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High-temperature superfluidity of the two-component Bose gas
in a transition metal dichalcogenide bilayer
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The high-temperature superfluidity of two-dimensional dipolar excitons in two parallel transition metal
dichalcogenide (TMDC) layers is predicted. We study Bose-Einstein condensation in the two-component
system of dipolar A and B excitons. The effective mass, energy spectrum of the collective excitations, the
sound velocity, and critical temperature are obtained for different TMDC materials. It is shown that in the
Bogoliubov approximation, the sound velocity in the two-component dilute exciton Bose gas is always larger
than in any one-component exciton system. The difference between the sound velocities for two-component and
one-component dilute gases is caused by the fact that the sound velocity for a two-component system depends
on the reduced mass of A and B excitons, which is always smaller than the individual mass of A or B exciton.
Due to this fact, the critical temperature Tc for superfluidity for the two-component exciton system in a TMDC
bilayer is about one order of magnitude higher than Tc in any one-component exciton system. We propose to
observe the superfluidity of two-dimensional dipolar excitons in two parallel TMDC layers, which causes two
opposite superconducting currents in each TMDC layer.
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I. INTRODUCTION

The phenomenon known as Bose-Einstein condensation
(BEC) occurs when a substantial fraction of the bosons at low
temperatures spontaneously occupy the single lowest-energy
quantum state [1,2]. A BEC of bosons can exhibit superflu-
idity similar to superfluid helium [3,4]. A BEC of weakly
interacting particles was achieved experimentally in gases of
rubidium [5,6] and sodium [7,8] atoms. Cornell, Ketterle, and
Wieman shared the 2001 Nobel Prize in Physics “for the
achievement of BEC in dilute gases of alkali atoms.” Enormous
technical challenges had to be overcome in achieving the
nanokelvin temperatures needed to create this atomic BEC.
The experimental and theoretical achievements in the studies
of the BEC of dilute supercold alkali gases are reviewed in
Ref. [9].

The de Broglie wavelength of particles in a two-
dimensional (2D) system is inversely proportional to the
square root of the mass. Therefore, a BEC of small mass
bosons can form at much higher temperatures than for
relatively heavy alkali atoms. The very weakly bound boson
quasiparticles can be produced using the absorption of a photon
by a semiconductor causing the creation of an electron in a
conduction band and a positively charge “hole” in a valence
band. This electron-hole pair can form a bound state known as
an “exciton.” The mass of an exciton is much smaller than the
mass of a regular atom. Therefore, such excitons are expected
to undergo BEC and form a superfluid at experimentally
observed exciton densities at temperatures much higher than
for alkali atoms [10].

The prediction of superfluidity and BEC of dipolar (indi-
rect) excitons formed by spatially separated electrons and holes
in semiconductor coupled quantum wells (CQWs) attracted
interest to this system [11–20]. In the CQWs, negative
electrons are trapped in a two-dimensional plane, while an
equal number of positive holes are located in a parallel
plane at a distance D away. In this system, the electron-hole

recombination due to the tunneling of electrons and holes
between different quantum wells is suppressed by the dielectric
barrier that separates the quantum wells. So, the excitons can
have a very long lifetime [10] and, therefore, they can be
treated as metastable particles described by quasiequilibrium
statistics. At large enough separation distance D, the excitons
experience the dipole-dipole repulsive interaction.

In the last decade, many experimental and theoretical
studies were devoted to graphene, which is a 2D atomic
plane of carbon atoms, known for unusual properties in its
band structure [21,22]. The condensation of electron-hole
pairs formed by spatially separated electrons and holes in two
parallel graphene layers has been studied in Refs. [23–28]. The
excitons in gapped graphene can be created by laser pumping.
The superfluidity of quasi-two-dimensional dipolar excitons
in two parallel graphene layers in the presence of band gaps
was predicted recently in Ref. [29].

Today, an intriguing counterpart to gapless graphene is
a class of monolayer direct band-gap materials, namely,
transition metal dichalcogenides (TMDCs). Monolayers of
TMDC such as MoS2, MoSe2, MoTe2, WS2, WSe2, and
WTe2 are 2D semiconductors (below for TMDC monolayer
we use the chemical formula MX2, where M denotes a
transition metal M = Mo or W, and X denotes a chalcogenide
X = S, Se, or Te) which have a variety of applications in
electronics and optoelectronics [30]. The strong interest in
TMDC monolayers is motivated by the following properties:
a semiconductor band structure characterized by a direct
gap in the single-particle spectrum [31–34], the existence of
excitonic valley physics [35,36], and the demonstration of
electrically tunable, strong light-matter interactions [37,38].
The electronic band structure of TMDC monolayers was
calculated [39] by applying the semiempirical tight-binding
method [40] and the nonrelativistic augmented-plane-wave
method [41]. The band structures and corresponding effective-
mass parameters have been calculated for bulk, monolayer,
and bilayer TMDCs in the GW approximation, by solving
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the Bethe-Salpeter equation (BSE) [42–45] and using an
analytical approach [46]. The properties of direct excitons in
monolayer and few-layer TMDCs on a SiO2 substrate were
experimentally and theoretically investigated, identifying and
characterizing not only the ground-state exciton but the full
sequence of excited (Rydberg) exciton states [47]. The exciton
binding energy for monolayer, few-layer, and bulk TMDCs
and optical gaps were evaluated using the tight-binding
approximation [48], by solving the BSE [49,50], applying
an effective mass model, density functional theory and
subsequent random phase approximation calculations [51],
and by a generalized time-dependent density-matrix functional
theory approach [52]. Significant spin-orbit splitting in the
valence band leads to the formation of two distinct types
of excitons in TMDC layers, labeled A and B [51]. Type
A excitons are formed by spin-up electrons from conduction
and spin-down holes from valence bands. Type B excitons are
formed by spin-down electrons from conduction and spin-up
holes from valence bands. According to Fig. 4 in Ref. [30],
the spin-orbit splitting in the valence band is much larger
than in the conduction band. In the valence bands of both
MoX2 and WX2, the energy for spin-down electrons is larger
than for spin-up electrons. This spin-orbit splitting causes
the experimentally observed energy difference between the
A and B excitons [30]. Two-photon spectroscopy of excitons
in monolayer TMDCs was studied using the BSE [53].

It was recently proposed that a heterostructure design
consisting of two TMDC monolayers separated by an h-BN
insulating barrier could be used to observe high-temperature
superfluidity in these materials [54]. The emission of neutral
and charged excitons was controlled by the gate voltage,
temperature, and the helicity and power of optical excitation.
The formation of indirect excitons in a heterostructure of
MoS2 and MoSe2 monolayers on a Si-SiO2 substrate was
observed [55]. The dynamics of direct and indirect excitons
in WSe2 bilayers was studied experimentally by applying
time-resolved photoluminescence spectroscopy [56]. A phase
transition that occurs between states containing one and
two condensate components in two-dimensional spatially
indirect exciton condensates in a TMDC bilayer was studied
in Ref. [57]. We propose a theoretical description for the
superfluidity of two-component Bose gas of such dipolar
excitons in various TMDC bilayers.

The presence of a two-component mixture of A and
B excitons in TMDC bilayers contributes significantly to
the phenomenon of high-temperature superfluidity in these
systems. Two-component mixtures of trapped cold atoms
experiencing BEC and superfluidity have been the subject
of various experimental and theoretical studies [58–61]. The
Hamiltonian of two-component Bose systems includes three
terms corresponding to each type of interaction in the system:
two terms for the interaction of bosons of the same species,
and one term for the interaction of bosons of different species.
These three interaction terms in the Hamiltonian are described
by three different interaction constants. The Bogoliubov ap-
proximation was previously developed and applied to describe
the excitation spectrum of a two-component BEC of cold
atoms [62–64]. We apply the Bogoliubov approximation here
to derive the excitation spectrum of a two-component BEC of
A and B dipolar excitons in a TMDC bilayer.

In this paper, we consider a dilute gas of dipolar excitons
formed by an electron and a hole in two parallel, spatially
separated TMDC monolayers. The spatial separation of
electrons and holes in different monolayers results in an
increase of the exciton lifetime compared to direct excitons
in a single monolayer due to a relatively low probability of
the tunneling between monolayers since the monolayers are
separated by a dielectric barrier. We consider the formation
of a BEC of A and B dipolar excitons that are in the
ground state. To find the single-particle spectrum for a single
dipolar exciton, we solve analytically the two-body problem
for a spatially separated electron and hole located in two
parallel TMDC layers. The latter step allows us to obtain
the spectrum of the collective excitations and sound velocity
for a dilute two-component exciton Bose gas formed by A

and B excitons within the framework of the Bogoliubov
approximation. The superfluid phase can be formed at finite
temperatures due to the dipole-dipole interactions between
dipolar excitons, which results in a soundlike spectrum at small
momenta for the collective excitations. The sound spectrum
satisfies the Landau criterion of superfluidity [65,66]. We
calculated the spectrum of collective excitations, the density
of a superfluid component as a function of temperature, and
the mean field phase transition temperature, below which
superfluidity occurs in this system. We predict the existence
of high-temperature superfluidity of dipolar excitons in two
TMDC layers at temperatures below the mean field phase
transition temperature. Our most fascinating finding is that
in the Bogoliubov approximation, the sound velocity in a
two-component dilute Bose gas of indirect excitons is always
larger than in any one-component Bose gas in CQWs, and that
leads to remarkable high-temperature superfluidity.

The paper is organized in the following way. In Sec. II,
we solve the eigenvalue problem for an electron and a hole in
two different parallel TMDC layers, separated by a dielectric.
The effective masses and single-particle energy spectra of
dipolar excitons in two parallel TMDC layers are obtained.
In Sec. III, we study the condensation of a two-component
gas of dipolar A and B excitons and calculate the spectrum of
collective excitations. In Sec. IV, we obtain the density of a
superfluid component as well as the mean field phase transition
temperature. The specific properties of the superfluid of direct
excitons in a TMDC monolayer are discussed in Sec. V. The
results of the calculations and their discussion are presented in
Sec. VI. The conclusions follow in Sec. VII.

II. TWO-BODY PROBLEM FOR DIRAC
PARTICLES WITH A GAP

The formation of excitons due to a gap opening in the
electron-hole band structure in two parallel graphene layers
separated by an insulator was studied in Ref. [29]. Here, we
apply a similar approach to study excitons in coupled quantum
wells designed from atomically thin materials stacked on top
of each other and separated by a dielectric barrier. Let us
consider indirect excitons composed of electrons and holes
located in two different parallel TMDC monolayers separated
by an insulating barrier of a thickness D as shown in Fig. 1.
The choice for electrons and holes to be located at the top or
bottom layer is arbitrary. The TMDC bilayer with spatially
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FIG. 1. Spatially separated electrons and holes in two TMDC
monolayers.

separated electrons and holes can be designed by tuning the
positions of the Fermi levels in individual layers, maintaining
overall charge neutrality, either by applying a gate voltage
between surrounding electrodes or a bias voltage between the
TMDC layers [57]. Each monolayer TMDC has hexagonal
lattice structure and consists of an atomic layer of a transition
metal M sandwiched between two layers of a chalcogenide X

in a trigonal prismatic structure as shown in Fig. 2.
In TMDC materials, the physics around the K and −K

points has attracted the most attention both experimentally
and theoretically. Today, the gapped Dirac Hamiltonian model,
which contains only the terms linear in p and the spin splitting
in the valence band, is widely used [35]. The low-energy
effective two-band single-electron Hamiltonian in the form
of a spinor with a gapped spectrum for TMDCs in the k · p

approximation is given by [35]

Ĥs = at(τkxσ̂x + kyσ̂y) + �

2
σ̂z − λτ

σ̂z − 1

2
ŝz. (1)

In Eq. (1), σ̂ denotes the Pauli matrices, a is the lattice
constant, t is the effective hopping integral, � is the energy
gap, τ = ±1 is the valley index, 2λ is the spin splitting at the
valence band top caused by the spin-orbit coupling (SOC),
and ŝz is the Pauli matrix for spin that remains a good quantum
number. The parameters of the Hamiltonian Ĥs presented by
Eq. (1) for transition metal dichalcogenides MoS2, MoSe2,
WS2, and WSe2 are listed in Refs. [30,35], and in Ref. [30]
the parameters for MoTe2 and WTe2 are presented.

We consider two parallel TMDC layers with an interlayer
separation D. The dipolar excitons in this double-layer system
are formed by the electrons located in one TMDC layer, while
the holes are located in the parallel layer. Let us mention that
the electron moves in one TMDC layer, and the hole moves
in the other TMDC layer. So, the coordinate vectors of the

FIG. 2. The structure of a TMDC monolayer.

electron and hole can be replaced by their 2D projections onto
the plane of one TMDC layer. These new in-plane coordinates
r1 and r2 for an electron and a hole, correspondingly, will be
used everywhere below. In each TMDC layer, a quasiparticle
is characterized by the coordinates rj in the conduction (c)
and valence (v) band with the corresponding direction of
spin (sj ) up ↑ or down ↓, and index j = 1,2 referring to
the two monolayers, one with electrons and the other with
holes. The spin basis for description of two particles in
different monolayers is given by {|�jc,sjc〉,|�jv,sjv〉}, where
|�jc,sjc〉 = |�jc〉 ⊗ |sjc〉 and |�jv,sjv〉 = |�jv〉 ⊗ |sjv〉 with
the coordinate wave functions |�jc〉 and |�jv〉 and spin wave
functions |sjc〉 and |sjv〉, where s = {↑ , ↓} denotes the spin
degree of freedom in the conduction and valence bands for
the first and second monolayers, respectively. Therefore, the
two-particle wave function that describes the bound electron
and hole in different monolayers reads as �s(r1,r2). This wave
function can also be understood as a four-component spinor,
where the spinor components refer to the four possible values
of the conduction/valence band indices:

�↑(r1,r2) =

⎛⎜⎝φc↑c↑(r1,r2)
φc↑v↑(r1,r2)
φv↑c↑(r1,r2)
φv↑v↑(r1,r2)

⎞⎟⎠ ≡
(

�c↑
�v↑

)
,

where �c↑ =
(

φc↑c↑
φc↑v↑

)
, �v↑ =

(
φv↑c↑
φv↑v↑

)
. (2)

The two components reflect one particle being in the conduc-
tion (valence) band and the other particle being in the valence
(conduction) band, correspondingly. Let us mention that while
Eq. (2) represents the spin-up particles, the spin-down particles
are represented by the same expression replacing ↑ by ↓.

Each TMDC layer has an energy gap. Following the pro-
cedure applied for double-layer gapped graphene in Ref. [67],
the Hamiltonian H↑ (↓) for spin-up (spin-down) particles can
be written as

H↑ (↓) =

⎛⎜⎜⎝
V (r) d2 d1 0
d
†
2 −�′ + V (r) 0 d1

d
†
1 0 �′ + V (r) d2

0 d
†
1 d

†
2 V (r)

⎞⎟⎟⎠, (3)

where V (r) is the potential energy of the attraction between an
electron and a hole, the parameter �′ is defined as �′ = � − λ

for spin-up particles, and �′ = � + λ for spin-down particles.
In Eq. (3), d1 = at(−i∂x1 − ∂y1 ), d2 = at(−i∂x2 − ∂y2 ) and
the corresponding Hermitian conjugates are d

†
1 = at(−i∂x1 +

∂y1 ), d
†
2 = at(−i∂x2 + ∂y2 ), where ∂x = ∂/∂x and ∂y = ∂/∂y,

x1, y1 and x2, y2 are the coordinates of vectors r1 and r2,
correspondingly.

The single-particle energy spectrum of an electron-hole
pair can be found by solving the eigenvalue problem for the
Hamiltonian given by Eq. (3):

H↑ (↓)�↑ (↓) = ε↑ (↓)�↑ (↓), (4)

where �↑ (↓) are four-component eigenfunctions as given in
Eq. (2), and ε↑ (↓) is the single-particle energy spectrum for
an electron-hole pair with the up- and down-spin orientation,
correspondingly. In this notation, we assume that a spin-up
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(-down) hole describes the absence of a spin-down (-up)
valence electron.

For the Hamiltonian (3), the center-of-mass motion cannot
be separated from the relative motion due the chiral nature
of Dirac electrons in TMDCs. A similar conclusion was
made for the two-particle problem in graphene in Ref. [68]
and gapped graphene in Ref. [67]. Since the electron-hole
Coulomb interaction depends only on the relative coordinate,
we introduce the new “center-of-mass” coordinates in the plane
of a TMDC layer:

R = αr1 + βr2,

r = r1 − r2, (5)

where the coefficients α and β are supposed to be found below
from the condition of the separation of the coordinates of the
center-of-mass and relative motion in the Hamiltonian in the
one-dimensional equation for the corresponding component of
the wave function.

We make the following ansatz to obtain the solution of
Eq. (4):

�j↑ (↓)(R,r) = eiK·Rψj↑ (↓)(r), (6)

and follow the procedure described for the two-body problem
in double-layer gapped graphene in Ref. [67]. The solution
of a two-particle problem is demonstrated in Appendix A.
Equation (A15) describes the bound electron-hole system, and
can be written in the following form:[−F1(ε↑ (↓))∇2

r + V (r)
]
φc↑ (↓)v↑ (↓)

= F ′
0(ε↑ (↓))φc↑ (↓)v↑ (↓), (7)

where

F1(ε↑ (↓)) = 2a2t2

ε↑ (↓)
, F ′

0(ε↑ (↓)) = ε↑ (↓) + �′ − a2t2K2

2ε↑ (↓)
. (8)

We consider a spatially separated electron-hole pair in two
parallel TMDC layers at large distances D 	 aB , where aB is
the 2D Bohr radius of a dipolar exciton. For TMDC materials
the Bohr radius of the dipolar exciton is found to be in the
range from 1.5 Å for MoTe2 [43] up to 3.9 Å for MoS2 [69].

It is obvious that the electron and hole are interacting via
the Coulomb potential. However, in general, the electron-hole
interaction is affected by screening effects [51]. However, the
screening effects are negligible at long range for electron-hole
distances larger than the screening length ρ0, and at long range
the electron-hole interaction is described by the Coulomb
potential [51]. The screening length is defined as ρ0 = 2πχ2D,
where χ2D is the 2D polarizability of the planar material [70].
Substituting χ2D from Ref. [51], we conclude that for TMDC
ρ0 is estimated as 38 Å for WS2, 41 Å for MoS2, 45 Å for
WSe2, 52 Å for MoSe2. The binding energy for the dipolar
exciton was estimated for two MoS2 layers separated by N

h-BN insulating layers from N = 1 up to N = 6 [54]. These
dipolar excitons were observed experimentally for N = 2 [71].
We assume that the indirect excitons in TMDCs can survive
for a larger interlayer separation D than in semiconductor
coupled quantum wells because the thickness of a TMDC
layer is fixed, while the spatial fluctuations of the thickness
of the semiconductor quantum well affect the structure of the
dipolar exciton.

Since for TMDCs the characteristic values for the 2D
exciton Bohr radius are found to be much less than the
characteristic values of the screening length ρ0, the Coulomb
potential describes the electron-hole interaction for D � ρ0.
Otherwise, for D < ρ0, the electron-hole interaction is de-
scribed by the Keldysh potential due to screening effects [72].
The two-body electron-hole system interacting via the Keldysh
potential has no analytical solution and can only be solved
numerically. We solve the two-body electron-hole problem
analytically for large interlayer distances D > ρ0. In this case,
the screening effects accounted for by the Keldysh potential
are negligible, and therefore the potential energy V (r) is

V (r) = − ke2

εd

√
r2 + D2

, (9)

where k = 9 × 109 N × m2/C2, εd is the dielectric constant of
the dielectric, which separates two TMDC layers. Assuming
r � D, we approximate V (r) by the first two terms of the
Taylor series, and substituting

V (r) = −V0 + γ r2, (10)

where

V0 = ke2

εdD
, γ = ke2

2εdD3
, (11)

into Eq. (7), one obtains the equation that has the form of the
Schrödinger equation for the 2D isotropic harmonic oscillator:[−F1(ε↑(↓))∇2

r + γ r2
]
φc↑ (↓)v↑ (↓) = F0(ε↑ (↓))φc↑ (↓)v↑ (↓),

(12)

where

F0(ε↑ (↓)) = ε↑ (↓) + �′ + V0 − a2t2K2

2ε↑ (↓)
. (13)

The solution of the Schrödinger equation for the harmonic
oscillator is well known and is given by

F0(ε↑ (↓))

F1(ε↑ (↓))
= 2N

√
γ

F1(ε↑ (↓))
, (14)

where N = 2Ñ + |L| + 1, and Ñ = min(̃n,̃n′), L = ñ − ñ′, ñ,
ñ′ = 0,1,2,3, . . . are the quantum numbers of the 2D harmonic
oscillator. The corresponding 2D wave function at K = 0 in
terms of associated Laguerre polynomials can be written as

φc↑ (↓)v↑ (↓)Ñ L,K=0(r)

= Ñ !

a
|L|+1
B

√
ñ!̃n′!

sgn(L)Lr |L|−1/2e−r2/(4a2
B )

×L
|L|
Ñ

[
r2/

(
2a2

B

)] e−iLφ

(2π )1/2
, (15)

where φ is the polar angle, L
p

k (x) are the associated Laguerre
polynomials. and the Bohr radius of the dipolar exciton aB is
given by

aB = (
√

F1(ε)/(2
√

γ ))1/2 =
(

at√
2γ |ε|

)1/2

. (16)
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Substituting Eqs. (8) and (13) into Eq. (14), we obtain

2ε2
↑ (↓) + 2(�′ + V0)ε↑ (↓) − 8atN

√
γ ε↑ (↓)√
2

− a2t2K2 = 0.

(17)

The solution of Eq. (17) for the single-exciton spectrum is
shown in Appendix B. From Eq. (B7), for the single-exciton
spectrum one obtains

εA (B) = x2
0 + �

2K2

2MA (B)
, (18)

where MA (B) is the dipolar exciton effective mass given by

MA (B) = CA (B)�
2

2a2t2x0
, (19)

where the parameter CA (B) is defined in Appendix B by
Eq. (B6) as

CA (B) = 3x3
0 + (�′ + V0)x0. (20)

In Eqs. (18)–(20), the parameter x0 defined by Eq. (B4) has
the different value for A and B excitons.

The dipolar exciton binding energy is given by

Eb A (B) = −(
x2

0 − �′). (21)

In Eqs. (20) and (21), we assume �′ = � − λ for A excitons
and �′ = � + λ for B excitons.

III. COLLECTIVE EXCITATIONS FOR SPATIALLY
SEPARATED ELECTRONS AND HOLES

Let us consider the dilute limit for gases of electrons
and holes in parallel TMDC layers spatially separated by a
dielectric, when nAa2

B A � 1 and nBa2
B B � 1, where nA (B)

and aB A (B) are the concentrations and effective exciton
Bohr radii for A (B) dipolar excitons, correspondingly. In
experiments, the exciton density in a WSe2 monolayer was
obtained up to n = 5 × 1011 cm−2 [73]. In the dilute limit,
the dipolar A and B excitons are formed by the electron-hole
pairs with the electrons and holes spatially separated in two
different TMDC layers.

The Hamiltonian Ĥ of the 2D A and B interacting dipolar
excitons is given by

Ĥ = ĤA + ĤB + ĤI , (22)

where ĤA (B) are the Hamiltonians of A (B) excitons given by

ĤA (B) =
∑

k

EA (B)(k)a†
kA (B)akA (B) + gAA (BB)

2S

×
∑
klm

a
†
kA (B)a

†
lA (B)aA (B)maA (B)k+l−m, (23)

and ĤI is the Hamiltonian of the interaction between A and B

excitons given by

ĤI = gAB

S

∑
klm

a
†
kAa

†
lBaBmaAk+l−m, (24)

where a
†
kA (B) and akA (B) are Bose creation and annihilation

operators for A (B) dipolar excitons with the wave vector k,
S is the area of the system, EA (B)(k) ≡ εA (B) = ε(0)A (B)(k) +

AA (B) is the energy spectrum of noninteracting A (B) dipolar
excitons, ε(0)A (B)(k) = �

2k2/(2MA (B)), MA (B) is an effective
mass of noninteracting dipolar excitons, AA (B) is the constant,
which depends on A (B) dipolar exciton binding energy
and the gap, formed by a spin-orbit coupling for the A (B)
dipolar exciton, gAA (BB) and gAB are the interaction constants
for the interaction between two A dipolar excitons, two B

dipolar excitons with the same conduction band electron spin
orientation, and for the interaction between A and B dipolar
excitons with the opposite conduction band electron spin
orientation.

In our approach, we neglect exchange effects in the
exciton-exciton interactions in a bilayer, while in Ref. [48]
the exchange effects in exciton-exciton interaction were
considered for a monolayer. It would be instructive to compare
these limiting cases. The distinction between excitons and
bosons is caused by exchange effects [10]. While the exchange
interaction is very important for direct excitons in a TMDC
monolayer studied in Ref. [48], the exchange interactions
in a spatially separated electron-hole system in a bilayer
are suppressed due to the low tunneling probability coming
from the shielding of the dipole-dipole interaction by the
insulating barrier. Hence, at large interlayer separations, the
exchange phenomena, caused by the distinction between
excitons and bosons, can be neglected for the electron-hole
bilayers [74]. Two dipolar excitons in a dilute bilayer system
interact according to the dipole-dipole potential U (R) =
ke2D2/(εdR

3), where R is the distance between excitonic
dipoles. The probability of tunneling through the barrier of the
dipole-dipole interaction can be described by the transmission
coefficient T [74]:

T ∼ exp

[
−1

�

∫ R0

r0

√
2MA (B)[U (R) − μ] dR

]
,

where μ is the chemical potential of the system, r0 is the
2D radius of exciton, R0 is the classical turning point for
the dipole-dipole interaction determined from by condition
U (R0) = μ. Note that the chemical potential μ for our very
dilute system of dipolar excitons, a type of 2D weakly nonideal
Bose gas, is typically very small. Since at large interlayer
separation D the transmission coefficient T is very small,
the dilute system of dipolar excitons in a bilayer can be
treated by the formalism applicable for a boson system. In
addition, for direct excitons it was shown that, in spite of the
difference between separate excitons and bosons, the exciton
gas is effectively a Bose gas [75]. Bosons comprising this gas
are mixtures of separate excitons, and the nonbosonic nature
of excitons leads only to a renormalization of the interaction
between them.

We consider the dilute system, when the average distance
between excitons is much larger than the interlayer separation
D, which corresponds to the densities n � 1/(πD2). Since
we assume that D � ρ0, the screening effects are negligible,
and the interaction between the particles is described by the
Coulomb potential. For example, for D = 50 Å, the exciton
densities should be n < 1.3 × 1012 cm−2.

In a dilute system with large interlayer separation D, two
dipolar excitons at a distance R repel due to the dipole-dipole
interaction potential U (R) = ke2D2/(εdR

3). Following the
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procedure presented in Ref. [19], the interaction parameters for
the exciton-exciton interaction in very dilute systems could be
obtained assuming the exciton-exciton dipole-dipole repulsion
exists only at distances between excitons greater than distance
from the exciton to the classical turning point. The distance
between two excitons cannot be less than this distance, which
is determined by the conditions reflecting the fact that the
energy of two excitons cannot exceed double the chemical
potential of the system μ:

2AA + U (R0AA) = 2μ, 2AB + U (R0BB) = 2μ,

AA + AB + U (R0AB) = 2μ, (25)

where R0AA, R0BB , and R0AB are distances between two
dipolar excitons at the classical turning point for two A

excitons, two B excitons, and one A and one B exciton,
correspondingly. Let us mention that in thermodynamic equi-
librium, the chemical potentials of A and B dipolar excitons
are equal.

From Eq. (25), the following expressions are obtained:

R0AA =
(

ke2D2

2εd (μ − AA)

)1/3

, R0BB =
(

ke2D2

2εd (μ − AB)

)1/3

,

R0AB =
(

ke2D2

εd (2μ − AA − AB)

)1/3

. (26)

Following the procedure presented in Ref. [19], one can obtain
the interaction constants for the exciton-exciton interaction

gAA = 2πke2D2

εdR0AA

, gBB = 2πke2D2

εdR0BB

,

gAB = 2πke2D2

εdR0AB

. (27)

We expect that at zero temperature T = 0 almost all A

and B excitons belong to the BEC of A and B excitons.
Therefore, we assume the formation of a binary mixture of
BECs. We consider this binary mixture within the Bogoliubov
approximation [66]. The Bogoliubov approximation for a
weakly interacting Bose gas allows one to diagonalize the
many-particle Hamiltonian, replacing the product of four
operators in the interaction term by the product of two
operators. This is justified under the assumption that most
of the particles belong to BEC, and only the interactions
between the condensate and noncondensate particles are taken
into account, while the interactions between noncondensate
particles are neglected. The condensate operators are replaced
by numbers [65], and the resulting Hamiltonian is quadratic
with respect to the creation and annihilation operators. Using
the Bogoliubov approximation [66], generalized for a two-
component weakly interacting Bose gas [62], we obtain
the chemical potential μ of the entire exciton system by
minimizing Ĥ0 − μN̂ with respect to the 2D concentration
n, where N̂ denotes the number operator

N̂ =
∑

k

a
†
kAakA +

∑
k

a
†
kBakB, (28)

and H0 is the Hamiltonian describing the particles in
the condensate with zero momentum k = 0. In the Bol-
ogoiubov approximation, we assume N = N0, a

†
k=0,A (B) =

√
N0A (B)e

−i�A (B) , and ak=0,A (B) = √
N0A (B)e

i�A (B) , where N

is the total number of all excitons, and N0 is the number
of all excitons in the condensate, N0A (B) and �A (B) are the
number and phase for A (B) excitons in the condensate. From
Eqs. (22), (23), and (24), we obtain

Ĥ0 − μN̂ = S

[
(AA − μ)nA + (AB − μ)nB + gAAn2

A

2

+ gBBn2
B

2
+ gABnAnB

]
, (29)

where nA and nB are the 2D concentrations of A and B

excitons, correspondingly. The minimization of Ĥ0 − μN̂ with
respect to the number of A excitons NA = SnA results in

μ − AA = gAAnA + gABnB. (30)

The minimization of Ĥ0 − μN̂ with respect to the number of
B excitons NB = SnB results in

μ − AB = gBBnB + gABnA. (31)

From Eqs. (30) and (31), we obtain

2μ − AA − AB = gAAnA + gBBnB + gABn, (32)

where n = nA + nB is the total 2D concentration of excitons.
Combining Eqs. (26), (27), (30), (31), and (32), one

obtains the following system of three cubic equations for the
interaction constants gAA, gBB , gAB :

g3
AA − 2BnAgAA − 2BnBgAB = 0,

g3
BB − 2BnBgBB − 2BnAgAB = 0, (33)

g3
AB − BngAB − B(nAgAA + nBgBB) = 0,

where B is defined as

B = (2π )3(ke2D2)2

ε2
d

. (34)

Taking the sum of the top two equations in (33), we can replace
Eq. (33) by the following system of three cubic equations:

g3
AA − 2BnAgAA − 2BnBgAB = 0,

g3
BB − 2BnBgBB − 2BnAgAB = 0, (35)

2g3
AB = g3

AA + g3
BB.

The interaction constants gAA, gBB , gAB can be obtained from
the solution of the system of three cubic equations represented
by Eq. (35).

If the interaction constants for the exciton-exciton inter-
action are negative, the spectrum of collective excitations at
small momenta is imaginary which reflects the instability of the
excitonic ground state [76,77]. The system of equations (35)
has all real and positive roots only if gAA = gBB = gAB ≡ g.
Substituting this condition into Eq. (35), we obtain

g3 − 2B(nA + nB)g = 0. (36)

Using n = nA + nB , we get from Eq. (36) the following
expression for g:

g =
√

2Bn. (37)

245410-6



HIGH-TEMPERATURE SUPERFLUIDITY OF THE TWO- . . . PHYSICAL REVIEW B 93, 245410 (2016)

Substituting B from Eq. (34) into Eq. (37), we obtain g as

g = 4πke2D2√πn

εd

. (38)

Using the following notation,

GAA = gAAnA = gnA, GBB = gBBnB = gnB, GAB = gAB

√
nAnB = g

√
nAnB, ωA(k) =

√
ε2

(0)A(k) + 2GAAε(0)A(k),

ωB(k) =
√

ε2
(0)B(k) + 2GBBε(0)B(k), (39)

we obtain two modes of the spectrum of Bose collective excitations εj (k) in the Bogoliubov approximation for two-component
weakly interacting Bose gas [64]

εj (k) =

√√√√ω2
A(k) + ω2

B(k) + (−1)j−1
√[

ω2
A(k) − ω2

B(k)
]2 + (4GAB)2ε(0)A(k)ε(0)B(k)

2
, (40)

where j = 1, 2. We can note that G2
AB = GAAGBB .

In the limit of small momenta p = �k, when ε(0)A(k) � GAA and ε(0)B(k) � GBB , we expand the spectrum of collective
excitations εj (k) up to first order with respect to the momentum p and get two sound modes of the collective excitations
εj (p) = cjp, where cj is the sound velocity given by

cj =

√√√√GAA

2MA

+ GBB

2MB

+ (−1)j−1

√(
GAA

2MA

− GBB

2MB

)2

+ G2
AB

MAMB

. (41)

In the limit of large momenta, when ε(0)A(k) 	 GAA and ε(0)B(k) 	 GBB , we get two parabolic modes of collective excitations
with the spectra ε1(k) = ε(0)A(k) and ε2(k) = ε(0)B(k), if MA < MB and if MA > MB with the spectra ε1(k) = ε(0)B(k) and
ε2(k) = ε(0)A(k).

The Hamiltonian Ĥcol of the collective excitations, corresponding to two branches of the spectrum, in the Bogoliubov
approximation for the entire two-component system is given by [64]

Ĥcol =
∑
k =0

ε1(k)α†
1kα1k +

∑
k =0

ε2(k)α†
2kα2k, (42)

where α
†
jk and αjk are the creation and annihilation Bose operators for the quasiparticles with the energy dispersion corresponding

to the j th mode of the spectrum of the collective excitations.
If A and B excitons do not interact, we set gAB = 0 and GAB = 0, and in the limit of the small momenta we get for the sound

velocity c1 =
√

GAA

MA
and c2 =

√
GBB

MB
, which agrees with the sound velocity in the Bogoliubov approximation for a one-component

system [66].
If for simplicity we consider the specific case when the densities of A and B excitons are the same nA = nB = n/2, we get

from Eq. (39)

GAA = GBB = GAB = gn/2, ωA(k) =
√

ε2
(0)A(k) + gnε(0)A(k), ωB(k) =

√
ε2

(0)B(k) + gnε(0)B(k). (43)

From Eq. (40), we get the spectrum of collective excitations

εj (k) =

√√√√ω2
A(k) + ω2

B(k) + (−1)j−1
√[

ω2
A(k) − ω2

B(k)
]2 + 4g2n2ε(0)A(k)ε(0)B(k)

2
, (44)

and the sound velocity at nA = nB = n/2 is obtained as

cj =

√√√√gn

2

(
1

2MA

+ 1

2MB

+ (−1)j−1

√(
1

2MA

− 1

2MB

)2

+ 1

MAMB

)
. (45)

It follows from Eq. (45) that there is only one nonzero sound
velocity at nA = nB = n/2 given by

c =
√

gn

2

(
1

MA

+ 1

MB

)
. (46)

Interestingly enough, if for a one-component system the
sound velocity is inversely proportional to the square root
of the mass of the exciton, M

−1/2
A or M

−1/2
B , then for a

two-component system it is inversely proportional to the
square root of the reduced mass of two excitons μ

−1/2
AB ,
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where μAB = MAMB/(MA + MB). Since MA > μAB and
MB > μAB , it is always true that M

−1/2
A < μ

−1/2
AB or M

−1/2
B <

μ
−1/2
AB . Thus, within the Bogoliubov approximation the sound

velocity in a two-component system is always larger than in a
one-component system.

IV. SUPERFLUIDITY

Since at small momenta the energy spectrum of quasi-
particles in the weakly interacting gas of dipolar excitons
is soundlike, this system satisfies the Landau criterion for
superfluidity [65,66] . The critical velocity for the superfluidity
is given by vc = min (c1,c2) because the quasiparticles are
created at the velocities above the velocity of sound for the
lowest mode of the quasiparticle dispersion.

The density of the superfluid component ρs(T ) is defined
as ρs(T ) = ρ − ρn(T ), where ρ = MAnA + MBnB is the total
2D density of the system and ρn(T ) is the density of the normal
component. We define the normal component density ρn(T )
by the standard procedure [4]. Suppose that the exciton system
moves with a velocity u, which means that the superfluid com-
ponent moves with the velocity u. At nonzero temperatures
T , dissipating quasiparticles will appear in this system. Since
their density is small at low temperatures, one can assume that
the gas of quasiparticles is an ideal Bose gas. To calculate the
superfluid component density, we define the total mass current
for a two-component Bose gas of quasiparticles in the frame
of the moving superfluid component, as

J =
∫

d2p

(2π�)2
p{f [ε1(p) − pu] + f [ε2(p) − pu]}, (47)

where f [ε1(p)] = {exp[ε1(p)/(kBT )] − 1}−1 and f [ε2(p)] =
{exp [ε2(p)/(kBT )] − 1}−1 are the Bose-Einstein distribution
function for the quasiparticles with the dispersions ε1(p) and
ε2(p), respectively, and kB is the Boltzmann constant. Expand-
ing the expression under the integral in terms of pu/(kBT ) and
restricting ourselves to the first-order term, we obtain

J = −u
2

∫
d2p

(2π�)2
p2

(
∂f [ε1(p)]

∂ε1(p)
+ ∂f [ε2(p)]

∂ε2(p)

)
. (48)

The density ρn of the normal component is defined as [4]

J = ρnu. (49)

Using Eqs. (48) and (49), we obtain the density of the normal
component as

ρn(T ) = −1

2

∫
d2p

(2π�)2
p2

(
∂f [ε1(p)]

∂ε1(p)
+ ∂f [ε2(p)]

∂ε2(p)

)
. (50)

At small temperatures kBT � MA(B)c
2
j , the small mo-

menta, corresponding to the conditions ε(0)A(k) � GAA and
ε(0)B(k) � GBB , provide the main contribution to the integral
in the right-hand side of Eq. (50), which corresponds to the
quasiparticles with the sound spectrum εj (k) = cj k with the
sound velocity given by Eq. (41), resulting in

ρn(T ) = 3ζ (3)

2π�2
k3
BT 3

(
1

c4
1

+ 1

c4
2

)
, (51)

where ζ (z) is the Riemann zeta function [ζ (3) � 1.202].
For high temperatures kBT 	 MA(B)c

2
j , the large momenta

MA(B)c
2
j � ε0A(B)(k) � kBT provide the main contribution

to the integral in the right-hand side of Eq. (50), which
corresponds to quasiparticles with a parabolic spectrum. Using
the result for these values of momenta for a one-component
system [4], one gets for high temperatures

ρn(T ) =
⎧⎨⎩

kBT

2π�2

(
M2

A ln kBT

MAc2
1
+ M2

B ln kBT

MBc2
2

)
, if MA < MB

kBT

2π�2

(
M2

A ln kBT

MAc2
2
+ M2

B ln kBT

MBc2
1

)
, if MA > MB.

(52)

Neglecting the interaction between the quasiparticles, the
mean field critical temperature Tc of the phase transition related
to the occurrence of superfluidity is given by the condition
ρs(Tc) = 0 [4]:

ρn(Tc) = ρ = MAnA + MBnB. (53)

At small temperatures kBT � MA(B)c
2
j , substituting

Eq. (51) into (53), we get

Tc =
[

2π�
2ρ

3ζ (3)k3
B

(
1
c4

1
+ 1

c4
2

)]1/3

. (54)

If Tc obtained from Eq. (54) satisfies to the condition kBTc �
MA(B)c

2
j , it is the correct value of the mean field critical tem-

perature. Otherwise, at high temperatures kBT 	 MA(B)c
2
j ,

we obtain the critical temperature Tc from the solution of the
equation

ρ =
⎧⎨⎩

kBTc

2π�2

(
M2

A ln kBTc

MAc2
1
+ M2

B ln kBTc

MBc2
2

)
, if MA < MB

kBTc

2π�2

(
M2

A ln kBTc

MAc2
2
+ M2

B ln kBTc

MBc2
1

)
, if MA > MB.

(55)

At nA = nB = n/2, we get the density of the normal component as

ρn(T ) =
⎧⎨⎩

3ζ (3)k3
BT 3

2π�2c4 , at low temperatures

kBT
2π�2

(
M2

A ln kBT
MAc2 + M2

B ln kBT
MBc2

)
, at high temperatures.

(56)

At nA = nB = n/2, for the low-temperature case we get the mean field critical temperature as

Tc =
[

2π�
2ρc4

3ζ (3)k3
B

]1/3

. (57)
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At first glance, Eq. (57) is the same as for the
one-component exciton gas. However, applying Eq. (46), one
obtains

Tc =
[
π�

2g2n3

12ζ (3)
Q

]1/3

, (58)

where the parameter Q is defined as

Q = MA + MB

(μAB)2
, (59)

and μAB is the reduced mass for two-component system of
A and B excitons. For a one-component dilute exciton gas
QA = 1/MA or QB = 1/MB, that is always less than the
value of Q for a two-component Bose gas of A and B dipolar
excitons. Therefore, Tc is always higher for a two-component
dilute dipolar exciton gas than for a one-component dilute
dipolar exciton gas.

If Tc obtained from Eq. (58) satisfies the condition kBTc �
MA(B)c

2, it is the correct value of the mean field critical tem-
perature. Otherwise, at high temperatures kBT 	 MA(B)c

2,
we obtain the critical temperature Tc from the solution of the
equation

ρ = kBTc

2π�2

(
M2

A ln
kBTc

MAc2
+ M2

B ln
kBTc

MBc2

)
, (60)

where ρ = (MA + MB)n/2.

V. TWO-COMPONENT DIRECT EXCITON
SUPERFLUIDITY IN A TMDC MONOLAYER

Let us consider the two-component weakly interacting Bose
gas of direct A and B excitons in a TMDC monolayer. The
direct excitons of type A are formed by spin-up electrons from
the conduction band and spin-down holes from the valence
band in a TMDC monolayer.

There are two differences between a two-component
weakly interacting Bose gas of A and B excitons in a TMDC
monolayer and two parallel TMDC layers with spatially
separated charge carriers. The first difference is that the
effective mass of direct excitons in a TMDC monolayer is
different from the effective mass of indirect excitons in two
parallel TMDC layers given by Eq. (19). The second difference
is that the interaction constant for the contact exciton-exciton
repulsion for direct excitons in a TMDC monolayer is different
from the interaction constant for the dipole-dipole exciton-
exciton repulsion for dipolar excitons in two parallel TMDC
layers given by Eq. (38).

As discussed in Refs. [78,79] for a dilute exciton gas, the
excitons can be treated as bosons with a repulsive contact
interaction. For small values of the wave vector k, the exciton-
exciton interaction constant, describing the pairwise exciton-
exciton repulsion between A and A (B and B) direct excitons,
can be approximated by a contact potential

gAA(BB) = 6ke2aA(B)

εm

, (61)

where aA (B) is the exciton Bohr radius for A (B) direct
excitons, correspondingly. This direct exciton Bohr radius
aA (B) can be obtained analogously to β̃ in Eq. (39) in Ref. [67]
for a gapped graphene monolayer. In Eq. (61), εm is the

dielectric constant for the media surrounding the TMDC
monolayer, and for a freely suspended TMDC material in
vacuum we have εm = 1. This approximation for the exciton-
exciton repulsion is applicable because resonantly excited
excitons have very small wave vectors [80].

For the interaction constant, describing the pair contact
repulsion between A and B excitons, we use

gAB = 6ke2aAB

εm

, (62)

where aAB is the phenomenological parameter. Assuming the
value of aAB is the average of aA and aB , we have

aAB = aA + aB

2
. (63)

For direct excitons in a TMDC monolayer, substituting
the direct exciton effective masses MA (B) and the direct
excitons interaction parameters gAA (BB) and gAB into Eqs. (40)
and (41), we obtain the two branches of the spectrum of
collective excitations and the sound velocities for direct
excitons in a TMDC monolayer. Then, substituting the sound
velocities into Eqs. (51) and (54), we obtain the density of
the superfluid component as a function of temperature and the
mean field temperature of the superfluid phase transition for a
two-component weakly interacting Bose gas of direct excitons
in a TMDC monolayer.

Note that the extension of our approach for direct excitons in
a TMDC monolayer can be performed only under the applied
approximations. Since the collective excitation spectrum in
Eqs. (39) and (40) is calculated under the assumption of a dilute
system, whereby the minimum separation between excitons is
greater than the classical turning point distance, our approach
for the direct excitons in a TMDC monolayer is approximate.
Let us mention that in Ref. [81] the similar method was applied
for a one-component system of exciton polaritons, formed
by excitons in a gapped graphene monolayer, embedded in
a semiconductor microcaivity, and microcavity photons. The
approach presented in this section can be easily applied to
study the two-component superfluidity of A and B exciton
polaritons in a TMDC monolayer embedded in a microcavity,
which was studied in Ref. [82].

VI. RESULTS AND DISCUSSION

In this section, we present the results of our calculations.
Since the dipolar excitons were experimentally observed in
two TMDC layers separated by h-BN insulating layers [71],
we consider the same dielectric in calculations using the
dielectric constant εd = 7.1. In our calculations, we use the
parameters a, t , �, and λ for transition metal dichalcogenides
MoS2, MoSe2, WS2, and WSe2 that are listed in Table I in
Ref. [35] and for MoTe2 and WTe2 from Ref. [30]. The results
of calculations for the effective masses of A and B excitons
for the layer separation D = 5 nm obtained from Eq. (19) are
represented in Table I.

According to Table I, the B excitons are heavier than the
A excitons for all TMDC. One advantage of our approach
is that it illustrates the dependence of the effective exciton
masses on spin-orbit coupling resulting in the formation of
two types of excitons A and B in TMDC and their dependence
on the parameters a, t , and �. In addition, the results of our
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TABLE I. Effective masses of A and B excitons for different
TMDC materials in units of the free electron mass at the interlayer
separation D = 5 nm.

Mass of exciton

Exciton type MoS2 MoSe2 MoTe2 WS2 WSe2 WTe2

A 0.499 0.555 0.790 0.319 0.345 0.277
B 0.545 0.625 0.976 0.403 0.457 0.501

calculations show that the exciton effective mass very slightly
depends on the distance between two parallel TMDC layers D.

The interaction constant g as a function of the interlayer
separation D and exciton concentration n is represented in
Fig. 3. According to Fig. 3, the effective interaction constant
g increases with the increase of the interlayer separation D

and the increase of the exciton concentration n. The mean
field critical temperature Tc for the excitonic superfluidity
obtained from Eq. (58) is represented in Table II. The critical
temperature Tc was calculated for different TMDC at the
moderated concentration of excitons n = 3 × 1011 cm−2. Let
us mention that for our calculations we used an exciton
concentration n = 3 × 1011 cm−2 which is smaller than the
maximal exciton concentration obtained in experiment [73]:
nmax = 5 × 1011 cm−2. The exciton concentration n = 3 ×
1011 cm−2 corresponds to the degenerate exciton Bose gas in
the phase diagram [54]. While, in general, in a TMDC mono-
layer the electron-hole interaction is described by Keldysh’s
potential [72], we performed our calculations for a TMDC
bilayer at the interlayer separation from D = 4 nm up to
D = 5 nm, when the screening effects are negligible, and
the electron-hole interaction is described by the Coulomb
potential. For our calculations, we used values of the interlayer
separation D that are larger than experimental values [71] for
the following reasons: (i) the larger D leads to the increase of
the potential barrier for electron-hole tunneling between the
layers, which results in the increase of the exciton lifetime; (ii)
the larger D leads to the increase of the exciton dipole moment,
which increases the exciton-exciton dipole-dipole repulsion
and, therefore, increases the sound velocity and the superfluid
density, which results in the increase of the mean field critical
temperature of superfluidity, which can be seen in Table II.

FIG. 3. Dependence of the interaction constant g on the exciton
concentration n and interlayer separation D.

TABLE II. Dependence of the mean field critical temperature Tc

on the interlayer separation D for different TMDC materials for the
exciton concentration n = 3 × 1011 cm−2.

D (nm) Tc (K)

MoS2 MoSe2 MoTe2 WS2 WSe2 WTe2

4 55 53 47 63 61 64
5 74 71 63 85 82 87

The mean field critical temperature of superfluidity Tc as a
function of the exciton concentration n for MX2 materials
is represented in Fig. 4. According to Fig. 4, the critical
temperature Tc increases monotonically with the exciton
concentration n, and Tc becomes progressively larger at a
given concentration for different TMDCs in the following
order: MoTe2, MoSe2, MoS2, WSe2, WS2, WTe2. The critical
temperature Tc for all chalcogenides Se, S, and Te is larger for
WX2 than for MoX2. It can be noticed that the order of types
of different TMDC materials with respect to the increase of
Tc, presented in Table II and Fig. 4, is exactly the same as the
order of these TMDC materials with respect to the increase of
the parameter Q, presented in Table III. This is caused by the
fact that, according to Eq. (58), Tc is directly proportional to
Q1/3. Let us mention that the order of types of different TMDC
materials with respect to the increase of Tc is different from the
order of these materials with respect to the exciton effective
masses, presented in Table I, and the parameters a, t , and the
separation between X planes dX−X taken from Ref. [30].

The exciton-exciton interaction studied in this paper for
a two-component weakly interacting dilute system of A and
B dipolar excitons leads to two branches of the collective
excitation spectrum, characterized at small momenta by two
different sound velocities c1 and c2, due to the fact that
the system under consideration is a two-component system.
Therefore, at small temperatures, the normal component is
formed by the contributions from two types of quasiparticles,
corresponding to two different branches of the collective
excitations spectra with two different sound velocities at small
momenta. All general expressions for the density of the normal
and superfluid components and the mean field phase transition
temperature were calculated in this paper, taking into account
the existence of two branches of the spectrum of collective
excitations. The calculations were presented for the specific
case, when the concentrations of A and B excitons are equal,
and the collective spectrum is characterized at small momenta
by only one nonzero sound velocity.

We conclude that the critical temperature Tc for su-
perfluidity for a two-component exciton gas in a TMDC
bilayer is about one order of magnitude higher than Tc for
one-component exciton gas in the semiconductor coupled
quantum wells. According to Eq. (58), the mean field critical
temperature Tc is directly proportional to the parameter Q1/3,
which is determined by the exciton reduced mass μAB and
the sum of A and B exciton masses MA + MB , while for the
one-component exciton Bose gas in CQWs Q = M−1/3, where
M is the exciton mass in CQWs. For example, if MA = MB =
M , then Q for a one-component gas is eight times less than
for a two-component Bose gas. Thus, for a one-component
dilute exciton gas, Q is always less than the value of Q for a
two-component Bose gas of A and B dipolar excitons. It can be
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FIG. 4. The mean field critical temperature of the superfluidity Tc as a function of the exciton concentration n for different TMDC materials
at the interlayer separation D = 5 nm.

easily seen that the inequalities μAB < MA + MB and Q1/3 >

(MA + MB)−1/3 are always true for any positive MA and MB .
Therefore, Tc is always higher for a two-component dilute
dipolar exciton gas than for any one-component dilute dipolar
exciton gas in semiconductor CQWs in spite of the fact that the
exciton masses for A and B excitons in CQWs are of the same
order of magnitude as exciton masses in CQWs. Let us mention
that in Ref. [57] the phase transition for indirect excitons in
a TMDC bilayer from phase II, a phase with two condensate
flavors, to phase I, a phase with only one condensate flavor,
was studied. The authors found that a phase transition occurs
between states containing one and two condensate components
as the layer separation and the exciton density are varied.
We study the superfluid-normal phase transition for the two-
component system with A and B excitons, characterized
by two different effective masses, when the effective mass
difference is caused by the spin-orbit coupling. The mean field
phase transition critical temperature Tc for a superfluid-normal
phase transition for the two-component exciton gas in a TMDC
bilayer is determined by the parameter Q, which is defined in
Eq. (59). The advantage of the superfluidity of dipolar excitons
in a TMDC bilayer lies in the possibility of creating a super-
conducting electric current in each TMDC layer by applying an
external voltage, since electrons and holes in each monolayer
are charge carriers. Thus, counterflow superfluidity can occur
in a TMDC bilayer. Also, since the quasiparticle gap and the
exciton binding energy in TMDC can be tuned by an externally
applied voltage [83], the effective mass, the sound velocity for
the collective excitations, the density of the superfluid com-
ponent, and the phase transition temperature for superfluidity
can also be controlled by an externally applied voltage.

TABLE III. Effective and reduced masses and factor Q for a
two-component exciton gas of different TMDC materials at interlayer
separation D = 5 nm.

MoS2 MoSe2 MoTe2 WS2 WSe2 WTe2

MA + MB 1.044 1.180 1.766 0.722 0.802 0.778
μAB 0.261 0.294 0.437 0.178 0.197 0.179
Q 15.380 13.655 9.260 22.750 20.769 24.453

VII. CONCLUSIONS

We propose a physical realization to observe high-
temperature superconducting electron-hole currents in two
parallel TMDC layers, caused by the superfluidity of quasi-
two-dimensional dipolar A and B excitons in a TMDC bilayer.
The effective exciton masses for A and B excitons are
calculated analytically. The spectrum of collective excitations
obtained within the Bogoliubov approximation for TMDC
bilayer is characterized by two branches, reflecting the fact that
the exciton system under consideration is a two-component
weakly interacting Bose gas of A and B excitons. Two sound
velocities for both branches of the collective spectrum are
derived for a two-component dipolar exciton system. It is
shown that within the Bogoliubov approximation, the sound
velocity in a two-component system is always larger than
in a one-component system. The superfluid density, defined
by the contributions from the collective excitations from two
branches of collective spectrum, is obtained as a function of
temperature for a two-component system of A and B dipolar
excitons. We show that the superfluid density and the superfluid
mean field phase transition temperature both increase with
the increase of the excitonic concentration. The mean field
critical temperature for the phase transition is analyzed for
various TMDC materials. The mean field phase transition
temperature, calculated for dipolar exciton bilayer, is about
one order of magnitude higher than for any one-component
exciton system of semiconductor CQWs due to the fact that
Tc for a two-component exciton system in TMDCs depends
on the exciton reduced mass for the two-component system of
A and B excitons, more precisely, depends on the factor Q,
which is much larger for a two-component system than for a
one-component exciton system.
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APPENDIX A: EIGENVALUE PROBLEM FOR TWO PARTICLES

Let us introduce the following notations:

K+ = Kei� = Kx + iKy, K− = Ke−i� = Kx − iKy, � = tan−1

(Ky

Kx

)
, (A1)

and represent the Hamiltonian (3) in the form of a 2 × 2 matrix as

H↑(↓) =
(
O2 + V (r)σ0 − �′

2 σ0 + �′
2 σ3 O1

O†
1 O2 + V (r)σ0 + �′

2 σ0 + �′
2 σ3

)
, (A2)

where O1 and O2 are given by

O1 = at( αK− − i∂x − ∂y)σ0, (A3)

O2 = −at

(
0 βK− + i∂x + ∂y

βK+ + i∂x − ∂y 0

)
. (A4)

In Eqs. (A3) and (A4), x and y are the components of vector r, σj are the Pauli matrices, σ0 is the 2 × 2 unit matrix.
The eigenvalue problem (4) for the Hamiltonian (A2) results in the following coupled equations:(

O2 + V (r)σ0 − �′

2
σ0 + �′

2
σ3

)
�c↑(↓) + O1�v↑(↓) = ε↑(↓)σ0�c↑(↓),

O†
1�c↑(↓) +

(
O2 + V (r)σ0 + �′

2
σ0 + �′

2
σ3

)
�v↑(↓) = ε↑(↓)σ0�v↑(↓). (A5)

It follows from Eq. (A5) that

�v↑(↓) =
(

ε↑(↓)σ0 − O2 − V (r)σ0 − �′

2
σ0 − �′

2
σ3

)−1

O†
1�c↑(↓). (A6)

Assuming that the electron-hole attraction potential energy and both relative and center-of-mass kinetic energies are small
compared to the gap �′, the following approximation is applied:(

ε↑(↓)σ0 − O2 − V (r)σ0 − �′

2
σ0 − �′

2
σ3

)−1

�
(

ε↑(↓)σ0 − �′

2
σ0 − �′

2
σ3

)−1

. (A7)

Applying

O†
1O1 = a2t2

[
α2K2 − ∇2

r − 2iα(Kx∂y + Ky∂x)
]
σ0, (A8)

and using Eq. (2) we obtain from Eq. (A5) for the individual spinor components the following equations:[
V (r) + a2t2

[
α2K2 − ∇2

r − 2iα(Kx∂x + Ky∂y)
]

ε↑(↓) − �′

]
φc↑(↓)c↑(↓) − at(βK− + i∂x + ∂y)φc↑(↓)v↑(↓) = ε↑(↓)φc↑(↓)c↑(↓), (A9)

−at( βK+ + i∂x − ∂y)φc↑(↓)c↑(↓) +
[
V (r) − �′ + a2t2

[
α2K2 − ∇2

r − 2iα(Kx∂x + Ky∂y)
]

ε↑(↓)

]
φc↑(↓)v↑(↓) = ε↑(↓)φc↑(↓)v↑(↓).

(A10)

Following the procedure applied for the calculation of the energy spectrum of the indirect excitons formed in two parallel
gapped graphene layers [67], one gets from Eq. (A9) for the spinor component

φc↑(↓)c↑(↓) = −
(

ε↑(↓) − V (r) − a2t2
[
α2K2 − ∇2

r − 2iα(Kx∂x + Ky∂y)
]

ε↑(↓) − �′

)−1

[at(βK− + i∂x + ∂y)φc↑(↓)v↑(↓)]. (A11)

Assuming that the interaction potential and both the relative and center-of-mass kinetic energies are small compared to the
exciton energy, we apply the following approximation:[

ε↑(↓) − V (r) − a2t2
[
α2K2 − ∇2

r − 2iα(Kx∂x + Ky∂y)
]

ε↑(↓) − �′

]−1

≈ 1

ε↑(↓)
. (A12)

Substituting φc↑(↓)c↑(↓) from Eq. (A11) into (A10) and applying the approximation given by Eq. (A12), we obtain[
−�′ + V (r) + a2t2

[
β2K2 − ∇2

r + 2iβ(Kx∂x + Ky∂y)
]

ε↑(↓)
+ a2t2

[
α2K2 − ∇2

r − 2iα(Kx∂x + Ky∂y)
]

ε↑(↓)

]
φc↑(↓)v↑(↓)

= ε↑(↓)φc↑(↓)v↑(↓). (A13)
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Choosing the values of the coefficients α and β which will separate the coordinates of the center of mass (the wave vector K)
and relative motion r in Eq. (A13), we have

α = 1
2 , β = 1

2 . (A14)

Substituting Eq. (A14) into (A13), we get[
−2a2t2∇2

r

ε↑(↓)
+ a2t2K2

2ε
− �′ + V (r)

]
φc↑(↓)v↑(↓) = ε↑(↓)φc↑(↓)v↑(↓). (A15)

APPENDIX B: SOLUTION OF THE EQUATION
FOR THE SINGLE-EXCITON SPECTRUM

Introducing x = √
ε↑(↓), one rewrites Eq. (17) in the

following form:

2x4 + 2(�′ + V0)x2 − 8atN
√

γ x√
2

− a2t2K2 = 0. (B1)

For small momenta �K, we assume

x = x0 + �x, (B2)

where x = x0 corresponds to K = 0. In this case, we obtain
from Eq. (B1) the following equation:

x3
0 + (�′ + V0)x0 − 4atN

√
γ√

2
= 0. (B3)

The cubic equation (B3) has the following real root:

x0 =
(

q

2
+

√
q2

4
+ p3

27

)1/3

+
(

q

2
−

√
q2

4
+ p3

27

)1/3

, (B4)

where the parameters p and q are given by

p = �′ + V0, q = 4atN
√

γ√
2

. (B5)

Substituting Eq. (B2) into (B1), in the first order with
respect to �x, we obtain

�x = a2t2K2

2CA(B)
, CA(B) = 3x3

0 + (�′ + V0)x0, (B6)

where CA and CB are related to the A and B excitons, when
�′ = � − λ and �′ = � + λ are used for spin-down and spin-
up particles, respectively. Let us also mention that the values
of x0 and �x are different for different TMDC materials due
to the different values of parameters a,t , �, and λ. Then, we
get for the exciton energy ε for A (B) excitons to first order
with respect to �x:

εA (B) = ε↑(↓) = (x0 + �x)2 ≈ x2
0 + 2x0�x, (B7)

where x0 has the different values for A and B excitons.
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