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Self-consistent scheme for optical response of large hybrid networks of semiconductor quantum dots
and plasmonic metal nanoparticles
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We discuss a self-consistent scheme for treating the optical response of large, hybrid networks of
semiconducting quantum dots (SQDs) and plasmonic metallic nanoparticles (MNPs). Our method is efficient
and scalable and becomes exact in the limiting case of weakly interacting SQDs. The self-consistent equations
obtained for the steady state are analogous to the von Neumann equations of motion for the density matrix
of a SQD placed in an effective electric field computed within the discrete dipole approximation. Illustrative
applications of the theory to square and honeycomb SQD, MNP, and hybrid SDQ-MNP lattices as well as
SQD-MNP dimers are presented. Our results demonstrate that hybrid SQD-MNP lattices can provide flexible
platforms for light manipulation with tunable resonant characteristics.
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I. INTRODUCTION

Collective surface charge oscillations (plasmons) on a metal
nanoparticle (MNP) can strongly localize light to subwave-
length regions and greatly enhance the field in these regions
[1–6]. Gold nanoparticles, for example, are well known to ex-
hibit plasmonic resonances in the visible [7,8]. Hybrid systems
of MNPs and semiconductor quantum dots (SQDs) [9–15]
are attracting special interest because interactions between the
excitons of an SQD and the plasmons of an MNP can lead to
novel effects and strong modifications of the optical properties
of an SQD-MNP network compared to those of the underlying
SQD or MNP building blocks; the SQDs play the role of
quantum emitters in the network [16,17], whereas the MNPs
act to amplify or dampen the electromagnetic field. The matrix
elements of the density operator satisfy the well-known optical
Bloch equations [18]. Thus, as shown by Zhang et al. [19],
the plasmon-excitation interaction leads to the formation of
a hybrid excitation with shifted frequency (Lamb shift) and
decreased lifetime. The modified decay rate can be also derived
from Fermi’s golden rule as shown in the book by Novotny
and Hecht [7]. Efficient transfer of energy through the network
can be achieved by designing a hybrid layer composed of
plasmonic elements coupled with SQDs [20] or semiconduct-
ing interfaces [21]. The underlying mechanism involves a
near-field resonance of electric dipoles, also known as Forster
resonance energy transfer [22], which can be viewed as a
quantum version of the classical resonance phenomenon [23].

Exciton migration in a hybrid SQD-MNP network can be
incoherent (diffusive) [9] or coherent (wavelike) and could
be studied by using positronium atom simulators in a metal-
organic framework [24]. In the coherent case, excitations are
transferred back and forth between the MNPs and the SQDs.
This regime occurs in the vicinity of the exciton-plasmon
resonance and produces a shift in the exciton emission
frequency. Coupling of the resonance to the broad continuum
of plasmonic modes of the MNP in the presence of an applied
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driving field near the resonance has been investigated within
the framework of the quantum density-matrix formalism
[19,25–27], and is shown to yield Fano lines shapes [28–30],
excitation induced transparency, and suppression and
bistability behavior of the network [19,25]. Reference [27]
has developed a theory in this connection, but the scheme of
Ref. [27] can only treat a few building blocks since it involves
a set of complicated nonlinear ordinary differential equations
(ODEs). In order to address this bottleneck in system size,
we consider a set of linear von Neumann equations of motion
in the steady state for the density matrix of each SQD placed
in an effective field, due to the network, which is obtained
within the discrete dipole approximation (DDA).

The resulting equations differ sharply from the standard
linear-response treatment in that our SQD density-matrix
operator can be cast in terms of occupation numbers, which
can be computed very efficiently by adapting self-consistent
field (SCF) iterative schemes that have been implemented in
many quantum chemistry and solid-state electronic structure
software packages involving Hartree-Fock or Kohn-Sham
equations [31]. In this way, our method becomes extremely
efficient and scalable and enables the treatment of very large
hybrid networks.

The present framework will allow a broader exploration of
light-matter interactions in metamaterials [32–34] and hybrid
systems [35–37], where one is constrained currently to the
treatment of only plasmonic particles. Inclusion of SQDs
offers a much greater degree of freedom in the development
of applications such as multiwavelength energy absorption
arrays [38,39] and optical nanocircuits [3].

II. METHOD

A. Formalism

Our scheme is composed of two main parts, namely, the
evaluation of the von Neumann equations of motion for the
density matrix, ρ, of each SQD in the steady state and of
the effective electric fields calculated within the DDA [40–45].
The density matrix of each SQD is first initialized to the one

2469-9950/2016/93(24)/245411(6) 245411-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.245411


HAYATI, LANE, BARBIELLINI, BANSIL, AND MOSALLAEI PHYSICAL REVIEW B 93, 245411 (2016)

given by the external electric field E0. It is next updated by
using the local electric field at the SQD. In each of these steps,
we solve the master equation for the steady state given by

dρ

dt
= i

�
[ρ,HE] − �(ρ). (1)

In Eq. (1) HE = �ω0â
†â − μ · Eâ − μ · E∗â† is the SQD

Hamiltonian, where â and â† are the exciton annihilation and
creation operators, ω0 is the energy gap in the SQD, μ denotes
the dipole matrix element, and E is the electric field. Moreover,
� is the relaxation matrix where the matrix elements are
�11 = (ρ11 − 1)/τ0, �22 = ρ22/τ0, and �12 = �∗

21 = ρ12γ21.
In this work, we have taken the values of γ21 and τ0 from
Refs. [19,25] in order to benchmark our solution. For including
the Purcell effect, decay rates can be renormalized to take into
account effects of the environment as discussed in Refs. [7,46].
Here, entanglement effects have been neglected since these are
observed to be small in the steady state [47,48], although these
effects can be significant in the transient regime.

In order to find the induced polarizations on various
elements of the hybrid network within the DDA, we assign
polarization Pi and polarizability αi = ε0χi [49,50] to the ith
element (plasmonic or semiconducting) of the network [51].
Then Pi = αiEi

loc, where Ei
loc is the total (local) electric field

on the ith site produced by all other sites and the external
electric field. This expression can be expressed in a system of
linear equations [52] given by

P i
x = αi

⎡
⎣∑

i �=j

(
Gij

xxP
j
x + Gij

xyP
j
y

) + E0
x

⎤
⎦,

(2)

P i
y = αi

⎡
⎣∑

i �=j

(
Gij

yxP
j
x + Gij

yyP
j
y

) + E0
y

⎤
⎦,

where P i
x and P i

y are the x and y components of the
polarization at the ith site, and E0

x and E0
y are the x and

y components of the external electric field. G
ij
ws , with

ws ∈ {xx,xy,yx,yy}, is a matrix element of the dyadic

Green’s function
↔
G(r,r′), where r is the location of the ith

observation site and r′ is the location of the j th source site.

The resulting closed form of
↔
G(r,r′) given in Ref. [53] is

↔
G(r,r′) = 1

4πε0

e−ikoR

R3
{[(k0R)2 − ik0R − 1]

↔
I −

− [(k0R)2 − 3ik0R − 3]RR}, (3)

where
↔
I is the identity dyad, R = r − r′, and k0 is the

free-space wave vector.
Since our network contains two distinct types of elements

(MNP and SQD), we must consider two different forms of
linear susceptibility. The classical MNP susceptibility is given
by

χMNP = 4πε0a
3γ, (4)

Initialize ρ using �E0:
ρ̇(0) = i

h̄

[
ρ(0),H�E0

]
− Γ(ρ(0))

DDA Solver

Evaluate Master Equation:
ρ̇(n+1) = i

h̄

[
ρ(n+1),H�E

(n)
loc

]
− Γ(ρ(n+1))

Converged if:∣∣∣ρ(n+1)
11 − ρ

(n)
11

∣∣∣ <Tolerance

Output: ρ(n+1), �P

ρ(0), �E0

�E
(n)
loc

ρ(n+1)

no

ρ(n+1)

yes

FIG. 1. Schematic illustration of our self-consistency loop for
treating the network of SQD and MNP elements. Here ρn denotes the
density matrix of a SQD in the nth iteration.

where a is the radius and γ = εm−ε0
εm+2ε0

is the effective dielectric
constant of the MNP. For the SQD, we use

χSQD = 1

3�εeff

2ω0ρ11μ
2

(ω0 − ω − γ12)(ω0 + ω + γ12)
(5)

where εeff is given in Ref. [19], ρ11 is a matrix element of
the density matrix, and 1/γ12 is the lifetime of the excited
state [54] given by the relaxation matrix in Eq. (1).

B. Practical implementation of the algorithm

The combined evolution of the density matrix and the
induced local polarizations can now be obtained through the
preceding set of equations, starting with the initial density
matrix ρ(0) and the resulting susceptibility χSQD (see Fig. 1).
The linear system in Eq. (2) is solved self-consistently to yield
the polarizations on various elements of the network using
the local field on each SQD to extract an updated density
matrix ρ(1). The main computational cost as a function of the
size of the system is driven by the matrix inversion of the
linear system in Eq. (2) the complexity of which, depending
on the algorithm, can range from O(n2 log n) to O(n3) as
shown in Ref. [55]. Here n = d(NMNP + NSQD), with d being
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the number of spatial dimensions and NMNP (NSQD) being the
number of MNPs (SQDs) in the system. Self-consistency is
reached when |ρ(n+1)

11 − ρ
(n)
11 | is smaller than a given value:

here we used a tolerance of 10−5. In the present calculations,
we found that convergence of the density matrix is typically
achieved within about ten iterations, with the number of
iterations depending on the external field strength, dipole
strength, the distance between the particles, and the proximity
of the system to the resonance frequency ω0. However, when μ

is large, and the distance between particles is small, we found
an increase in the number of iterations to around 30.

The standard route followed in quantum plasmonics
involves solving simultaneously the rate equations of the
quantum emitters along with the field equations obtained
via finite-difference time-domain schemes. The present SCF
approach gives the same results in the steady state as the
standard approach [19]. However, our scheme avoids the key
numerical bottlenecks of the standard approach by invoking
the SCF methodology. It should be noted that a disadvantage
of our method is that it cannot treat the transient regime before
the system reaches the steady state. If effects of the fractional
occupation number ρ22 of the excited state are neglected, we
do not need to iterate and our scheme becomes equivalent
to that introduced by Panahpour et al. [56]. For a system
only composed of SQDs, our SCF scheme reduces to the
generalized Maxwell-Bloch equations introduced by Bowden
and Dowling [57].

III. RESULTS

We first consider the illustrative case of a hybrid dimer
composed of a spherical MNP of radius a = 7.5 nm and an
SQD in the presence of a polarized external field E0 cos(ωt),
at light intensity of I0 = 1W/cm2. Plasmonic properties of
the MNP are introduced in our calculations by using the
dielectric function of Ref. [58]. The energy gap ω0 of the
SQD can be tuned to resonate with the MNP, for example,
by modifying the size of the SQD [16]. The dipole moment
of the SQD is given by μ = er0 where we take r0 = 0.65 nm
and the relaxation times to be τ0 = 0.8 ns for fluorescence and
1/γ12 = 0.3 ns for the dipole transition. As we noted earlier,
the values of γ21 and τ0 are taken from Refs. [19,25]. The
center-to-center distance between the two nanoparticles, R,
ranges typically between 13 and 80 nm. Depending on the
angle between the polarization vector and dimer axis, the two
dipoles will interfere either constructively or destructively.
In particular, the induced field between the spheres will be
enhanced in the longitudinal polarization configuration at
frequencies well below the resonance. Figure 2 shows the
population of the excited state, ρ22, for the SQD in the dimer
system for different interparticle distances R when the field
is in the longitudinal polarization configuration. The earlier
ODE results of Refs. [19,25] are seen to be almost identical
to the present SCF results for R = 20 nm, although one can
notice small differences at shorter interparticle distances. The
reason is that our self-consistent computation fully captures
the feedback of dipole interactions in the system. In fact,
in the small R limit, we find that the MNP dominates the
response and the SQD becomes irrelevant, while for large R

the behavior of the MNP and SQD contributions is opposite.

FIG. 2. Population of the excited state of a dimer system for
different interparticle distances R. The ODE and SCF results are
compared.

Our method thus correctly captures the standard ODE cases of
dimer as well as SQD/MNP/SQD [27] and MNP/SQD/MNP
trimers as shown in detail in [59]. Our analysis indicates that
for 15 � R � 20 nm the hybrid artificial systems (dimer or
trimer) behave significantly differently from their constituent
elements, and offer unique optical properties at the nanometer
scale at their resonant energies.

In particular, when μ is large, our method is able to
capture plexitonic effects such as electromagnetically induced
transparency and modified Fano shapes; it also reproduces
cases studied with the standard ODE approach by Artuso
and collaborators [25,60]. Interestingly, Artuso et al. found
two distinct solutions to the rate equations [25,26,61] due to
nonlinearity in the dimer case for a specific set of parameter
values (R = 13 nm,a = 7 nm,μ = 3.5 enm). One of these sta-
ble solutions is a smooth and continuous function of ω, while
the second solution displays a similarly broad asymmetrical
shape away from the resonance with a discontinuous jump. Our
method, on the other hand, only yields the first solution. In the
strong-coupling regime discussed in Ref. [46], the atom-field
coupling κ (see Ref. [7] for definition) is much larger than
the spontaneous decay rate. Such a regime can be accessed by
measuring vacuum Rabi oscillations [62].

We turn now to discuss the electromagnetic response of
hybrid SQD/MNP lattices by taking advantage of the high
computational efficiency of our SCF algorithm. Properties of
two specific lattices are considered: a 10 × 10 square MNP
lattice with a basis of SQDs at (0.5,0.5) and a 10 × 10
MNP/SQD honeycomb lattice, see Fig. 3. Such large systems
are intractable within the standard ODE approach [61]. In
investigating the SQD/MNP networks, we chose R = 20 nm
as the distance between the SQD and MNP elements for ease
of comparison with the corresponding dimer results. Figure 4
illustrates the resonant behavior of the local electric field Eloc

as a function of the frequency ω of the external electric field,
which is oriented 45◦ with respect to the x axis. We see that on
the SQD site of the square lattice there is a strong suppression
of the local electric field at the resonance frequency [blue curve
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FIG. 3. (a) A 10 × 10 square MNP lattice with a basis of SQDs
and (b) a 10 × 10 MNP/SQD honeycomb lattice. The gold (red)
spheres represent the MNP (SQD), and the +x (+y)-axis goes
rightward (upward).

in Fig. 4(b)] and just before the resonance Eloc becomes larger
than E0. In the honeycomb lattice also the ratio Eloc/E0 rises
just before the resonance but it does not become larger than
unity. By comparing various curves in Fig. 4, it is clear that
there are substantial differences between the behavior of the
SQD and MNP lattices, and that the response of the lattices
differs sharply from that of the dimer, especially at and near
the resonance. Results of Fig. 4 demonstrate that the Eloc/E0

line shape can be controlled through the choice of the lattice
on which elements of the network are arranged, providing
flexibility in tuning the plasmonic characteristics of the
network. We have also taken advantage of the scalability of our
algorithm to find that, near the resonance frequency, the density
operator in the infinite lattice limit needs systems as large as
80 × 80 to converge as illustrated in the Supplemental Material
Ref. [63]. Finally, we have simulated effects of disorder by
randomly varying the positions of the SQDs and MNPs in the
lattice by up to 5% of the interparticle distance away from
the perfect lattice positions. The resulting uncertainty in the
response is shown by the shading around various curves in
Fig. 4. It is seen that the response in all cases considered in
Fig. 4 is quite robust against such disorder effects.

FIG. 4. Resonant behavior of the local electric field Eloc on
(left) MNP and (right) SQD elements of various lattices as a function
of the frequency ω: square lattice (blue lines), honeycomb lattice (red
lines), and dimer case (green lines). The effect of disorder in the
lattice is shown by shading of different colors around various lines.
The external field is oriented 45◦ with respect to the x axis.

FIG. 5. Intensity of the induced electric field (excluding the
external field E0) in a plane 12 nm above the square 10 × 10 planer
network for (a) a pure MNP network, (b) a pure SQD network, (c)
the hybrid MNP/SQD network, and (d) the difference between the
hybrid system in (c) and the pure MNP system in (a). The external
field is oriented at 45◦ with respect to the x axis with ω at resonance.
The field intensities are given in units of the external field intensity.

Figure 5 gives further insight into our results by showing
that the hybrid network can be used to shape the electric
field in the near-field region by producing a beam with a
modulated pattern. Here, we consider the 10 × 10 MNP/SQD
square network discussed above using the same external field
orientation. Figure 5(a) shows the electric field in a plane
12 nm above the planar network for the SQD subnetwork,
which is compared with the corresponding results of Fig. 5(b)
for the MNP subnetwork [52]. The focal properties of the
full hybrid MNP/SQD system [panel (c)] are seen to change
significantly as demonstrated by the difference, panel (d), with
respect to the linear superposition of the two pure systems (i.e.,
MNP and SQD) [64]. SQD/MNP arrays could thus provide
a flexible basis for designing platforms for nanoantenna light
manipulation [65]. We have noted above that Fig. 4 is little
affected by randomness. However, the effects of disorder are
mainly manifested in the propagation properties. Therefore,
quantities shown in Fig. 5, which are relevant to propagation
and Green’s tensors, are much more sensitive to disorder
effects as shown in the SI [66]. Interestingly, disorder in the
lattice can also lead to Anderson localization effects as shown
by John [67], although our main reason to introduce small
disorder is to assess the stability of our numerical solutions.

IV. CONCLUSION

We have developed an efficient SCF method based on the
DDA for obtaining the optical response of large networks of
plasmonic MNPs and SQDs. Our method is both accurate and
scalable, and it can be generalized to treat complex nanores-
onators with arbitrary shapes [68]. The present scheme solves
the problem of computational bottlenecks for the numerical
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treatment of large hybrid networks of MNPs and SQDs, and
advances the field of optoelectronics based on plasmonics. For
example, one could address in this way the development of
optimal architectures for absorbing layers in novel quantum
dot sensitized solar cells [20]. By combining MNPs with
quantum emitters such as the SQDs, it will become possible
to model wireless networks at the nanoscale, and analyze the
efficiency of energy transport through such networks.
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