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Disorder-induced density of states on the surface of a spherical topological insulator
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We consider a topological insulator (TI) of spherical geometry and numerically investigate the influence of
disorder on the density of surface states. The energy spectrum of the spherical TI surface is discrete, for a sphere of
finite radius, and can be truncated by imposing a high-energy cutoff at the scale of the bulk band gap. To this clean
system we add a surface disorder potential of the most general Hermitian form, V = V 0(θ,φ)1 + V(θ,φ) · σ ,
where V 0 describes the spin-independent part of the disorder and the three components of V describe the
spin-dependent part. We expand these four disorder functions in spherical harmonics and draw the expansion
coefficients randomly from a four-dimensional, zero-mean Gaussian distribution. Different strengths and classes
of disorder are realized by specifying the 4 × 4 covariance matrix. For each instantiation of the disorder, we solve
for the energy spectrum via exact diagonalization. Then we compute the disorder-averaged density of states,
ρ(E), by averaging over 200 000 different instantiations. Disorder broadens the Landau-level delta functions of
the clean density of states into peaks that decay and merge together. If the spin-dependent term is dominant,
these peaks split due to the breaking of the degeneracy between time-reversed partner states. Increasing disorder
strength pushes states closer and closer to zero energy (the Dirac point), resulting in a low-energy density of states
that becomes nonzero for sufficient disorder, typically approaching an energy-independent saturation value, for
most classes of disorder. But for purely spin-dependent disorder with V either entirely out-of-surface or entirely
in-surface, we identify intriguing disorder-induced features in the vicinity of the Dirac point. In the out-of-surface
case, a new peak emerges at zero energy. In the in-surface case, we see a symmetry-protected zero at zero energy,
with ρ(E) increasing linearly toward nonzero-energy peaks. These striking features are explained in terms of the
breaking (or not) of two chiral symmetries of the clean Hamiltonian.

DOI: 10.1103/PhysRevB.93.245424

I. INTRODUCTION

Over the past decade, the idea of a topological insulator
[1–15] has grown from a theoretical notion to an experimental
reality, and has led to the exploration of a wide range of
topological quantum phenomena. Although insulating in the
bulk, topological insulators (TIs) are adiabatically distinct
from ordinary insulators and support protected gapless surface
states, a consequence of the combined effects of spin-orbit
interaction and time-reversal symmetry. In three-dimensional
TIs, like Bi2Se3, these surface states exhibit a two-dimensional,
spin-momentum-locked, massless Dirac energy spectrum.

Recent work by Neupert et al. [16] highlighted the utility
of adopting a spherical geometry for numerical studies of
the TI surface. As shown by Imura et al. [17], the massless
Dirac Hamiltonian of the flat TI surface can be mapped to
a spherical TI surface with the introduction of a fictitious
magnetic monopole at the center of the sphere that has opposite
sign for electrons of opposite spin. The finite size of the
spherical surface yields a problem with a discrete energy
spectrum and well-defined eigenstates that is well-suited to
numerical analysis, whether the objective be to study real
systems with spherical geometry (i.e., TI nanoparticles [17])
or to gain insight regarding the flat TI surface that is recovered
in the large radius limit. Neupert et al. [16] adopt the latter
point of view, making use of spherical geometry to study the
effect of electron-electron interactions on TI surface states.

In the present work, we make use of the same spherical
geometry [16–19] to perform a numerical disorder analysis,
investigating the effects of disorder on the density of states
of the TI surface. Of course, the study of disorder effects in
two-dimensional massless Dirac systems has a long history

that predates the discovery of topological insulators and was
primarily focused on the quasiparticle density of states of so-
called dirty d-wave superconductors [20–25]. In that system,
though the clean superconductor inherits a linear-in-energy
quasiparticle density of states from the massless Dirac form of
the excitation spectrum, the presence of disorder has the effect
of redistributing states from high energy to low.

Here we consider, directly, the case of a disordered TI
surface, which differs from the dirty d-wave case in that we
have a single isotropic Dirac point rather than four anisotropic
ones, and most significantly, in that the 2D massless Dirac
Hamiltonian acts upon spin-space rather than particle-hole
space. Rather than performing a disorder-averaged perturba-
tive analysis, we make use of the spherical geometry to solve
a discrete and truncated problem, via exact diagonalization,
for the energy spectrum and density of states for each
particular random instantiation of disorder. We employ a
disorder potential of the most general possible form and draw
parameters randomly from a four-dimensional, zero-mean
Gaussian distribution of known covariance matrix. Results are
averaged over 200 000 disorder instantiations to obtain the
disorder-averaged density of states as a function of energy.

We begin in Sec. II A by reviewing the solution of the
clean, single-particle, spherical TI problem, as solved via
Refs. [16–19], and noting the eigenvalues and eigenstates of
the clean Hamiltonian. In Sec. II B, we introduce the disorder
potential, parametrize it via a four-component vector function
over the spherical surface, and expand in spherical harmonics.
Then in Sec. III A, we discuss the manner in which those
expansion coefficients are randomly selected and the nature of
the distribution from which they are drawn. In Sec. III B, we
make use of the simple form of the eigenstates of the clean
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system to efficiently compute matrix elements of the disorder
potential. In Sec. III C, we compute the energy spectrum for
each disorder instantiation via exact diagonalization, and in
Sec. III D, we compute the disorder-averaged density of states.
Results for different disorder strengths and different classes of
disorder are presented in Sec. IV and explained in Sec. V in
terms of the breaking (or not) of the symmetries of the clean
Hamiltonian. Conclusions are discussed in Sec. VI.

II. FORMULATION

A. TI surface states on a sphere

For energies close to the Dirac point, the flat surface states
of a strong three-dimensional topological insulator (TI) are
described by the two-dimensional massless Dirac Hamiltonian

Hsurf = vn̂ · (−i∇ × σ ), (1)

where n̂ is the surface normal, v is the slope of the Dirac cone,
σ = (σ1,σ2,σ3) is a vector of Pauli matrices, and energy is
measured with respect to the Dirac point. As shown by Imura
et al. [17], mapping this Hamiltonian to a spherical geometry
yields

H0 = v

R
(σ1�θ + σ2�φ), (2)

where R is the radius of the sphere, (r,θ,φ) are spherical
coordinates, and

� = −i

[
φ̂

∂

∂θ
− θ̂

1

sin θ

(
∂

∂φ
− i

2
cos θσ3

)]
(3)

is the dynamical angular momentum of an electron in the
presence of a fictitious magnetic monopole of strength 2πσ3

(opposite sign for spin-up versus spin-down) at the center of the
sphere. Note that an expression for the surface Hamiltonian for
a general curved TI surface described by a position-dependent
normal vector was developed by Ostrovsky et al. [26]. H0

corresponds to the case where that normal vector describes a
spherical surface.

At this juncture, it is important to pause to consider the
relationship between σ and the electron spin operator s. It is
often assumed that s = σ/2, but this is not always the case for
real TI materials. For example, Silvestrov et al. [27] showed
that in Bi2Se3, σ is only equal to twice the electron spin
operator for the (111) surface. For all other surfaces, they
showed that σ is a normal-vector-dependent mixture of the
electron spin operator and a pseudospin operator connecting
the Bi and Se sublattices (see Ref. [27]). With this in mind,
we must draw a distinction between two applications of the
spherical TI surface model that we consider. When we use the
spherical model as a theoretical construct to develop insight
regarding the physics of the flat TI surface obtained in the
large-R limit, we imagine bending a flat TI around a sphere. In
this case, it is reasonable to consider the entire surface of our
sphere to be akin to the (111) surface of Bi2Se3, such that σ

can be viewed as twice the spin operator. However, if we use
this same model to study real TI systems of spherical geometry
(i.e., Bi2Se3 nanoparticles), the surface normal vector points
in different crystallographic directions at every point on the
spherical surface. Thus, in this case, σ must be viewed as a
position-dependent mixture of the electron spin operator and

a sublattice pseudospin operator [27]. When discussing our
calculation in what follows, we will, for simplicity, refer to
σ dependence as spin dependence, but when applying these
results to real systems, it is important that the above caveat be
understood.

An elegant solution to Eqs. (2) and (3), understood in terms
of Landau levels on the sphere spanned by two mutually
commuting SU(2) algebras (for the cyclotron momentum S
and the guiding center momentum L) was obtained by Neupert
et al. [16] via the formalism developed in Refs. [18,19]. They
found exact eigenvalues and eigenvectors of H0, indexed by
quantum numbers n, m, and λ, where n = 0,1,2, . . . is the
Landau level index, m = −s, − s + 1, . . . ,s (where s = n +
1
2 ) is the eigenvalue of Lz, and λ = ±1 for positive/negative
energy solutions. The eigenvalues

ελ
nm = λ(n + 1)

v

R
(4)

are independent of m and therefore 2(n + 1)-fold degenerate.
Note that this degeneracy increases linearly with energy, as is
appropriate for a Dirac cone [16]. Note also that the energy gap
between states closest to the Dirac point, 2v/R, increases with
decreasing R, an effect analogous to the thickness-dependent
gapping observed in TI thin films [28] due to hybridization
between top and bottom surfaces. The spinor eigenstates take
the form

ψλ
nm(θ,φ) =

(
φ

↑
nm

λφ
↓
nm

)
, (5)

with

φ↑
nm = (L−)s−mv̄nun+1, φ↓

nm = − S−

n + 1
φ↑

nm, (6)

where the L− and S− operators

L− ≡ v∂u − ū∂v̄, S− ≡ v̄∂u − ū∂v (7)

are defined in terms of the spinor coordinates

u ≡ cos(θ/2)eiφ/2, v ≡ sin(θ/2)e−iφ/2 (8)

introduced by Haldane [19]. The eigenstates are orthogonal
and we normalize over the unit sphere, setting

〈
ψλ

nm

∣∣ψλ
nm

〉 =
∫ 2π

0
dφ

∫ π

0
dθ sin θ [|φ↑

nm|2 + |φ↓
nm|2] = 1.

(9)
As discussed by Neupert et al. [16], the weight of these

surface states, valid in the vicinity of the Dirac point,
diminishes as they merge with the bulk conduction and valence
bands for positive and negative energies on the scale of the
bulk energy gap. Noting that even strong electron-electron
interactions would therefore only induce small matrix elements
between surface and bulk states, they neglected such matrix
elements and confined their analysis to surface states within �

of the Dirac point, where � is a cutoff energy on the scale of the
bulk energy gap. We take the same approach here, neglecting
disorder matrix elements between surface and bulk states and
restricting our Hilbert space to surface states with |ελ

nm| < �.
Since the energy spacing between Landau levels is v/R,

this restriction limits the energy spectrum to a finite number
of states, N , with that number controlled by the radius of
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the sphere. The form and degeneracy of the energy spectrum,
Eq. (4), reveal that

N = 2(nmax + 1)(nmax + 2), (10)

where

nmax =
⌊

R�

v
− 1

⌋
(11)

is the maximum Landau level index (the brackets denote the
floor or greatest integer function). Note that this approach
breaks down for R < v/�, since N would be zero and all
states excluded. This provides a limit from below on the R

values to which our analysis can be applied.
With these N surface states of the clean system in hand,

our task will be to define the disorder potential, calculate the
N × N matrix elements of the full Hamiltonian (including dis-
order), and solve for energy spectra via exact diagonalization.

B. Disorder potential

The presence of disorder will mix the eigenstates of the
clean TI surface. We consider a disorder potential operator
of the most general possible form, a 2 × 2 (in spin-space)
Hermitian matrix function defined over the spherical surface.
Such a potential can be written as

V (θ,φ) =
3∑

α=0

V α(θ,φ)σα = V 01 + V · σ, (12)

where σ1, σ2, and σ3 are the same Pauli matrices introduced
in Sec. II A, σ0 ≡ 1 is the identity matrix, and the V α(θ,φ)
are four real functions of angular variables θ and φ. The first
equality in Eq. (12) suggests we interpret the V α as compo-
nents of a four-vector in R4, while the second equality further
identifies the last three components as the three-vector V. Note
that the V 01 term commutes with the time-reversal operator,
T ≡ −iσ2K (where K denotes complex conjugation), while
the V · σ term anticommutes with T . Thus V 0 characterizes the
time-reversal-invariant, spin-independent part of the disorder
(i.e. due to nonmagnetic impurities) while V characterizes
the time-reversal-breaking, spin-dependent part (i.e. due to
magnetic impurities). In what follows, it will prove important
to make note of the orientation of V and distinguish between
the in-surface part (perpendicular to the local surface normal)
and the out-of-surface part (parallel to the local surface normal)
as they have remarkably different effects on the low-energy
density of states.

We expand each of these four functions in spherical
harmonics

V α(θ,φ) =
∞∑

=0

∑
m=−

V α
mYm

 (θ,φ), (13)

restricting the expansion coefficients such that the sums are
real. Noting that Ym∗

 = (−1)mY−m
 , this restriction is imposed

by requiring that

V α
,−m = (−1)mV α∗

m , (14)

which, for m = 0, requires that the V α
0 be real. It is these

coefficients that will be randomly selected to determine an
instantiation of the disorder potential.

As noted in Ref. [16], the high-energy cutoff at � means
that it is not possible, within our restricted Hilbert space, to
construct orbitals that are localized in position space on length
scales smaller than 2πv/�. Thus short-wavelength disorder
on length scales shorter than this is simply averaged over, so
we need only include in our expansion spherical harmonics of
angular momentum up to R�/v. Hence, in our numerics, we
shall truncate the sum over  in Eq. (13) at max ≡ �R�/v	 =
nmax + 1.

III. NUMERICAL METHODS

A. Random draw of disorder potential coefficients

A particular instantiation of disorder is simulated by
randomly selecting values for each of the V α

m disorder
coefficients defined in Sec. II B. In light of the restrictions
imposed by Eq. (14), we require one real random four-vector V

per -m pair. Each is drawn from a four-dimensional gaussian
distribution

p(V ; �) = 1

(2π )2
√

det �
exp

(
− 1

2
V T �−1V

)
(15)

of zero mean and 4 × 4 covariance matrix �. The covariance
matrix is the means by which we control the strength and
type of disorder simulated. The shape of the one-sigma
hyperellipsoid determines the relative magnitude of the terms
in Eq. (12). For our current purposes, it has been sufficient to
consider a diagonal covariance matrix

� =

⎡
⎢⎢⎣

s2
0 0 0 0
0 s2

1 0 0
0 0 s2

2 0
0 0 0 s2

3

⎤
⎥⎥⎦ (16)

such that the probability distribution reduces to the product of
four independent one-dimensional Gaussians

p(V ; �) =
3∏

α=0

1√
2πsα

exp

(
− V 2

α

2s2
α

)
, (17)

where we have used sα (rather than σα) to denote the standard
deviation along each principal axis (to avoid notational
confusion with the Pauli matrices).

In what follows, we shall use the root-mean-square (rms)
value of the magnitude of V as our measure of the strength
of the disorder. To separate strength from type of disorder, we
define a disorder strength parameter, Vscale, and set it equal to√

〈V 2〉, which necessarily constrains the sα since

V 2
scale ≡ 〈V 2〉 =

∫
d4V

(
V 2

0 + V 2
1 + V 2

2 + V 2
3

)
p(V ; �)

= s2
0 + s2

1 + s2
1 + s2

3 . (18)

To enforce this constraint, we set

sα = Vscale
βα√

β2
0 + β2

1 + β2
2 + β2

3

, (19)

where β is a four-vector that specifies the type of disorder,
independent of the disorder strength. For example, β =
[1 0 0 0] specifies time-reversal-invariant disorder, while
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FIG. 1. Sample disorder instantiation. Displayed are the com-
ponents, V α(θ,φ), of the four-vector function parametrizing the
disorder potential operator, plotted over the spherical surface. These
patterns depict one particular instantiation of the disorder potential,
randomly drawn from a Gaussian distribution with a covariance
matrix characterized by β = [1 1 1 1] and Vscale = 0.4v/R. The color
bar indicates disorder intensity in units of v/R.

β = [0 1 1 1] specifies time-reversal-breaking disorder drawn
from a uniform mix of V orientations, and β = [0 1 1 0]
specifies in-surface time-reversal-breaking disorder. For any
choice of β vector, we vary the disorder strength by changing
Vscale.

In general, one could specify a different covariance matrix
(β vector and Vscale) for every  and m, to tailor the length-scale
mix of the simulated disorder. For simplicity, in this analysis,
we have taken the covariance matrix to be uniform across all
the  and m for which  � max. Displayed in Fig. 1 are the
four components, V α(θ,φ), of a sample disorder instantiation
drawn from a distribution with β = [1 1 1 1] and Vscale =
0.4v/R and plotted over the spherical surface.

B. Matrix element computation

With the 2 × 2 disorder potential operator, V (θ,φ), in hand,
our task is to compute the N × N matrix elements of this
operator between the N eigenstates of the clean Hamiltonian.
Each of these matrix elements takes the form

Vij ≡ V (ni,mi,λi ; nj ,mj ,λj ) = 〈
ψλi

nimi

∣∣V (θ,φ)
∣∣ψλj

nj mj

〉
(20)

indexed by the quantum numbers of the bra eigenstate,
(ni,mi,λi) and those of the ket eigenstate (nj ,mj ,λj ). Com-
bining Eqs. (12) and (13) and exchanging the order of the
summations, we can write the disorder potential operator as

V (θ,φ) =
max∑
=0

∑
m=−

VmYm
 (θ,φ), (21)

where Vm is the 2 × 2 expansion coefficient

Vm ≡
3∑

α=0

V α
mσα =

[
V

↑↑
m V

↑↓
m

V
↓↑
m V

↓↓
m

]
. (22)

Plugging Eqs. (5), (21), and (22) into Eq. (20), we find that the
matrix element takes the form

Vij =
max∑
=0

∑
m=−

[V ↑↑
m M

↑↑
ij ;m + V

↑↓
m M

↑↓
ij ;m

+V
↓↑
m M

↓↑
ij ;m + V

↓↓
m M

↓↓
ij ;m], (23)

where

M
↑↑
ij ;m ≡ 〈φ↑

nimi
|Ym

 |φ↑
nj mj

〉,
M

↑↓
ij ;m ≡ λj 〈φ↑

nimi
|Ym

 |φ↓
nj mj

〉,
(24)

M
↓↑
ij ;m ≡ λi〈φ↓

nimi
|Ym

 |φ↑
nj mj

〉,
M

↓↓
ij ;m ≡ λiλj 〈φ↓

nimi
|Ym

 |φ↓
nj mj

〉,
and the inner product is defined over the unit sphere

〈f |g〉 ≡
∫ 2π

0
dφ

∫ π

0
dθ sin θf (θ,φ)∗g(θ,φ). (25)

Note that it is critical that we have separated the Mij ;m

factors, which are computationally expensive to calculate but
are the same for every disorder instantiation, from the Vm

factors, which can be obtained quickly but must be drawn anew
for every disorder instantiation. We computed and stored the
Mij ;m factors only once, reusing them for each of the millions
of disorder instantiations that were run.

To calculate the inner products in the Mij ;m factors, we
take advantage of the fact that the eigenstates of the clean
Hamiltonian as well as the spherical harmonic functions can
all be expressed as finite polynomials (with complex Ai and
integer pi , qi , and ri) of the form

∑
i

Ai

(
sin

θ

2

)pi
(

cos
θ

2

)qi

(eiφ/2)ri , (26)

which we refer to as SCE (sin-cos-exp) polynomials. For the
eigenstates, this follows directly from the form of Eqs. (6)
through (8). For the spherical harmonics, it follows from
expanding the associated Legendre functions [29] and writing
the sines and cosines in terms of half-angle sines and cosines.
Doing so, we find that

Ym
 =

⌊
−|m|

2

⌋∑
k=0

−2k−|m|∑
j=0

Cmkj

(
sin

θ

2

)p(
cos

θ

2

)q

(eiφ/2)r ,

(27)
where p = 2j + |m|, q = 2( − 2k − |m| − j ) + |m|, r =
2m,

Cmkj ≡ Am
 2|m|−(−1)k+j |m|!

(


k

)(
2 − 2k



)

×
(

 − 2k

|m|
)(

 − 2k − |m|
j

)
, (28)
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Am
 ≡

√
2 + 1

4π

( − |m|)!
( + |m|)!

{
(−1)m for m � 0,

1 for m < 0,
(29)

and the parentheses denote binomial coefficients. Note that
the set of SCE polynomials is closed under addition, multi-
plication, and complex conjugation. Thus, since the measure
in our inner product, sin θ = 2 sin θ

2 cos θ
2 , is also an SCE

polynomial, evaluating the inner products in the Mij ;m factors
amounts to integrating the terms of an SCE polynomial over θ

and φ. This can always be done analytically since∫ 2π

0
dφ

∫ π

0
dθ

(
sin

θ

2

)p(
cos

θ

2

)q(
eiφ/2

)r

= B

(
p + 1

2
,
q + 1

2

)⎧⎨
⎩

2π for r = 0,

4i/r for r = 0, odd,

0 for r = 0, even
(30)

for p,q > −1 (a condition that is always met for us), where
B(x,y) ≡ �(x)�(y)/�(x + y) is a Beta function [29]. Thus
our numerics need only keep track of the various terms and add
them in order to compute the Mij ;m factors, and this need only
be done once. Then, for each instantiation of the disorder, a new
set of Vm coefficients are drawn at random from the desired
distribution (as per Sec. III A) and plugged into Eq. (23) to
obtain the matrix elements of the disorder potential operator.

C. Exact diagonalization

In the basis of the N eigenstates of the clean Hamiltonian,
the N × N disordered Hamiltonian matrix is given by

H = H0 + V, (31)

where H0 is a diagonal matrix of the clean eigenvalues, ελ
nm,

given in Eq. (4), and V is one instantiation of the disorder
potential matrix computed as per Secs. III A and III B. For
each instantiation of the disorder, we numerically compute the
eigenvalues ofH to obtain the N energy levels of that particular
instantiation of the disordered system. Plotted in Fig. 2 is
the energy spectrum calculated for the disorder instantiation
shown in Fig. 1, displayed alongside the energy spectrum of the
clean system. Note how the degeneracy of each Landau level
has been broken by the disorder, spreading out the distribution
of energy levels.

D. Disorder-averaged density of states

Though each instantiation of the disorder generates a
distinct and discrete spectrum of energy levels, the disorder-
averaged density of states is a continuous function of energy
that reflects the properties of the entire distribution of disorder
potentials, rather than any particular instantiation. We define

ρ(E) ≡
〈
�N (E,�E)

�E

〉
disorder

, (32)

where �N (E,�E) is the number of levels within an energy
range of width �E about energy E, and the angle brackets
denote an average over disorder instantiations. For a particular
disorder instantiation, the function �N (E,�E) is easily
identified as a histogram of energy levels of bin size �E, and
is computed by sorting our energy levels into bins. Thus our

FIG. 2. Energy spectra of the spherical TI surface calculated
via exact diagonalization up to nmax = 5 (� = 6.5v/R, N = 84
states). Plotted in (a) are the 84 energy levels of the clean system,
with degenerate levels shown side by side. Plotted in (b) is the
corresponding energy spectrum in the presence of the disorder
instantiation depicted in Fig. 1, a particular random draw from a
distribution of type β = [1 1 1 1] and strength Vscale = 0.4v/R. For
this disorder type and strength, the degeneracy of each Landau level
has been broken, with its states spread out in energy but not yet
overlapping with those of neighboring Landau levels.

procedure to compute ρ(E) is to calculate the energy spectrum
for a given disorder draw, sort into bins, divide by the bin size,
and repeat, averaging over many instantiations of disorder.

Ideally, we would average over an infinite number of
instantiations and take the limit of the above as �E → 0.
Limited, however, by the constraints of our computing power,
we settle for averaging over as many instantiations as is
computationally possible. In this analysis, we have computed
200 000 instantiations per run. With this number finite, there
are trade-offs to consider in selecting a bin size. Choose the
bin size too large and lose energy resolution in computing
ρ(E). Choose it too small, and there is insufficient data to
beat down the noise about the disorder average. We found
�E = 0.01v/R to be a reasonable compromise and have used
it throughout this analysis.

Plotted in Fig. 3(a) is the density of states for the clean
system, obtained from the clean energy spectrum in Fig. 2(a).
As expected, states are confined to the Landau levels, with the
Landau level degeneracy growing linearly with |E|, as must
be the case for a massless Dirac system. Plotted in Fig. 3(b)
is the density of states for a single instantiation of disorder,
the one shown in Fig. 1. The effect of this disorder is to break
the degeneracy of the Landau levels, spreading out the states
as per the energy spectrum of Fig. 2(b). For each randomly
drawn disorder instantiation, a slightly different set of levels
is obtained. Averaging over 200 000 instantiations yields the
disorder-averaged density of states, as plotted in Fig. 3(c).

IV. RESULTS

Using the methods described above, we have computed
the disorder-averaged density of states, ρ(E), as a function of
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FIG. 3. Density of states as a function of energy for (a) the
clean system, (b) a particular instantiation of the disorder, and
(c) a disorder average over 200 000 different instantiations. All
instantiations included in this disorder average were drawn from a
distribution of type β = [1 1 1 1] with strength Vscale = 0.4v/R.
The particular disorder instantiation used to create (b) is the one
plotted on the spherical surface in Fig. 1 and for which the energy
spectrum in Fig. 2(b) was calculated. Results were computed via
exact diagonalization up to nmax = 5 (� = 6.5v/R, N = 84 states).

energy, E, and disorder strength, Vscale, for several important
classes of disorder, as specified by the β vectors introduced

FIG. 4. Disorder-averaged density of states for a spherical TI
surface in the presence of disorder of type β = [1 0 0 0], time-reversal-
invariant (spin-independent) disorder, of nonzero variance only in
the V 0 direction. Results for twenty values of disorder strength are
plotted in (a), from Vscale = 0.2v/R through 4v/R in steps of 0.2v/R

(bottom to top at E = 0). A zoomed-in view of the same data, for
|E| < 1.5v/R, is shown in (b).

in Sec. III A. All calculations were performed via exact
diagonalization up to nmax = 5 (� = 6.5v/R, N = 84 states)
and averaged over 200 000 disorder instantiations per run.
Density of states was computed with an energy bin size of
�E = 0.01v/R.

We begin with the case of disorder drawn from a Gaussian
distribution that is of zero variance in all dimensions but the
first, the time-reversal-invariant (spin-independent) case where
V = V 01. In our β-vector nomenclature, this is β = [1 0 0 0].
Results for twenty values of disorder strength, up to Vscale =
4v/R, are plotted in Fig. 4. With increasing disorder strength,
the delta functions of the clean density of states become finite
peaks, which diminish and broaden until they all overlap.
The regions between delta functions, including the vicinity
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FIG. 5. Disorder-averaged density of states for a spherical TI
surface in the presence of disorder of type β = [1 1 1 1], a mix-
ture of time-reversal-invariant (spin-independent) and time-reversal-
breaking (spin-dependent) disorder, of (equal) nonzero variance in the
V 0, V 1, V 2, and V 3 directions. Results for twenty values of disorder
strength are plotted in (a), from Vscale = 0.2v/R through 4v/R in
steps of 0.2v/R (bottom to top at E = 0). A zoomed-in view of the
same data, for |E| < 1.5v/R, is shown in (b).

of zero energy (the Dirac point), thereby fill in with states. For
sufficient disorder, ρ(0) attains a nonzero value, which grows
with disorder until saturating.

Now consider the case where all four terms of the
disorder potential, V = V 01 + V 1σ1 + V 2σ2 + V 3σ3, are
treated on equal footing, drawn from a symmetrical four-
dimensional Gaussian distribution, a mixture of time-reversal-
invariant (spin-independent) and time-reversal-breaking (spin-
dependent) disorder. This is the β = [1 1 1 1] case, results
for which are plotted in Fig. 5. Once again, with increasing
disorder strength, the peaks in ρ(E) at each Landau level
diminish, broaden, and eventually overlap. And once again,
ρ(0) attains a nonzero value for sufficient disorder strength.

FIG. 6. Disorder-averaged density of states for a spherical TI
surface in the presence of disorder of type β = [0 1 1 1], time-reversal-
breaking (spin-dependent) disorder, of (equal) nonzero variance only
in the V 1, V 2, and V 3 directions. Results for twenty values of disorder
strength are plotted in (a), from Vscale = 0.2v/R through 4v/R in steps
of 0.2v/R (bottom to top at E = 0). A zoomed-in view of the same
data, for |E| < 1.5v/R, is shown in (b).

Notice, however, that in this case, there is a small splitting in
the tops of the weak-disorder peaks, especially in the lowest
energy peaks (those descended from the lowest index Landau
levels).

To explore this effect further, let us consider disorder
of type β = [0 1 1 1], purely time-reversal-breaking (spin-
dependent) disorder. Here the disorder potential has the form
V = V 1σ1 + V 2σ2 + V 3σ3 = V · σ , with coefficients drawn
from a Gaussian distribution with equal variance in the three
components of V and no V 0 term at all. Results are plotted
in Fig. 6. With the time-reversal-invariant term missing, the
weak-disorder peak splitting is much more pronounced and
occurs in every Landau level. This peak splitting begins upon
inclusion of even very weak disorder and persists until the
peaks themselves have flattened out. The source of this effect,
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FIG. 7. Disorder-averaged density of states for a spherical TI
surface in the presence of disorder of type β = [0 1 1 0], in-surface
time-reversal-breaking (spin-dependent) disorder, of (equal) nonzero
variance only in the V 1 and V 2 directions. Results for twenty values
of disorder strength are plotted in (a), from Vscale = 0.2v/R through
4v/R in steps of 0.2v/R (bottom to top at E = ±0.1v/R). A zoomed-
in view of the same data, for |E| < 1.5v/R, is shown in (b), and a
further zoomed-in view, for |E| < 0.5v/R, is shown in (c).

and why it does not occur for β = [1 0 0 0], is discussed in
Sec. V.

Now consider what happens when we restrict the time-
reversal-breaking disorder vector, V, to be perpendicular to the
surface normal, such that the disorder potential is of the form
V = V 1σ1 + V 2σ2, with these two in-surface components
drawn with equal variance and the V 0 and V 3 terms set
to zero. Results for this β = [0 1 1 0] case are plotted in
Fig. 7. As before, peaks in ρ(E) diminish, broaden, and
overlap as disorder strength increases. And as in the prior
case, we observe peak splitting for weak disorder. But here
we see something new and quite surprising in the vicinity
of the Dirac point. In all the previous cases, as the density
of states filled in between the two lowest |E| peaks, the
zero-energy density of states, ρ(0), attained a nonzero value
for sufficient disorder strength and continued to grow until
saturation at a constant level. But in the present case, the
zero-energy density of states is always zero. As disorder
strength increases and states shift to lower energies, the zero
at E = 0 is preserved, with the density of states building
up in two new peaks at E ≈ ±0.1v/R and then decreasing
linearly to zero as |E| approaches zero [ρ(E) ∼ |E| for small
|E|]. This feature in the low-energy density of states for
in-surface, time-reversal-breaking disorder, which we zoom
in upon in Fig. 7(c), is a quite striking result. A discussion of
the symmetry that preserves it is presented in Sec. V.

A very different effect is seen for purely out-of-surface
time-reversal-breaking disorder (V parallel to the surface
normal). Here the disorder potential has the form V = V 3σ3,
with all other components set to zero, the case we refer to as
β = [0 0 0 1]. Results are shown in Fig. 8. Far from the low
energy regime, the structure of the disorder-averaged density
of states is quite similar to that of the prior case—split peaks
diminishing, broadening, and overlapping as disorder strength
increases. But zooming in on the vicinity of the Dirac point [see
Fig. 8(c)], we observe, not a valley, but a clear peak in ρ(E)
about E = 0 that develops as disorder strength grows. The
origin of this feature, and why the out-of-surface and in-surface
cases differ so dramatically at low |E|, is discussed in Sec. V.

It is instructive to look more closely at the zero-energy
value of the disorder-averaged density of states, ρ(0), for
each of the five disorder types described above. These are
plotted as a function of disorder strength, Vscale, in Fig. 9(a).
In the time-reversal-invariant case (β = [1 0 0 0]), the time-
reversal-breaking with unpolarized V case (β = [0 1 1 1]),
and the fully mixed case (β = [1 1 1 1]), ρ(0) becomes
nonzero for sufficient disorder strength (Vscale ∼ v/R) and
grows with increasing Vscale until saturating at a near-constant
value. In the time-reversal-breaking with out-of-surface V case
(β = [0 0 0 1]), ρ(0) grows for approximately twice as long
and to approximately twice as large a saturation value (the
E = 0 peak). Yet in the time-reversal-breaking with in-surface
V case (β = [0 1 1 0]), ρ(0) remains zero over the full range of
disorder strength. [Note that a small nonzero value is actually
seen in the plot. This is an artifact of averaging the linear
ρ(E) ∼ |E| over a nonzero bin size (�E = 0.01v/R) about
zero energy to obtain ρ(0). As shown in Fig. 9(b), this small
value decreases linearly to zero as the bin size is decreased
toward zero while the number of disorder instantiations is
proportionally increased.]
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FIG. 8. Disorder-averaged density of states for a spherical TI
surface in the presence of disorder of type β = [0 0 0 1], out-of-
surface time-reversal-breaking (spin-dependent) disorder, of nonzero
variance only in the V 3 direction. Results for twenty values of disorder
strength are plotted in (a), from Vscale = 0.2v/R through 4v/R in steps
of 0.2v/R (bottom to top at E = 0). A zoomed-in view of the same
data, for |E| < 1.5v/R, is shown in (b), and a further zoomed-in
view, for |E| < 0.5v/R, is shown in (c).

FIG. 9. Zero-energy disorder-averaged density of states, ρ(0), for
each of the disorder types shown in Figs. 4 through 8. Plotted in
(a) is ρ(0) as a function of disorder strength, Vscale. The small but
nonzero values attained in the β = [0 1 1 0] case are artifacts of
averaging over a zero-energy bin of nonzero size, �E = 0.01v/R.
That ρ(0) is strictly zero for this case is clear from panel (b), where
the Vscale = 3v/R value is plotted as a function of bin size and seen to
linearly approach zero as bin size is decreased (while proportionally
increasing the number of disorder instantiations).

Finally, let us consider the effect of mixing in a small
amount of disorder of a different type on the low-energy linear
feature observed for the β = [0 1 1 0] case. In Fig. 10(a),
we plot low-energy ρ(E) for β = [x 1 1 0] where x varies
from 0 through 0.2 in steps of 0.01. We see that the effect of
adding this small V 01 term is to gradually fill in the linear
“hole” about E = 0, while diminishing the peaks on either
side. By the time x = 0.2, the low-energy linear feature is
gone. Mixing in a small V 3σ3 term has a very similar effect, as
is seen in Fig. 10(b), where we plot low-energy ρ(E) for β =
[0 1 1 x]. Once again, x = 0.2 is sufficient to remove the feature
entirely.

245424-9



ADAM C. DURST PHYSICAL REVIEW B 93, 245424 (2016)

FIG. 10. Disorder-averaged density of states for fixed disorder
strength, Vscale = 3v/R, and slight deviations from disorder type β =
[0 1 1 0]. Plotted in (a) is disorder of type β = [x 1 1 0] for twenty
values of x from 0 through 0.2 in steps of 0.01 (bottom to top at
E = 0). Equivalent plots for β = [0 1 1 x] are shown in (b).

V. EXPLANATION OF RESULTS

The most intriguing results of this analysis are (1) the
peak splitting observed for purely time-reversal-breaking
disorder of the form V = V · σ , (2) the low-energy linear
feature observed when V is oriented in-surface, and (3) the
zero-energy peak observed when V is oriented out-of-surface.
All three of these results can be understood in terms of the
symmetries of the Hamiltonian, H = H0 + V , in the presence
of different types of disorder.

To begin, note that the clean Hamiltonian, H0 [see
Eqs. (2) and (3)], commutes with the time reversal operator
(T ≡ −iσ2K where K denotes complex conjugation) and
anticommutes with both σ3 and σ3T :

[H0,T ] = 0, {H0,σ3} = 0, {H0,σ3T } = 0. (33)

The first of these relations reflects the time-reversal invariance
of H0 and requires the degeneracy of each state with its time-
reversed partner. This must be so because if ψ is an eigenstate
of H with eigenvalue E and [H,T ] = 0 then

H (T ψ) = T Hψ = T Eψ = E(T ψ), (34)

so T ψ must also be an eigenstate of H with the same
eigenvalue E. The second and third relations in Eq. (33) denote
two chiral symmetries [30] of H0, both of which require that
states come in ±E pairs. This is the case as long as there exists
any operator Q that anticommutes with the Hamiltonian. To
see this, note that if ψ+ is an eigenstate of H with eigenvalue
E and {H,Q} = 0, then

H (Qψ+) = −QHψ+ = −QEψ+ = −E(Qψ+), (35)

so ψ− = Qψ+ is an eigenstate of H with eigenvalue −E.
Hence the existence of a chiral symmetry requires that all
eigenstates come in ±E pairs.

Now let us write down relations corresponding to those
of Eq. (33) for each of the four terms that can appear in the
disorder potential,

[V 01,T ] = 0, [V 01,σ3] = 0, [V 01,σ3T ] = 0,

{V 1σ1,T } = 0, {V 1σ1,σ3} = 0, [V 1σ1,σ3T ] = 0,

{V 2σ2,T } = 0. {V 2σ2,σ3} = 0, [V 2σ2,σ3T ] = 0,

{V 3σ3,T } = 0, [V 3σ3,σ3] = 0, {V 3σ3,σ3T } = 0.

(36)

These follow from the realness of the V α functions and the fact
that each Pauli matrix commutes with itself but anticommutes
with the other two Pauli matrices. Thus, while H0 commutes
with T and anticommutes with σ3 and σ3T , the addition of any
one of the four possible disorder potential terms breaks two of
these three symmetries.

Consider the β = [1 0 0 0] case. For each instantiation of the
disorder, the full Hamiltonian, H1000 = H0 + V 01, preserves
time-reversal symmetry but breaks both chiral symmetries:

[H1000,T ] = 0, {H1000,σ3} = 0, {H1000,σ3T } = 0. (37)

Thus all eigenstates are doubly degenerate (time-reversed
pairs) but they no longer come in ±E pairs, so there is nothing
special about E = 0 and ρ(E) exhibits no special feature at
low energy.

In the β = [0 1 1 1] case, the full Hamiltonian, H0111 =
H0 + V 1σ1 + V 2σ2 + V 3σ3, breaks all three symmetries:

[H0111,T ] = 0, {H0111,σ3} = 0, {H0111,σ3T } = 0. (38)

With both chiral symmetries broken, the eigenstates, once
again, do not come in ±E pairs, so there is again nothing spe-
cial about E = 0 and no special feature in ρ(E) at low energy.
Furthermore, since the disorder potential, V , anticommutes
with T while H0 commutes with T , the previously degenerate
time-reversed-pair states of the clean Hamiltonian are shifted
oppositely by weak disorder. This is so because

〈T ψ |V |T ψ〉 = −〈T ψ |T (V ψ)〉 = −〈V ψ |ψ〉 = −〈ψ |V |ψ〉,
(39)

where the first equality follows because {V,T } = 0, the second
because T is antiunitary, and the third because V is Hermitian.
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This is why we see peak splitting in the present case, as well
as all other cases where {V,T } = 0, including β = [0 1 1 0]
and β = [0 0 0 1], but not for β = [1 0 0 0] which preserves
time-reversal invariance. For β = [1 1 1 1], the V · σ term
anticommutes with T and shifts time-reversed-pair states
oppositely while the V 01 term commutes with T and provides
the same energy shift to both members of each pair. The peak
splitting effect is therefore muted.

Now let us consider the origin of the low-energy (Dirac-
point-vicinity) features seen for in-surface and out-of-surface
time-reversal-breaking disorder. An important clue can be
found in the structure of the noise in the ρ(E) vs E plots
for β = [0 1 1 0] and β = [0 0 0 1]. Despite averaging over
200 000 disorder instantiations, there is always some noise in
our data because we have not included an infinite number of
instantiations in our average. Careful inspection of each set
of plots (Figs. 4 through 8) reveals that the noise is an even
function of energy for β = [0 1 1 0] and β = [0 0 0 1] but
exhibits no identifiable symmetry in the other three cases.

To see why, note that for β = [0 1 1 0], the full Hamil-
tonian, H0110 = H0 + V 1σ1 + V 2σ2, breaks the second chiral
symmetry, but not the first:

[H0110,T ] = 0, {H0110,σ3} = 0, {H0110,σ3T } = 0. (40)

And for β = [0 0 0 1], H0001 = H0 + V 3σ3 breaks the first
chiral symmetry, but not the second:

[H0001,T ] = 0, {H0001,σ3} = 0, {H0001,σ3T } = 0. (41)

Therefore, in both cases, there exists an operator (σ3 for the
former case and σ3T for the latter) that anticommutes with the
full Hamiltonian, so all eigenstates come in ±E pairs. As a
result, the energy spectrum for every instantiation of disorder
is even in energy, so even the noise in ρ(E) must be an even
function of E, as is clear from Figs. 7 and 8. In all the other
cases, where both chiral symmetries are broken, states do not
come in ±E pairs so the noise need not satisfy any particular
symmetry.

When eigenstates come in ±E pairs, E = 0 is quite special.
It is the energy at which eigenstates, when driven to low energy
by disorder, can meet their partners and, possibly, hybridize
with them. But note that the partner states are different for the
in-surface versus out-of-surface cases because it is a different
chiral symmetry that survives for each case. If ψ+ is a positive
energy eigenstate, its negative energy partner is σ3ψ+ for the
in-surface case and σ3T ψ+ for the out-of-surface case. The
fact that different low-energy density-of-states features are
observed in each case is a direct result of this difference in ±E

partners.
Consider what happens, in either case, when disorder is

strong enough to bring ±E pairs close to zero energy. Let �V

be the small additional perturbation that would, in the absense
of hybridization, make ψ+ and ψ− degenerate at E = 0. It
is then a simple matter of two-state degenerate perturbation
theory to see if the partners hybridize or not. We need only
calculate the off-diagonal matrix element

�V+− = 〈ψ+|�V |ψ−〉. (42)

Note that ψ+ and ψ− no longer resemble the clean eigenstates,
which have already been thoroughly mixed by the disorder

potential. Thus we do not know the unperturbed states, only
their relation to each other. But it turns out that is enough.

For the in-surface β = [0 1 1 0] case,

�V = �V1(θ,φ)σ1 + �V2(θ,φ)σ2, (43)

and since {H0110,σ3} = 0, we can write

ψ+ ≡
[
u

v

]
, ψ− = σ3ψ+ =

[
u

−v

]
, (44)

where u and v are complex scalar functions of θ and φ.
Plugging into Eq. (42) then reveals that

�V+− = 2i

∫ 2π

0
dφ

∫ π

0
dθ sin θ

× [�V2Re(u∗v) − �V1Im(u∗v)]. (45)

Since this is generally nonzero, the ±E partner states do
hybridize, resulting in a level repulsion that yields a lack of
states about E = 0. Hence, as we increase disorder strength,
partner states anticross at zero energy, with anticrossing gaps
of varying size. This happens generically, for every disorder
instantiation that drives states toward low energy, which
explains why we find ρ(0) = 0 for disorder of this type.
Prevented, by the chiral symmetry, from reaching zero energy,
states driven toward low energy build up in two symmetric
peaks, with density of states falling to zero as energy goes to
zero. Hence the low-energy linear feature seen in Fig. 7(c).

But why doesn’t the same thing happen for the out-of-
surface β = [0 0 0 1] case? The scenario of ±E partner states
driven toward each other by the disorder potential is precisely
the same as above, only now

�V = �V3(θ,φ)σ3 (46)

and it is the other chiral symmetry that is preserved:
{H0001,σ3T } = 0. So we write

ψ+ ≡
[
u

v

]
, ψ− = σ3T ψ+ = −σ1Kψ+ =

[−v∗
−u∗

]
, (47)

and plug into Eq. (42), just as before. But in this case, we find
a very different result:

�V+− =
∫ 2π

0
dφ

∫ π

0
dθ sin θ [�V3(−u∗v∗ + u∗v∗)] = 0.

(48)
The off-diagonal matrix element is zero for any functions u,
v, and �V3. The ±E partner states therefore do not hybridize
when they meet at zero energy, there is no level repulsion,
and states about E = 0 are plentiful. As we increase disorder
strength, partner states simply cross at zero energy. Zero energy
is once again special, but now for the opposite reason. This
coming together of states from positive and negative energy
yields an enhancement in the density of states, resulting in
a peak about E = 0. Hence the zero-energy peak seen in
Fig. 8(c).

VI. CONCLUSIONS

In this paper, we have considered a topological insulator
(TI) of spherical geometry and studied the influence of disorder
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on the density of surface states. This spherical TI problem is
relevant both to the study of physical systems of spherical
geometry (i.e., TI nanoparticles) and as a theoretical construct
with the purpose of providing insight regarding the physics
of the flat TI surface that is recovered in the large radius
limit. A great advantage of this construct is that the finite
size of the spherical surface results in a discrete energy
spectrum with well-defined eigenstates that is well suited
to numerical analysis. The eigenvalues and eigenstates of
the clean TI surface Hamiltonian, H0, elegantly derived and
developed in Refs. [16–19], provided the basis for our analysis.
To H0 we added a disorder potential of the most general
Hermitian form, V (θ,φ) = V 0(θ,φ)1 + V(θ,φ) · σ , where V0

represents time-reversal-invariant (spin-independent) disorder
and the three-vector V represents time-reversal-breaking (spin-
dependent) disorder. Expanding the four disorder functions in
spherical harmonics, we randomly drew coefficients from a
Gaussian distribution in four-dimensional parameter space.
We then evaluated the full Hamiltonian, H = H0 + V , in
the basis of the clean eigenstates, diagonalized to find the
energy spectrum, binned the results to obtain the density of
states, and averaged over 200 000 disorder instantiations to
compute the disorder-averaged density of states, ρ(E). We
considered disorder of varying strength (Vscale) and of different
types (see β-vector nomenclature introduced in Sec. III A)
by controlling the 4 × 4 covariance matrix of our zero-mean
Gaussian distribution.

Quite generically, we find that increasing disorder strength
leads to the broadening, decay, and overlap of the Landau level
peaks that characterize the clean density of states. We observed
this scenario for all the different disorder types (characterized
by different β vectors) that we considered. Such effects are
to be expected as the disorder potential thoroughly mixes the
eigenstates of the clean Hamiltonian. However, our results also
revealed striking differences, rooted in the symmetries of the
TI surface Hamiltonian, between density-of-states functions
calculated for different types of disorder.

We found that the broadened peak structure characteristic
of the weak-disorder regime manifests quite differently for
spin-dependent disorder (only the V · σ terms) than it does for
spin-independent disorder (only the V 01 term). The former
case results in a distinct splitting of the Landau level peaks
(see Fig. 6) that is absent in the latter (see Fig. 4). As discussed
in Sec. V, this is a consequence of the time-reversal invariance
of the clean Hamiltonian and the fact that the spin-dependent
disorder potential terms anticommute with the time-reversal
operator.

Furthermore, our calculations revealed significant,
disorder-type-dependent differences in the structure of the
strong-disorder density of states in the vicinity of zero energy.
For most types of disorder, increasing disorder strength
pushes states closer and closer to zero energy, resulting in
a low-energy density of states that becomes nonzero for
sufficient disorder and continues to increase until saturating
at an energy-independent value. This is what we see for
β = [1 0 0 0], β = [1 1 1 1], and β = [0 1 1 1]. But
something very different happens for spin-dependent disorder
with V either entirely in-surface (β = [0 1 1 0]) or entirely
out-of-surface (β = [0 0 0 1]), as can be seen in Fig. 11.
In the in-surface case, increasing disorder strength yields an

FIG. 11. Low-energy disorder-averaged density of states for
strong disorder of fixed strength, Vscale = 4v/R, for each of the
disorder types shown in Figs. 4 through 8.

enhancement of the density of states near zero energy but not
at zero energy. The zero-energy density of states is always
strictly zero, and we see a linear increase with increasing |E|,
up to peaks in the vicinity of E ≈ ±0.1v/R. By contrast, in
the out-of-surface case, increasing disorder strength yields a
peak at zero energy, reaching a maximum value of roughly
twice the constant density of states seen at higher energies. As
discussed in Sec. V, what makes these two cases so special
is that for each, the full Hamiltonian, H = H0 + V , preserves
one of the two chiral symmetries of the clean Hamiltonian, H0.
As a result, eigenvalues of H come in ±E pairs, so the density
of states for each individual disorder instantiation is even in
E. For this reason, the disorder-averaged density of states,
ρ(E), for these two cases (and not the others) are strictly even
functions of energy, down to the noise (see Fig. 11). Also
for this reason, E = 0 is quite special in both of these cases,
for it is the energy where ±E partner states meet each other,
given sufficient disorder. But what makes these two cases so
different from each other is that, for each, it is a different chiral
symmetry of the clean Hamiltonian that is preserved by the full
Hamiltonian. In the in-surface case, {H,σ3} = 0, so the ±E

partner states are ψ and σ3ψ , and we find that these two states
hybridize when they meet, resulting in an anticrossing (level
repulsion), and therefore a depletion of states at zero energy.
In the out-of-surface case, {H,σ3T } = 0, so the ±E partner
states are ψ and σ3T ψ , and we find that these two states do
not hybridize when they meet, so there is no level repulsion,
and therefore an abundance of states at zero energy.

We expect that the disorder effects discussed herein
should be relevant to experiment, including the spectroscopy
of topological insulator nanoparticles, where an ensemble
average over many nanoparticles would play the role of our
disorder average. Note, however, that as discussed in Sec. II A,
our analysis is subject to a lower limit on R, and in real
materials, the relationship between our σ operator and the
electron spin operator can be nontrivial. Most observable
would be the broadening, decay, and overlap of Landau level
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peaks that we see generically for all types of disorder. More
challenging would be the observation of the weak-disorder
peak splitting that is characteristic of time-reversal-breaking
disorder. And most challenging would be the observation of the
low-energy (Dirac-point-vicinity) density-of-states features
that we predict for strong, time-reversal-breaking disorder of
the in-surface (β = [0 1 1 0]) and out-of-surface (β = [0 0 0 1])
types, as the requisite control over the form of the disorder
potential may be difficult to achieve.

In future theoretical work, we intend to pursue a synthesis
of this disorder analysis with the interactions study performed

on the same system by Neupert et al. [16] in order to probe the
interplay between interactions and disorder.
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