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Phase boundary of spin-polarized-current state of electrons in bilayer graphene
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Using a four-band Hamiltonian, we study the phase boundary of spin-polarized-current state (SPCS) of
interacting electrons in bilayer graphene. The model of spin-polarized-current state has previously been shown
to resolve a number of experimental puzzles in bilayer graphene. The phase boundaries of the SPCS with and
without the external voltage between the two layers are obtained in this work. An unusual phase boundary where
there are two transition temperatures for a given carrier concentration is found at finite external voltage. The

physics of this phenomenon is explained.
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I. INTRODUCTION

From a framework of free-electron system in bilayer
graphene (BLG), there can be a tunable gap between the
conduction and valence bands under an external electric field.
Because of this property, BLG is a promising material with a
great potential for application to new electronic devices [1-4].
The experimental observations on high-quality suspended
BLG samples [5-8] has revealed that the ground-state of
the electron system at the charge neutrality point (CNP) is
insulating with a gap about 2 meV that can be closed by a
perpendicular electric field of either polarity. In an external
magnetic field, the gap grows greatly with increasing the
magnetic field much larger than the Zeeman splitting [7].
The observed quantum Hall states at the integer fillings
from v =0 to 4 [9,10] are different from the prediction
of free-electron model by which the v = 0 state should be
eightfold degenerated. These puzzling properties of the system
at low temperature stem from the electron interactions. A
number of theoretical models for the ground state of the
interacting electron system in BLG has been proposed [11-24].
Among these theories, the experimental observations can be
reasonably explained only by the model of spin-polarized
current state (SPCS) for the electrons [22]. The SPCS is a
symmetry-broken state due to the electron interactions at low
temperature and at low carrier concentration. For application
of BLG, it is necessary to know the phase boundary of the
SPCS.

In this work, we intend to investigate the phase transition
between the SPCS and the normal state of the interacting
electrons in the BLG with and without external voltage
between the two layers. Using the four-band model for the
electrons, we derive and solve the equation for the phase
boundary of the SPCS. At finite voltage, the electron system
can be in a state with the layer-charge polarization (LCP).
Above the LCP background, there may exist spin-polarized-
current ordering. The phase transition between the SPCS with
a LCP background and the state of the pure LCP should be
unusual. This study not only is of the scientific interest but also
provides the knowledge for real application of the BLG.

II. SPIN-POLARIZED-CURRENT STATE

The lattice of the BLG shown in Fig. 1 (left) contains atoms
a and b on top layer, and @’ and b’ on bottom layer with lattice
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constant a &~ 2.4 A and interlayer distance d ~ 3.34 A. The
Hamiltonian of the electron system in BLG is

1
H = —ZlijCjUng + UZ(SI’le(S}’ljJ( + E Zviani(Snj,
ijo j i#]

ey

where cgg(ci(,) creates (annihilates) an electron of spin o
at site 7, t;; is the hopping energy between sites i and j,
én; = n; —n is the number deviation of electrons at site
i from the average occupation n, and U and v’s are the
Coulomb interactions between electrons. By the tight-binding
model, we consider only the intralayer nearest-neighbor (NN)
[between a (a”) and b (b')] electron hopping with = 3 eV and
interlayer NN (between b and a’) electron hopping with #; =
0.273 eV [25,26].

‘We use the mean-field theory (or the self-consistent Hartree-
Fock approximation) (MFT) to treat the interactions. By the
MFT, the interaction part in Eq. (1) is approximated as

Hint =U Z(c‘in‘j(—,)énja + Z Uij (811,)511]

jo i#]
+ ) vileinchy ey o ©)
i#j,0

where the first and second lines in the right-hand side of
Eq. (2) are, respectively, the Hartree and Fock factorizations
and & means the inverse spin of spin o. According to the
many-particle theory, while the direct interactions in the
Hartree term are given by the bare Coulomb interactions,
the interactions in the exchange part include the screening
due to the electronic charge fluctuations. We will adopt
effective exchange interactions [22,27] that qualitatively take
into account the screening effect. From Eq. (2), we extract out
the self-energy of the spin-o electron,

276, )) = Uldnjs) + 3 vy (6n; )8,
J'#J
Mlcigely) = (oD 2ins, G

means the effective interactions with electron

+v

where veff

screenings.
Define the order parameters m ; = ({(én ;1) — (én;,))/2 and
pj = ((dnj4) + (dn;,)) for the spin and charge orderings,
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FIG. 1. (Left) Lattice structure of the BLG. The unit cell contains
atoms a and b ontop layer and a” and &’ on bottom layer. The intralayer
and interlayer NN electron hoppings are ¢ and 7, respectively. (Right)
First Brillouin zone and the two valleys K and K’ in the momentum
space.

respectively. These parameters depend only on the index of
the sublattice; within a sublattice, they are constants, m ; = m;
and p; = p;, where the position j belongs to the sublattice
I. Because of the charge neutrality, we have p, = —pp and
Pp» = —pa, Which comes from the broken layer-inversion
symmetry. In terms of these order parameters, the average
(dn o) is given by (8n ;) = om; + p;/2 where j belongs to
sublattice / and o = 1(—1) for spin up (down). The Hartree
term in Eq. (3) can be written as

A = —oUmy + (Vi + U/2)pi + Vigor,
where 7 means that @(b) = b(a) and @' (b') = b'(a’), and
Vaa = =0(ray) + Y_[0(r) = v(IF + Farr ],
70
D 0(F + Fapl) = v(IF + Faar)],

Vip = —v(d) + Y_[v(r) — o([F — d])].
7#0

Vah

Here, v(r) = v;; with r the distance between the position i
and j, the 7 summations run over the positions on sublattice
a, Fay = (1,1/3/3,—d) and 7., = (1,1/2+/3,0) and Fuu =
1,1/ 2\/§,—d) are, respectively, the vectors from atom a to
atoms b, b, and a’ in the unit cell, and d = (0,0,d). The
other quantities are given by V,, = Vi, Vi = Ve, and
Var = Vo = Vap = Vpa.

In the exchange (XC) part, the average (ci(,ct.a) can be a
complex containing an imaginary part [28], ‘

(CiaC;U) = Rijo +iljjs. 4)

The imaginary part I;;, corresponds to a current and is
self-consistently determined by the approximation. In a recent
work [29], we have shown that within the range of physical
interaction strength only the intrasublattice current orderings
are possible. There is no intersublattice current ordering
because it breaks the translational invariance; more symmetry
breaking would happen in a stronger interacting system. The
remaining real part R;;, for i and j in different sublattices
gives rise to the renormalization of the intersublattice electron
hoping. We suppose this renormalization has been already
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included in the original hoping terms. Therefore we here
consider only the current orderings (and the self-energies)
between the sites of same sublattice.

In momentum space, the exchange part of the self-energy
is given by

1 ff /17 o
SR = =5 D vk = KD(elyo o) = 1/2).
-

where N is the total number of the unit cells of the BLG lattice,
clTk’a (civo) creates (annihilates) an electron of momentum k'
and spin o on sublattice /, and X’ summation runs over the first
Brillouin zone. Here, the main points are that (1) the quantity
(c}kac;k(,) — 1/2 as a function of k is sizable only when k
is close to the Dirac points K and K’ [21], (2) for carrier
concentration close to the charge neutral point, we need to
consider only low-energy quasiparticles with k close to the
Dirac points, and (3) v*(g) is a slowly varying function of g
because of the electron screening. Under these considerations,
the exchange self-energy El"xc(k) for k in valley v = K or K’
can be approximated as

vo XC
El

1 o s
= 21T = VDUl o rvie) = 1/2)
vk

Ue
- N Z((ij'+k’aclv’+k/g) —1/2)
vk

Vg N
s f
— S Sv’(clv/+k/gclv’+k’a)

vk

where k' is measured from the Dirac point v’ and the k’-
summation runs over a circle k' < 1/a in valley v’ [see Fig. 1
(right)], ves = [vT(0) £ v°T(2K)]/2, and 5, = 1 (-1) for
v = K (K’). The first term in the last equal can be written
as —v.(om; + p;/2 +6/2) with § as the average electron
doping concentration per atom. The last term corresponds to
the current ordering since the imaginary part in Eq. (4) is given
by

1 o
Lje = 5 D S0lChyiaoClusio) Sn(K - 7). 5)
vk

The “current” (up to a constant factor) /;j, is finite only when
the distributions in the two valleys are unbalanced. Since the
sublattice is a triangular lattice, the current flows in three
directions with equal magnitude. However, the current density
at each atom vanishes. Note that the current /;;, depends on the
relative vector 7;; from position i to j and does not change the
translational invariance of the system. Therefore the current
can exist in the uniform triangular lattice.

The total self-energy in momentum space X7 =
SR D + El”"XC now can be written as
Elva =€ —ouym; — SUA[U — UL»(S/Z, (6)

where € = uyp; + u;pr with uy =Vy +U/2 —v./2 and
u;; = Vij,ug = U + v, and Ay, is the current order parameter.
The relation €, = —e; with a(b’) = b'(a) and b(a@’) = a’(b) is
valid because of the charge neutrality condition. Since the term
—v.8/2 is a constant (independent of the layer, valley, and
spin), we hereafter will discard this term in the self-energy.
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The order parameters are calculated by

1
o= ﬁ Z((C[Jrv+kaclv+kg) - (C;’[v+kacl_v+k0'))s (7)

vko
1 i
mp; = ﬁ 0<C1v+kgclu+ka)a (8)
vko
Vg
Aig = D Sulel i Clusie). ©)

vk

The interaction parameters have been determined in the
previous work [22] with the results u,, =~ up, = 3.3€g, ugp =
6.58¢0, ug = 6.38¢p, v, = 5.38¢p, and v; = 6.372¢; with ey =
V3t)2.

Define the operator

T AT T T T
Cuk(r - (Ca.v+k,(r’cb,v+k,(r’ca/,v+k,(r’cb/,v+k,¢7)‘

The effective Hamiltonian under the MFT is obtained as

H = Z C'Iko' Huka Cuka
vko
with
EIUU €vk 0 0
er X —n 0
H — vk 2 , 10
vko 0 1 25,(, ot ( )
0 0 ¢, =

where e, = s,k + ik, in units of ¢y = 1, and the sublattice
index [ runs from 1 to 4 for the sublattices a,b,a’, and b/,
respectively.

In the absence of an external magnetic field, we have shown
that there is no spin ordering, m; = 0 [22]. Then, the current
ordering parameters satisfy the relations A, = —Ay,, Agy =
—Asq,and Ay = — Ay [22]. The charge ordering can appear
only when an external voltage is applied between the two
layers. With such a voltage, the electrons experience different
potentials —u and u in the top and bottom layers, respectively.
The Hamiltonian matrix H,;, is then modified by adding to it
a diagonal matrix,

Hex = Diag{_“,_u,u,u},

or €; and €, in the self-energy are replaced with €; — u and
€, — u, respectively.

To proceed, we start with the Green’s function of the
electrons. The Green’s function G of the electron system in
the imaginary t space is defined as

G (k,t — 1) = —(T;Coo (T)C! ().

In the Matsubara-frequency space, G (a 4 x 4 matrix) is
expressed as

G (kiiwe) = (iwg + pu — Hyo) ™, (11
where 1 is the chemical potential determined by
1
§= N Z |:T %:TrG“”(k,iwg)exp(ia)gn) - 2], (12)

vko

where T is the temperature, w, = (2¢ + 1)z T is the Matsubara
frequency, and 7 is an infinitesimal small positive constant.
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Note that the Hamiltonian matrix can be transformed to a
simple form. Denote the angle of the vector (s,ky, ky) as ¢,
and define the matrix

M(d)v) = Diag{exp(i(bv), 17 1’ exp(_l¢v)}

With  M(¢,), the transformed Hamiltonian MT(¢,)
Hyo M(¢y) = hyio 1s independent of the momentum angle.
Similarly, we have MT(¢U)GW(k,ia)g)M(¢U) = g" (k,iwy)
independent of the angle ¢,. It is then convenient to work in
the space of the transformed Hamiltonian /,;,. By denoting
the ath component of the Ath eigenfunction of k., with
eigenvalue E}° (k) as W5 (k), the afth element of the Green’s
function g"? is expressed as

g (kjiw) =Y Wi (ROW,S (k)i + p — E}° (k).
A
For our purpose, we write the order parameters p; and
Ay = Ajinterms of the Green’s function. Using the definition
for the Green’s function g’ (k,iw,), we have

o > Lai (kiiw) — gif (k.iwy)], (13)

2N vko
v, T )
A== sl ko), (14)
N
vkl
v, T .
Ay = IXV Zsug;);(k,la)g). (15)

vkl

III. PHASE TRANSITION

The phase boundary of the SPCS is the relation between the
critical temperature 7, and the carrier doping concentration §.
We will consider the cases for zero and finite external voltages.

A. Zero voltage

For zero voltage, u = 0, there is no charge ordering, p; =0
and €; = 0 [22]. The Hamiltonian matrix /.4, has the property
hoke = Sh_ykoS = Shyi—o S, where S = 1,07 with the Pauli
matrix t; implying the exchange of top and bottom layers and
o1 the exchange of (a,b) and (a’,b’) atoms. If W (k) is an
eigenfunction of &, with eigenvalue £V, then SW' (k) is
an eigenfunction of &_;, or hy;_, with the same eigenvalue.
Therefore the whole eigenstates can be obtained from the one
only for a given spin in a single valley. Because of this property
of the effective Hamiltonian, we only need to consider the
Green’s function in the K valley for spin-up electrons. We
hereafter drop the valley and spin subscripts v and o in the
Green’s function and g(k,iw,) is understood to be the Green’s
function in the K valley for spin-up electrons.

As we approach the phase boundary from the SPCS side,
Ay and A; become vanishingly small. We expand Eqgs. (14)
and (15) to the first order in A and obtain

T

= _UN %:[(ng)ll — (8Dg)aal, (16)
94, v, T

A N %:[(ng)ﬂ — (gDg)3l, 17)
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FIG. 2. Diagrammatic equation for the matrix D (green triangle).
The solid lines are the Green’s functions and the dashed line is the
effective interaction v;.

where D = —0dh;/d A is a matrix obtained as
. 0A, 0N,

D =Diagyl,—,———,—1; .
oA A

In deriving Egs. (16) and (17), we have used dg =
—g(dg™")g = g(dhy)g. The Green’s functions in Egs. (16)
and (17) are now calculated in the normal state with A; , = 0.
In the normal state, since the system is symmetric for the
exchange of top and bottom layers, the term —(g Dg)44 in the
sum of Eq. (16) gives rise to the same contribution as (g Dg);;.
Similarly, the term —(g Dg)33 contributes the same as (g Dg)x»
in Eq. (17). Therefore the two summations in Eqgs. (16) and (17)
can be simplified. On the other hand, the summations over the
Matsubara frequency can be carried out immediately with the
result given as

Ty g =Y Wiy Wy Wi, Wi, F(E, Ey)
¢ 124

= fur(k) (18)
and
f(E)) — f(Ey)

F(E, ,E,) =
(y y) EV_EV’

where f(E,) is the Fermi distribution function and y and y’
run over the indexes of the four energy levels. When E,, = E,,
F is defined as F =df(E,)/dE,. Now, Egs. (16) and (17)
can be rewritten in a compact form:

vy

D ==
! N

> fuwlk)Dy, (19)

kU’

with D; the /th element in the diagonal of the matrix D.
Recalling that A;’s represent the current orderings, the matrix
D actually describes the particle-hole propagator in the current
channel. The diagrammatic representation is shown in Fig. 2.

To search the phase boundary, we need to solve the Green’s
function at a series of selected points (§, 7T ) in the normal phase.
For a given carrier concentration §, the transition temperature
T, is found by gradually lowering temperature 7' from a value
higher than T,. At each point (8,T), we self-consistently solve
Eq. (19) for [ =2 to determine dA,/dA;. Then we apply
the result in the right-hand side of Eq. (19) for / =1 and
denote the calculated value as A. By inspecting this value A, the
transition temperature 7T is reached when X is unity. Figure 3
(left) shows the value A as a function of temperature T at charge
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FIG. 3. (Left) Quantity A as a function of temperature 7 at charge
neutrality point § = 0. (Right) A as function of § at 7/Ay = 0.3.

neutrality point § = 0. The transition temperature 7, at § = 0
is determined as T, = 0.567Aq with Ay = 1 meV the gap
parameter observed by experiment [7]. However, at doping
concentration § > 1.4 x 107, the transition temperature is
not in a one-to-one correspondence with the doping. In this
case, we solve the equation with varying doping at a fixed
temperature. In Fig. 3 (right), A is presented as a function
of § at T/Ayp=0.3. We have thus determined the phase
boundary of the SPCS. The result is shown in Fig. 4. The
highest T, = 0.567A appears at the CNP § = 0. The largest
carrier concentration for the SPCS is about § ~ 1.7 x 1076
with T./A¢ =~ 0.3. Note that the Fermi energy is Ep =
8m8€2//3t1. At § = 1.7 x 107°, we have Er/A¢ = 0.61.
Therefore the Fermi energy at the largest carrier concentration
for the SPCS is about the same order of magnitude as the
largest 7, at the CNP. Since the Hamiltonian is symmetric
about the carrier doping, 7, is an even function of §.

B. Finite voltage

At finite voltage, the system is layer-charge polarized with
o1 # 0. In Fig. 5, we present the charge order parameters p;

0.6
0.4 1
SO
B‘u
0.2 1
00 | | |
0.0 0.5 1.0 1.5 2.0
5(10°)

FIG. 4. Phase boundary of the spin-polarized current state.
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FIG. 5. Charge order parameters p; and p, as functions of the
external potential ¥ at 6 = O and T /Ay = 0.567.

and p, of electrons as functions of the external potential u
at the charge neutrality point § = 0. The temperature is at
the transition point 7' = 0.567A for u = 0. The potential
difference between the bottom layer and top layer is 2u. For
positive u, the polarized electron number per unit cell at top
(bottom) layeris p; 4+ p2 > 0(p3 + p4 = —p2 — p1 < 0). The
polarization increases with increasing u.

At low temperature and low carrier concentration, the
current ordering may coexist with the charge ordering when
u # 0. To search the boundary of the spin-polarized current
phase, we take the derivative of the order parameters with
respect to A;. From Egs. (14) and (15), we have

T
1 = —UT %[g”T(k,iwg)Dg"T(k,ia)e)]l1, (20)

BAz 'UST Z ) . .
— = ——— ) [¢"M(kiw)Dg" (k,iw).  (21)
BIAN| N —

Since the layer inversion symmetry is now broken, these
equations are different from Eqs. (16) and (17). Note that
the dependence of the charge ordering p; on A is negligibly
small since p; is mainly determined by the external voltage.
(We have numerically checked this point.) The summations
over the Matsubara frequency in Eqs. (20) and (21) can be
performed similarly as shown in Eq. (18). The phase boundary
of the SPCS is now determined by Eqgs. (20) and (21) with
A; = 0 in the Green’s function.

The obtained phase boundary of the SPCS at finite u is
shown in Fig. 6. By comparing the case of zero u shown in
Fig. 4, the phase area of the SPCS shrinks with increasing
u. The phase of the SPCS eventually disappears at certain
strength of the potential difference u. As seen from Fig. 6, the
unusual feature of the phase diagram for a finite u in a certain
range of strength is that there are two transition temperatures
for a given carrier concentration. We analyze this result below.

First, there is a gap between the conduction and valence
bands because of the finite potential #. At low temperature
close to zero, for carrier concentration close to the CNP, the
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0.6

T./A,

OO | | |

0.0 0.5 1.0 1.5 2.0
5(10°)

FIG. 6. Phase boundary of the spin-polarized current state at finite
potential difference u between bottom and top layer.

chemical potential i (approximately the Fermi energy) is close
to the bottom of the conduction band. The current ordering
happens when there exist a valley polarization because of the
exchange effect; the energy levels of spin-o electrons in one
valley are raised with A, while they are lowered by -Aj, in
another valley, resulting in the spin-o electrons transferring
from the former to the latter valley. The level change A,
and the electron transferring are self-consistently determined
by themselves. Below the first transition temperature, this
process cannot happen because there are not enough electrons
below the level u in the conduction band for transferring.
However, with increasing the temperature, the electrons in
the valence band can be excited to the conduction band.
Especially, above the first transition temperature, the excited
electrons can participate in the transferring process and assist
the current ordering. On the other hand, the thermal excitations
of electrons between two valleys are also allowable and are
weakening the exchange effect. At higher temperature above
the second transition temperature, the exchange effect is
quenched by the thermal excitations and there is no current
ordering. Therefore there is a second transition temperature
higher than the first one.

In Fig. 4, we have seen that there are two transition
temperatures for 1.4 x 107® < § < 1.7 x 107% where the
external voltage is zero. Within this doping range and below
the first transition temperature, there is no gap between the
conduction and valence bands. The SPCS emerges above the
first transition temperature just because the thermal excitations
of electrons from the low levels in one valley to the levels
above the chemical potential in another valley assist the
electron transferring from the former to the latter valley. The
mechanism for the two transition temperatures is the same as
explained above.

IV. SUMMARY

Using the four-band model, we have studied the phase
boundary of the spin-polarized current state of the interacting
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electrons in bilayer graphene. In the absence of external
voltage, the highest transition temperature is found as 7, =
0.567A¢ = 0.567 meV appearing at the charge neutrality point
8 = 0. The SPCS phase extends to a carrier concentration
about § ~ 1.7 x 10~® with T, ~ 0.3 meV. At finite voltage
between the two layers, we find there are two transition
temperatures corresponding to a given carrier concentration.
The physics of such an unusual phase boundary is explained
as the two effects of the thermal excitations: (1) the excited
electrons participate in the process of transferring from one

PHYSICAL REVIEW B 93, 245158 (2016)

valley to another valley and assist the current ordering and
(2) excitations between two valleys at higher temperature
quench the current ordering. The result should be useful for
real application of the BLG.
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