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We develop the theory of quantum transport and magnetoconductivity for two-dimensional electrons with
an arbitrarily large (even exceeding the Fermi energy), linear-in-momentum Rashba or Dresselhaus spin-orbit
splitting. For short-range disorder potentials, we derive the analytical expression for the quantum conductivity
correction, which accounts for interference processes with an arbitrary number of scattering events and is valid
beyond the diffusion approximation. We demonstrate that the zero-field conductivity correction is given by the
sum of the universal logarithmic “diffusive” term and a “ballistic” term. The latter is temperature independent
and encodes information about the spectrum properties. This information can be extracted experimentally by
measuring the conductivity correction at different temperatures and electron concentrations. We calculate the
quantum correction in the whole range of classically weak magnetic fields and find that the magnetoconductivity
is negative both in the diffusive and in the ballistic regimes, for an arbitrary relation between the Fermi energy
and the spin-orbit splitting. We also demonstrate that the magnetoconductivity changes with the Fermi energy
when the Fermi level is above the “Dirac point” and does not depend on the Fermi energy when it goes below
this point.
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I. INTRODUCTION

Weak localization is a coherent phenomenon in the low-
temperature transport in disordered systems. Transport in
such systems is realized by various trajectories, including a
special class of trajectories with closed loops. The underlying
physics of the weak localization is the enhancement of the
backscattering amplitude which results from the constructive
interference of the waves propagating along the loops in
opposite directions (clockwise and counterclockwise). Since
interference increases the backscattering amplitude, the quan-
tum conductivity correction is negative and is proportional
to the ratio of the de Broglie wavelength to the mean free
path [1]. Remarkably, this correction diverges logarithmically
at low temperatures in the two-dimensional (2D) case. Such
a divergence is a precursor of strong localization and reflects
universal symmetry properties of the system.

Dephasing processes suppress interference and, conse-
quently, strongly affect the conductivity correction. Specifi-
cally, the typical size of the interfering paths is limited by
the time of electron dephasing, τφ . At low temperatures, the
dephasing rate is dominated by inelastic electron-electron
collisions. The phase space for such collisions decreases with
lowering temperature. Therefore, one can probe dephasing
processes by measuring the temperature dependence of con-
ductivity in the weak-localization regime [2]. Another pos-
sibility to affect the interference-induced quantum correction
to the conductivity is the application of magnetic field. The
Aharonov-Bohm effect introduces a phase difference for the
waves traveling along the closed loop in opposite directions.
This phase difference is equal to a double magnetic flux passing
through the loop. The anomalous magnetoconductivity allows
one to extract the dephasing time even more accurately than
the temperature measurements since the low-field magneto-
conductivity is not masked by other effects [1,3].

Since weak localization is caused by the interference of
paths related to each other by time inversion, it is extremely

sensitive to the spin properties of the interfering particles. In
systems with spin-orbit coupling (see Fig. 1), an additional
spin-dependent phase is acquired by electrons passing the
loops clockwise and anticlockwise. As a result, the interference
depends on the electron spin states before and after passing
the loop. Importantly, in the presence of spin-orbit coupling,
the interference becomes destructive, resulting in a positive
correction to the conductivity. This interference effect is
called weak antilocalization. The magnetic field suppresses
this correction, making the conductivity smaller than in the
zero field, i.e., the magnetoconductivity is negative [1].

The theory of weak localization developed in the 1980’s
for diffusive systems allowed one to explain a number of
experimental data in various metallic and semiconductor
structures [2]. The spin-orbit interaction has been treated
as spin relaxation, which adds an additional channel for
dephasing of the triplet contributions to the quantum cor-
rections [1]. However, this approach is insufficient for 2D
semiconductor heterostructures with the linear-in-momentum
spin-orbit splitting of the spectrum. A relevant theory of weak
localization was developed in the mid-1990’s [4]. It describes
very well the experimental data [5,6].

With increasing the magnetic field, the magnetic length lB
becomes smaller than the mean free path l. This regime of weak
localization cannot be treated within the model of a diffusive
electron motion along large scattering paths. By contrast,
the main contribution to the interference correction comes
from short ballistic trajectories with a few scattering events
[7–9]. Experimentally, the ballistic regime can be more easily
achieved in high-quality heterostructures with high electron
mobility. The point is that in such structures, the interval of
fields, where lB < l but at the same time the magnetic field is
classically weak, can be very wide.

Positive magnetoconductivity due to weak localization
in the ballistic regime was calculated in Refs. [7,9]. In
the presence of a moderate spin-orbit splitting of the spec-
trum, the “ballistic” magnetoconductivity was obtained in
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FIG. 1. Electron spectrum and regimes of spin dynamics depend-
ing on the strength of the Rashba splitting. Left: Regime of spin
rotations in the effective magnetic field realized at moderate spin-orbit
splitting � ∼ �/τ ; the weak-localization theory is developed in
Ref. [12]. Right: Regime of well-separated spin branches at strong
spin-orbit splitting (� ∼ EF) considered in the present work.

Refs. [10–12]. These results were used to fit the weak-
localization [13] and weak-antilocalization [12,14] data in
various high-mobility heterostructures.

In Refs. [10–12], the spin-orbit splitting was assumed to be
comparable to or even larger than the momentum scattering
rate �/τ (see Fig. 1). In this case, the spin dynamics can
be well described by electron spin rotations in the effective
momentum-dependent magnetic field [15,16]. However, when
the spin-orbit splitting becomes of the order of the Fermi
energy, the effects of spin-orbit interaction on the electron
orbital motion cannot be neglected in the calculation of the
conductivity correction.

Recently, 2D systems have become available where such
an ultrastrong splitting can be realized. Examples are elec-
trons near the surface of polar semiconductors and at
LaAlO3/SrTiO3 interfaces, or holes in HgTe-based quantum
well structures with a large spin-orbit splitting [17–19]. In
such systems, the spin energy branches are well separated
(see Fig. 1, right panel), which results in a strongly coupled
dynamics of electron spin and orbital degrees of freedom.
The classical conductivity in such systems was analyzed in
Ref. [20]. Weak localization for well-separated spin branches
was considered in Refs. [21,22] in the diffusive regime and
in zero magnetic field only. Recently, weak localization in
spin-orbit metals based on HgTe quantum wells has been
examined in the model of doubly degenerate branches of the
massive Dirac fermions [23–27].

In the present work, we develop a theory of weak lo-
calization for systems with an arbitrarily large splitting of
the spin branches. We study the quantum interference in the
presence of a short-range disorder potential which provides
efficient interbranch scattering. We consider contributions
to the anomalous magnetoconductivity from an arbitrary
number of scatterers and derive a general expression for
the magnetoconductivity valid in both diffusion and ballistic
regimes of weak localization.

The paper is organized as follows. In Sec. II, we for-
mulate the model. In Sec. III, we present the derivation of
the interference-induced conductivity correction. In Sec. IV,
the results for the magnetoconductivity and the zero-field

correction are presented and discussed. Section V summarizes
our conclusions.

II. MODEL

The Hamiltonian of 2D electrons has the form

H = �
2k2

2m
+ α(σ × k)z, (1)

where k is a 2D momentum, z is a normal to the structure, m

is the effective mass, σ is a vector of Pauli matrices, and α is
the Rashba constant. The isotropic energy spectrum consists
of two branches labeled by the index s = ±,

Es(k) = �
2k2

2m
+ sαk, (2)

with the splitting � = 2αk (Fig. 1). It is worth noting that the
same spectrum describes electrons with a k-linear isotropic 2D
Dresselhaus spin-orbit interaction [16,28] with the substitution
of α by the 2D Dresselhaus constant. The eigenfunctions in
the two branches are spinors,

|k,s〉 = eik·r 1√
2

(
1

−iseiϕk

)
, (3)

where ϕk is the polar angle of k.

The spectrum (2) is approximately linear in the vicinity
of k = 0, where the ± bands touch each other (see Fig. 1,
right panel). In what follows, we will term this special point
the “Dirac point.” We will first consider the situation when
the Fermi energy is located above the Dirac point. In this
case, the eigenstates at the Fermi level belong to two different
branches, and Fermi wave vectors k±

F are different:

k±
F = m

�

(
vF ∓ α

�

)
. (4)

Here,

vF =
√

2EF/m + α2/�2 (5)

is the Fermi velocity equal in both branches and EF is the
Fermi energy counted from the Dirac point.

Disorder leads to the following types of scattering pro-
cesses: intrabranch (++ and −−) and interbranch (+− and
−+). In this paper we consider the short-range Gaussian
disorder,

V (r)V (r ′) = V 2
0 δ(r − r ′).

Here, · · · stands for averaging over disorder realizations, and
V0 quantifies the strength of the scattering potential. The
scattering matrix element between the states s,k and s ′,k′ is
given by

〈k′s ′|V |ks〉 = Ak′kVs ′s , (6)

where Ak′k = ∫
V (r)ei(k−k′)rd r/V0,

Vs ′s = V0(1 + ss ′e−iθ )/2,

and θ = ϕk′ − ϕk is the scattering angle. Importantly, the short-
range potential provides effective interbranch scattering for an
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arbitrary spin-orbit splitting. The total (quantum) disorder-
averaged scattering rate is the same in both branches:

1

τ
= 2π

�
〈|V++|2g+ + |V+−|2g−〉θ = m

�3
V 2

0 . (7)

Here, the angular brackets denote averaging over θ , and the
densities of states at the Fermi energy in the branches are given
by

g± = m

2π�2
(1 ∓ R). (8)

The parameter R is introduced according to

R = α

�vF
. (9)

As shown in Appendix A (see also Ref. [20]), the classical
Drude conductivity is given by

σD = e2v2
Fτ

m

2π�2
(1 + R2) = ne2τ

m
, (10)

where the 2D electron concentration is

n = m2v2
F

2π�2
(1 + R2). (11)

When the Fermi energy is located below the Dirac point
(R > 1), the Fermi contour also consists of two concentric
circles, “1” and “2,” but they both belong to the outer
spin branch s = − (Fig. 1). The Fermi wave vectors k

(1,2)
F

are substantially different, while the Fermi velocities in the
branches are equal in this case as well. The densities of states
are given by

g(1,2) = m

2π�2
(R ± 1), (12)

and the concentration is given by Eq. (11) as well.

III. CONDUCTIVITY CALCULATION

The quantum correction to the conductivity in systems
with spin-orbit interaction can be calculated by two ap-
proaches. The first one uses the basis of electron states
with definite spin projections on the z axis, ↑ and ↓. In
this approach, the conductivity correction is presented as a
result of interference of electronic waves with a definite total
angular momentum: The interference amplitude, cooperon,
is a sum of contributions from the singlet and triplet states
[4,10–12,29,30]. An alternative approach uses the basis of
chiral states (3). This approach has been used for calculations
of the conductivity correction in zero magnetic field and,
recently, for calculations of its magnetic field dependence in
HgTe quantum wells [21,22,25–27]. In the present work we
use both approaches and demonstrate that they lead to the same
results. In this section we derive the conductivity correction
working in the basis of singlet and triplet states. In Appendix B
and the Supplemental Material [31], we derive the correction
in the basis of chiral states.

We investigate the two cases when the Fermi level is above
and below the Dirac point (Fig. 1). We start with the first case,
corresponding to R < 1.

FIG. 2. Diagrammatic cooperon equation and conductivity
corrections.

A. Fermi level above the Dirac point

The retarded (R) and advanced (A) Green’s functions in the
subband s are given by

GR,A
s (r,r ′) = G

R,A
0 (r,r ′; ks

F)
1

2

(
1 ±ise−iφ

∓iseiφ 1

)
. (13)

Here, φ is the polar angle of the vector ρ = r − r ′, ks
F are

the wave vectors at the Fermi level in two subbands, Eq. (4),
and G

R,A
0 (r,r ′; kF) is the standard Green’s function in a simple

parabolic band with the Fermi wave vector kF:

G
R,A
0 (r,r ′; kF) = ∓i

√
kF

�vF
√

2πρ

× exp

[
± kFρ − ρ

2l
∓ i

π

4
+ i

2
�(r,r ′)

]
,

(14)

with l = vFτ . The magnetic-field-induced phase is

�(r,r ′) = (y + y ′)(x ′ − x)/l2
B, (15)

where

lB =
√

�/|eB|
is the magnetic length for elementary charge (e < 0). Here,
we used the fact that τ and l are the same in both branches.

The interference-induced correction to the conductivity
is expressed via the cooperon (see Fig. 2). In the basis of
states with spin projections on the z axis, α,β,γ,δ = ↑,↓, the
cooperon satisfies the following equation:

Cαβ

γ δ (r1,r2) = V 2
0 P

αβ

γ δ (r1,r2) +
∫

d rP αμ
γν (r1,r)Cμβ

νδ (r,r2),

(16)
where

P αμ
γν (r1,r) = V 2

0 GR
αμ(r1,r)GA

γν(r1,r),

and GR,A
αμ = ∑

s (GR,A
s )

αμ
.

Under the condition of well-separated spin branches,
|k+

F − k−
F |l 
 1, which we assume from now on, the product

GR
s (r1,r)GA

s ′ (r1,r) oscillates rapidly on the scale of the mean
free path if s �= s ′. Therefore, P̂ has only two terms in the sum
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with s = s ′:

P αμ
γν (r1,r) = V 2

0

∑
s=±

(
GR

s

)
αμ

(
GA

s

)
γ ν

. (17)

Summation over s yields the 16 components of the matrix
P̂ . Passing to the basis of states with a fixed total angular
momentum and its projection to the z axis, i.e., to the
basis ↑↑ ,(↑↓ + ↓↑)/

√
2,(↑↓ − ↓↑)/

√
2, ↓↓, we obtain that

the triplet state with the zero momentum projection, i.e.,
(↑↓ + ↓↑)/

√
2, does not contribute to weak localization.

The matrix P̂ corresponding to the three other states,
↑↑ ,(↑↓ − ↓↑)/

√
2, ↓↓, has the following form:

P̂ = P0

⎛
⎜⎜⎝

1
2 −i R√

2
e−iφ 1

2e−2iφ

i R√
2
eiφ 1 i R√

2
e−iφ

1
2e2iφ −i R√

2
e−iφ 1

2

⎞
⎟⎟⎠, (18)

where

P0(r,r ′) = exp (−|r − r ′|/l̃)
2πl|r − r ′| ei�(r,r ′), (19)

with l̃ = l/(1 + τ/τφ), and �(r,r ′) given by Eq. (15).
It is worth comparing the form of the matrix P̂ , Eq. (18),

with its form for weakly split Fermi circles at � � EF (R →
0). In that case, the matrix P̂ had the form of a 4 × 4 block-
diagonal matrix with a separate triplet 3 × 3 block and an
independent singlet sector. In the limit �τ/� → ∞ (but still
R = 0) the triplet state with zero spin projection decouples and
its matrix elements vanish, so that the triplet block becomes
a 2 × 2 matrix [11]. However, Eq. (18) demonstrates that, for
strongly split spin branches (R �= 0), the singlet cooperon state
becomes mixed with the two triplet ones. This mixing, linear
in the parameter R, arises due to the difference in the densities
of states in the spin branches: g+ − g− ∝ R, Eq. (8).

The cooperon can be found in the basis of Landau level
states with charge 2e, �Nq(r):

Cαβ

γ δ (r,r ′) =
∑

N,N ′,q,q ′
Cαβ

γ δ (N,N ′)�∗
Nq(r)�N ′q ′ (r ′),

where N = 0,1,2, . . . is the Landau level number, and q is
the in-plane wave vector for the Landau gauge. Expanding the
matrix P̂ , Eq. (18), over this basis, we obtain from Eq. (16)
an infinite system of linear equations for the coefficients
Cαβ

γ δ (N,N ′). It can be block-diagonalized in the basis of states
with fixed N + sz, where sz = 1,−1 is the angular momentum
projection in the triplet state while sz = 0 describes the singlet.
The equation for the blocks C(N ) has the following form,

C(N ) = V 2
0 AN + ANC(N ), (20)

where

AN =

⎛
⎜⎜⎝

1
2PN−2 i R√

2
P

(1)
N−2

1
2P

(2)
N−2

i R√
2
P

(1)
N−2 PN−1 −i R√

2
P

(1)
N−1

1
2P

(2)
N−2 −i R√

2
P

(1)
N−1

1
2PN

⎞
⎟⎟⎠. (21)

Here, P (m)
N (m = 1,2) and PN ≡ P

(0)
N are defined as follows,

P
(m)
N = lB

l

√
N !

(N + m)!

×
∫ ∞

0
dx exp(−xlB/l̃ − x2/2)xmLm

N (x2), (22)

with Lm
N being the Laguerre polynomials. All values with

negative indexes should be substituted by zeros.
The conductivity correction is a sum of two contributions

shown in Fig. 2:

σ = σbs + σnon-bs.

The backscattering contribution to the magnetoconductivity is
given by

σbs = �

4π

∫
d r

∫
d r ′ ∑

αβ

[C̃(r,r ′)�(r,r ′)]αβ

βα, (23)

where C̃ = C − V 2
0 P is the cooperon calculated starting from

three scattering lines. The squared electric current vertex is
presented by the following operator,

� =
∑
s=±

(
iel

�

τ
(s)
tr

τ

)2

GR
s GA

s , (24)

where τ
(s)
tr is the transport time in the subband s. Comparing

with Eq. (17), we see that operator � has a matrix form similar
to P , and the only modification is caused by the squared
transport time.

In contrast to the quantum scattering rates, the transport
rates in the branches are different. In order to calculate the
transport times, we solve a system of equations for the velocity
vertexes in the subbands, vx

s :

vx
s (ϕ) = vF cos ϕ +

∑
s ′=±

(1 − s ′R)

〈
1 + ss ′ cos θ

2
vx

s ′ (ϕ′)
〉
ϕ′
.

(25)
The solution is given by

vx
s (ϕ) = vF cos ϕ τ s

tr/τ,

where [20]

τ±
tr

τ
= 1 ∓ R. (26)

As a result, we obtain1

σbs(B) = − e2

2π2�
(1 + 3R2)

(
l

lB

)2

×
∞∑

N=0

Tr
[
�A3

N (I − AN )−1], (27)

1Strictly speaking, formally we get Tr[�ĀNA2
N (I − AN )−1],

where ĀN is obtained from the matrix AN by the substitution
R → R(3 + R2)/(1 + 3R2). However, replacing the matrix ĀN by
AN does not change the trace.
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where I is a 3 × 3 unit matrix, and

� = diag(1,−1,1). (28)

The nonbackscattering contribution, given by a sum of the
second diagram in Fig. 2 and the one conjugated to it, reads

σnon-bs = �

π

∑
αβ

∫
d r

∫
d r ′

×
∫

d r ′′[K(r,r ′)C(r ′,r ′′)K(r ′′,r)]αβ

βα. (29)

Here, the vertex is given by

K(r,r ′) = iel

�

∑
s=±

τ
(s)
tr

τ
V 2

0 GR
s (r,r ′)GA

s (r,r ′) cos(ϕ − ϕ′),

(30)

where ϕ and ϕ′ are polar angles of the vectors r and r ′,
respectively. Summation over s yields

K(r,r ′) = iel

�
cos (ϕ − ϕ′)(1 + R2)P (R′), (31)

where the matrix P (R′) is given by P , Eq. (18), with R replaced
by

R′ = 2R

1 + R2
. (32)

In the basis of Landau level states with charge 2e and fixed
N + sz, the operator K(r,r ′) is written as

K = 1

2
KT

N − 1

2
KN+1, (33)

where the matrix KN is

KN =

⎛
⎜⎜⎝

1
2P

(1)
N−2 −i R′√

2
P

(2)
N−2

1
2P

(3)
N−2

i R′√
2
PN−1 P

(1)
N−1 i R′√

2
P

(2)
N−1

− 1
2P

(1)
N−1 −i R′√

2
PN

1
2P

(1)
N

⎞
⎟⎟⎠. (34)

Finally, we obtain

σnon-bs(B) = e2

4π2�
(1 + R2)2

(
l

lB

)2

×
∞∑

N=0

Tr
[
KN�KT

NAN (I − AN )−1

+KT
N�KNAN+1(I − AN+1)−1

]
. (35)

B. Fermi level below the Dirac point

For the Fermi level below the Dirac point, R > 1 in Fig. 1,
the Green’s functions for the two Fermi circles i = 1,2 are
different due to unequal values of the Fermi wave vectors
k

(1,2)
F . Therefore, we have

P (r,r ′) = V 2
0

∑
i=1,2

GR
i (r,r ′)GA

i (r,r ′). (36)

The products GR
i GA

i have the same coordinate dependence as
at the Fermi level above the Dirac point; the difference is only
in the density of states factors gi , Eq. (12). As a result, P (r,r ′)
has the same form as in a one-subband system with s = −
with the density of states equal to g1 + g2. The conductivity

correction in such a system is the same as in the single branch
s = − with R = 1 and the transport time τtr = 2τ . Therefore,
the corrections σbs and σnon-bs are given by Eqs. (27) and (35)
with R = 1.

The above consideration shows that the conductivity cor-
rection at R > 1 is equal to that at R = 1. In other words,
when the Fermi level goes down through the Dirac point at
k = 0, the correction does not change with further decreasing
the Fermi energy to the bottom of the conduction band.

IV. RESULTS AND DISCUSSION

Let us now discuss the obtained expressions for the conduc-
tivity corrections. We remind the reader that Eqs. (27) and (35)
have been obtained under the condition |k+

F − k−
F |l
1. At

small Rashba splitting relative to the Fermi energy, R → 0,
the derived conductivity corrections coincide with the result
obtained in Refs. [10,12] for weakly split spin subbands,
|k+

F − k−
F | � k+

F + k−
F in the limit of fast spin rotations

�τ/� → ∞.
At the Fermi level lying exactly in the Dirac point, R = 1,

our results pass into the expressions obtained in Ref. [29] for
the spectrum consisting of a single massless Dirac cone. A
single-cone result for the considered two-subband system at
R = 1 follows from the zero density of states of the subband
s = + (the Fermi wave vector for it is equal to zero). In this
case, the contribution of this subband to the conductivity is zero
and scattering to it from the other branch is absent. Therefore,
the subband s = + is excluded from transport while the states
in the other branch (s = −) are described by the same spinors
as in a single valley of graphene or on the surface of a three-
dimensional topological insulator. The same result is obtained
for a single spin subband in a 2D topological insulator at
the critical quantum well width (no gap) in Ref. [26] (this
corresponds to η = 1 there).

A. Zero-field conductivity correction

At zero field, the conductivity corrections are obtained from
Eqs. (27) and (35) by passing to integration over N . This yields

σbs(B = 0) = −e2(1 + 3R2)

4π2�

×
∫ 1/(1+γ )

0

dP

P 3
Tr[�A3(I − A)−1], (37)

σnon-bs(B = 0) = e2

8π2�
(1 + R2)2

×
∫ 1/(1+γ )

0

dP

P 3
Tr[(K�KT + KT �K)

×A(I − A)−1]. (38)

Here, the matrices A and K are obtained from AN and KN

(N 
 1) by substitutions [26,30]

PN ≈ 1√
4N (l/ lB)2 + (1 + γ )2

≡ P,

(39)

P
(m)
N ≈ P

[
1 − P (1 + γ )

1 + P (1 + γ )

]m/2

,
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with γ = τ/τφ . Note that P is expressed [31] as the Fourier transform with respect to r − r ′ of the function P0(r,r ′) defined in
Eq. (19) with �(r,r ′) = 0. The corresponding wave vector is given by q = 2N/lB .

Calculating the traces in Eqs. (37) and(38), we get

σ (B = 0) = − e2

π2�

∫ 1/(1+γ )

0
dP

K(P,R,γ )

[1 − (1 + γ )(R2 − 1)P 3 − (2 γ + 2 − R2)P 2 + Pγ ](Pγ + 1)(1 + P + Pγ )3
. (40)

The explicit form of the function K(P,R,γ ) is derived in the
Supplemental Material [31]. When one is interested in the
corrections up to O(1) in the limit γ → 0, γ in the numerator
of Eq. (40) can be neglected, which yields

K(P,R,0) = (R2 − 1)(3 R4 + 16 R2 + 9)P 4

+ (10 − 5 R6 + 17 R2 + 6 R4)P 3

+ (14 + 11 R2 − 6 R4 + R6)P 2

+ (2 − 10 R4 − 5 R2 + R6)P − (1 + 3 R4).

(41)

Furthermore, one can also neglect γ in the nonsingular factors
in the denominator. For this reason, finding the roots of the
cubic polynomial in the square brackets in the denominator of
Eq. (40) perturbatively in γ � 1, we replace it by

[1 + P − P 2(1 − R2)]

(
1 − P − γ

R2

1 + R2

)
. (42)

Then, integration in Eq. (40) yields

σ (B = 0) = σdiff(T ) + σball(R). (43)

The first term here is the diffusive contribution dependent on
the temperature T via τφ :

σdiff(T ) = e2

4π2�
ln

[
τφ(T )

τ

]
. (44)

We emphasize that the coefficient in front of the logarithm is
independent of R. It is worth stressing that the coefficients
in divergent logarithmic terms related to both backscattering
and nonbackscattering contributions are R dependent [31],
and only the sum of these terms gives the universal coefficient
e2/(4π2

�) prescribed by a symplectic class of symmetry.
It is shown in Appendix C that, in the experimentally

relevant case of fixed electron concentration, the dephasing
time τφ is independent of R, so that the argument of the
logarithm in Eq. (44) also does not depend on R. The
dependence on R, however, appears in the ballistic term which
takes into account the interference corrections from ballistic
trajectories with a few (three or more, because we discuss
the contribution sensitive to magnetic field) scattering events
and is regular at low temperatures τ/τφ � 1. At τ/τφ = 0
we obtain the following analytical expression for the ballistic
contribution to the conductivity correction:

σball(R) = − e2

4π2�

{
3 + 8R2 + R4

4
− 4 − R2(1 + R2)

2
ln 2

− 2 + R2 + R4

4
ln(1 + R2)

+ 8 − 13R2 + 5R4

2
√

5 − 4R2
ln

3 + √
5 − 4R2

2
√

1 + R2

}
. (45)

In particular, we find

σball(R)=− e2

4π2�

{
3/4 − 2 ln 2 + 4√

5
ln 3+√

5
2 , R = 0,

3 − 2 ln 2, R = 1,

(46)

which gives the values −0.0275e2/� at R = 0 and −0.041e2/�

at R = 1.
The correction σball(R) determines the dependence of the

total conductivity correction on the spin-orbit splitting. The
zero-field conductivity correction is presented in Fig. 3. In
contrast to the result of the diffusion approximation, the total
correction depends, however, on the Fermi level position at
0 < R < 1. The correction saturates at a certain value after the
Fermi level crosses the Dirac point, at R � 1 (see Sec. III B).
A significant difference between the exact result and the result
obtained within the diffusive approximation, Eq. (44), which
is clearly seen in Fig. 3, demonstrates the essential role of
ballistic processes in weak localization at realistic values of
τ/τφ .

FIG. 3. Zero-field conductivity correction as a function of the
Rashba splitting parameter R = α/(�vF) (solid curves). The diffusive
contribution to the quantum correction, Eq. (44), is independent of R

(dashed curves).
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For a system of a finite size L the conductivity correction is
finite even in the absence of dephasing. At γ = 0 we integrate
in Eq. (40) up to P = 1 − l2/(2L2) and obtain

σL(R) = e2

4π2�
ln

2L2

l2
− e2

4π2�
ln(1 + R2) + σball(R). (47)

This equation shows that the ballistic correction calculated
without dephasing, when the diffusive contribution is cut off
by the system size, differs from the result calculated at finite
dephasing by the term ∝ ln(1 + R2). This is related to the fact
that τφ/τ corresponds to L2/(Dτ ) in the logarithmic diffusive
contribution, where D = (1 + R2)l2/(2τ ) is the diffusion
coefficient (see Appendix A).

As discussed above, the zero-field correction can be also
obtained by calculations in the momentum space in the basis of
chiral subband states (3). This alternative derivation, leading to
the same results, is presented in Appendix B and the Supple-
mental Material [31]. Backscattering and nonbackscattering
contributions to the conductivity correction are calculated
and their dependences on R and on the dephasing rate are
analyzed. It is shown in the Supplemental Material [31] that the
backscattering and the nonbackscattering contributions to the
conductivity have the same order of magnitude and different
signs compensating each other to a large extent.

B. Magnetoconductivity

The magnetic field dependence of the conductivity correc-
tion is given by Eqs. (27) and (35). The results of calculations
are shown in Fig. 4. The magnetic field is given in units of the
characteristic field B0,

B0 = �

|e|l2
. (48)

The correction monotonously decreases with the magnetic
field for all R. The magnetoconductivity varies with the Rashba
splitting. The magnetic field dependence is stronger at R ≈ 0.5

FIG. 4. Magnetoconductivity at different R = α/(�vF). The de-
phasing rate τ/τφ = 10−2 (thin solid curves) and τ/τφ = 10−3 (thick
solid curves). Dashed lines present the diffusion approximation
results, Eq. (54). Dotted lines are high-field asymptotics, Eq. (49).
The inset shows the function λ(R), Eq. (53), describing the high-field
asymptotics of the conductivity correction.

due to the higher zero-field value of the correction (see Fig. 3).
The magnetic field dependencies at a given R coincide in
fields B � 0.1B0 independently of the value of τφ/τ . The
reason is that the magnetic-field-induced phase which breaks
the interference is stronger in those fields than dephasing.

In high magnetic fields B 
 B0 (but still B is classically
weak), the conductivity correction decreases according to the
following asymptotic law:

σhf = e2

�
λ(R)

√
B0

B
. (49)

The function λ(R) is a sum of backscattering and nonbackscat-
tering contributions, λ = λbs + λnon-bs, where

λbs = −1 + 3R2

2π2

∞∑
N=0

Tr
(
�Ã3

N

)
, (50)

λnon-bs = (1 + R2)2

4π2

×
∞∑

N=0

Tr
(
K̃N�K̃T

NÃN + K̃T
N�K̃NÃN+1

)
. (51)

The matrices ÃN and K̃N are obtained from AN and KN by
the following substitutions [26]: All P

(m)
N with odd N should

be taken by zeros, and at even N = 2k,

P2k →
√

π

2

(2k)!

22k(k!)2
, P

(2)
2k →

√
π

2

√
(2k)!(2k + 2)!

22k+1k!(k + 1)!
,

P
(1)
2k → − 1√

2k + 1
, P

(3)
2k → −

√
2k + 2

(2k + 1)(2k + 3)
. (52)

From Eqs. (50)–(52) we obtain

λ(R) =
√

π (5R2 + 3)

32
√

2�4(3/4)
− 45R4 + 26R2 + 13

256
√

2π
. (53)

The dependence λ(R) is shown in the inset to Fig. 4. The
high-field asymptotes Eq. (49) are presented in Fig. 4 by the
dotted lines.

A comparison with the results of the exact calculation
shows that the asymptotes perfectly describe the conductivity
correction at B � 10B0, but only the exact expressions
describe the magnetoconductivity in the intermediate range
of fields.

The magnetoconductivity δσ (B) = σ (B) − σ (0) in the dif-
fusion approximation is given by the conventional expression
for systems with fast spin relaxation,

δσdiff(B) = − e2

4π2�
[ψ(1/2 + 1/b) + ln b],

(54)

b = 2
B

B0

τφ

τ
(1 + R2) = 4Dτφ

l2
B

,

where ψ(x) is digamma function. The dependences σ (0) +
δσdiff(B) with σ (0) calculated by Eqs. (43)–(45) are plot-
ted in Fig. 4 by dashed lines. It is well known that the
diffusion approximation does not describe the magnetocon-
ductivity in fields B � B0 [10,29]. Our calculation demon-
strates that diffusion approximation satisfactorily describes the
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magnetic field dependence of the conductivity correction up
to (0.02 . . . 0.03)B0 (see Fig. 4).

Figure 4 demonstrates that neither the diffusion approxi-
mation nor high-field asymptotics describe the conductivity
correction, and the exact expressions are needed to describe
the magnetic field dependence in the whole range of classically
weak fields.

V. CONCLUSION

In this work we have developed the theory of weak
localization in 2D systems with an arbitrary strong linear-
in-k spin-orbit splitting of the energy spectrum. The theory
describes weak antilocalization in systems with the Rashba
or Dresselhaus isotropic spin-orbit splittings. We have derived
an analytical expression for the conductivity correction that
includes both diffusive and ballistic contributions and is valid
in a wide interval of phase breaking rates and magnetic fields.
We have found that the ballistic contribution depends solely
on the spectrum characteristics [see Eq. (45)] and, therefore,
reflects the intrinsic properties of the system. We have also
shown that the magnetoconductivity varies with the Fermi
energy when the Fermi level is above the “Dirac point” of the
spectrum, but does not depend on the Fermi energy when it
goes below this point.
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APPENDIX A: DRUDE CONDUCTIVITY

Although the Drude conductivity in a system with well-
separated spin branches has been calculated in Ref. [20], we
rederive it in this Appendix, in order to introduce the kinetic
equation with quantum corrections that lead to the interference
contribution to the conductivity (see Appendix B below).

The distribution function of electrons with energy E = EF

in the two-band model can be written as

f =
∑
s=±

As(ϕ)δ[EF − Es(k)], (A1)

so that the current reads

jx = evF

∑
s=±

gs〈As(ϕ) cos ϕ〉ϕ. (A2)

Here, vF is the Fermi velocity, Eq. (5), equal in both branches,
the angular brackets denote averaging over ϕ, and the densities
of states at the Fermi energy in the branches are given by
Eq. (8).

Within the Drude-Boltzmann approximation, functions
As(ϕ) obey the system of two coupled balance equations:

− eEvF cos ϕ =
∑
s ′=±

〈
�in

ss ′ (ϕ − ϕ′)As ′(ϕ′)

−�out
s ′s (ϕ − ϕ′)As(ϕ)

〉
ϕ′ . (A3)

Here, E is the electric field, and we have introduced the ingoing
and outgoing scattering rates,

�in
ss ′ (θ ) = 2π

�
|Vss ′ (θ )|2gs ′ , �out

ss ′ (θ ) = 2π

�
|Vss ′ (θ )|2gs,

(A4)

which are related as follows: �in
ss ′ = �out

s ′s . The total outgoing
rates, Eq. (7), coincide for two bands,

1

τ
= 〈�out

++ + �out
−+〉θ = 〈�out

−− + �out
+−〉θ = 2π

�

g+ + g−
2

|V0|2.
(A5)

We search for solution of Eq. (A3) in the form

As = aseE l cos ϕ, (A6)

where as are dimensionless coefficients. In terms of as the
Drude conductivity reads

σD = e2v2
Fτ

2

∑
s=±

gsas. (A7)

Substituting Eq. (A6) into Eq. (A3), we see that as obey the
following set of coupled equations,

1 = as −
∑
s ′

γss ′as ′ , (A8)

where

γss ′ = τ
〈
�in

ss ′ (θ ) cos θ
〉
θ
. (A9)

Simple calculation yields

γ++ = −γ−+ = g+
2(g+ + g−)

,

(A10)
γ−− = −γ+− = g−

2(g+ + g−)
,

and

as = 2gs

g+ + g−
. (A11)

Finally, the Drude conductivity becomes

σD = e2v2
Fτ

g2
+ + g2

−
g+ + g−

= e2v2
Fτ

m

2π�2
(1 + R2). (A12)

We note that for the fixed value of EF, the Fermi velocity
depends on R as

v2
F = 2EF

m

1

1 − R2
. (A13)

As a result, we get

σD|EF=const = e2

π
EFτ

1 + R2

1 − R2
. (A14)

In fact, experimentally, it is the electron concentration that
is fixed. When the Fermi level is located above the Dirac point,
the electron concentration is given by

n = (k+
F )2 + (k−

F )2

4π
= m

π�2

(
EF + mα2

�2

)
, (A15)

where the Fermi wave vectors in the subbands are given by
Eq. (4).
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From Eq. (5) we express the Fermi velocity in terms of the
fixed concentration and the parameter R:

v2
F = 2π�

2n

m2(1 + R2)
. (A16)

As a result, the Drude conductivity for a fixed value of n takes
its conventional form:

σD = e2nτ

m
. (A17)

Thus, the Drude conductivity for fixed electron concentration
does not depend on R.

Writing the diffusion equations for 2D concentrations
in two subbands, n±, and noting that they are related as
n+/n− = g+/g−, we obtain that the diffusion coefficient is
also R independent for fixed n:

D = v2
Fτ

2
(1 + R2) = π�

2nτ

m2
. (A18)

APPENDIX B: QUANTUM CORRECTIONS
TO KINETIC EQUATION

As it was shown in Ref. [9], the weak-localization cor-
rection to the conductivity can be interpreted in terms of
localization-induced correction to scattering cross section on
a single impurity. Below, we generalize this approach for the
system with a strong Rashba splitting of the spectrum. The
corresponding trajectories are presented in Fig. 5.

Within the kinetic equation formalism, weak localization
leads to corrections to the ingoing scattering rates, so that
Eq. (A8) modifies

1 = as −
∑
s ′

(γss ′ + δγss ′ )as ′ , s = ±. (B1)

Here, γss ′ are given by Eq. (A10),

δγss ′ = τ
〈
δ�in

ss ′ (ϕ) cos ϕ
〉
ϕ
, (B2)

FIG. 5. Trajectories with N impurities giving rise to the quantum
conductivity correction. The processes of backscattering (a) and
scattering by an arbitrary angle ϕ (b) contribute to σbs and σnon-bs,
respectively.

and δ�in
ss ′ are the interference-induced corrections to the

scattering rates. Treating the correction δγss ′as ′ as a small
perturbation, one can replace in this term coefficients as with
their Drude values given by Eq. (A11). Doing so, we find that
the weak-localization-induced corrections to as obey

λ+ = δa+ + g−δa− − g+δa+
2(g+ + g−)

,

λ− = δa− + g+δa+ − g−δa−
2(g+ + g−)

,

. (B3)

where

λs = 2

g+ + g−

∑
s ′

δγss ′gs ′ . (B4)

The conductivity correction is proportional to
∑

s gsδas.

Solving Eq. (B3), we get

∑
s

gsδas = 2

g+ + g−

∑
s

λsg
2
s . (B5)

Substituting Eq. (B5) into Eq. (A7) we express the conductivity
correction via corrections to the scattering rates,

σ (B = 0) = 2e2l2

(g+ + g−)2

∑
ss ′

g2
s gs ′

〈
δ�in

ss ′ (ϕ) cos ϕ
〉
. (B6)

Similar to Refs. [9,26], we express δ�in
ss ′ (ϕ) in terms of return

probability wss ′ (ϕ), which depends now on the branch indices
(s ′ initial branch, s final branch). To this end, we introduce the
rates

νss ′ (ϕ) = l2wss ′ (ϕ)gs ′V 2
s ′s(π + ϕ) (B7)

(rule of summation over repeated indices does not apply
here). Correction δ�in

ss ′ (ϕ) is given by the sum of so-called
backscattering and nonbackscattering corrections [9,26],

δ�in
ss ′ (ϕ) = C0

[
2πδss ′δ(ϕ − π )

∑
s ′′

〈νss ′′ (ϕ′)〉ϕ′ − νss ′ (ϕ)

]

(B8)

with

C0 = 8π2
�

mvF l
. (B9)

This coefficient is responsible for the smallness of the quantum
correction.

Substituting Eq. (B8) into Eq. (B6) and using wss ′ = ws ′s
and Wss ′ = Ws ′s , we finally get

σ (B = 0) = −e2l2C0

4g2
0

〈 ∑
ss ′

gsgs ′
(
g2

s + g2
s ′

+ 2gsgs ′ cos ϕ
)
wss ′ (ϕ)V 2

s ′s(π + ϕ)

〉
ϕ

. (B10)

This expression can be shown to coincide with a sum of
Eqs. (37) and (38) of the main text (see also the Supplemental
Material [31]).
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APPENDIX C: DEPHASING DUE TO COULOMB INTERACTION

The equation for the cooperon in the presence of inelastic electron-electron scattering due to the Coulomb repulsion [1] reads
(see the Supplemental Material [31])

Css ′ (ϕ,ϕ′; q) = C0
ss ′ (ϕ,ϕ′; q) +

∑
s1s2

∫
dϕ1

2π

∫
dϕ2

2π
C0

ss1
(ϕ,ϕ1; q)�φ

s1s2
(ϕ1,ϕ2,q)Cs2s ′ (ϕ2,ϕ

′; q). (C1)

The cooperon self-energy is, in general, a matrix in subband space, given by

�φ
s1s2

(ϕ1,ϕ2) = 16π2τ 4gs1gs2

∫ T

−T

d�

(2π )

∫
d2Q

(2π )2

T

�
Im U (�, Q)C0

s1s2
(ϕ1,ϕ2; �, Q)P (ϕ1; �, Q)P (ϕ2; �, Q). (C2)

Here,

U (�, Q) = 1

2g0

DQ2 − i�

DQ2

is the Fourier component of the dynamically screened Coulomb potential [31], D is the diffusion coefficient, Eq. (A18), and
g0 = m/(2π ).

The integral over � diverges logarithmically at � → 0. We regularize this divergence self-consistently in a usual way [1] at
� of the order of the dephasing rate 1/τφ and get

�φ
s1s2

� −ei(ϕ2−ϕ1) s1s2gs1gs2

g0

πτ 2

τφ

, (C3)

with
1

τφ

= T

4πg0D
ln(T τφ) � T

4πg0D
ln(4πg0D). (C4)

In the diffusion approximation ql � 1, the solution of Eq (C1) with the self-energy (C3) takes the form [31]

Css ′ (ϕ,ϕ′; q) � ei(ϕ′−ϕ)

4πg0τ 2

{
ss ′ + iqlR(s ′ cos ϕ + s cos ϕ′)

Dq2 + 1
τφ

+ 2τ

[
sin ϕ sin ϕ′ +

D
1+R2 q

2 + 1
τφ

Dq2 + 1
τφ

cos ϕ cos ϕ′
]}

. (C5)

The logarithmically divergent diffusive term in the conductivity correction is thus cut off by 1/τφ given by Eq. (C4).
In the experimentally relevant case, when the electron concentration n is kept fixed by applying the gate voltage, the diffusion

coefficient D (and hence the ratio τφ/τ ) do not depend on R [see Eqs. (A18) and (C4)]:

τ

τφ

= mT

2πn
ln

2πnτ

m
. (C6)

As a result, the T -dependent diffusive term Eq. (44),

σdiff(T ) = e2

4π2�
ln

τφ

τ
� e2

4π2�
ln

2π�
2n

mT ln(2π�nτ/m)
, (C7)

is R independent for fixed n.

[1] B. L. Altshuler and A. G. Aronov, in Electron-Electron Inter-
actions in Disordered Systems, edited by A. L. Efros and M.
Pollak (Elsevier, Amsterdam, 1985).

[2] G. Bergmann, Phys. Rep. 107, 1 (1984).
[3] V. F. Gantmakher, Electrons and Disorder in Solids, translated

by L. I. Man, International Series of Monographs on Physics
Vol. 130 (Oxford University Press, Oxford, U.K., 2005).

[4] S. V. Iordanskii, Yu. B. Lyanda-Geller, and G. E. Pikus, Pisma
Zh. Eksp. Teor. Fiz. 60, 199 (1994) [JETP Lett. 60, 206 (1994)].

[5] W. Knap, C. Skierbiszewski, A. Zduniak, E. Litwin-Staszewska,
D. Bertho, F. Kobbi, J. L. Robert, G. E. Pikus, F. G. Pikus, S. V.
Iordanskii, V. Mosser, K. Zekentes, and Yu. B. Lyanda-Geller,
Phys. Rev. B 53, 3912 (1996).

[6] G. M. Minkov, A. V. Germanenko, O. E. Rut, A. A. Sherstobitov,
L. E. Golub, B. N. Zvonkov, and M. Willander, Phys. Rev. B
70, 155323 (2004).

[7] V. M. Gasparyan and A. Yu. Zyuzin, Fiz. Tverd. Tela (Leningrad)
27, 1662 (1985) [Sov. Phys. Solid State 27, 999 (1985)].

[8] M. I. Dyakonov, Solid State Commun. 92, 711 (1994).
[9] A. P. Dmitriev, V. Yu. Kachorovskii, and I. V. Gornyi, Phys. Rev.

B 56, 9910 (1997).
[10] L. E. Golub, Phys. Rev. B 71, 235310 (2005).
[11] M. M. Glazov and L. E. Golub, Semiconductors 40, 1209

(2006).
[12] M. M. Glazov and L. E. Golub, Semicond. Sci. Technol. 24,

064007 (2009).

245306-10

http://dx.doi.org/10.1016/0370-1573(84)90103-0
http://dx.doi.org/10.1016/0370-1573(84)90103-0
http://dx.doi.org/10.1016/0370-1573(84)90103-0
http://dx.doi.org/10.1016/0370-1573(84)90103-0
http://dx.doi.org/10.1103/PhysRevB.53.3912
http://dx.doi.org/10.1103/PhysRevB.53.3912
http://dx.doi.org/10.1103/PhysRevB.53.3912
http://dx.doi.org/10.1103/PhysRevB.53.3912
http://dx.doi.org/10.1103/PhysRevB.70.155323
http://dx.doi.org/10.1103/PhysRevB.70.155323
http://dx.doi.org/10.1103/PhysRevB.70.155323
http://dx.doi.org/10.1103/PhysRevB.70.155323
http://dx.doi.org/10.1016/0038-1098(94)90459-6
http://dx.doi.org/10.1016/0038-1098(94)90459-6
http://dx.doi.org/10.1016/0038-1098(94)90459-6
http://dx.doi.org/10.1016/0038-1098(94)90459-6
http://dx.doi.org/10.1103/PhysRevB.56.9910
http://dx.doi.org/10.1103/PhysRevB.56.9910
http://dx.doi.org/10.1103/PhysRevB.56.9910
http://dx.doi.org/10.1103/PhysRevB.56.9910
http://dx.doi.org/10.1103/PhysRevB.71.235310
http://dx.doi.org/10.1103/PhysRevB.71.235310
http://dx.doi.org/10.1103/PhysRevB.71.235310
http://dx.doi.org/10.1103/PhysRevB.71.235310
http://dx.doi.org/10.1134/S1063782606100150
http://dx.doi.org/10.1134/S1063782606100150
http://dx.doi.org/10.1134/S1063782606100150
http://dx.doi.org/10.1134/S1063782606100150
http://dx.doi.org/10.1088/0268-1242/24/6/064007
http://dx.doi.org/10.1088/0268-1242/24/6/064007
http://dx.doi.org/10.1088/0268-1242/24/6/064007
http://dx.doi.org/10.1088/0268-1242/24/6/064007


WEAK ANTILOCALIZATION IN TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 93, 245306 (2016)

[13] S. McPhail, C. E. Yasin, A. R. Hamilton, M. Y. Simmons, E. H.
Linfield, M. Pepper, and D. A. Ritchie, Phys. Rev. B 70, 245311
(2004).

[14] D. Spirito, L. Di Gaspare, F. Evangelisti, A. Di Gaspare,
E. Giovine, and A. Notargiacomo, Phys. Rev. B 85, 235314
(2012).

[15] I. S. Lyubinskiy and V. Yu. Kachorovskii, Phys. Rev.
B 70, 205335 (2004); Phys. Rev. Lett. 94, 076406
(2005).

[16] S. D. Ganichev and L. E. Golub, Phys. Status Solidi B 251, 1801
(2014).

[17] M. Sakano, M. S. Bahramy, A. Katayama, T. Shimojima,
H. Murakawa, Y. Kaneko, W. Malaeb, S. Shin, K. Ono, H.
Kumigashira, R. Arita, N. Nagaosa, H. Y. Hwang, Y. Tokura,
and K. Ishizaka, Phys. Rev. Lett. 110, 107204 (2013).

[18] H. Liang, L. Cheng, L. Wei, Z. Luo, G. Yu, C. Zeng, and Z.
Zhang, Phys. Rev. B 92, 075309 (2015).

[19] G. M. Minkov, A. V. Germanenko, O. E. Rut, A. A. Sherstobitov,
S. A. Dvoretski, and N. N. Mikhailov, Phys. Rev. B 89, 165311
(2014).

[20] V. Brosco, L. Benfatto, E. Cappelluti, and C. Grimaldi, Phys.
Rev. Lett. 116, 166602 (2016).

[21] I. V. Gornyi, A. P. Dmitriev, and V. Yu. Kachorovskii, JETP
Lett. 68, 338 (1998).

[22] M. A. Skvortsov, JETP Lett. 67, 133 (1998).
[23] G. Tkachov and E. M. Hankiewicz, Phys. Rev. B 84, 035444

(2011).
[24] V. Krueckl and K. Richter, Semicond. Sci. Technol. 27, 124006

(2012).
[25] P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. B

86, 125323 (2012).
[26] I. V. Gornyi, V. Yu. Kachorovskii, and P. M. Ostrovsky, Phys.

Rev. B 90, 085401 (2014).
[27] I. V. Gornyi, V. Yu. Kachorovskii, A. D. Mirlin, and P. M.

Ostrovsky, Phys. Status Solidi B 251, 1786 (2014).
[28] M. I. Dyakonov and V. Yu. Kachorovskii, Fiz. Tekh.

Poluprovodn. 20, 178 (1986) [Sov. Phys. Semicond. 20, 110
(1986)].

[29] M. O. Nestoklon, N. S. Averkiev, and S. A. Tarasenko, Solid
State Commun. 151, 1550 (2011).

[30] M. O. Nestoklon and N. S. Averkiev, Phys. Rev. B 90, 155412
(2014).

[31] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.93.245306 for technical details.

245306-11

http://dx.doi.org/10.1103/PhysRevB.70.245311
http://dx.doi.org/10.1103/PhysRevB.70.245311
http://dx.doi.org/10.1103/PhysRevB.70.245311
http://dx.doi.org/10.1103/PhysRevB.70.245311
http://dx.doi.org/10.1103/PhysRevB.85.235314
http://dx.doi.org/10.1103/PhysRevB.85.235314
http://dx.doi.org/10.1103/PhysRevB.85.235314
http://dx.doi.org/10.1103/PhysRevB.85.235314
http://dx.doi.org/10.1103/PhysRevB.70.205335
http://dx.doi.org/10.1103/PhysRevB.70.205335
http://dx.doi.org/10.1103/PhysRevB.70.205335
http://dx.doi.org/10.1103/PhysRevB.70.205335
http://dx.doi.org/10.1103/PhysRevLett.94.076406
http://dx.doi.org/10.1103/PhysRevLett.94.076406
http://dx.doi.org/10.1103/PhysRevLett.94.076406
http://dx.doi.org/10.1103/PhysRevLett.94.076406
http://dx.doi.org/10.1002/pssb.201350261
http://dx.doi.org/10.1002/pssb.201350261
http://dx.doi.org/10.1002/pssb.201350261
http://dx.doi.org/10.1002/pssb.201350261
http://dx.doi.org/10.1103/PhysRevLett.110.107204
http://dx.doi.org/10.1103/PhysRevLett.110.107204
http://dx.doi.org/10.1103/PhysRevLett.110.107204
http://dx.doi.org/10.1103/PhysRevLett.110.107204
http://dx.doi.org/10.1103/PhysRevB.92.075309
http://dx.doi.org/10.1103/PhysRevB.92.075309
http://dx.doi.org/10.1103/PhysRevB.92.075309
http://dx.doi.org/10.1103/PhysRevB.92.075309
http://dx.doi.org/10.1103/PhysRevB.89.165311
http://dx.doi.org/10.1103/PhysRevB.89.165311
http://dx.doi.org/10.1103/PhysRevB.89.165311
http://dx.doi.org/10.1103/PhysRevB.89.165311
http://dx.doi.org/10.1103/PhysRevLett.116.166602
http://dx.doi.org/10.1103/PhysRevLett.116.166602
http://dx.doi.org/10.1103/PhysRevLett.116.166602
http://dx.doi.org/10.1103/PhysRevLett.116.166602
http://dx.doi.org/10.1134/1.567870
http://dx.doi.org/10.1134/1.567870
http://dx.doi.org/10.1134/1.567870
http://dx.doi.org/10.1134/1.567870
http://dx.doi.org/10.1134/1.567636
http://dx.doi.org/10.1134/1.567636
http://dx.doi.org/10.1134/1.567636
http://dx.doi.org/10.1134/1.567636
http://dx.doi.org/10.1103/PhysRevB.84.035444
http://dx.doi.org/10.1103/PhysRevB.84.035444
http://dx.doi.org/10.1103/PhysRevB.84.035444
http://dx.doi.org/10.1103/PhysRevB.84.035444
http://dx.doi.org/10.1088/0268-1242/27/12/124006
http://dx.doi.org/10.1088/0268-1242/27/12/124006
http://dx.doi.org/10.1088/0268-1242/27/12/124006
http://dx.doi.org/10.1088/0268-1242/27/12/124006
http://dx.doi.org/10.1103/PhysRevB.86.125323
http://dx.doi.org/10.1103/PhysRevB.86.125323
http://dx.doi.org/10.1103/PhysRevB.86.125323
http://dx.doi.org/10.1103/PhysRevB.86.125323
http://dx.doi.org/10.1103/PhysRevB.90.085401
http://dx.doi.org/10.1103/PhysRevB.90.085401
http://dx.doi.org/10.1103/PhysRevB.90.085401
http://dx.doi.org/10.1103/PhysRevB.90.085401
http://dx.doi.org/10.1002/pssb.201350309
http://dx.doi.org/10.1002/pssb.201350309
http://dx.doi.org/10.1002/pssb.201350309
http://dx.doi.org/10.1002/pssb.201350309
http://dx.doi.org/10.1016/j.ssc.2011.07.031
http://dx.doi.org/10.1016/j.ssc.2011.07.031
http://dx.doi.org/10.1016/j.ssc.2011.07.031
http://dx.doi.org/10.1016/j.ssc.2011.07.031
http://dx.doi.org/10.1103/PhysRevB.90.155412
http://dx.doi.org/10.1103/PhysRevB.90.155412
http://dx.doi.org/10.1103/PhysRevB.90.155412
http://dx.doi.org/10.1103/PhysRevB.90.155412
http://link.aps.org/supplemental/10.1103/PhysRevB.93.245306



