshold then reads, in analogy
with Eq. (64),

R2(Tc) ∼ L, (70)

where R2(T ) is the size of the optimal pseudo2-spin given by
Eq. (50). This yields the scaling of the critical temperature Tc

with the system size and disorder strength,1

Tc ∝ W 4α/(3α−2d)L−[α(2d−β)/(3α−2d)], (71)

or equivalently, the critical energy

Ec ∝ LdT 2
c

W
∝ W (5α+2d)/(3α−2d)Lγ2 , (72)

with the exponent γ2 governing the temperature scaling,

γ2 = αβ + αd − 2d2

3α − 2d
. (73)

This result is applicable in region III. Furthermore, the
pseudo2-spin delocalization mechanism is operative also in
region IIc where it competes with the pseudospin delocal-
ization. In order to find out which of the two mechanisms
determines the delocalization threshold in this region, we
compare the exponents γ and γ2. It turns out that γ2 < γ

in the whole region IIc. Therefore, in addition to region III,
the pseudo2-spin mechanism determines the delocalization
threshold also in region IIc, with the critical energy given by
Eq. (72). The exponent γ2 satisfies −d < γ2 < d everywhere
in regions III and IIc, again implying a situation intermediate
between the cases (ii) and (iii) described in the beginning
of this section. The exponents γ and γ2 match at the border
α = 2d of the regions IIb and IIc. Further, the exponent γ2

takes the value d at the boundary line β = 2d, thus ensuring
a matching with the scaling of the type (ii) characteristic for a
many-body-localization threshold in Anderson insulators with
short-range interaction.

It is worth mentioning that the delocalization of pseu-
dospins at the corresponding threshold Ec in regions III and

1When estimating the localization threshold, we discard possible
logarithmic factors that may emerge in many-body problems in
analogy with Anderson localization on a Bethe lattice with large
connectivity, see Refs. [54,55,60,62].
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IIc does not yet imply the delocalization of spins: the latter will
take place at a higher energy. This is a manifestation of the fact
that the delocalization of different excitations in a finite-size
system may take place at parametrically different energies.

IX. SPIN RELAXATION AND SPECTRAL DIFFUSION

In Sec. VIII we have analyzed the many-body localization in
a spin quantum dot. We are now going to study the implications
of the physics discussed there for the main subject of the
present work—thermal transport in an extended system.

In Secs. III–VI we assumed that the pseudospins (or
pseudo2-spins in the regions of IIc and III of the phase diagram)
can be viewed as rigid objects built out of specific spins that
happened to be in resonance. All other spins were ignored. We
drop this assumption from now on and study the contribution
of all spins to the thermal transport.

We focus first on the regions IIb and IIc. Let us consider a
typical thermal spin. First, in complete analogy to Sec. IV, its
interaction with the optimal network leads to spin relaxation
via the process of simultaneous flip of two thermal spins
assisted by pseudospin flipping in the network. We do not
present here the corresponding spin relaxation rate and the
contribution of such processes to thermal transport (referring
the interested reader to the Supplemental Material [67]) as
it turns out that there exists a faster channel for the spin
relaxation and thermal transport. Specifically, as we have
seen in Sec. VIII, transitions of the resonant pseudospins
shift energies of other spins, thus destroying neighboring
pseudospins and creating new ones. In a piece of the system of
size Lc(T ) = R∗

2 [R1(T )], there is an order of one pseudospin
from the optimal network whose flip occurs typically within
the time ∼1/E∗. Thus the rate for relaxation of all spins
(or equivalently, for any given spin) can be estimated as (cf.
Ref. [28])

1/τsd ∼ E∗N−1
s ∼ t

tρ

W
[R1(T )]d−2α. (74)

Such a relaxation mechanism is known as spectral diffusion
(thus the subscript “sd”) in the theory of spectral lines as
measured in spin resonance experiments [39] and was used to
estimate the relaxation rate of two-level tunneling systems in
amorphous solids in Refs. [28,40].

The spin relaxation rate (74) is an important characteristic
of the system. For the dipole-dipole interaction, α = β = 3,
we find

1/τsd ∝ T W−3, d = 3, (75)

1/τsd ∝ T 4W−9, d = 2. (76)

Equation (74) allows us to estimate the contribution of
spectral diffusion to thermal transport. Indeed, coming into
a resonance with another spin, a thermal spin transports an
energy of order T over distance R1(T ). Correspondingly [cf.
Eq. (33)] the thermal conductivity is given by

κsd = T
ρ

W
t
tρ

W
[R1(T )]d−2α[R1(T )]2

= T

(
tρ

W

)2

[R1(T )]d−2α+2 (77)

and scales with the temperature as

κsd ∝ T μsd , μsd = 1 + β(d − 2α + 2)

(α + β)d − αβ
. (78)

It is instructive to compare Eq. (77) to the thermal
conductivity of the optimal network, Eq. (23), which yields

κsd =
(

T

E∗

)2(
R1(T )

R∗
2 [R1(T )]

)2

κ∗. (79)

We see thus that the expression for the conductivity due to
spectral diffusion can be obtained from the one due to the
optimal network by replacing the energy transfer E∗ by T and
the jump radius R∗

2 [R1(T )] by R1(T ). In the particular case
of α = β and t = V we have R1(T ) ∼ R∗

2 [R1(T )], so that
only the modification of the energy transfer is needed. The
physical explanation of the relation (79) is as follows. In the
picture of transport over the optimal network (which yields
κ∗) we assumed that pseudospins are “stable” objects, and
the allowed energy transfer processes are those between two
pseudospins—yielding the energy transfer E∗ and distance
R∗

2 [R1(T )]. Within the spectral diffusion argument, spins
are constantly changing their resonant partners, so that the
relevant energy transfer processes take place between spins,
with the energy transfer T and the distance R1(T ). The spatial
density of objects participating in the transport (pseudospins
in the first picture or spins forming pseudospins in a given
configuration in the second picture) is parametrically the same.
This immediately yields the relation (79).

It can be checked (see Supplemental Material [67]) that
the conductivity (77) dominates over the conductivity due
to high-energy pseudospins studied in Sec. IV in the whole
parameter ranges IIb and IIc. Thus, spectral diffusion provides
the dominant channel for the heat transport.

For α = β and V ∼ t , Eq. (77) takes a particularly simple
form:

κsd ∼ t[R1(T )]2−d−α, (80)

and the temperature scaling of thermal conductivity is

κsd ∼ T (α+d−2)/(2d−α). (81)

In the physically most interesting case α = β = 3 we find,
taking into account Eq. (21),

κsd ∝ T 4/3W−8/3 (82)

for d = 3 (cf. Ref. [26]) and

κsd ∝ T 3W−6 (83)

for d = 2.
Comparing Eqs. (82) and (83) to Eqs. (42) and (40), we

see that including the spectral diffusion into consideration is
especially important in d = 2 where it changes the temperature
scaling of thermal conductivity from T 5 to T 3. The effect is
weaker in d = 3 where the temperature scaling of conductivity
remains unchanged and only the prefactor is enhanced by a
factor of (W/t)8/3.

Let us now briefly analyze the effect of spectral diffusion
on thermal transport in the parameter range III where the
pseudo2-spin network is responsible for delocalization. Taking
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into account that the spectral diffusion works now on the level
of pseudospins and that in the optimal network R2 ∼ R3 we
conclude that in this parameter range [cf. discussion after
Eq. (79)]

κsd = T 2

[E(2)
∗ ]2

κ (2)
∗ . (84)

Here κ
(2)
∗ is the thermal conductivity of the pseudo2-spin

network, Eq. (51) and E
(2)
∗ = V/R

β

2 (T ) is the typical energy of
its excitations. Using Eq. (50), we find the temperature scaling
of the thermal conductivity in part III of the phase diagram

κsd = V [R2(T )]2−d−β ∝ T [(3α−2d)(β+d−2)/α(2d−β)]. (85)

Before closing this Section, let us stress that the spectral
diffusion picture (and thus the results of this Section) rely on
the assumptions that correlations in shifts of energies of spins
due to successive flips of resonant pseudospins as well as
correlations between contributions of different “paths” in the
many-body space can be neglected. While we have provided
arguments in favor of these approximations in Sec. VIII and
in the present Section (see also Ref. [28]), a more rigorous
justification would certainly be of interest.

X. SUMMARY

In conclusion, we have studied the propagation of energy
through the Anderson insulator with a long-range interaction.
The system was described by the Hamiltonian (1), with spins
representing particle-hole excitations formed by localized
electronic states. While the 1/r Coulomb interaction between
localized states leads to the dipole-dipole interaction between
spins, with α = β = 3, we have considered α and β as free
parameters for generality, with the assumption α � β � d.
Resonant pairs of these spins were treated as pseudospin
operators.

The dominant channel of the heat propagation (and thus
the scaling of the thermal conductivity) depends on relations
between d, α, and β. Under the condition (11), which defines
regions IIb and IIc of the phase diagram in Fig. 3, the inter-
action between pseudospins leads to energy delocalization.
Specifically, excitations with energies below E∗, Eq. (24)
[which corresponds to the pseudospin size (21)], become
delocalized by resonant couplings between pseudospins. As
a consequence, pseudospins with higher energies can also
exchange energy due to coupling to excitations with energy
∼E∗, which thus serve as a bath. Region IIb is of particular
interest, as it contains the physically most relevant line α = β.

If condition (48) is violated and under, the thermal conduc-
tivity shows an infrared divergence, and the energy transport is
of superdiffusive (Levy-flight) character. In the 1D case, this
happens under the condition β < 3/2. This situation, however,
is not realized in the physically most interesting cases (d � 2).

If condition (48) is fulfilled the dominant contribution to
the thermal conductivity is provided by thermal excitation
that moves due to the assistance of optimal ones. Under the
approximation that neglects spectral diffusion, the thermal
conductivity is then given by Eq. (36), with the temperature
dependence governed by the exponent (38). Taking the spectral

diffusion into consideration increases the conductivity and
leads to Eqs. (77) and (78).

From the physical point of view, the cases of 2D and 3D
systems with dipole interactions between spins, α = β = 3,
are of particular importance. These cases correspond to 2D and
3D Anderson insulators with the conventional (1/r) Coulomb
interaction. For d = 2 and α = β = 3, the obtained thermal
conductivity scales with temperature as κ ∝ T 3. This result
should be, in particular, applicable to the bulk of QHE systems.
For the case d = α = β = 3 the temperature scaling is κ ∝
T 4/3.

The spectral diffusion mechanism leads to the relaxation
of thermal spins with the rate (74). In the case of α = β = 3
the rate is given by Eqs. (75) and (76) in three and two spatial
dimensions, respectively.

We have further studied the thermal transport in the
system in the regime β/2 < d < αβ/(α + β) (region III in
Fig. 3), where pseudospin resonances are not sufficient to
delocalize the excitations, and the delocalization of energy
occurs via interaction of pseudo2-spins. In this case, the
temperature scaling of thermal conductivity is predicted to
be given by Eq. (60) if the spectral diffusion is disregarded
and by Eq. (85) with the spectral diffusion properly taken into
account.

In region IIc, the pseudospin transport mechanism coexists
with the pseudo2-spin one, so that the corresponding con-
tributions to the thermal conductivity compete. Furthermore,
in a part of this region close to the border with region III,
the relaxation rate of thermal pseudospins is controlled by
delocalized pseudo2-spins. While we expect that this mixed
mechanism dominates the thermal transport in a part of
region IIc near the border with III, we have not evaluated the
corresponding contribution to thermal conductivity, leaving
this as a prospect for future work.

We have also determined the scaling of the mobility edge
Ec for many-body excitations with the system size L. The
result is given by Eq. (66) in region IIb and by Eqs. (72) and
(73) in regions IIc and III. The corresponding exponents γ and
γ2, given by Eqs. (67) and (73), respectively, are intermediate
between the cases of Fock-space localization in a quantum dot,
γ = −d, and the many-body localization transition induced by
a short-range interaction, γ = d.

We conclude the paper by reviewing some further implica-
tions of our work and related research prospects; the work in
these directions is currently under way.

(i) Our theory should be relevant not only to systems
of localized electrons with Coulomb interaction but also to
other realizations of the spin Hamiltonian (1). As has been
already discussed in Sec. II, these include, in particular,
interacting two-level systems in amorphous materials, as
well as ensembles of dipole molecules in optical lattices
and of solid-state spin defects. Let us emphasize that we
have considered here only an ensemble of interacting spins,
discarding all other degrees of freedom. In other words, we
assumed that these other degrees of freedom are irrelevant
for transport properties. Clearly, this is not necessarily the
case. In particular, if spins represent atomic two-level systems,
one may need to explore an interplay between phonons and
the interacting spin system. Implications of our work for this
situation remain to be explored.
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(ii) It would also be interesting to extend our analysis
onto the remaining part of the phase diagram, β > α >

d. The boundary between the delocalized and many-body
localized phases in this part of the phase diagram was recently
established in Ref. [68]. The random XY model is a prominent
representative of this class of models. A related problem is
the random Ising model in transverse field. Effective spin
models with long-range interactions of this class, which are
of particular relevance in the context of cold atomic gases and
Josephson junction arrays, have been recently considered in
the literature [37,38,69–71].

(iii) There is a large body of experimental data that indicate
that the electrons in a 2D system (with Coulomb interaction)
deep in the Anderson-insulator regime can thermalize in
the absence of a phonon bath. In particular, the prefactor
in the hopping conductivity is of the order of e2/h (see
Refs. [72–76]), which suggests a phononless mechanism
of transport. (In the case of phonon-assisted hopping, the
prefactor would be much smaller and nonuniversal.) Also,
far-from-equilibrium measurements [77] indicate that the
electronic subsystem in the hopping-conductivity regime may
form a thermal state characterized by a temperature strongly
differing from the phonon temperature. A development of
consistent theory of these effects represents a major long-
standing challenge. One may expect that the delocalized
pseudospin subsystem would work as a bath for electrons, thus
providing a mechanism for the phononless transport. We thus
hope that our work will pave the way for the development of
a systematic theory of electron thermalization and phononless
hopping in Anderson insulators.

(iv) In Sec. VIII we have studied the localization threshold
Ec (or Tc) in a system of finite-size L. It is worth emphasizing
that the obtained result represents the threshold for the “most
mobile” excitations—spins and pseudospins for the cases
of delocalization via pseudospin network and pseudo2-spin
network, respectively. Other degrees of freedom (such as
spins in regions III and IIc of the phase diagram as well as
electrons in all cases) are expected to become delocalized
only at higher energies. Investigation of this hierarchy of
delocalization thresholds represents an interesting research
prospect.
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APPENDIX A: MATRIX ELEMENT

In this Appendix we estimate the matrix element of the
interaction-induced process which corresponds to flipping
three pseudospins. This process arises in the second order
of perturbation theory (see also Ref. [78] for a similar
calculation). As discussed in the main text, the pseudospin
Hamiltonian after a unitary transformation (that orients all
spins in the z direction) takes the form (20). The transition rate

between the initial and final states is determined by golden
rule

Rf i = ∣∣A(2)
f i

∣∣2
δ(Ei − Ef ), (A1)

where the second-order transition amplitude is given by

A
(2)
f i =

∑
m

〈f |U |m〉〈m|U |i〉
Em − Ei

. (A2)

We assume that in the initial state the spin 1 is oriented up,
while the spins 2 and 3 are down. In the final state all spins are
flipped. The energies of pseudospins are ε1 = ε2 + ε3, ε2, and
ε3. Calculating the matrix elements entering (A2) induced by
the pseudospin interaction defined by Eq. (20) and summing
over the allowed intermediate states, one finds

A
(2)
f i = 2n1

xn
2
xn

3
x

[
n(1)

z u13u12
ε1

ε2ε3

− n(2)
z u12u23

ε2

ε1ε3
− n(3)

z u13u23
ε3

ε1ε2

]
. (A3)

Since orientations of vectors 	n and values of matrix elements
uij are random, there is no reason to expect that cancellations
between the terms may change the estimate for A

(2)
f i . Estimating

the terms entering Eq. (A3) for the situation considered in
Sec. IV (two high-energy pseudospins with a small energy
difference ω), we come to the result presented in Eq. (29).

APPENDIX B: DECAY OF A HIGH-ENERGY PSEUDOSPIN
INTO TWO PSEUDOSPINS OF APPROXIMATELY

EQUAL ENERGY

In this Appendix, we estimate the decay rate of a high-
energy pseudospin due to processes of the type shown in Fig. 6.
As the calculation shows, these processes yield a contribution
which is much smaller than that given by processes shown in
Fig. 7 and analyzed in the main text. Thus, this channel of
decay plays no role in our results for thermal conductivity.
Nevertheless, we present this calculation in an Appendix for
the sake of completeness.

To evaluate the rate of this decay process, it is important
to keep in mind that E/2 states are also nearly localized, with
a broadening of the levels that is much smaller that the mean
level spacing [�(E)τ (E) � 1]. The transition rate is therefore

1

τ (E)
= A2(E)

�2(E/2)τ (E/2)
. (B1)

The corresponding matrix element reads

A(E) = t2V 2

(
Tρ2

W 2

)2α/d

E(2α/d)−3. (B2)

To determine τ (E), one needs to iterate Eq. (B1) ln2(E/E∗)
times, until the optimal network with “strongly delocalized”
states forming a conventional continuum [τ (E∗) ∼ E−1

∗ ] is
reached. One thus finds

τ (E) ∼ 1

E∗
exp[ln2(E/E∗)]. (B3)

Thus, the rate of such processes decreases with energy
increasing E faster than any power law and can thus be
discarded [79].
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