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Attractive Coulomb interaction of two-dimensional Rydberg excitons
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We analyze theoretically the Coulomb scattering processes of highly excited excitons in the direct-band-gap
semiconductor quantum wells. We find that contrary to the interaction of ground-state excitons, the electron
and hole exchange interaction between excited excitons has an attractive character both for s- and p-type
two-dimensional (2D) excitons. Moreover, we show that similar to the three-dimensional highly excited excitons,
the direct interaction of 2D Rydberg excitons exhibits van der Waals–type long-range interaction. The results
predict the linear growth of the absolute value of exchange interaction strength with an exciton principal quantum
number and point the way towards enhancement of optical nonlinearity in 2D excitonic systems.
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I. INTRODUCTION

The possibility to attain strong and tunable interparticle
interactions in a many-body system is indispensable for
both fundamental studies of strong correlations and practical
exploitation of nonlinear effects. The vast variety of collective
effects in cold-atom systems [1] has profited from the usage
of Feshbach resonances [2]. They allow for tunability of
the s-wave scattering length for atomic collisions, changing
the interaction character from a short-range repulsive one
to an attractive one. A major step forward in boosting the
atomic interaction strength can be performed when atoms
are excited to a large principal quantum number Rydberg
state [3]. In this case the absolute value of the interaction
strength grows dramatically, and the interaction potential
becomes of long range type, leading to the phenomenon
of the Rydberg blockade [4–6]. This facilitates numerous
applications in the quantum optics domain [7], where large
effective nonlinearity for photons enables efficient photon
crystallization [8], creation of photonic molecules [9], ordered
pattern formation [10], etc.

In the solid-state physics, studies of many-body effects
and nonlinear quantum optics became possible for systems
of interacting quasiparticles typically probed by light. Here,
the prominent examples are indirect excitons [11,12] and
exciton polaritons [13]. The latter quasiparticles formed by the
microcavity photons and excitons in a two-dimensional (2D)
semiconductor quantum well (QW) are especially valuable for
observing nonequilibrium condensation [14,15], vortices [16],
solitons [17,18], and other effects characteristic of a weakly
nonlinear Bose gas. At the same time, the highly anticipated
transition of polaritonics to the quantum nonlinear regime is
deferred by small and short-range exciton-exciton interaction
in QWs, which are dominated by repulsive Coulomb exchange,
while the direct-interaction contribution is negligible [19,20],
except for the narrow energy range where the formation of
the bipolariton is possible. Therefore, it opens the challenge
for system modification to attain strong interaction, or, alter-
natively, the search for optional strategies which require only
weak nonlinearity [21–23].

Up-to-date proposals for the enhancement of nonlinearity
include hybridization of polaritons with dipolar excitons (dipo-
laritons) [24–26] and exploitation of the biexcitonic Feshbach
resonance [27,28], although with limited capabilities. A drastic
improvement was made in the system of highly excited three-
dimensional (3D) excitons, which is the excitonic counterpart
of Rydberg atoms physics [29]. In [29] the authors reported an
observation of the dipolar blockade appearing in bulk Cu2O for
giant excitons with a principal quantum number up to n = 25
and a micron diameter. The important consequence of using
this rather peculiar copper oxide semiconductor is selection
rules which allow to optically pump excitons in the p state,
where excitons exhibit the long-range interaction of dipolar
and van der Waals types, similar to Rydberg atoms. At the same
time, while results show the potential for strongly nonlinear
optics, the requirement of 3D geometry and the infeasibility
of Cu2O-based microcavities hinder its application in the
conventional form.

In this paper we pose the question of the possible achieve-
ment of the strong exciton-exciton interaction exploiting
highly excited states of excitons in 2D semiconductor quantum
wells. We show that for small transferred momenta the inter-
action of 2D excitons is dominated by a short-range exchange
Coulomb interaction for both s and p exciton types, and we find
that for excitons with a higher than ground principal quantum
number (n > 1) the interaction constant changes sign, leading
to an attractive exciton-exciton potential. The absolute value of
the interaction strength scales linearly with n and increases for
narrow-band-gap semiconductors. At the same time, similar
to the 3D geometry, the direct interaction of 2D excitons
possesses a long-range nature governed by van der Waals’ law
and grows drastically with n. This suggests that a 2D Rydberg
exciton gas represents the nontrivial system and can lead to the
emergence of hybrid repulsive-attractive bosonic mixtures.

II. THE MODEL

The calculation of the interaction potential for 2D excitons
in the ground state can be done within the Coulomb scattering
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formalism [19]. The theory can be extended to describe
the interaction of excitons in the excited states. The two-
dimensional exciton wave function with in-plane wave vector
Q in the general form reads

�Q,n,m(re,rh) = 1√
A

exp[iQ(βere + βhrh)]ψn,m(|re − rh|),

(1)

where re,rh are in-plane radius vectors of electron and hole,
respectively, and A denotes the normalization area. The
coefficients βe,βh are defined as βe(h) = me(h)/(me + mh),
where me(h) is the mass of an electron (hole). The internal
relative motion is described by [30]

ψn,m(|re − rh|)

= 1√
2λ2D

√
(n − |m| − 1)!

(n − 1/2)3(n + |m| − 1)!

( |re − rh|
(n − 1/2)λ2D

)|m|

× exp

[
− |re − rh|

(2n − 1)λ2D

]
L

2|m|
n−|m|−1

[ |re − rh|
(n − 1/2)λ2D

]

× 1√
2π

eimϕ, (2)

where n = 1,2,3, . . . is the principal quantum number, m =
0, ± 1, . . . , ± n ∓ 1 is the magnetic quantum number, and λ2D

is a variational parameter related to the two-dimensional radius
of the ground-state exciton. Here, Lk

n[x] denotes the associated
Laguerre polynomial. In the following we consider the narrow
quantum well limit and thus disregard exciton motion in the
confinement direction.

Considering excitons with only the parallel spin, the process
of Coulomb scattering in reciprocal space associated with the
transfer of wave vector q can be described by the form

(n,m,Q) + (n′,m,Q′) → (n,m,Q + q) + (n′,m,Q′ − q). (3)

The scattering matrix element consists of four terms:

H (n,n′,m,�Q,q,βe) = e2

4πεε0

λ2D

A
Itot(n,n′,m,�Q,q,βe),

(4)

where

Itot(n,n′,m,�Q,q,βe)

= Idir(n,n′,m,q,βe) + IX
exch(n,n′,m,�Q,q,βe)

+ I e
exch(n,n′,m,�Q,q,βe) + Ih

exch(n,n′,m,�Q,q,βe).

(5)

Here, the first term denotes the direct-interaction integral, the
second corresponds to the exciton exchange interaction, and
the last two terms describe electron and hole exchange integrals
(see Appendix A for definitions and details).

Note that in the particular case where the wave vectors
and principal quantum numbers of excitons coincide, �Q =
|Q − Q′| = 0 and n = n′, we have

IX
exch(n,n,m,0,q,βe) = Idir(n,n,m,q,βe), (6)

I e
exch(n,n,m,0,q,βe) = Ih

exch(n,n,m,0,q,βe), (7)

(a) (b)

FIG. 1. Real-space distribution of exciton envelope wave func-
tions with center-to-center separation distance of 30λ2D, shown for
excitons in (a) the 1s state and (b) the 6s state.

and consequently,

Itot(n,m,q,βe) = 2
[
Idir(n,m,q,βe) + I e

exch(n,m,q,βe)
]
. (8)

In the following we are interested in the dependence of the
interaction on the scattered momentum q, while considering
equal exciton center-of-mass momenta, �Q = 0.

To gain a qualitative understanding of interaction processes
for highly excited excitons we shall look at the large-n
exciton wave function. In particular, Eq. (2) implies that the
spatial distribution of the exciton drastically increases with the
principal quantum number. Namely, the higher the principal
number of excitation is, the larger the spread of the wave
function is, providing increased overlap between excitons
and, consequently, leading to the enhanced exciton-exciton
interaction. In Fig. 1(a) the real-space distribution of two
excitons in the ground state is presented, where the interexciton
distance is fixed to 30λ2D. The peak-shaped distribution of
the wave functions determines the interaction behavior, which
rapidly decreases as distance grows. Figure 1(b) shows the
probability distribution for excitons in the 6s state, with the
same interexciton distance as before (i.e., the same density of
particles), revealing a large overlap of wave functions.

III. RESULTS

A. Interaction between s-type excitons

We examined numerically the Coulomb interaction inte-
grals between excitons in the s and p states as a function of
the scattered momentum q. The calculation was done by multi-
dimensional Monte Carlo integration while implementing the
importance sampling algorithm, provided by the numerical
integration CUBA library [31]. To be specific, we fixed the
electron-to-exciton mass ratio to the value βe = 0.4, which
is close to the GaAs quantum well effective-mass ratio [32].
We note that the change of this parameter does not lead to
significant quantitative and any qualitative changes of the
results (see Appendix C for the details), and we comment
on the possible choices for materials subsequently at the end
of Sec. IV.

We consider the interaction between two s-type excitons
with the same ({n,n′} = 11,22,33) and different ({n,n′} =
12,23) principal quantum numbers. The results of the cal-
culation are plotted in Fig. 2. Figure 2(a) shows the direct-
interaction term as a function of dimensionless transferred
momentum for various scattering processes. We find that
the direct interaction for ground-state excitons and excited
excitons has the same qualitative behavior, dropping to zero
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FIG. 2. Interaction of s excitons. (a) Dependence of the direct
exciton-exciton interaction on the scattered wave vector q (in
terms of reverse two-dimensional exciton radius). Hereafter, the
dimensionless value of the integral is presented. The solid lines
correspond to interaction of excitons with the same {n,n} principal
quantum number, while dashed lines correspond to the different
{n,n′} principal quantum numbers. (b) Real-space dependence of
the direct-interaction integral.

for small q and exhibiting a maximum for intermediate
momenta. The position of the direct-interaction peak shifts
to smaller transferred wave vectors for increasing n, and
its magnitude increases radically. We check that the latter
holds even for very large quantum numbers (up to n = 10;
not shown). In Fig. 2(b) we plot a 2D Fourier transform of
the Idir[q] interaction integral, which represents its real-space
dependence. The curves depict maximal but finite interaction
strength for n = n′ = 1 excitons at a small separation, which
rapidly decreases with r . For excited states the r → 0 peak
flattens out, while the total interaction range increases.

To understand the origin of the interaction we examined
the large-r behavior of the potential for excitons with quantum
number in the range n = 3, . . . ,10 (see Appendix B for
details). The analysis of the interaction tail unveiled the
rapid increase of the interaction strength with the growth of
the principal quantum number, which is another fingerprint
of the long-range nature of the interaction [3,7,29]. The
corresponding numerical fit of the real-space interaction
dependence revealed the van der Waals nature of the potential
(Idir ∝ r−6), which was previously reported by Schindler and
Zimmermann also for QW excitons in the ground state [33].

Next, we calculate the Coulomb exchange contribution to
the s-type exciton-exciton interaction. Figure 3(a) illustrates
the dependence of the exchange integral Iexch as a function
of q for different states. For the ground-state scattering
(inset, curve 11) the interaction is maximal in the q → 0
region, decreasing for large transferred wave vectors and has
a positive sign (repulsive potential). However, already for
n = n′ = 2 the sign of the exciton interaction changes to the
attractive one, with a maximal absolute value at zero q. The
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FIG. 3. (a) Dependence of the s-type exciton-exciton interaction
electron exchange term on the scattered wave vector q. (b) The
maximal absolute value of the exchange interaction plotted as a
function of principal quantum number n for s and p states. The
linear-in-n growth of the interaction strength is observed.

same change applies to higher-excited-state interaction and
also to cross scattering between ground- and excited-state
excitons. Moreover, we note that the maximal absolute value
of the potential grows with the principal quantum number n,
representing an enhancement of the exchange contribution by
an increase of the effective interaction area due to the spread of
wave functions. Consequently, the real-space dependence of
the exchange interaction has the form of an exponential decay,
defined by the decrease of the wave-function overlap area.

Finally, we study the dependence of the maximal absolute
value of the exchange integral as a function of the principal
quantum number n = n′, measured at the q → 0 point. The
behavior is shown in Fig. 3(b) for both s and p excitons,
corresponding to a linear increase of the magnitude for large
principal quantum numbers, n > 3, where s and p interaction
strengths coincide. At the same time, the clear difference in
max{|I e

exch|} for s and p states is visible in the n � 3 range.
This result can be explained by the fact that the radial parts
of the wave functions of excited states have the same shape
at larger radii, despite being different at small r , relevant for
small-n excitons.

The total interaction potential in the case of equal wave
vectors and principal quantum numbers, represented by
Eq. (8), is shown in Fig. 4 as a function of the transferred
momentum q. It reveals that for very small values of q the
total interaction for excited states is fully determined by the
exchange interaction, which is attractive. However, for larger
transferred momenta it is replaced by weak repulsion, showing
the dominant contribution of the direct-interaction term in the
large-q region. Notably, for a higher excitation number the
region dominated by repulsion is shifted to smaller transferred
momenta values. This alternating-sign behavior is intriguing
as it can potentially lead to the formation of a supersolid
state [34].
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FIG. 4. Overall interaction of s-type excitons as a function of
the scattered wave vector q. For small values of q the interaction of
the excited states is highly attractive due to the dominant exchange
interaction, while for large values the direct term prevails, leading to
the weak repulsive character of total interaction.

B. Interaction between p-type excitons

We proceed with the discussion of direct and exchange
Coulomb integrals for two p-type excitons. While nonzero
angular momentum states are not straightforwardly accessed
by optical means in direct-gap semiconductors (GaAs, GaN,
ZnO, etc.), one can envisage the situation when these become
relevant in the low-dimensional structures. As an example they
can be created by two-photon pumping [35]. The results of
numerical integrations are presented in Fig. 5. Figures 5(a)

0.0 0.5 1.0 1.5 2.0
-2
0
2
4
6
8

I d
ir

q λ2D

44

33
34

2223

0 5 10 15 20 25 30

0.0

0.1

0.2

0.3

I d
ir

r/λ2D

33

22

3444 23

(a)

(b)

(c)

0.0 0.1 0.2 0.3 0.4-120
-100
-80
-60
-40
-20
0

q λ2D

44

33
23 34

22

I e
xc

h
e

0.0 0.2 0.4 0.6 0.8 1.0
-10

-5

0

5

22

q λ2D

I e
xc

h
e

FIG. 5. Interaction of p excitons. (a) Dependence of the direct
exciton-exciton interaction on the scattered wave vector q (in terms
of reverse two-dimensional Bohr radius). Here, the dimensionless
value of integration is presented. (b) Real-space dependence of the
direct-interaction integral. (c) Dependence of the electron exchange
term on the scattered wave vector q.

and 5(b) show the direct-interaction integral as a function of
transferred momentum and interexciton distance for various
values of the principal quantum number. We note that,
qualitatively, it has the same behavior as s-type excitons, with
minor variations of positions and heights of absolute maxima.
Notably, while for p-shells of 3D excitons the long-range
interaction has a dipole-dipole contribution, it is absent for
2D excitons with nonzero angular momentum.

Finally, Fig. 5(c) illustrates the exchange-term dependence
on the transferred wave vector q. We first note that the minimal
energy state of p excitons corresponds to the value of principal
quantum number n = 2. Hence, the exchange interaction of
2p excitons is repulsive and similar to the interaction of 1s

excitons. As for excited states, it has a shape similar to that of
s-type excitons with a higher value of absolute maxima.

IV. DISCUSSION AND OUTLOOK

Previously, we have shown that interactions between
excited excitonic states in 2D structures have different con-
tributions, which are largely dependent on the main quantum
number n and interexciton separation. While very large n

excitons physics is expected to be driven by long-range
interactions, the relevant properties of ground-state excitons
are defined by the short-range exchange potential. Thus, we
expect the crossover between regimes to happen in the range
of intermediate n > 1, where strong short-range attractive
interaction dominates. To increase the overall interaction even
further, we consider possible semiconductor materials where
Rydberg excitons can be observed. The parameters of the 2D
Bohr radius, binding energy Ry3D , the Coulomb interaction
prefactor of Eq. (4) αC ≡ e2λ2D/4πεε0, and the band gap Eg

are collected in Table I for various semiconductors (data are
taken from Refs. [36–38]). One can see that with increasing
band gap the exciton Bohr radius decreases, consequently
decreasing the interaction constant. At the same time we
note that successful generation of highly excited excitonic
states requires a large binding energy of excitons, which
allows one to address separately excitonic states with large
n. Therefore, an interplay between interaction strength and
exciton energy separation determines the choice of materials
relevant for the described physics. Depending on the goal, they
may span from mid-band-gap semiconductors (e.g., GaAs)

TABLE I. The estimation of the Bohr radius of the
two-dimensional exciton, Coulomb interaction constant αC ≡
e2λ2D/4πεε0, and binding energy (3D) for direct-band-gap semi-
conductors. The list is sorted by increasing order of a semiconductor
band gap.

λ2D(Å) Ry3D (meV) αC (μeVμm2) Eg (eV)

InAs 184.45 1.29 1.75 0.354
GaSb 111.95 2.05 1.03 0.726
InN 36.3 6.47 0.34 0.78
InP 46.95 6.13 0.54 1.344
GaAs 93.6 4.57 1.04 1.424
CdTe 30.1 11.70 0.42 1.5
GaN 21.75 17.04 0.32 3.2
ZnO 10.55 40.22 0.178 3.37
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to wide-band-gap materials (e.g., GaN). Additionally, we
underline the possible importance of materials with the non-
Rydberg excitonic spectrum, represented by transition-metal
dichalcogenides [39–42], where the described bound can be
violated.

Finally, as optical selection rules does not forbid the
creation of s excitonic states with different n, the mixtures
of excitons with n = 1,2,3, . . . can be realized. Given its mu-
tually attractive and repulsive interaction, we expect intriguing
collective effects to appear in the system.

V. CONCLUSION

We studied the Coulomb interaction of excited states of
excitons in direct-gap semiconductors. We showed that the
total interaction of higher energy states has an attractive
character due to the dominant contribution of exchange terms.
A linear increase of interaction maxima with the increase of the
principal quantum number of the excitonic state was observed.
Contrary to 3D excitons, no dipolar interaction appears for
large-quantum-number 2D excitons, and direct interaction has
van der Waals behavior. The results point out the importance
of Rydberg excitonic states and may open the way towards
studies of repulsive-attractive bosonic mixtures.
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APPENDIX A: DERIVATION OF MATRIX ELEMENTS FOR
COULOMB SCATTERING OF RYDBERG EXCITONS

A two-dimensional exciton in the nl state with center-of-
mass wave vector Q is described by wave functions (1) and (2)
of the main text, corresponding to center-of-mass and internal
motions, respectively. The spin degree of freedom can be
introduced in the following way. The total angular momentum
projection of the conduction electron on the growth axis is
se = ±1/2. In the current work we restrict ourselves to the
consideration of heavy-hole excitons. The angular momentum
projection of heavy holes is jh = ±3/2. Correspondingly,
we have four independent heavy-hole exciton states: the
dipole-active states |Jz = ±1〉 = |se = ∓1/2,jh = ±3/2〉 and
the dark states |Jz = ±2〉 = |se = ±1/2,jh = ±3/2〉. Further,
in a general case an exciton state with total momentum |S〉 can
be defined as χS(se,jh) = 〈se,jh|S〉 (see, e.g., Ref. [19] for a
detailed description).

We proceed by considering the Coulomb scattering of
excitons. We are interested in the processes of elastic scattering
which conserve total spin and principal quantum numbers of
excitons. They correspond to the scattering process described
as

(nl,Q,S) + (n′l,Q′,S) → (nl,Q + q,S) + (n′l,Q′ − q,S),

(A1)

where we defined a distinct exciton spin state |S〉 = |s,j 〉,
yielding χS(se,jh) = 〈se,jh|S〉 = δse,sδjh,j .

Within the Hartree-Fock approximation, the two-exciton
initial state with the same spin is described by the following
wave function:


S
QQ′nn′ (re,se,rh,jh,re′ ,se′ ,rh′ ,jh′)

= 1√
2

{
1√
2

[�Q,n(re,rh)χS(se,sh)�Q′,n′(re′ ,rh′ )χS(se′,sh′) + �Q,n(re′ ,rh′ )χS(se′ ,sh′)�Q′,n′ (re,rh)χS(se,sh)]

− 1√
2

[�Q,n(re′ ,rh)χS(se′ ,sh)�Q′,n′ (re,rh′ )χS(se,sh′) + �Q,n(re,rh′ )χS(se,sh′)�Q′,n′ (re′ ,rh)χS(se′ ,sh)]

}

= δse,sδse′ ,sδjh,j δjh′ ,j

{
1

2
[�Q,n(re,rh)�Q′,n′ (re′ ,rh′) + �Q,n(re′ ,rh′ )�Q′,n′ (re,rh)]

− 1

2
[�Q,n(re′ ,rh)�Q′,n′ (re,rh′ ) + �Q,n(re,rh′ )�Q′,n′ (re′ ,rh)]

}
. (A2)

The Hamiltonian can be written in the form

Ĥ = Ĥ1(re,rh) + Ĥ2(re′ ,rh′) + Vint(re,rh,re′ ,rh′ ), (A3)

where Ĥj corresponds to the energy of the j th exciton and Vint denotes the Coulomb interaction potential between particles.
The intraexciton terms read

Ĥ1(re,rh) = − �
2

2me

�e − �
2

2mh

�h − V (|re − rh|), (A4)

Ĥ2(re′ ,rh′ ) = − �
2

2me

�e′ − �
2

2mh

�h′ − V (|re′ − rh′ |), (A5)
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and each consists of kinetic- and potential-energy contributions. V (r) = e2

4πε0εr
corresponds to the Coulomb interaction energy,

screened by the static dielectric constant ε; ε0 is the vacuum permittivity.
The interexciton interaction part can be written as

Vint(re,rh,re′ ,rh′ ) = −V (|re − rh′ |) − V (|re′ − rh|) + V (|re − re′ |) + V (|rh − rh′ |), (A6)

where four possible interactions are accounted for. The scattering amplitude of the process described by Eq. (3) of the main text
is given by the matrix element:

Hnn′mS(Q,Q′,q) =
∫

d2re

∑
se

∫
d2rh

∑
jh

∫
d2re′

∑
se′

∫
d2rh′

∑
jh′


∗S
QQ′nn′ (re,se,rh,jh,re′ ,se′ ,rh′ ,jh′)

×Vint(re,rh,re′ ,rh′)
S
Q+qQ′−qnn′ (re,se,rh,jh,re′ ,se′ ,rh′ ,jh′ )

= 1

4
δse,sδse′ ,sδjh,j δjh′ ,j

×
[

4
∫

d2red
2rhd

2re′d2rh′�∗
Q,n(re,rh)�∗

Q′,n′ (re′ ,rh′ )Vint(re,rh,re′ ,rh′ )�Q+q,n(re,rh)�Q′−q,n′ (re′ ,rh′)

+ 4
∫

d2red
2rhd

2re′d2rh′�∗
Q,n(re,rh)�∗

Q′,n′ (re′ ,rh′ )Vint(re,rh,re′ ,rh′)�Q+q,n(re′ ,rh′)�Q′−q,n′ (re,rh)

− 4
∫

d2red
2rhd

2re′d2rh′�∗
Q,n(re,rh)�∗

Q′,n′ (re′ ,rh′ )Vint(re,rh,re′ ,rh′)�Q+q,n(re′ ,rh)�Q′−q,n′ (re,rh′ )

− 4
∫

d2red
2rhd

2re′d2rh′�∗
Q,n(re,rh)�∗

Q′,n′ (re′ ,rh′)Vint(re,rh,re′ ,rh′ )�Q+q,n(re,rh′ )�Q′−q,n′ (re′ ,rh)

]

= δse,sδse′ ,sδjh,j δjh′ ,j
[
Hdir(n,n′,Q,Q′,q) + HX

exch(n,n′,Q,Q′,q) + He
exch(n,n′,Q,Q′,q) + Hh

exch(n,n′,Q,Q′,q)
]
,

(A7)

where four terms correspond to direct interaction, exciton exchange, electron exchange, and hole exchange. They can be written
explicitly as

Hdir(n,n′,m,q) = αC

A
Idir(n,n′,m,q) = αC

A

(n − |m| − 1)!(n′ − |m| − 1)!

24π2(n − 1/2)3(n′ − 1/2)3(n + |m| − 1)!(n′ + |m| − 1)!

(2π )3

λ2Dq

×
∫ ∞

0

∫ ∞

0
[−J0(βhλ2Dqx)J0(βeλ2Dqx ′) − J0(βeλ2Dqx)J0(βhλ2Dqx ′) + J0(βhλ2Dqx)J0(βhλ2Dqx ′)

+ J0(βeλ2Dqx)J0(βeλ2Dqx ′)]
[

x

n − 1/2

]2

e
− x

n−1/2

×
[
L

2|m|
n−|m|−1

(
x

n − 1/2

)]2

xdx

[
x ′

n′ − 1/2

]2

e
− x′

n′−1/2

[
L

2|m|
n′−|m|−1

(
x ′

n′ − 1/2

)]2

x ′dx ′, (A8)

HX
exch(n,n′,m,�Q,q) = αC

A
IX

exch(n,n′,m,�Q,q)

= αC

A

(n − |m| − 1)!(n′ − |m| − 1)!

24π2(n − 1/2)3(n′ − 1/2)3(n + |m| − 1)!(n′ + |m| − 1)!

×
∫

d2xd2y1d
2y2e

i(�Q−q)λ2D[βey1+βhy2+(βh−βe)x] x2|y2 − y1 − x|2
(n − 1/2)2(n′ − 1/2)2

e
−(x+|y2−y1−x|)[ 1

n−1/2 + 1
n′−1/2

]

×L
2|m|
n−|m|−1

(
x

n − 1/2

)
L

2|m|
n′−|m|−1

( |y2 − y1 − x|
n′ − 1/2

)
L

2|m|
n−|m|−1

( |y2 − y1 − x|
n − 1/2

)

×L
2|m|
n′−|m|−1

(
x

n′ − 1/2

)[
− 1

y1
− 1

y2
+ 1

|y1 + x| + 1

|y2 − x|
]
, (A9)

He
exch(n,n′,m,�Q,q) = αC

A
Ie

exch(n,n′,m,�Q,q)

= −αC

A

(n − |m| − 1)!(n′ − |m| − 1)!

24π2(n − 1/2)3(n′ − 1/2)3(n + |m| − 1)!(n′ + |m| − 1)!

×
∫

d2xd2y1d
2y2e

iβeλ2D�Q(y1+x)eiλ2Dq[βhy2−βey1−x]

[
x

n − 1/2

|y2 − y1 − x|
n′ − 1/2

y1

n − 1/2

y2

n′ − 1/2

]|m|

245302-6



ATTRACTIVE COULOMB INTERACTION OF TWO- . . . PHYSICAL REVIEW B 93, 245302 (2016)

80 100 120 140 160 180 200
0

50

100

150

200
x10

-6

data

n=4

r/λ2D

I d
ir

300 350 400 450 500 550 600
0
2
4
6
8
10
12
14

r/λ2D

I d
ir

x10
-6

data

n=6

450 500 550 600 650 700 750 800
0
2
4
6
8
10
12
14

r/λ2D
I d

ir

x10
-6

data

n=8

600 650 700 750 800
2

4

6

8

10

r/λ2D

I d
ir

x10
-6

data

n=9

800 900 1000 1100 1200

1
2
3
4
5
6
7

r/λ2D

I d
ir

x10
-6

data

n=10

350 400 450 500 550 600
0
2
4
6
8
10
12

r/λ2D

I d
ir

x10
-6

data

n=7

)b()a(

)d()c(

)f()e(

FIG. 6. Dependence of the long-range direct exciton-exciton interaction on the separation distance r . (a)–(f) correspond to the interaction
of states with principal quantum number n = 4,6,7,8,9,10, respectively. For each value of n the numerical fit shows ∝ r−6 dependence,
characteristic of van der Waals interaction.

× e− x
2n−1 e− |y2−y1−x|

2n′−1 e− y1
2n−1 e− y2

2n′−1 L
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(
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2
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(
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2
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2
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(
y2
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2
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− 1

y2
− 1
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+ 1
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|y2 − x|
]
, (A10)

Hh
exch(n,n′,m,�Q,q) = αC

A
Ih

exch(n,n′,m,�Q,q)

= −αC

A

(n − |m| − 1)!(n′ − |m| − 1)!

24π2(n − 1/2)3(n′ − 1/2)3(n + |m| − 1)!(n′ + |m| − 1)!

×
∫

d2xd2y1d
2y2e

iβeλ2D�Q(y2−x)eiλ2Dq[−βhy2+βey1+x]

[
x

n − 1/2

|y2 − y1 − x|
n′ − 1/2

y1

n − 1/2

y2

n′ − 1/2

]|m|

× e− x
2n−1 e− |y2−y1−x|

2n′−1 e− y1
2n−1 e− y2

2n′−1 L
2|m|
n−|m|−1

(
x
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2
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(
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2

)
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(
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2
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− 1

y2
− 1

y1
+ 1

|y1 + x| + 1

|y2 − x|
]
, (A11)

where we defined αC ≡ e2λ2D/4πεε0.
In the derivation the following radius vector transformations were used: ρ = re − rh, R = βere + βhrh, ρ ′ = re′ − rh′ ,

R′ = βere′ + βhrh′ , ξ = R − R′, σ = R+R′
2 , �Q = Q′ − Q, x = ρ

λ2D
, x′ = ρ ′

λ2D
, y1 = ξ−βeρ−βhρ

′
λ2D

, y2 = ξ+βhρ+βeρ
′

λ2D
.
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FIG. 7. Dependence of direct Coulomb interaction on the excita-
tion number n for fixed separation distance. The numerical fit shows
∝ nα dependence.

APPENDIX B: LONG-RANGE INTERACTION

This appendix is devoted to a detailed study of the
long-range behavior of exciton-exciton direct interaction. For
different values of the principal quantum number n we examine
the real-space dependence at very large separation distances.
The results are presented in Fig. 6. The numerical fits show
the Idir ∝ r−6 dependence for interactions of excitons with
various quantum numbers n. This confirms the van der Waals
long-range behavior of the interaction potential. As expected,
the distance where the van der Waals behavior becomes
relevant rapidly grows with the increase of the principal
quantum number.

The characteristic feature of the van der Waals interaction
is the power dependence on the excitation number. To check
this, we examined the dependence of the direct-interaction
strength on the excitation number for different fixed values of
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FIG. 8. Dependence of the exchange Coulomb interaction on
the transferred momentum q for various fixed mass ratios βe =
{0.1,0.2,0.3,0.4,0.5}. We consider the interaction of two 2s excitons.

the separation distance. The sample of results is presented in
Fig. 7, where the power dependence ∝ nα is clearly seen. We
observe that due to small number of points the power α can lie
in the 7 to 12 range, and expect it to be equal α = 11 if large
n are considered.

APPENDIX C: EXCHANGE INTERACTION DEPENDENCE
ON EFFECTIVE-MASS RATIO

As mentioned above, the exchange interaction between
excited 2D excitonic states is strongly attractive and does not
drastically depend on the electron-to-exciton mass ratio βe.
To prove this, we calculate the momentum dependence of the
exchange interaction of 2s excitons for various values of βe.
The results are presented in Fig. 8. As can be seen, for relatively
small values of transferred momenta the scattering amplitude
has weak mass dependence.
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