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Exciton-polariton localized wave packets in a microcavity
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2Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland

(Received 21 October 2015; revised manuscript received 19 May 2016; published 28 June 2016)

We investigate the possibility of creating X waves, or localized wave packets, in resonantly excited exciton-
polariton superfluids. We demonstrate the existence of X-wave traveling solutions in the coupled exciton-
photon system past the inflection point, where the effective mass of lower polaritons is negative in the direction
perpendicular to the wave vector of the pumping beam. Contrary to the case of bright solitons, X waves do not
require nonlinearity for sustaining their shape. Nevertheless, we show that nonlinearity is important for their
dynamics, as it allows for their spontaneous formation from an initial Gaussian wave packet. Unique properties
of exciton-polaritons may lead to applications of their X waves in long-distance signal propagation inside novel
integrated optoelectronic circuits based on excitons.
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I. INTRODUCTION

Sending an optical signal without distortion necessitates
control over diffraction and dispersion of the traveling pulse.
This can be achieved by creation of strongly confined,
propagation-invariant wave packets, which behave like parti-
cles rather than waves. Perhaps the most well-known example
of such a wave packet is a soliton, which is a self-localized
wave existing due to the balance between nonlinearity and
dispersion. It is less known that a wide class of qualitatively
different solutions, called localized waves, exists and can
be more usable than solitons in real-life applications [1,2].
In particular, they exist even in the linear regime, where
there is no self-localization mechanism as in the case of
solitons. The most interesting localized waves, the X-shaped
optical or acoustic pulses, have been applied in numerous
practical situations, including large depth of field or high-
frame-rate medical imaging, optical tomography, and high-
capacity communications [1–5]. They are nonmonochromatic,
yet nondispersive superpositions of nondiffracting Bessel
beams [6] with characteristic biconical X shape.

Recently, bright exciton-polariton solitons [7,8] as well
as gap solitons [9,10] were observed in a semiconductor
microcavity, and the potential of traveling polariton pulses
for applications in information processing has been pointed
out [11–14]. The study of quantum coherent phenomena of
exciton-polaritons in optical microcavities is nowadays a very
active area of research [15–19].

Exciton-polaritons are quantum quasiparticles which are
superpositions of cavity photons and excitons (electron-hole
pairs) in a semiconductor [20]. Their composite nature gives
rise to mixed properties characteristic to both light and matter.
The strong nonlinear interactions between the excitons links
the polaritons inherently with nonlinear quantum processes.
The photonic part gives rise to an extremely light effective
mass and allows for a direct detection of the system evolution
on a picosecond time scale.

Here, we show that the creation of confined propagation-
invariant exciton-polariton wave packets does not have to
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rely on the soliton concept [7,21–30]. It was pointed out
[25,26] that fully two-dimensional bright polariton solitons
can exist due to the peculiar dispersion relation with positive
and negative effective masses in orthogonal directions, but only
in a very narrow range of pumping powers. Instead of relying
on the nonlinearity, we demonstrate that in the same dispersion
regime localized X-wave pulses can be created and propagate
without distortion over long distances even in the low-density
linear regime. There is no necessity to tune the pumping
power precisely; in fact the wave packet remains nondiffractive
even in the absence of pumping, as we demonstrate in direct
simulations of the mean-field Gross-Pitaevskii equations. The
nonlinearity, however, plays an important role in the creation
of X waves. We show that polariton nonlinear X waves
develop spontaneously from a simple Gaussian input pulse in
a four-wave mixing process [31]. We note that Bragg X-wave
solutions were previously considered in a setup consisting of
a large number of quantum wells [19]. In contrast, here we
show that X waves can be created in a typical sample with one
or several quantum wells.

Uniqueness of the exciton-polariton X waves is mani-
fested by their potential for applications in exciton-based
optoelectronic systems. A concept of polariton-based sys-
tems operating at 100 GHz–10 THz frequency range has
been already proposed, filling a gap between electronics
and photonics [32,33]. These operation speeds would be
suitable for processing information at rates exceeding 1 Tbit/s,
necessary in the contemporary world of information [34].
Transistors, spin-based switches, and even logic gates have
been already demonstrated [14,35,36]. However, up to date,
dispersion effects were detrimental to signal guidance within
polaritonic circuits [37]. Localized X waves propagate over
long distances, transferring information with high-speed and
low-power requirements. They may overcome the recent
slowdown of development in silicon-based chip architecture
[38].

II. EXCITON-POLARITONS

Typically, exciton-polaritons are created in planar micro-
cavities, consisting of one or several quantum wells placed
between two Bragg reflectors, and pumped by a laser beam.
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FIG. 1. Dispersion relation for exciton-polaritons in a planar
microcavity. A saddle inflection point enables creation of polaritonic
X waves. The inset compares the dispersion for photons, excitons,
and polaritons in 1D.

Excitons are formed in wells located at the antinodes of the
photonic mode. Just like photons, they are strongly confined in
the direction along the cavity axis, but are free to move in the
transversal x-y plane. The cavity introduces strong coupling
between excitons and photons, leading to formation of new
bosonic quasiparticles—the exciton-polaritons—which are
superpositions of the photonic and excitonic component with
wave functions ψc and ψx , respectively. Their dispersion
relation, shown in Fig. 1, results from crossing of dispersions
for photons and excitons and consists of two branches: for
the lower and the higher energy solution, the lower (LP)
and upper polariton, respectively. We focus exclusively on
the LPs. Their dispersion reveals a saddle inflection point
kinflection, highlighted in red, which is the crucial feature
enabling generation of X waves. They possess a relatively
light effective mass, determined by the photon dispersion, and
a rather short lifetime, up to 100 ps, due to the leakage of cavity
photons. Thus, external pumping is necessary for creating the
population of polaritons at a level necessary for obtaining the
superfluid phase. We assume this is done by a strong pump
with momentum k0, tuned to the saddle point in the dispersion
(highlighted red in Fig. 1), and the LPs are created in a coherent
fashion near this point.

III. POLARITONIC X WAVES

The first sign of the existence of polaritonic X waves comes
from the simplified description of LPs, in terms of a single
wave function, disregarding their compound nature. In this
approach the LP superfluid can be directly mapped to an atomic
Bose-Einstein condensate (BEC) in a potential of an external
lattice, the system where the matter X waves are recognized
[39]. Thus, the dynamics of polaritons are well described
in the mean-field approximation by the generic nonlinear
Schrödinger equation, equivalent to the Gross-Pitaevskii (GP)
equation [1]

i�
dψ

dt
+ �

2

2mx

(
∂2
x − mx

my

∂2
y

)
ψ − 3g

2
|ψ |2ψ = 0. (1)

Here ψ denotes the LP wave function which corresponds to the
BEC one, t is time, � is the Planck constant, and g quantifies
the polariton-polariton interaction and mimics the interaction

(a) (b) (c)

FIG. 2. Evolution of ψ(x,y) governed by Eq. (1) of (a)
X-shaped stationary state, (b) Gaussian state of initial polariton den-
sity 0.8 (μm)−2, which spreads in time. (c) In the presence of nonlin-
earity g = 20 μeV (μm)2, the Gaussian spontaneously turns into the
X-shaped state. Computation parameters are given in the text.

in the BEC. The quasiparticle character of LPs is captured by
a peculiar feature that their mass measured in the direction
x and y is different: mx and my , respectively. This allows us
to complete the analogy to the BEC system by identifying,
e.g., mx with the atomic mass and −my with the negative
mass associated with the lattice (or vice versa). An important
feature of (1) is its hyperbolic form—the signs in front of
the second derivatives are opposite. This provides (1) with
stationary X-wave solutions.

We will first seek for the family of stationary solutions
of (1) for the linear case g = 0 in the form of plane
waves ψ(x,y) = ψ0eikxx+ikyy−ωt . In particular, we are in-
terested in the family of solutions fulfilling the condition

ky = ±
√

my

mx
kx , i.e., ω = 0. A general stationary solution can

be easily constructed using its Fourier transform ψ(x,y) =
1

2π

∫
R2 ψ̃(kx,ky)eikxx+ikyydkxdky , with ψ̃(kx,ky) fulfilling the

above relation between ky and kx . We take its simplest form
being a convolution of an arbitrary envelope function, e.g.,
a Gaussian in kx , and a characteristic function χ (kx,ky)
on the set of (kx,ky), equal 1 if ω = 0 and 0 otherwise,
ψ̃(kx,ky) ∝ e−k2

x χ (kx,ky). This state initially X-shaped both
in the configuration and the Fourier space, when subjected to
the evolution set by (1), indeed does not change in time as is
shown in Fig. 2(a). This is in contrast to a Gaussian initial state
which spreads quickly; see Fig. 2(b). The computations were
performed for mx = my = 2×10−5me.

Strong nonlinearity in (1) introduces a dramatic change
in the behavior of the system; it allows creation of the X
wave spontaneously from a Gaussian initial state, see Fig. 2(c)
computed for g = 20 μeV (μm)2 and initial Gaussian state of
polariton density 0.8 (μm)−2. We note that similar behavior
has been observed previously in the context of nonlinear
optics, which explained the spontaneous localization of pulses
in a medium with normal dispersion [40–42]. High-intensity
X waves, unlike linear ones, can be formed spontaneously
through a trigger mechanism of conical emission [43]. This is a
great simplification in terms of the possibility of experimental
observation of X waves, since they have a rather complex
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structure in the Fourier space. Nevertheless, the analysis of the
linear case is very instructive for describing the shape of the
X-shaped stationary state and for obtaining optimal parameters
ensuring stable numerical simulations.

Repeating the steps analogous to the ones presented above
makes it is possible to find the X-wave solutions for a set
of coupled GP equations describing the polaritonic superfluid
[25,26,44]

i�
d

dt
ψc − �Rψx −

(
�γc

2i
− �

2

2mc

∂2
x − �

2

2mc

∂2
y

)
ψc = 0,

(2)

i�
d

dt
ψx − �Rψc −

(
�γx

2i
+ g|ψx |2

)
ψx = 0,

where mc is the effective mass of polaritons, �R is the Rabi
frequency coupling the excitonic and photonic modes, and
γc and γx are decay rates for the photons and excitons,
respectively. Now the task is more challenging since the
stationary X-wave solution for (2) does not exist at k = 0.
This is because the signs in front of the derivatives in the
x and y directions are the same, which reflects the fact
that in a microcavity there is no distinguished direction for
the polaritons. Flipping one of the signs is necessary for the
existence of the X wave. Therefore, we will construct an initial
state past the inflection point, for which second derivatives
have opposite signs. To this end, we will first look for analytical
plane wave solutions of (2) for the ideal case (γx = γc = 0)
and in the noninteracting (linear) regime g = 0. We will
assume that the waves are moving with a constant velocity v

in the y direction, ψx,c(x,y,t) = φx,c(x,y − vt)e−iμt/�. Such
solutions fulfill the relation ∂ψx,c

∂t
= −v

∂ψx,c

∂y
− i

μ

�
ψx,c, which

in Fourier space translates to

ω = vky + μ

�
. (3)

Some specific values of ω and μ obeying (3) provide a
solution that has an X shape and is quasilocalized in space.
We obtain them from the dispersion for LPs, which results
from the form of the plane wave solutions ψx,c(x,y,t) =
ψ0

x,c exp(ikxx + ikyy − iωt) and the GP equations (2)

�ω = 1

2

(
εk −

√
ε2
k + 4�2

R

)
, φx = �R

�ω
φc, (4)

with εk = �
2

2mc
(k2

x + k2
y). Note that the superposition of plane

waves linked with (3) amounts to a moving solution. Impor-
tantly, the dependence ω(kx,ky) in (4) ensures d2ω/dk2

y < 0 if
ky > kinflection while d2ω/dk2

x > 0 when kx < kinflection. In our
simulations we take �R = 4.4 meV, mc = 2×10−5me, and
kx = 0; thus, the inflection point lies at kinflection ≈ 1.26 μm−1.

We will now explicitly construct the X-wave solutions. We
take ky = k0 > kinflection and kx = 0. Expansion of (4) in the
Taylor series around ky gives the optimal values �v = εk0

k0
−

ε2
k0

k0

√
ε2
k0

+4�2
R

, μ = 1
2 (εk0 −

√
ε2
k0

+ 4�2
R) − �vk0, where εk0 =

�
2

2mc
k2

0. We build the solution in its Fourier space, as before for
(1), but for a different characteristic function χ (kx,ky), which
now results from (3) and (4). We express these conditions,
linking kx and ky , in the polar coordinates (r,θ )

kx = r(θ ) cos θ, ky = k0 + r(θ ) sin θ, (5)
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FIG. 3. The line depicts condition (5). Waves from the vicinity of
k0 are used to obtain stationary spatially localized state.

with r(θ ) = 1
2a0k0 sin θ

− (1 + a0k
2
0)k0 sin θ , a0 = �

2

2mc

√
ε2
k0

+4�2
R

,

and εk0 = �
2

2mc
k2

0. The Fourier transforms for the photonic and
excitonic wave functions equal to

ψ̃c(kx,ky) ∝ e−(ky−k0)2−k2
x χ (kx,ky), (6)

ψ̃x(kx,ky) ∝ 2�R

εk −
√

ε2
k + 4�2

R

ψ̃c(kx,ky), (7)

where χ (kx,ky) = 1 if (kx,ky) fulfill (5) and χ (kx,ky) = 0
otherwise. Figure 3 depicts ψ̃c(kx,ky) computed for exem-
plary values of k0 = 3 μm−1, �R = 4.4 meV, and mc =
2×10−5me.

Having formulated the condition for the initial X-wave
semistationary solution, Eqs. (6) and (7), we performed nu-
merical simulations of the X-wave evolution using Eq. (2) for
the realistic system parameters, including decay, but without
nonlinearity. Solutions of Eq. (2) were found numerically
by direct integration using the Runge-Kutta method of the
fourth order. Figure 4(a) shows time evolution of an X-
wave packet, computed for k0 = 3 μm−1, �R = 4.4 meV,

FIG. 4. Linear evolution of (2) for the X-shaped stationary state
(6). The state does not spread, but moves with constant velocity.
Computation parameters are given in the text.
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FIG. 5. As in Fig. 4, but with a Gaussian initial state and
nonlinearity. The state spontaneously turns into an irregular X wave.

mc = 2×10−5me, γc = 5×10−3 ps−1, γx = 0.02 ps−1, g = 0,
within time interval 100 ps. These parameters correspond to
state-of-the-art samples reported in the literature; see, e.g.,
[49]. The X wave moves with a constant velocity v covering
the distance of around 75 μm. Any significant change in the
shape of the X wave is notable only for very late times of
evolution; e.g., in Fig. 4(b) this is 100 ps, which by far exceeds
the average lifetime of polaritons. Since the excitonic wave
function (7) is just a rescaled photonic one, its evolution looks
qualitatively the same.

In the presence of a nonlinearity, the quasistationary
solution of (2) is very similar to (6) and (7) and the position
of the inflection point does not change. However, this solution
behaves as an attractor and together with the nonlinearity al-
lows for an X-shaped wave packet to be created spontaneously
from a Gaussian initial state. The phase matching condition
for the four-wave mixing process in energy-momentum space
corresponds exactly to the X-wave shape of our solution, as
follows from our mathematical construction [31]. This process
corresponds to the formation of a 8-shaped state of parametric
scattering in the reciprocal space, when the pump is placed in
the inflection point [45,46].

Figure 5 depicts the evolution within t = 100 ps eval-
uated for a Gaussian initial state of polariton density
0.8 (μm)−2, k0 = 3 μm−1, �R = 4.4 meV, mc = 2×10−5me,
γc = 5×10−3 ps−1, γx = 0.02 ps−1, and nonlinearity g =
20 μeV (μm)2. The value of the nonlinearity is related to
the order of magnitude predicted theoretically [47,48] and
observed in an experiment [49]. A 1% random noise was added
in order to test the stability of the results; it seeds all potentially
unstable wave vectors in the system, including the ones close
to the k = 0 mode. Shortly after the beginning of the evolution
the characteristic tails of the X-wave develop. Note that the
shape of the developed wave packet is not completely the same
as in the case of Fig. 4, but some irregularity is present both in
real and Fourier space. This is in analogy to the observations
made in optical Kerr media [40–42]. X-shaped quasistationary
wave packets appeared spontaneously in the normal dispersion
regime, but their internal dynamics was rather complex.

FIG. 6. As in Fig. 5, but in the linear regime. The state decays
quickly.

To illustrate the strength of the X-wave localization in-
duced by the nonlinearity, we show the result of analogous
simulations starting from a Gaussian initial state, but in the
linear regime with g = 0 (Fig. 6). In this case, due to the
dispersion, the initial Gaussian state quickly spreads and
decays anisotropically. Note that the distance traveled by the
wave packet is similar to that in the nonlinear X-wave case,
as this is dictated by the group velocity at the dispersion point
which is seeded by the excitation pulse. For the same reason,
the X wave cannot be turned into the Gaussian state since it is
not a quasistationary solution.

IV. CONCLUSIONS

We have demonstrated the possibility to create localized
X-wave solutions in resonantly excited exciton-polariton
superfluids. We have constructed stationary X-wave packets
by appropriate superposition of plane waves and demonstrated
their undistorted movement over large distances. We have
shown that X waves can be created with a Gaussian-shaped
initial pulse in the case of interacting superfluid. Contrary
to bright solitons, X waves can propagate even in the
linear regime; hence they are more robust against inherent
polariton decay. They do not require constant laser pumping.
These properties allow X waves to be used as transmission
channels between stations without distortion, contributing to
the development of spin-based integrated circuits.
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Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto,
Nat. Commun. 4, 1778 (2013).

[15] D. Colas and F. P. Laussy, Phys. Rev. Lett. 116, 026401 (2016).
[16] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun,

J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André,
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