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Local temperature of an interacting quantum system far from equilibrium
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A theory of local temperature measurement of an interacting quantum electron system far from equilibrium
via a floating thermoelectric probe is developed. It is shown that the local temperature so defined is consistent
with the zeroth, first, second, and third laws of thermodynamics, provided the probe-system coupling is weak
and broadband. For non-broadband probes, the local temperature obeys the Clausius form of the second law and
the third law exactly, but there are corrections to the zeroth and first laws that are higher order in the Sommerfeld
expansion. The corrections to the zeroth and first laws are related, and can be interpreted in terms of the error of
a nonideal temperature measurement. These results also hold for systems at negative absolute temperature.
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I. INTRODUCTION

Nonequilibrium Green’s functions (NEGFs) [1] provide
a systematic method to study the local properties of inter-
acting quantum systems far from equilibrium; however, a
corresponding thermodynamic description has generally been
lacking, outside the limit where a local equilibrium exists [2].
The concept of a local temperature has been extended to
nonequilibrium systems under the assumption of local equilib-
rium [2], but it has proven far more challenging to generalize
to systems where the local equilibrium hypothesis does not
hold [3,4]. Without local equilibrium, different temperatures
may be obtained by different measurement protocols [4].
Furthermore, out of equilibrium, the temperature distributions
of different microscopic degrees of freedom (e.g., electrons,
phonons, nuclear spins) do not, in general, coincide, so that
one has to distinguish between measurements of the electron
temperature [5,6], the lattice temperature [7,8], the nuclear
temperature [9], etc. This distinction is particularly acute in
the extreme limit of elastic quantum transport [10–12], where
electron and phonon temperatures are completely decoupled.
The consensus has thus been that the various schemes for mea-
suring the temperature of a system far from equilibrium can at
best deliver an operational definition of the local temperature.

In this article, we systematically reexamine this fundamen-
tal issue, building upon the findings of Meair et al. [11],
who argued that the temperature T̄p measured by a float-
ing thermoelectric probe can be interpreted as the local
temperature of a nonequilibrium electron system, consistent
with the laws of thermodynamics. While T̄p does not have
the same fundamental basis in statistical mechanics as the
temperature of an equilibrium system, nonetheless it was
shown that (i) T̄p is largely independent of the details of the
probe-sample coupling, (ii) the temperature inferred from an
independent electrical noise measurement coincides with that
measured by a floating probe, and (iii) the temperature so
defined is consistent with both the zeroth and second laws
of thermodynamics. These results were obtained within linear
response and to leading order in the Sommerfeld expansion.

In the present article, a theory of local temperature
measurement is developed that extends the analysis of Ref. [11]
to interacting quantum systems under steady-state conditions
arbitrarily far from equilibrium, using the method of NEGFs.
In addition to the zeroth and second laws, the conditions

under which T̄p is consistent with the first and third laws
of thermodynamics are investigated. It is shown that the
local temperature defined by a floating thermoelectric probe
is consistent with the zeroth, first, second, and third laws
of thermodynamics, provided the probe-system coupling is
weak and broadband. For non-broadband probes, the local
temperature obeys the Clausius form of the second law and the
third law exactly, but there are corrections to the zeroth and first
laws that are higher order in the Sommerfeld expansion. The
exact agreement with Clausius’ statement of the second law
and with the third law implies that the local temperature metric
T̄p defines an ordering of temperatures and an absolute zero, but
not necessarily an absolute temperature scale. The corrections
to the zeroth and first laws are shown to be related, and can be
interpreted in terms of the error of a nonideal temperature
measurement. This analysis also applies to systems with
negative absolute temperature [13–16] (population inversion).

It is also shown that for a probe with broadband coupling,
T̄p is directly related to the mean local excitation energy of the
system, in the same way as it is in an equilibrium system. Our
findings make a compelling case to interpret the temperature
measured by a noninvasive, broadband thermoelectric probe
as the local temperature of a nonequilibrium electron system.
This definition goes far beyond a mere operational notion,
although it does not have the same fundamental status as the
temperature of a system in equilibrium.

This article is organized as follows: In Sec. II, the probe
equilibration conditions are defined and expressed using the
NEGF formalism. Prior results [10,12] obtained within linear-
response theory are also summarized here, introducing the
Onsager coefficients that are useful in the sequel. In Sec. III, the
local spectrum and distribution function sampled by the probe
are defined, and the charge and heat currents flowing into the
probe are related to these local properties of the nonequilibrium
quantum system. It is shown that the probe equilibration
problem is determined entirely by the local occupancy and
energy of the system for a noninvasive, broadband probe.
Sections IV–VII examine the extent to which the temperature
T̄p measured by a noninvasive local probe is consistent with
the zeroth, first, second, and third laws of thermodynamics,
respectively, even when the system probed is arbitrarily far
from equilibrium. Section VIII draws together the various
threads presented throughout the paper, and concludes that
T̄p provides far more than a mere operational definition of
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temperature out of equilibrium. Appendix A derives some
important properties of the local spectrum and distribution
function of a nonequilibrium steady state, while Appendix B
examines an alternative to the zeroth-law scenario investigated
in Sec. IV.

II. CURRENT FORMULA AND PROBE TEMPERATURE

Our approach is motivated by the experimental technique
of scanning thermal microscopy [17], whose resolution has
recently been brought down to the nanometer range [18–21].
The system’s local temperature is defined via an external local
probe weakly coupled to the system via a tunnel barrier [10]. At
its other end, the probe is connected to a macroscopic electron
reservoir whose chemical potential and temperature “float”
until neither electric current nor heat current flow between the
probe and the system [10,11]:

I (ν)
p = 0, ν = 0,1, (1)

where −eI (0)
p and I (1)

p are the electric current and heat current,
respectively, flowing into the probe. The probe is then in
local equilibrium with a system that is itself arbitrarily far
from equilibrium. Several investigators have proposed related
definitions of a floating thermal probe [5,6,22–30]. It should
be noted that a number of other schemes for measuring the
temperature of electron systems also exist [31], but these
generally lack the high spatial resolution available in a
scanning probe.

The starting point of our analysis is the NEGF formula
for the steady-state electric and heat currents flowing into a
probe coupled locally to a nonequilibrium quantum system
with arbitrary interactions [32,33]:

I (ν)
p = − i

h

∫ ∞

−∞
dω(ω − μp)ν Tr{�p(ω)(G<(ω)

+ fp(ω)[Gr (ω) − Ga(ω)])}, (2)

where ν = 1 gives the electronic contribution to the heat
current and ν = 0 the electron number current. The probe is
assumed to consist of a noninteracting electron reservoir with
Fermi-Dirac distribution

fp(ω) = {1 + exp[(ω − μp)/kBTp]}−1 (3)

and tunneling-width matrix

[�p(ω)]nσ,mσ ′ = 2πδσσ ′
∑
k∈p

VnkV
∗
mk δ(ω − εkσ ). (4)

Here |n〉, |m〉 are single-particle basis orbitals (e.g., atomic
orbitals) in the system, while the states in the probe are
labeled |k〉. The coupling matrix elements Vnk can be cal-
culated in the tunneling regime using standard methods for
scanning probes [10,34]. In Eq. (2), Gr (ω), Ga(ω), and
G<(ω) are Fourier transforms of the retarded, advanced,
and Keldysh “lesser” Green’s functions describing electron
propagation/occupancy within the system [1]:

Gr
nσ,mσ ′ (t) = −iθ (t)〈{dnσ (t),d†

mσ ′(0)}〉, (5)

Ga
nσ,mσ ′ (t) = iθ (−t)〈{dnσ (t),d†

mσ ′(0)}〉, (6)

and

G<
nσ,mσ ′ (t) = i〈d†

mσ ′ (0) dnσ (t)〉, (7)

respectively. Equation (2) is an exact formal result, valid for
arbitrary interactions and for arbitrary steady-state thermal
and/or electric bias.

The probe temperature of an interacting electron system
with arbitrary bias is determined by solving the conditions (1)
with I (ν)

p given by Eq. (2). Equations (1) and (2) represent two
coupled nonlinear equations for the two unknowns, Tp and μp.
A priori, a solution to the probe equilibration problem might
not exist at all, or might not be unique if it did exist. However,
it was shown in Ref. [16] that for any weak probe-system
coupling �p(ω), the solution to Eqs. (1) and (2) exists and is
unique. Tp was shown to be positive provided the system does
not have local population inversion, and negative if it does.

Given that the probe equilibration conditions (1) constitute
a well-posed problem [16], the present article addresses the
related question of how the measured value of Tp depends on
the actual probe-system coupling �p(ω) for a system far from
equilibrium. That is, to what extent do various thermometers
measure different temperatures of the same nonequilibrium
quantum system? The thermodynamic interpretation of such a
local nonequilibrium temperature is also explored.

A. Linear response results

We summarize here the formalism for linear thermoelectric
response of an open quantum system, because several of the
key concepts and formulas will be useful by analogy in treating
the far-from-equilibrium system. Consider a general system
with M electrical contacts. Each contact α is connected to a
reservoir at temperature Tα and electrochemical potential μα .
In linear response, the electric current −eI (0)

α and heat current
I (1)
α flowing into reservoir α may be expressed as

I (ν)
α =

M∑
β=1

[
L(ν)

αβ (μβ − μα) + L(ν+1)
αβ

(
Tβ − Tα

T0

)]
, (8)

where L(ν)
αβ (ν = 0,1,2) is an Onsager linear-response coeffi-

cient [35].
In a thermal transport experiment, the system is driven out

of equilibrium by a thermal bias applied between the hot and
cold electrodes, but the system forms an open electric circuit.
Under these conditions, the chemical potentials μα may be
eliminated from Eq. (8), yielding the following expression for
the total heat current flowing into the probe, which forms the
third terminal of the thermoelectric circuit:

IQ
p ≡ I (1)

p =
2∑

β=1

κ̃pβ(Tβ − Tp) + κp0(T0 − Tp). (9)

Here κ̃αβ is the thermal conductance between electrodes α and
β, and κp0 is the thermal coupling of the probe to the ambient
environment at temperature T0. The environment could be,
for example, the blackbody radiation or gaseous atmosphere
surrounding the circuit, or the cantilever/driver on which the
temperature probe is mounted.

Equations (1) and (9) can be solved for the temperature of a
probe in thermal and electrical equilibrium with, and coupled
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locally to, the system [10]

T̄p = κ̃p1T1 + κ̃p2T2 + κp0T0

κ̃p1 + κ̃p2 + κp0
. (10)

The effect of κp0 on local temperature measurement, an impor-
tant issue in nanoscale thermometry [18–21], was discussed
in Refs. [10,12]. In the present paper, we are concerned with
establishing the fundamental theoretical basis for defining a
local temperature of a nonequilibrium quantum system, not
with the nonidealities inherent in experimental thermometry.
Therefore, unless otherwise specified, we will take κp0 = 0 in
the remainder of the present paper.

In the absence of an external magnetic field L(ν)
αβ = L(ν)

βα and
the thermal conductances are given by [10]

κ̃αβ = 1

T

[
L(2)

αβ −
[
L(1)

αβ

]2

L̃(0)
αβ

− L(0)

(
L(1)

αγL
(1)
αβ

L(0)
αγL(0)

αβ

+ L(1)
γβL

(1)
αβ

L(0)
γβL

(0)
αβ

− L(1)
αγL

(1)
γβ

L(0)
αγL(0)

γβ

)]
, (11)

with

L̃(0)
αβ = L(0)

αβ + L(0)
αγL

(0)
γβ

L(0)
αγ + L(0)

γβ

(12)

and

1

L(0)
= 1

L(0)
12

+ 1

L(0)
13

+ 1

L(0)
23

. (13)

B. Elastic transport

Within elastic electron transport theory, the linear response
coefficients needed to evaluate Eq. (10) are given by [33,36,37]

L(ν)
αβ = 1

h

∫
dω (ω − μ0)ν Tαβ(ω)

(
−∂f0

∂ω

)
, (14)

where f0 is the equilibrium Fermi-Dirac distribution of the
electrodes at chemical potential μ0 and temperature T0. The
elastic transmission function may be expressed as [38,39]

Tαβ(ω) = Tr{�α(ω)Gr (ω)�β(ω)Ga(ω)}, (15)

where �α(ω) is the tunneling-width matrix for lead α.

III. RELATION OF PROBE CURRENTS TO LOCAL
PROPERTIES OF THE SYSTEM

A. Local properties of the nonequilibrium system

One can define the mean local spectrum sampled by the
probe as

Ā(ω) ≡ Tr{�p(ω)A(ω)}/Tr{�p(ω)}, (16)

where the spectral function of the (nonequilibrium) system is

A(ω) = i

2π
[Gr (ω) − Ga(ω)]. (17)

Equation (16) defines a density of states averaged over the
orbitals coupled to the probe. In the tunneling regime, the
probe-sample coupling decreases exponentially with distance,
so Ā(ω) is a measure of the local density of states.

In equilibrium, G< may be expressed as

G<
eq(ω) = 2πiA(ω)feq(ω). (18)

This relation motivates the following definition of the local
nonequilibrium distribution function, as sampled by the
probe

fs(ω) ≡ Tr{�p(ω)G<(ω)}
2πi Tr{�p(ω)A(ω)} . (19)

Ā(ω) and fs(ω) satisfy the necessary conditions for a spectrum
and a distribution function, respectively. In particular, Ā(ω) �
0 and 0 � fs(ω) � 1 (see Appendix A and Ref. [16] for proofs
and further discussion).

The mean occupancy and energy of the electronic orbitals
sampled by the probe are

〈N〉 ≡
∫

dω

2πi

Tr{�p(ω)G<(ω)}
Tr{�p(ω)} =

∫ ∞

−∞
dω Ā(ω)fs(ω), (20)

〈E〉 ≡
∫

dω

2πi

ω Tr{�p(ω)G<(ω)}
Tr{�p(ω)} =

∫ ∞

−∞
dω ωĀ(ω)fs(ω),

(21)

respectively.
For the case of maximally local coupling of the probe to

the system,

[�p(ω)]ij = �̄p(ω)δinδjn, (22)

where n is a single localized orbital in the sample, Ā(ω) =
Ann(ω) ≡ ρ(ω) is just the local density of states, and

fs(ω) = fn(ω) = G<
nn(ω)

G<
nn(ω) − G>

nn(ω)
. (23)

1. Elastic transport regime

In the regime of elastic quantum transport, one can express

fs(ω) =
M∑

α=1

λα(ω)fα(ω), (24)

where fα(ω) is the equilibrium Fermi-Dirac distribution of
reservoir α and λα(ω) = ρα(ω)/ρ(ω), where

ρα(ω) = 1

2π
[Gr (ω)�α(ω)Ga(ω)]nn (25)

is the injectivity [40,41] of reservoir α, i.e., the local density of
states associated with electrons injected by α. The coefficients
λα(ω) satisfy the condition

1 =
∑

α

λα(ω). (26)

In the elastic transport regime, the local nonequilibrium
distribution function fs(ω) is thus a linear combination of
the various Fermi functions of the reservoirs, with energy-
dependent coefficients. For a quantum system connected to
source and drain electrodes under electrical bias, this leads
to an energy distribution with two characteristic steps at the
source and drain Fermi energies (see Fig. 1), as observed
experimentally in mesoscopic metal wires [42,43]. For a
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Δ
y

[Å
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FIG. 1. Measurements of a floating thermoelectric probe scanned 3.5 Å above the plane of carbon nuclei in a single-molecule junction
containing an anthracene molecule. The electronic structure of the molecule is illustrated in the topmost panel, which shows Tr{�p(μ0)} as
a function of the probe’s horizontal position. The local temperature T̄p and voltage V̄p ≡ −μ̄p/e are shown in the left and right panels of the
middle row, respectively. The probe is modeled as an atomically sharp Au tip and �p(ω) was taken as a constant evaluated at the Au Fermi
energy (broadband limit). The thermoelectric bias of the junction is applied by two electrodes covalently bonded to the molecule at the points
labeled by the blue squares (electrode 1) and red squares (electrode 2), with T1 = 100 K, T2 = 300 K, and μ2 − μ1 = 0.2 eV. The local energy
distribution of the system fs(ω) and the Fermi-Dirac distribution of the probe f̄p(ω) are shown in the lower two panels for two different probe
positions, corresponding to a cold spot and a hot spot, respectively (indicated by circles in the top panels). The zeroth and first moments of the
probe’s and system’s local energy distributions are equal, as described by Eqs. (20)–(21) and (35)–(36).

Fermi system, the coefficients λα(μ0) exhibit characteristic
2kF oscillations as a function of position [40,41], leading to
oscillations of the local energy density and temperature [6,10–
12] in the linear-response regime.

B. Effective two-terminal current formulas

It is useful to rewrite Eq. (2) in terms of the local distribution
fs(ω) within the system, as sampled by the probe. Using
Eqs. (17) and (19), Eq. (2) can be rewritten as

I (ν)
p = 1

�

∫ ∞

−∞
dω(ω − μp)ν Tr{�p(ω)A(ω)}[fs(ω) − fp(ω)].

(27)

This has the structure of a two-terminal current formula with
sample-probe “transmission function”

Tps(ω) = 2π Tr{�p(ω)A(ω)}. (28)

Note, however, that there is no assumption of elastic transport,
and that fs is not in general an equilibrium distribution.
Equation (27) is an exact result which merely represents
rewriting Eq. (2).

For a given bias of the system, let us denote the Fermi-Dirac
distribution of the probe once it has reached local equilibrium
with the system [as defined by Eq. (1)] by f̄p(ω). Let us
now derive a formula for the currents into the probe when
the probe is biased away from this local equilibrium point.
We will assume that the local nonequilibrium distribution
fs(ω) is independent of the probe bias (noninvasive probe;
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see Ref. [16]). We note that fs(ω) is independent of probe
bias provided �p 	 ∑

α 
=p �α (weak probe-sample coupling).
Writing fs − fp = fs − f̄p + f̄p − fp, it is evident that I (0)

p is
given by Eq. (27) with the local nonequilibrium distribution
fs replaced by the equilibrium distribution f̄p. To see that the
same holds for I (1)

p , one can also write ω − μp in the integrand
of Eq. (27) as ω − μ̄p + μ̄p − μp, and note that all the integrals
involving fs − f̄p vanish due to the conditions of Eq. (1). The
currents flowing into the probe are then given by the effective
two-terminal formula

I (ν)
p = 1

h

∫ ∞

−∞
dω(ω − μp)ν Tps(ω)[f̄p(ω) − fp(ω)], (29)

where both fp and f̄p are equilibrium Fermi-Dirac dis-
tributions. Although this formula has the same form as
the two-terminal current formula of elastic transport the-
ory [33,36,44,45], note that it holds for arbitrary interactions
within the system and that no assumption of elastic transport
has been made. These effects are encoded in the spectral
function A(ω) of the interacting nonequilibrium system
appearing in Eq. (28). Equation (29) is no longer exact,
because the dependence of fs on probe bias has been neglected
(assumption of noninvasive probe).

Because Eq. (29) has the same form as the two-terminal
current formula of elastic transport theory, one can define
Onsager coefficients for the probe-sample junction analogous
to Eq. (14):

L(ν)
ps = 1

h

∫
dω (ω − μ̄p)ν Tps(ω)

(
−∂f̄p

∂ω

)
. (30)

In terms of these coefficients, one may express the ther-
mopower and thermal conductance of the probe-sample
junction as

Sps = − 1

eTp

L(1)
ps

L(0)
ps

, (31)

κps = 1

Tp

(
L(2)

ps −
[
L(1)

ps

]2

L(0)
ps

)
� 0, (32)

respectively. κps � 0 was proven in Ref. [16].

C. Broadband limit

If the probe-sample coupling is broadband, we may ap-
proximate �p(ω) ≈ �p(μ0), where μ0 is the electrochemical
potential of the source, drain, and probe electrodes when the
whole system is in equilibrium. Writing

Tr{�p(μ0)} = �̄p (33)

and using Eq. (16), with �p(ω) replaced by �p(μ0), Eq. (27)
may be expressed as

I (ν)
p = �̄p

�

∫ ∞

−∞
dω(ω − μp)ν Ā(ω)[fs(ω) − fp(ω)]. (34)

When the probe is in local equilibrium with the sample, as
defined by Eq. (1), Eqs. (20), (21), and (34) imply

〈N〉|fs
= 〈N〉|f̄p

, (35)

〈E〉|fs
= 〈E〉|f̄p

. (36)

That is to say, the mean local occupancy and energy of
the nonequilibrium system are the same as if its local
(nonequilibrium) spectrum Ā(ω) were populated by the equi-
librium Fermi-Dirac distribution of the probe. A noninvasive
measurement of μ̄p, T̄p thus constitutes a measurement of the
local occupancy and energy of the system, in the broadband
limit. The quantity 〈E〉 − μ̄p〈N〉 is a monotonically increasing
function of T̄p at fixed μ̄p, and is a measure of the mean
excitation energy of the system (see Sec. V). Thus T̄p is directly
related to the degree of local energy excitation, in the same way
that it is in an equilibrium system. Certainly, then, a floating
thermoelectric probe provides more than a mere operational
definition of local temperature.

The principle underlying Eqs. (35)–(36), that a floating
thermoelectric probe whose coupling to the system is broad-
band measures the zeroth and first moments of the system’s
local energy distribution, is illustrated in Fig. 1. For this
example, the electronic transport was considered elastic, as
described in Sec. III A 1. The electronic structure of the
system (an anthracene molecule covalently bonded to two
metal electrodes) was modeled via Hückel theory, and the
floating thermoelectric probe was modeled as an atomically
sharp Au tip scanned at a constant height of 3.5 Å above
the plane of carbon nuclei in the junction. The probe-system
coupling was calculated by the method of Refs. [10,12].
The probe temperature T̄p and chemical potential μ̄p were
obtained by finding the roots of Eq. (2) numerically at finite
bias [46]. At both the cold spot and hot spot indicated,
the probe’s Fermi-Dirac distribution matches the zeroth and
first moments of the local energy distribution. It should be
emphasized that this particular nanostructure is merely an
example, chosen to illustrate the general principles involved in
a scanning thermoelectric measurement, and the methods and
approximations used to treat it in no way limit the applicability
of the arguments given in the remainder of the paper.

IV. ZEROTH LAW

In a previous article [11], it was shown that the local
temperature measured by a scanning thermoelectric probe
is consistent with the zeroth-law of thermodynamics, also
known as the transitive property of equilibrium: if the local
temperatures and chemical potentials of two nonequilibrium
quantum systems, as measured by the probe, are equal, then
the two systems will be in thermal and electrical equilibrium
with each other when connected by a transmission line coupled
locally to the same two points. This result was proven within
linear response and to leading order in the Sommerfeld
expansion.

This scenario can be extended to the nonlinear response
regime, as discussed in Appendix B. However, here we
focus on another zeroth-law scenario, namely, under what
conditions will two different thermometers measure the same
local temperature of a single nonequilibrium quantum system?

A. Ideal probe: Local, noninvasive, broadband

It is well known in the field of scanning probe mi-
croscopy [34] that the image of any physical property depends
on the spatial resolution of the probe. This dependence drops
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out in the limit of maximally local coupling given by Eq. (22),
for which Ā(ω) reduces to the local density of states ρ(ω).
For the sake of clarity, we focus on this limit of a locally
coupled probe throughout the remainder of the paper. It is
straightforward to extend these results to probes with arbitrary
spatial resolution.

The local density of states ρ(ω) is independent of �p

provided the coupling of the probe to the sample is not so strong
that it perturbs the local spectrum (noninvasive probe). This
may be seen explicitly as follows. Using Dyson’s equations
for Gr and Ga ,

Gr/a(ω) = [1ω − H (1) − �r/a(ω)]−1, (37)

where H (1) is the one-body Hamiltonian of the system and
�r/a(ω) is the retarded/advanced self-energy describing 2-
body interactions and coupling of the system to the external
reservoirs, it can be shown that

A(ω) = 1

2π
Gr (ω)�(ω)Ga(ω), (38)

where

�(ω) ≡ −i(�a − �r ) =
∑

α

�α − i
(
�a

int − �r
int

)
. (39)

Here �α(ω) is the tunneling-width matrix describing coupling
of reservoir α to the system, where α can represent source,
drain, probe, etc., and �int(ω) is the self-energy due to
two-body interactions. Let G

r/a

0 = lim�p→0 Gr/a and �0 =
lim�p→0 �. Then A0(ω) = Gr

0�0G
a
0/2π is the spectral func-

tion of the system in the absence of probe-system coupling,
and one can show that

ρ(ω)

ρ0(ω)
= 1 − πρ0(ω)�p(ω) +

(
Gr

0�
pGa

0

)
nn(

Gr
0�0G

a
0

)
nn

+ O(ρ0�
p)2.

(40)
Any perturbation of the local spectrum by the probe can thus
be safely neglected [47] provided ρ0(ω)�p 	 1. Similarly,
the nonequilibrium distribution fs(ω) is unaffected by the
probe [16] provided �p 	 ∑

α 
=p �α , where α = 1,2, . . .

denote the reservoirs of charge and energy used to drive the
system out of equilibrium.

For any probe with such a maximally local, weak, broad-
band coupling to the system, the measured value of the local
temperature depends only on the nonequilibrium state of the
system, and is independent of the properties of the probe.
The probe temperature and chemical potential are directly
related to the mean energy and occupancy of the localized
orbital to which it is coupled. Any two such thermometers will
measure exactly the same local temperature of the system, and
thus satisfy the transitive property of equilibrium. The local
temperature so defined is thus consistent with the zeroth law
of thermodynamics.

The two conditions on the probe-system coupling needed to
ensure consistency with the zeroth law, that it should be both
weak and broadband, are eminently reasonable, since they
are needed to ensure that the measurement does not strongly
perturb the system, and that the measurement depends on the
spectrum of the system rather than that of the thermometer,
respectively. We define such a measurement, where in addition
the thermal coupling of the probe to the ambient environment

is negligible (κp0 = 0), as an ideal temperature measurement,
and denote the value by T̂p.

B. Beyond the broadband limit

To investigate deviations from the zeroth law far from
equilibrium beyond the broadband limit, one can solve Eqs. (1)
and (2) for T̄p, treating �p′(μ0), �p′′(μ0), etc., as perturbations.
Let us define

�p(ω) ≡ �̄p[1 + λg(ω)], (41)

where λ is a dimensionless parameter that is taken to be small
and g(μ0) = 0. The temperature measured by the probe is

T̄p = T̂p + δTp, (42)

where T̂p is the result for λ = 0, and it can be shown that the
temperature error δTp of a nonideal thermometer with �p(ω) 
=
constant is

δTp = λ
δI (1)

p + eT̂pSpsδI
(0)

p

κps

+ O(λ2), (43)

where Sps and κps are given by Eqs. (31) and (32), respectively,
with Eq. (30) evaluated for Tps(ω) → 2π�̄pρ(ω) and f̄p(ω) →
f̂p(ω) = fp(μ̂p,T̂p; ω), where μ̂p ≡ limλ→0 μ̄p is the result of
an ideal voltage measurement. Here

δI (ν)
p = �̄p

�

∫ ∞

−∞
dω(ω − μ̂p)νg(ω)ρ(ω)[fs(ω) − f̂p(ω)].

(44)

If one assumes that g(ω) is a slowly varying function with

g(ω) = g1(ω − μ̂p) + g2(ω − μ̂p)2 + · · · , (45)

then one can show that

δTp = λ�̄p

�

(
g1 + eT̂pSpsg2

κps

)

×
∫ ∞

−∞
dω(ω − μ̂p)2ρ(ω)[fs(ω) − f̂p(ω)] (46)

plus corrections involving higher powers of (ω − μ̂p) in the
integrand.

In order to make further progress analytically, it is necessary
to consider the limit of linear response. For small thermo-
electric bias, transport in nanostructures is largely elastic at
room temperature and below, so one can use Eq. (24) in
Eq. (46), and expand fα(ω) and f̂p(ω) about the equilibrium
distribution f0(ω). We consider separately the cases of thermal
and electrical bias.

1. Thermal bias

Evaluating Eq. (46) for a thermal bias, and keeping only
the leading term of the Sommerfeld expansion, one obtains

δTp = λg1
7π2

5

(kBT0)2

T̄ps(μ0)

∑
α

T̄ ′
pα(μ0)(Tα − Tp), (47)

where

T̄pα(ω) = 2π�̄pρα(ω) (48)
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is the transmission probability from reservoir α into the
probe, evaluated in the broadband limit for the probe-sample
coupling. One thus finds

δTp

�T
∼ (kBT0)2 d ln �p

dω

∣∣∣∣
ω=μ0

d ln T̄pα

dω

∣∣∣∣
ω=μ0

(49)

for the temperature error as a fraction of the thermal bias.
The temperature error between any two thermometers is thus
higher order in the Sommerfeld expansion for the case of a
linear thermal bias, and hence is expected to be numerically
negligible for nanosystems at room temperature and below.
Note that the maximum temperature error between any two
thermometers is bounded by �T for a pure thermal bias [10],
because the equilibration of a thermometer at a value of Tp

outside the range [T2,T1] would violate the second law of
thermodynamics.

2. Electrical bias

Let us next consider a pure electrical bias, with both source
and drain electrodes held at ambient temperature. Evaluating
Eq. (46), one obtains

δTp

T0
� λg1

7π2

10

(kBT0)2

T̄ps(μ0)

∑
α

T̄ ′′
pα(μ0)(μα − μ̂p), (50)

where the leading-order term of the Sommerfeld expansion
vanishes due to condition (1). This temperature error should
be compared to the temperature shift of an ideal probe due to
the Peltier effect in the system [48],

Tp − T0

T0
� T̄p1T̄

′
p2 − T̄p2T̄

′
p1

T̄ 2
ps

�μ. (51)

The relative temperature error of a nonideal thermometer thus
scales as

δTp

Tp − T0
∼ (kBT0)2 d ln �p

dω

∣∣∣∣
ω=μ0

T̄ ′′
pα(μ0)

T̄ ′
pα(μ0)

. (52)

As in the case of a thermal bias, the error is higher order in the
Sommerfeld expansion, and hence expected to be numerically
negligible for nanosystems at room temperature and below.

V. FIRST LAW

In this section, we investigate whether the temperature
measured by a floating thermoelectric probe is consistent
with the first law of thermodynamics. We first consider a
noninteracting system driven arbitrarily far from equilibrium,
and show that the local temperature inferred from an ideal
temperature measurement is consistent with the first law.
We then consider an interacting system, where not only the
local distribution fs(ω) but also the local density of states
ρ(ω) depends on the nonequilibrium state of the system, and
hence on the local temperature. For this case, we show that
deviations from the first law are higher order in the Sommerfeld
expansion.

A. Noninteracting system

As in Sec. IV A–IV B, we focus here on the case of
maximally local coupling given by Eq. (22), for which the

quantities discussed in this section have an obvious meaning.
It is straightforward to generalize the arguments herein to
arbitrary probe-sample coupling.

For a given nonequilibrium steady state of the system, the
temperature of the probe is determined by

0 = I (1)
p = �̄p

�

∫ ∞

−∞
dω (ω − μ̄p)[1 + λg(ω)]ρ(ω)

× [fs(ω) − f̄p(ω)], (53)

where we have used Eqs. (27) and (41). From Eqs. (53)
and (44), it follows immediately that

〈E〉|fs
− μ̄p 〈N〉|fs

= 〈E〉|f̄p
− μ̄p 〈N〉|f̄p

− λ
�

�̄p
δI (1)

p , (54)

where 〈E〉 and 〈N〉 are the mean energy and occupancy,
respectively, of the localized orbital of the system coupled
to the probe, defined by Eqs. (20) and (21). To leading order
in the Sommerfeld expansion, Eq. (43) gives

λ
�

�̄p
δI (1)

p = �

�̄p
κpsδTp = C(1)

s (μ̄p,T̄p)δTp, (55)

where the one-body contribution to the local specific heat is

C(1)
s (μp,Tp) = 1

Tp

∫ ∞

−∞
dω (ω − μp)2ρ(ω)

(
−∂fp

∂ω

)
� 0.

(56)
Consider now a small change in bias of the nonequilibrium

system, leading to a new nonequilibrium steady state charac-
terized by the same value of the local chemical potential μ̄p,
but by a different local temperature T̄ ′

p . The heat �Qs added
locally to the system under this change of bias satisfies

�Qs ≡ �〈E − μ̄pN〉 = C(1)
s (μ̄p,T̄p) �(T̄p − δTp)

= C(1)
s (μ̄p,T̄p)�T̂p, (57)

where Eqs. (54)–(56) have been used. Here T̄p − δTp = T̂p is
the result of an ideal temperature measurement by a broadband
probe coupled weakly to the system, as discussed above in
Sec. IV. Thus deviations from the zeroth and first laws under
nonideal measurement conditions are not independent, and
Eq. (57) implies that it is T̂p that should be identified as the
true local temperature of the system, directly related to the
local energy excitation.

Note that Eq. (57) also holds for systems with T̄p < 0
(absolute negative temperature), although the interval [T̄p,T̄ ′

p ]
cannot contain 0 since 〈E〉 and f̄p(ω) are discontinuous at T̄p =
0 (they are continuous functions of β̄p ≡ 1/kBT̄p). Absolute
negative temperatures do not characterize any generic equi-
librium state, but allow one to quantify population inversion
in a nonequilibrium system with a bounded spectrum [13].
Negative temperature solutions to Eq. (1) exist for strongly
driven systems [16].

B. Interacting system

In an interacting system, not only the local distribution
fs(ω) but also the local spectrum ρ(ω) depends on temperature,
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so that Cs = C(1)
s + C(2)

s , where

C(2)
s (μp,Tp) =

∫ ∞

−∞
dω (ω − μp)fp(ω)

∂ρ(ω)

∂Tp

∣∣∣∣
μp

(58)

is the two-body contribution to the local specific heat.
Due to the limited phase space for two-body scattering in
Fermi systems [49] at temperatures well below the Fermi
temperature, ∂ρ(ω)/∂T ∝ T so that C(2)

s is two orders higher
in the sense of a Sommerfeld expansion than C(1)

s .
The arguments of Sec. V A can be extended straightfor-

wardly to the case of an interacting nonequilibrium system,
leading to the result

�Qs ≡ �〈E − μ̄pN〉 = C(1)
s (μ̄p,T̄p)�T̂p

+
∫ ∞

−∞
dω (ω − μ̄p)f̄p(ω)�ρ(ω), (59)

where �ρ(ω) is the change in the local spectrum due to the
small change in bias of the nonequilibrium system. For the case
of a system driven out of equilibrium by a thermal bias alone,
it is clear from the above discussion that the two-body term
in Eq. (59) is two orders higher in the Sommerfeld expansion
than the one-body term, and hence comparable to the error
arising from a nonideal temperature measurement. However,
the size of the two-body term for general thermoelectric bias
remains an open question.

Formally, one can write �ρ(ω) ≡ �T̂p∂ρ(ω)/∂T̂p, where
∂ρ(ω)/∂T̂p is the temperature derivative of the spectrum of a
fictitious equilibrium interacting system whose local spectrum
coincides with that of the actual interacting nonequilibrium
system. In that case, of course, the first law applies also to the
two-body contribution to �Qs , which characterizes the role
of correlations in local heating of the nonequilibrium system.

VI. SECOND LAW

In a previous article [11], it was shown that if a nonequi-
librium system is used as a heat bath to drive a thermoelectric
process, the maximum electrical work generated satisfies
Carnot’s theorem, with T̄p as the absolute temperature of
the bath. That result was obtained within linear response
for noninteracting systems. In this section, we demonstrate
that the temperature measured by a floating thermoelectric
probe satisfies Clausius’ statement of the second law of
thermodynamics, that no process is possible whose sole
effect is to transfer heat from a system at some temperature
T to a system at a higher temperature T ′. The arguments
of this section apply to steady-state systems arbitrarily far
from equilibrium, and with arbitrary interactions. The relation
between probe temperature and the direction of heat flow was
discussed in a different context by Caso et al. [25,29].

Let us consider the junction between the probe and the
system. If the probe is biased away from the local equilibrium
temperature T̄p to some other temperature Tp, then a heat
current I (1)

p will flow across the junction in accordance with
Eq. (29). It should be emphasized that I (1)

p is the heat flowing
into the probe, which is well defined, since the (macroscopic)
probe is arbitrarily close to equilibrium in the presence of this
microscopic heat current; by contrast, the heat flowing out of

the system is not well defined, since the system is far from
equilibrium.

Equation (29) expresses the heat current I (1)
p in terms of the

difference between two equilibrium Fermi-Dirac distributions,
f̄p = f (μ̄p,T̄p) and fp = f (μp,Tp). Tps(ω) in Eq. (29) is given
by Eq. (28) and satisfies Tps(ω) � 0 since both �p(ω) and A(ω)
are positive-definite. Thus Eq. (29) gives the heat current across
a fictitious two-terminal junction between two equilibrium
reservoirs with transmission function Tps(ω).

A. Thermal bias of probe

Let us first consider the case where the probe is thermally
biased, but held at the equilibrium chemical potential μ̄p. Then
fp(ω) = f (μ̄p,Tp; ω), and

(ω − μ̄p)[f̄p(ω) − fp(ω)]
>
< 0 if βp

>
< β̄p, (60)

where βp ≡ 1/kBTp. Thus the integrand for I (1)
p in Eq. (29) is

everywhere positive for βp > β̄p and negative for βp < β̄p, so
that

sgn
(
I (1)
p

) = sgn(βp − β̄p). (61)

That is to say, heat flows into the probe if it is biased to
a temperature below the local temperature T̄p, and out of the
probe for a bias above the local temperature, consistent with the
second law of thermodynamics. This statement holds provided
Tp and T̄p have the same sign; if Tp > 0 and T̄p < 0, then heat
flows into the probe, in accordance with Eq. (61) (a system
at absolute negative temperature is “hotter” than any positive
temperature [13]), while the heat flow is reversed if the signs
are reversed.

This analysis rules out the possibility of multiple-valued
solutions of I (1)

p = 0 at fixed μp = μ̄p. The uniqueness of
the probe temperature in the absence of electrical bias in the
system (which precludes local Peltier cooling/heating effects)
was previously proven in Ref. [27].

B. Probe as open electric circuit

Under the thermal bias conditions discussed above, a small
electric current I (0)

p may flow across the junction between
the probe and the system due to thermoelectric effects. To
rigorously check the applicability of the Clausius formulation
of the second law, we must consider a probe forming an open
electric circuit, so that only heat may be exchanged between the
probe and the system in steady state. This leads to the condition
I (0)
p = 0, which can be solved for the chemical potential shift
�μp = μp − μ̄p of the probe as a function of the thermal bias
Tp − T̄p.

For thermal biases achievable in the laboratory, the resulting
thermoelectric voltage �μp may be treated within linear
response. Writing

f̄p ≡ fp(μ̄p,T̄p) = fp(μp,T̄p) + [f̄p − fp(μp,T̄p)]

∼= fp(μp,T̄p) − �μp

(
∂f̄p

∂ω

)
, (62)
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the open-circuit thermoelectric voltage may be obtained from
Eq. (29) as

L(0)
ps �μp

∼= − 1

h

∫ ∞

−∞
dω Tps(ω)[fp(μp,T̄p) − fp(μp,Tp)],

(63)
where L(0)

ps is given by Eq. (30). The right-hand side of Eq. (63)
is just the electric current I (0)

p flowing when �μp = 0. The heat
current flowing into the probe when it forms an open electric
circuit may then be expressed as

I (1)
p

∼= I (1)
p

∣∣
�μp=0

− L(1)
ps

L(0)
ps

I (0)
p

∣∣
�μp=0

, (64)

where the first term is the heat current at �μp = 0 discussed
above, and the second term is a small thermoelectric correction,
which has the opposite sign of the first term. The thermoelectric
correction is well known in the theory of electronic heat trans-
port [35,50]. It represents negative feedback arising from the
“interference” of charge and heat transport processes [35], and
cannot exceed the magnitude of the first term without leading
to a violation of the second law. Although the latter condition
has not been established in general for transport between
an equilibrium system and a system far from equilibrium,
it must hold for the case at hand due to the mapping onto a
fictitious junction between two equilibrium systems provided
by Eq. (29).

Thus, we have shown that the temperature measured by
a floating thermoelectric probe satisfies Clausius’s statement
of the second law for arbitrary steady-state thermoelectric
bias conditions of the system, and for arbitrary thermal bias
between the probe and the system. For a rigorous mathematical
proof, see Ref. [16].

VII. THIRD LAW

In this section, we investigate whether the local temperature
of a nonequilibrium quantum system is consistent with the
third law of thermodynamics. From Eq. (59), it follows that

lim
T̄p→0+

�Qs ≡ lim
T̄p→0+

�〈E − μ̄pN〉 = C(1)
s (μ̄p0,T̄p)�T̄p,

(65)
where C(1)

s is given by Eq. (56) and μ̄p0 = limT̄p→0+ μ̄p.
Provided ρ(μ̄p0) 
= 0, the low-temperature limit of C(1)

s may
be straightforwardly calculated as

lim
T̄p→0+

C(1)
s (μ̄p,T̄p) = π2

3
ρ(μ̄p0)k2

BT̄p. (66)

Similarly, it can be shown that the leading-order behavior of
the probe-sample thermal conductance κps defined in Eq. (32)
is

lim
T̄p→0+

κps = π2�̄p

3�
ρ(μ̄p0)k2

BT̄p. (67)

Note that if ρ(μ̄p0) = 0, both Cs and κps vanish as higher
powers of T̄p. The fact that both Cs → 0 and κps → 0 as
T̄p → 0+ indicates that the local temperature inferred from the
measurement by a floating thermoelectric probe is completely
consistent with the third law of thermodynamics. Furthermore,

it can be shown [46] that the local entropy of the system goes
to zero whenever T̄p → 0.

Equations (66) and (67) also hold in the limit T̄p → 0−,
with T̄p replaced by |T̄p|. These statements may be considered
analogues of the third law [13] as it applies to the state of
maximum energy in a system with a bounded spectrum.

VIII. CONCLUSIONS

In the present article, a theory of local temperature mea-
surement of an interacting quantum electron system arbitrarily
far from equilibrium via a floating thermoelectric probe was
developed. For a probe-system coupling that is both weak
and broadband, it was shown that the local temperature and
chemical potential of the probe are completely determined by
the zeroth and first moments of the local energy distribution
in the system [cf. Eqs. (35)–(36) and Fig. 1]. The local
temperature T̄p so defined is thus directly related to the mean
local excitation energy of the system (57), just as it is in an
equilibrium system.

For a noninvasive broadband probe, it was shown that T̄p

is consistent with the zeroth, first, second, and third laws
of thermodynamics. For non-broadband probes, the local
temperature obeys the Clausius form of the second law and the
third law exactly, but there are deviations from the zeroth and
first laws that are higher order in the Sommerfeld expansion. It
was shown that the corrections to the zeroth and first laws are
related, and can be interpreted in terms of the error inherent
in a nonideal temperature measurement. This analysis also
applies to systems with negative absolute temperature [13–16]
(population inversion).

The exact agreement with Clausius’s statement of the
second law and with the third law implies that the local
temperature metric T̄p defines an ordering of temperatures and
an absolute zero, but not necessarily an absolute temperature
scale. The first law defines absolute temperature differences,
and it was shown that discrepancies with the first law in
probes that are not broadband arise from deviations from
ideal measurement (zeroth law). In this sense, a noninvasive
broadband probe can be used to define an absolute temperature
scale for nonequilibrium quantum electron systems. All such
thermometers will measure the same temperature, and the
temperature scale so defined is consistent with the laws of
thermodynamics, as elucidated above. However, other types
of thermometers [11,31] may not yield precisely the same
temperature, and the values of T̄p, μ̄p determined by a floating
thermoelectric probe may not be consistent with alternative
formulations of the laws of thermodynamics, all of which
are equivalent for equilibrium systems (see Appendix B for a
discussion of an alternative formulation of the zeroth law).

The ability to consistently define local thermodynamic
variables such as the temperature [11,46] or chemical po-
tential [48,51,52] points to the possibility of constructing a
thermodynamic description—if only a partial one—of far-
from-equilibrium quantum systems.
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APPENDIX A: THE NONEQUILIBRIUM STEADY STATE

The nonequilibrium steady state is described by a density
matrix ρ̂ that is time-independent. The expectation values of
observables are given by their usual prescription in statistical
physics, e.g.,

〈Q̂〉 = Tr{ρ̂Q̂} =
∑
μ,ν

ρμν〈ν|Q̂|μ〉. (A1)

The “lesser” and “greater” Green’s functions [1] used in the
paper are defined as

G<
αβ(t) ≡ i〈d†

β (0)dα(t)〉, (A2)

while its Hermitian conjugate is

G>
αβ(t) ≡ −i〈dα(t)d†

β(0)〉, (A3)

where

dα(t) = ei Ĥ
�

t dα(0)e−i Ĥ
�

t (A4)

evolves according to the Heisenberg equation of motion for a
system with Hamiltonian Ĥ . Here, α, β denote basis states in
the 1-body Hilbert space of the system.

The spectral representation uses the eigenbasis of the
Hamiltonian Ĥ |ν〉 = Eν |ν〉, where ν denotes a many-body
energy eigenstate. One may write the “lesser” Green’s function
as

G<
αβ(ω) = 2πi

∑
μ,μ′,ν

ρμν〈ν|d†
β |μ′〉〈μ′|dα|μ〉

× δ

(
ω − Eμ − Eμ′

�

)
,

(A5)

while the “greater” Green’s function becomes

G>
αβ(ω) = −2πi

∑
μ,μ′,ν

ρμν〈ν|dα|μ′〉〈μ′|d†
β |μ〉

× δ

(
ω − Eμ′ − Eν

�

)
.

(A6)

The spectral function A(ω) is given by

A(ω) ≡ 1

2πi
(G<(ω) − G>(ω)), (A7)

and can be expressed in the spectral representation as

Aαβ(ω) =
∑

μ,μ′,ν

[ρμν〈ν|d†
β |μ′〉〈μ′|dα|μ〉

+ ρνμ′ 〈μ′|dα|μ〉〈μ|d†
β |ν〉]

× δ

(
ω − Eμ − Eμ′

�

)
.

(A8)

1. Sum rule for the spectral function

Equation (A8) leads to the following sum rule for the
spectral function:∫ ∞

−∞
dωAαβ (ω) =

∑
μ,ν

ρμν〈ν|d†
βdα|μ〉

+
∑
μ′,ν

ρνμ′ 〈μ′|dαd
†
β |ν〉

=
∑
μ,ν

ρμν〈ν|d†
βdα + dαd

†
β |μ〉

=
∑
μ,ν

ρμνδμνδαβ

= δαβ Tr {ρ̂}
= δαβ. (A9)

In our theory of local thermodynamic measurements, the
quantity of interest is the local spectrum of the system sampled
by the probe Ā(ω), defined in Eq. (16). This obeys a further
sum rule in the broadband limit (ideal probe), discussed below.

Local spectrum in the broadband limit

The probe-system coupling is energy-independent in the
broadband limit, �p(ω) = constant, and we write Tr {�p} =
�̄p for its trace. The local spectrum sampled by the probe Ā(ω)
defined in Eq. (16) can be written in the broadband limit as

Ā(ω) = 1

�̄p

∑
α,β

〈β|�p|α〉Aαβ(ω). (A10)

In this limit, it obeys a further sum rule:∫ ∞

−∞
dωĀ(ω) = 1

�̄p

∑
α,β

〈β|�p|α〉
∫ ∞

−∞
dωAαβ(ω)

= 1

�̄p

∑
α,β

〈β|�p|α〉δαβ

= 1.

(A11)

The broadband limit is special in that the measurement is
determined by the local properties of the system itself, and
is not influenced by the spectrum of the probe. In this limit,
the local spectrum Ā(ω) obeys the sum rule (A11) since the
probe samples the same subsystem at all energies. One should
not expect such a local sum rule to hold outside the broadband
limit, since the probe samples different subsystems at different
energies.

2. Diagonality of ρ̂

We have, for any observable Q̂,

〈Q̂(t)〉 =
∑
μ,ν

ρμν〈ν|Q̂(t)|μ〉

=
∑
μ,ν

ρμν〈ν|ei Ĥ
�

t Q̂e−i Ĥ
�

t |μ〉

=
∑
μ,ν

ρμνe
−i

Eμ−Eν

�
t 〈ν|Q̂|μ〉.

(A12)

245403-10



LOCAL TEMPERATURE OF AN INTERACTING QUANTUM . . . PHYSICAL REVIEW B 93, 245403 (2016)

The system observables must be independent of time in
steady state. Therefore ρ̂ must be diagonal in the energy basis,
as seen from the above equation. The nondiagonal parts of ρ̂

in the energy basis, when they exist, must be in a degenerate
subspace so that Eμ = Eν in the above equation.

For states degenerate in energy, the boundary conditions
determining the nonequilibrium steady state will determine
the basis in which ρ̂ is diagonal. Henceforth, we work in that
basis.

3. Positivity of −i G<(ω) and i G>(ω)

Working in the energy eigenbasis in which ρ̂ is diagonal,

− i〈α|G<(ω)|α〉 ≡ −iG<
αα(ω)

= 2π
∑
μ,μ′

ρμμ|〈μ|d†
α|μ′〉|2

× δ

(
ω − Eμ − Eμ′

�

)
� 0. (A13)

Similarly,

i〈α|G>(ω)|α〉 ≡ iG>
αα(ω)

= 2π
∑
μ,μ′

ρμμ|〈μ′|d†
α|μ〉|2

× δ

(
ω − Eμ′ − Eμ

�

)
� 0. (A14)

It follows that

〈α|A(ω)|α〉 = 1

2π
〈α| − iG<(ω) + iG>(ω)|α〉 � 0. (A15)

Therefore, all three operators −iG<(ω), iG>(ω), and A(ω)
are positive-semidefinite.

4. 0 � fs(ω) � 1 and Ā(ω) � 0

The nonequilibrium distribution function fs(ω) was defined
in Eq. (19) as

fs(ω) ≡ Tr {�p(ω)G<(ω)}
2πi Tr {�p(ω)A(ω)} . (A16)

We have �p(ω) > 0 by causality [1]:

Im �r
p(ω) = − 1

2�p(ω) < 0. (A17)

Let �p|γp〉 = γp|γp〉, where γp � 0 and some γp satisfy γp >

0. The energy dependence is taken to be implicit. The traces in
Eq. (A16) may be evaluated in the eigenbasis of �p, yielding

fs(ω) =
∑

γp
γp〈γp|G<(ω)|γp〉

2πi
∑

γp
γp〈γp|A(ω)|γp〉

=
∑

γp
γp〈γp| − iG<(ω)|γp〉∑

γp
γp〈γp| − iG<(ω) + iG>(ω)|γp〉 .

(A18)

Therefore

0 � fs(ω) � 1. (A19)

Similarly,

Ā(ω) ≡ Tr {�p(ω)A(ω)}
Tr {�p(ω)}

=
∑

γp
γp〈γp| − iG<(ω) + iG>(ω)|γp〉∑

γp
γp

� 0.

(A20)

APPENDIX B: ALTERNATIVE ZEROTH-LAW SCENARIO

In this appendix, we consider the question investigated
previously in Ref. [11]: If the local temperatures and chem-
ical potentials of two nonequilibrium quantum systems, as
measured by a scanning thermoelectric probe, are equal, will
the two systems be in thermal and electrical equilibrium with
each other when connected by a transmission line coupled
locally to the same two points? This question was answered in
the affirmative [11] for a noninteracting system within linear
response and to leading order in the Sommerfeld expansion.
Here we extend the previous analysis to consider two systems
under arbitrary steady-state nonequilibrium conditions.

In this section, we consider noninteracting electrons and
neglect the spin-orbit interaction, so we omit the spin index.
Let the fermion creation and annihilation operators of system
A be denoted by d†, d and the corresponding Green’s
functions of system A by Gr , Ga , and G<, as defined in
Sec. II. Let the fermion creation and annihilation operators
in system B be denoted by f †, f and denote the retarded,
advanced, and Keldysh “lesser” Green’s functions describing
electron propagation/occupancy within system B by gr

nm(t) =
−iθ (t)〈{fn(t),f †

m(0)}〉, ga
nm(t) = iθ (−t)〈{fn(t),f †

m(0)}〉, and
g<

nm(t) = i〈f †
m(0) fn(t)〉, respectively.

Suppose there is a point a in system A with local
temperature T̄p and chemical potential μ̄p as determined by
a measurement specified by Eqs. (1) and (27), and that there
is a corresponding point b in system B characterized by the
same values of T̄p and μ̄p. The question is whether points a

and b will be in equilibrium with each other when connected
by a transmission line permitting the exchange of energy and
charge.

Let the Hamiltonian coupling systems A and B be

HAB =
∑
n∈a
m∈b

[Vnmd†
nfm + H.c.]. (B1)

Then it can be shown using standard NEGF methods [32,33,39]
that the electric current IAB and energy current IE

AB flowing
from system B into system A are given by

IAB = − e

h

∫ ∞

−∞
dω Tr{[Gr (ω) − Ga(ω)]Vg<(ω)V †

+G<(ω)V [ga(ω) − gr (ω)]V †}, (B2)

IE
AB = 1

h

∫ ∞

−∞
dω ωTr{[Gr (ω) − Ga(ω)]Vg<(ω)V †

+G<(ω)V [ga(ω) − gr (ω)]V †}, (B3)

respectively.
For the case where HAB couples only a single localized

orbital in system A to a single localized orbital in system B
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with matrix element V , Eqs. (B2) and (B3) can be simplified
to

I
(ν)
AB = 2π |V |2

�

∫ ∞

−∞
dω ωνρa(ω)ρb(ω)[fb(ω) − fa(ω)], (B4)

where ν = 0 gives the fermion number current and ν = 1
gives the energy current. Here fa(ω) and fb(ω) are the local
nonequilibrium distributions at points a and b, respectively,
defined according to Eqs. (19) and (23), and ρa(ω) and ρb(ω)
are the local densities of states at points a and b, respectively.

Notice that it is problematic in the present case to define a
heat current, since neither system A nor system B possesses a
local equilibrium. Nonetheless, the conditions

I
(ν)
AB = 0, ν = 0,1, (B5)

suffice to define thermoelectric equilibrium between the two
systems, and are equivalent to the conditions given by Eq. (1)
for the case where the heat current can be defined.

Equations (1) and (27) imply

0 = 1

�

∫ ∞

−∞
dω ων�p(ω)ρa(ω)[fa(ω) − fp(ω)], ν = 0,1,

(B6)

0 = 1

�

∫ ∞

−∞
dω ων�p(ω)ρb(ω)[fb(ω) − fp(ω)], ν = 0,1.

(B7)

In linear response, it can be shown [11] that Eqs. (B6) and (B7)
imply Eq. (B5) to leading order in the Sommerfeld expansion.
Under general nonequilibrium conditions in systems A and B,
Eqs. (B6) and (B7) imply Eq. (B5) provided �p(ω), ρa(ω),
and ρb(ω) can all be treated in the broadband limit. That is to
say, they can be taken as constant in the region where fb(ω) −
fa(ω) and fa(ω) − fp(ω) differ significantly from zero. Thus,
the conditions for the validity of the zeroth law are somewhat
more stringent for the scenario considered here than for the
scenario considered in Sec. IV.
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