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Sound waves and resonances in electron-hole plasma
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Inspired by the recent experimental signatures of relativistic hydrodynamics in graphene, we investigate
theoretically the behavior of hydrodynamic sound modes in such quasirelativistic fluids near charge neutrality,
within linear response. Locally driving an electron fluid at a resonant frequency to such a sound mode can
lead to large increases in the electrical response at the edges of the sample, a signature, which cannot be
explained using diffusive models of transport. We discuss the robustness of this signal to various effects,
including electron-acoustic phonon coupling, disorder, and long-range Coulomb interactions. These long-range
interactions convert the sound mode into a collective plasmonic mode at low frequencies unless the fluid is charge
neutral. At the smallest frequencies, the response in a disordered fluid is quantitatively what is predicted by a
“momentum relaxation time” approximation. However, this approximation fails at higher frequencies (which
can be parametrically small), where the classical localization of sound waves cannot be neglected. Experimental
observation of such resonances is a clear signature of relativistic hydrodynamics, and provides an upper bound
on the viscosity of the electron-hole plasma.
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I. INTRODUCTION

Recently, direct evidence [1,2] has been found for the
long-sought Dirac fluid in graphene—a strongly interacting
quasirelativistic plasma of thermally excited electrons and
holes [3,4]. This Dirac fluid is of great interest for two reasons.
Firstly, it contains features of “relativistic” quantum critical
dynamics, yet is simpler than other quantum critical points.
As quantum criticality may underlie a variety of puzzles in
condensed matter physics [5], any toy experimental and/or
theoretical system which may be systematically investigated
is of particular interest. Secondly, as a strongly interacting
quantum system with no sharply defined quasiparticles, the
Dirac fluid is an excellent place to observe “relativistic”
hydrodynamics in a (by now) standard solid-state system.

Hydrodynamics is the universal description of how the
conserved quantities of any interacting system—generally
charge, momentum, and energy—relax to global thermal
equilibrium. It is valid on long time and length scales compared
to the mean free path (or thermalization length, in the absence
of quasiparticles). In the hydrodynamic limit, the microscopic
degrees of freedom are not important. The equations of motion
are simply the conservation laws for conserved quantities, and
as we review in Sec. II, they are readily constructed without
detailed knowledge of the microscopic system of interest. This
makes hydrodynamics a particularly powerful tool for studying
strongly interacting quantum systems, where microscopic
calculations are quite hard, if not essentially impossible.

The majority of theoretical studies of hydrodynamics of
electrons in metals focuses on the hydrodynamic regime of
ultraclean Fermi liquids of electrons [6–11]. Although such
samples have a large Fermi surface with long-lived quasi-
particle excitations, these quasiparticles do interact weakly
and so hydrodynamics ought to be valid on long time scales
compared to the quasiparticle-quasiparticle collision rate. This
analog of the hydrodynamics of classical gases (which obey the
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same Navier-Stokes equations as ordinary liquids) is, however,
usually absent in metals—electron-phonon coupling, umklapp
processes, and impurities are all generally the dominant
mechanisms for quasiparticle scattering. More recently, in
ultraclean samples, the hydrodynamics of a Fermi liquid
of electrons has been experimentally observed in multiple
different metals [12–14].

The Dirac fluid of interest in this paper is more complicated
than the Fermi liquid of quasiparticles observed experimen-
tally in metals with large Fermi surfaces [12–14]. Firstly,
like classical liquids such as water, we cannot systematically
use kinetic theory to compute its properties: quasiparticles
are not parametrically long-lived excitations. Secondly, the
linearized hydrodynamics of the Dirac fluid looks identical to
a relativistic fluid near charge neutrality [15–18]. The resulting
equations of motion and associated phenomena are distinct
from usual (Galilean-invariant) fluids.

So far, most theoretical and experimental work on the
hydrodynamics of electrons in metals focuses on steady-state
flows. This limit neglects the effects of the elementary hydro-
dynamic excitation—the sound mode. This is the fundamental
excitation of a clean fluid and is parametrically long-lived at
low energies. Hence it is natural to ask whether or not such
sound waves could be detected in an electron fluid in a metal.

There are other hydrodynamic systems in condensed matter
which are more accessible experimentally. Liquid 3He is
an atomic Fermi liquid, where hydrodynamic effects due
to interactions are readily observable (in contrast to the
Fermi liquid of electrons in metals). The transition between
nonhydrodynamic “zero sound” modes and “first” sound
modes (the classical sound described above) has been observed
long ago in liquid 3He [19]. It may also be possible to observe
hydrodynamic sound in strongly interacting cold atomic gases,
where other hydrodynamic behavior has been observed [20].

This paper is focused on the study of hydrodynamics
in metals. We present a plausible setup for an experiment
that could detect key qualitative signatures of sound modes
in a charge-neutral electron-hole plasma. In contrast to the
other quantum fluids mentioned above, disorder, long-range
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Coulomb interactions, and electron-phonon coupling all read-
ily spoil the propagation of pure sound modes in an electron
fluid in metals. Our aim is to quantitatively describe how these
effects complicate and distort the propagation of sound waves.

A. The hydrodynamic limit in charge-neutral graphene

As experiments on charge neutral graphene are the most
likely to realize the physics proposed above, let us provide a
few more details about the Dirac fluid in graphene. The Dirac
fluid consists of linearly dispersing fermions with dispersion
relation ε(q) = vF|q|, interacting via instantaneous long-range
Coulomb interactions with potential V (r) = α/r [3,4]. The
thermalization length scale lth scales as

lth ∼ �vF

kBT α2
∼ 100 nm. (1)

We have assumed that the effective fine structure constant1

α ∼ 1

137

c

vFεr
, (2)

where c/vF ≈ 300 and εr ∼ 1 is a dielectric constant. For
details on the relevant dimensional scales in graphene, see
Appendix A. Up to the moderate factor of α−2, (1) agrees with
the prediction of quantum critical theories [5]. Equation (1)
is a parametrically shorter thermalization length than that in a
Fermi liquid, by a factor of kBT/EF.

In fact, α decreases with temperature, as Coulomb interac-
tions are marginally irrelevant [3,4]. However, this decrease
is logarithmically slow, and hence does not lead to α � 1
at room temperature. As all first-principles computations of
the properties of the Dirac fluid rely on kinetic theory, they
are perturbative computations in α. We hence are of the
opinion that the best way to determine the hydrodynamic
and thermodynamic properties of the Dirac fluid is to directly
measure them.

The Dirac fluid is readily realized (in principle) in mono-
layer graphene, a two-dimensional honeycomb lattice of
carbon atoms where sublattice symmetry protects multiple
“species” of Dirac fermions. Due to ineffective screening
[21,22], these interactions are not renormalized away as
effectively as in an ordinary Fermi liquid: instead, we form the
Dirac fluid. As there is no obvious hydrodynamic experiment
to detect these different species, we expect the Dirac fluid to
consist of a single relativistic fluid.

In order to detect hydrodynamics cleanly, we require that
(1) is the shortest length scale in the problem. The competing
length scales include electron-phonon scattering lengths, as
well as the density of charge puddles. The latter is much
more serious. The Dirac fluid in graphene is subject to in-
homogeneities in the charge density, commonly called charge
puddles [23,24]. This inhomogeneous chemical potential is
a direct consequence of charged impurities, primarily in the
substrates on which a single layer of graphene is laid. If the
amplitude of the local chemical potential obeys |μ| � T ,

1The precise value depends on the particular experimental setup,
but it is expected to be large enough that perturbative approaches
formally break down.

then the local physics is that of a Fermi liquid, and not
the Dirac fluid. Due to recent materials advances [25], the
size of charge puddles can now be made at least as large
than (1), and the amplitude can be made small enough that
the regime of μ < T can be reached [1]. In such a regime,
it is natural to approximate that the Dirac fluid exists, and
locally reaches thermal equilibrium at temperature T , with the
chemical potential varying on length scales large compared
to (1) [2]. On length scales large compared to (1), the only
degrees of freedom that are relevant, are the hydrodynamic
modes, including the sound mode.

Let us also briefly note that in the literature, a third “slow”
mode called the imbalance mode is often studied [26–28].
The imbalance mode consists of the number density of elec-
trons and holes together—hence, combined with conservation
of charge, we conclude that both electrons and holes are
separately conserved. This mode is related to the fact that
accounting for two-body collisions alone it is not possible
to have processes such as e → e + e + h. This is a conse-
quence of the conservation laws and the relativistic dispersion
relation—the “collinear” scattering event which is allowed
occupies a negligible fraction of phase space. However, higher
order processes are certainly less constrained [26], and so this
imbalance mode is not an exact conserved quantity. Since the
parameter α in Eq. (1) is not small, higher order processes are
not guaranteed to be negligible. Hence we do not consider this
imbalance mode in our hydrodynamic description.

B. Setup

In this paper, we will develop a theory of the response
of a (semi-)realistic quantum critical electron fluid, assuming
approximate Lorentz invariance, to a localized finite-frequency
drive. Some qualitative features of this theory will remain true
for quantum critical points with other forms of scale invariance
[29,30]. In particular, some of these critical points are charge-
neutral [31], where we expect detecting sound modes to be
especially clean. Given the experimental advances described
above, however, we will focus on the possibility of detecting
sound modes in the Dirac fluid in graphene.

Our proposed experimental setup is depicted in Fig. 1. A
modulated source of light pumps energy into the electronic
fluid at a localized region in a metal. We then measure the

FIG. 1. A metallic slab of length L, depicted in gray, is connected
to a large bath (depicted in gold). An energy source, which we take
to be a laser with time-dependent intensity I (t), shines locally on the
metal, with a spot size much smaller than L or x0, the distance to the
left contact.
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FIG. 2. A plot of |J̃ | as given in Eq. (24), assuming � = 1,L =
100,C0 = C2 = 1,σ0 = 0.1,μ = 0.3, and γ = 0, for different values
of η0. Note how both the sharpness of the acoustic resonances and
the number of observable resonances increases as the viscosity η0

decreases. The circles compare our numerical methods to the analytic
prediction for one such value of η0, confirming the accuracy of our
numerical methods.

electric current flowing through one-dimensional contacts [32]
at the edges of the metal. If the laser intensity is small, then it
is reasonable to treat the electronic fluid in a linear response
regime. The electric currents measured in the contacts will
consist of a dc response (which we are not interested in) and
an ac response, whose magnitude will be the focus of this
paper.

The signal we are after is depicted in Fig. 2. Upon changing
the modulation frequency ω of the energy source, the electron-
hole plasma in a clean sample where disorder and electron-
phonon effects are not substantial will be driven at a resonant
frequency, leading to a large jump in the magnitude of the
current flowing out of the edges. This resonance is directly
associated with the normal modes of electronic classical sound
waves, and is the electronic analog to the resonances that occur
when air is excited in long pipes such as musical instruments.
Such resonances cannot be seen if the electronic dynamics is
dominated by diffusive “Ohmic” processes.

We also note that similar experimental setups (at ω = 0)
have been performed to uncover “hot carrier” dynamics
in graphene [33–37]. In this limit, the electrons behave
diffusively, albeit with some unexplained signals reported near
charge neutrality [37]. In our simpler setup, however, there is
very little signal of interest at ω = 0. We will briefly comment
in the conclusion on alternative measurements which may be
simpler, but the key physics of interest is easiest to understand
in this simple setup.

C. Main results

We now state the main results of this paper. While basic
results which are similar have appeared before in the literature
[38], our hydrodynamic framework differs subtly, as we
will explain later. We will review the correct hydrodynamic
framework for the Dirac fluid in Sec. II.

(1) Working under the assumption that the electronic dy-
namics is collective (no single-particle effects), the observation
of resonances in the finite-frequency response is a smoking

gun signature for the hydrodynamic sound mode: see Sec. III.
Assuming the absence of charge puddles, we can solve the
hydrodynamic equations exactly: see (24) and Appendix E.
Assuming that dissipation is weak enough to observe the nth

sound mode, a resonance will be measured at frequency

ωn

2π
= nπvF

2π
√

dL
≈ n × 1 μm

L
× 0.3 THz. (3)

The numbers presented are estimates for graphene, where the
number of spatial dimensions d = 2. A realistic sample may
have L = 10 μm, in which case observing the first sound mode
requires reading off the electric current flowing across the
contacts at 30 GHz.

(2) Experimental observation of acoustic resonances gives
semiquantitative upper bounds on the viscosity η of the
electron fluid, see Eq. (29).

(3) Taking into account long-range Coulomb interactions,
the sound modes morph into plasmonic modes with different
dispersion relations. The resonances in Eq. (3) will shift to new
frequencies. Such modes have been found before in theoretical
models [38], though it appears that our formula for the lifetime
of these plasmons is new.

(4) Although momentum loss due to phonons and disorder
may appear similar in the ω → 0 limit, at finite ω the response
of the fluid becomes qualitatively different depending on
the mechanism for momentum relaxation. If the dominant
source of momentum relaxation is long-wavelength charge
density inhomogeneity, and not coupling to acoustic phonons,
the observed sound resonances can be parametrically larger
than predicted using simpler models, making experimental
detection much easier, see Sec. V.

(5) From a theoretical perspective, the classical Ander-
son localization of sound waves in inhomogeneous electron
fluids is rather interesting, with the localization length a
nonmonotonic function of the frequency. Localization can
lead to a complete breakdown of momentum relaxation time
approximations, which are commonly employed to mimic the
interplay of the electron fluid with disorder, see Sec. V A.
The breakdown of this approximation occurs at at a frequency
scale given in Eq. (58), which can be arbitrarily small.

(6) Depending on the equations of state of the Dirac fluid,
and the quality of a graphene sample, it may be possible
to quantitatively extract the speed of sound through our
experimental setup. The speed of sound in the Dirac fluid
is given by (21) and contains no fitting parameters. Since (21)
is an irrational multiple of vF, it would be unambiguous to ex-
perimentally distinguish between single-particle resonances,
observed in carbon nanotubes in Ref. [39], and hydrodynamic
sound resonances.

In this paper, we will generically work in units where
� = vF = kB = e = 1. When presenting numerical results,
we will further work in units where the background fluid
temperature is set to T = 1—this fixes all quantities to be
dimensionless. Hydrodynamics is applicable when ω/T � 1.
The units may always be restored straightforwardly with
dimensional analysis—see Appendix A. We will discuss what
we believe are the major experimental challenges in the
concluding section. Technical details of computations are
placed in Appendices.
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II. HYDRODYNAMIC LINEAR RESPONSE THEORY

In this section, we review the hydrodynamics of quantum
critical fluids with emergent Lorentz invariance [40]. In linear
response, this hydrodynamics describes the electron-hole
plasma in charge-neutral graphene [16,17]. These equations
are the conservation of charge, along with the conservation of
energy and momentum up to external sourcing (including that
due to the external chemical potential inhomogeneity):

∂tT
tt + ∂iT

ti = J i∂iμ0 + S, (4a)

∂tT
ti + ∂jT

ij = J t∂iμ0 − γ vi, (4b)

∂tJ
t + ∂iJ

i = 0, (4c)

where T μν is the stress-energy tensor, Jμ is the charge current,
and μ0 is an externally imposed chemical potential. S is an
external source of energy—in the setup described in Fig. 1,
this is due to a laser causing local heating of the electron-
hole plasma. The parameter γ > 0 accounts for the loss of
momentum due to electron-phonon coupling. We will keep
the number of spatial dimensions d of the fluid generic for
much of the paper; obviously, for the application to graphene,
one can set d = 2.

For simplicity, in this paper, we will assume that the disorder
is only inhomogeneous along one spatial direction, which we
denote as x. This is for computational simplicity, although
such an assumption is likely appropriate for highly oblong
samples of graphene in experiment. Hence the disorder profile
is a simple function μ0(x).

Let us begin by finding a static solution to (4). The equations
of state of relativistic hydrodynamics in the Landau frame
are

T tt = ε + O(v2), (5a)

T tx = (ε + P )v + O(v3), (5b)

T xx = P − η′∂xv + O(v2), (5c)

J t = n + O(v2), (5d)

J x = nv − σQ

(
∂x(μ − μ0) − μ

T
∂xT

)
+ O(v2) (5e)

with T the temperature, μ the chemical potential, v the fluid
velocity, n the charge density, ε the energy density, and P the
pressure, all locally defined using thermodynamics, and

η′ = ζ + η

(
2 − 2

d

)
(6)

with ζ and η the bulk and shear viscosity, respectively. Upon
using the thermodynamic relation

dP = ndμ + sdT (7)

with s the entropy density, we see that (4) is solved by T = T0,
μ = μ0(x), and v = 0 [2,41]. We will find the identity

ε = dP (8)

useful, and will often write ε + P = (d + 1)P interchangably.
In linear response about this solution, we define μ̃ =

μ − μ0,T̃ = T − T0, and ṽ = vx ; indeed, tilded variables
henceforth denote first-order quantities in linear response. The
linearized charge and energy-momentum currents are

T̃ tt = ∂ε

∂μ
μ̃ + ∂ε

∂T
T̃ = dnμ̃ + dsT̃ , (9a)

T̃ tx = (ε + P )ṽ = (d + 1)P ṽ, (9b)

T̃ xx = P̃ − η′∂xṽ, (9c)

J̃ t = ∂n

∂μ
μ̃ + ∂n

∂T
T̃ , (9d)

J̃ x = nṽ − σQ

(
∂xμ̃ − μ

T
∂xT̃

)
. (9e)

For simplicity, we have also dropped the 0 subscript on the
background μ, and will do so for most of this paper. Note that

∂xP̃ = n∂xμ̃ + ñ∂xμ + s∂xT̃ . (10)

As described in Introduction, we assume in our setup that
S is periodically driven in time at angular frequency ω. Using
standard tricks, we hence solve the linear response equations
using the complex-valued source

S = S0(x)e−iωt , (11)

and look for solutions where μ̃(x,t) = μ̃(x)e−iωt , etc. Hence
we may replace ∂t → −iω in Eq. (4). The real part of the
solutions are physical, but we will often study the complex
modulus of the response, which corresponds to the overall
amplitude of temporal oscillations. When doing analytic
calculations, we will consider the following simplified model
for the local injection of energy:

S0(x) = � δ(x − x0), (12)

but more generally we can also solve these equations with a
smoothed out δ function, and will indeed do so in our numerics.

Putting it all together, we need to solve the elliptic linear
ordinary differential equations

∂x((ε + P )ṽ) =
[
nṽ − σQ

(
∂xμ̃ − μ

T
∂xT̃

)]
∂xμ + S0(x) + iωd(nμ̃ + sT̃ ), (13a)

n∂xμ̃ + s∂xT̃ − ∂x(η′∂xṽ) = [iω(ε + P ) − γ ]ṽ, (13b)

∂x

[
nṽ − σQ

(
∂xμ̃ − μ

T
∂xT̃

)]
= iω

(
∂n

∂μ
μ̃ + ∂n

∂T
T̃

)
. (13c)
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in a finite domain, which we take to be 0 � x � L. We assume
the boundary conditions

μ̃(x = 0,L) = T̃ (x = 0,L) = 0, (14)

corresponding to the physical assumption that near the con-
tacts, the electron fluid is well thermalized to the external bath.
These boundary conditions are sufficient for the hydrodynamic
equations defined previously to be well-posed, as we explain
in Appendix B. We solve these equations using standard
numerical techniques, which we review in Appendix C.

It is helpful to keep in mind the following simple symme-
tries of our hydrodynamic equations (below λ > 0 is a constant
rescaling parameter):

P → λP, σQ → λσQ, η′ → λη′, γ → λγ, (15a)

x → λx ω → λ−1ω, γ → λ−1γ, σQ → λσQ,

η → λη. (15b)

The latter is especially helpful, as it means that the effects
of dissipation can be (in principle) made arbitrarily large or
small, locally (neglecting γ , as we will often do).

When doing numerics, we must be more specific about the
equations of state. We will follow [2] and employ the simple
equations of state

ε

d
= P = C0

d + 1
T d+1 + C2

2
μ2T d−1, (16a)

n = C2μT d−1, (16b)

s = C0T
d + (d − 1)

C2

2
μ2T d−2, (16c)

η′ = η0T
d, (16d)

σQ = σ0T
d−2. (16e)

III. RESPONSE OF A HOMOGENEOUS FLUID

We now exactly solve these equations under the assumption
that the background chemical potential is constant.

A. Normal modes

When the background fluid is translation invariant, it
is natural to study hydrodynamics by looking for normal
modes—solutions to the equations of motion with x and
t dependence given by eiqx−iωt . Even in our finite size,
locally driven system (which breaks translation invariance),
knowledge of such normal modes is useful. We thus begin
with a thorough review of the theory of such normal modes in
a relativistic fluid such as the Dirac fluid.

Let us choose the variables P̃ ,ñ, and ṽ as our dynamical
hydrodynamic variables. P̃ and ñ may be related to μ̃ and T̃

using (9) and (7). Equation (13) reduces to an algebraic set of
equations

0 = −iωñ + iqnṽ + q2Dñ − q2CP̃ , (17a)

0 = −iωdP̃ + (d + 1)iqP ṽ, (17b)

0 = [γ − iω(d + 1)P ]ṽ + iqP̃ + ηq2ṽ. (17c)

where we have defined

C = σQ

s∂μn − n∂T n

(
∂n

∂T
+ μ

T

∂n

∂μ

)
, (18a)

D = σQ

s∂μn − n∂T n

(d + 1)P

T
. (18b)

The equations governing P̃ and ṽ decouple from the others.
Note that the thermodynamic equations are constrained so that
D > 0 [42].

Studying the solution to (17) assuming nonvanishing P̃

and ṽ, we obtain dissipative sound waves as ω,q → 0, with
the dispersion relation

ω = ±
√

q2

d
−
(

γ + η′q2

2(d + 1)P

)2

− i
γ + η′q2

2(d + 1)P
. (19)

In the limit where γ � Pω, we obtain ordinary sound waves
damped by viscosity:

ω ≈ ±vs|q| − iη′q2

2(d + 1)P
+ O(q3), (20)

with the speed of sound given by

vs = 1√
d

= vF√
d

. (21)

This is a robust prediction of relativistic hydrodynamics,
assuming the absence of dimensionful scales other than μ and
T , and follows from (8). When γ � Pω, we instead obtain a
diffusive mode

ω = −i

[
(d + 1)P

dγ
− η′

]
q2 (22)

along with a finite lifetime mode ω = −iγ /(d + 1)P . We have
implicitly assumed that γ was small when writing down (13),
so the diffusion constant above is positive. Similar sound waves
were described in Refs. [27,38], but these papers assume a
different dissipative structure in hydrodynamics. It is necessary
to follow [40] to obtain a nonvanishing electric current, under
any circumstances, at charge neutrality.

In a sound wave ñ is slave to P̃ and ṽ. There is also a
diffusive charge mode with

ω = −iDq2, (23)

in which only ñ is nonvanishing.
The qualitative form of the hydrodynamic modes listed

above is very similar to those in Galilean-invariant fluids,
including liquid 3He. We review this theory in Appendix D.
However, the theory of Galilean-invariant fluids becomes
singular if the fluid is charge-neutral—there is no charge
current or momentum density. As a consequence, it is
important to use the relativistic theory of hydrodynamics to
study charge-neutral electron-hole plasma, as can be found in
graphene. This is especially important once we account for
disorder in Sec. V.

B. Observing resonances near charge neutrality

The setup of interest in this paper may readily detect the
sound modes described above. To show this, we must solve
the boundary value problem described in the previous section.
As this uses relatively standard techniques, we present the
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calculation in Appendix E. The current at x = 0 is given by

|J̃ | = �

(d + 1)P

∣∣∣∣ iω

iω − Dq2
s

(
n + i(d + 1)PCq2

s

dω

)∣∣∣∣
×
∣∣∣∣ sin(qs(L − x0))

sin(qsL)
− sin(qd (L − x0))

sin(qdL)

∣∣∣∣, (24)

where we have defined

qs ≡ ω

√√√√1 + iγ
ω(d+1)P

1
d

− iηω

(d+1)P

, (25a)

qd ≡
√

iω

D
. (25b)

For many purposes, it is acceptable to neglect the qd -
dependent term in Eq. (24). Let us temporarily make this
assumption. In the limit of small dissipation, the response
of the fluid becomes parametrically sharp as ω is tuned to
a resonant frequency, which will occur when sin(qsL) ≈ 0.
Expanding qs to linear order in ω, this occurs when

0 ≈ sin(ωL
√

d) cos

(
id3/2

2(d + 1)

ηω2L

P
+ i

√
dLγ

2(d + 1)P

)

+ cos(ωL
√

d) sin

(
id3/2

2(d + 1)

ηω2L

P
+ i

√
dLγ

2(d + 1)P

)
.

(26)

Hence, if

ω = nπ

L
√

d
= nπvs

L
, (27)

we see that as ω → 0,

sin(qsL) = sinh

(
d3/2n2π2

2(d + 1)

η

PL
+

√
dLγ

2(d + 1)P

)
. (28)

And if τ → ∞ and η → 0, so that dissipative effects are very
small, we see that the current J̃ flowing through the contacts,
given in Eq. (24), is proportional to the inverse of a small
parameter. Indeed, these resonances correspond to the normal
modes of a one dimensional wave equation with standard
(closed-closed) boundary conditions. When the argument of
the sinh becomes large, then we cannot observe any more sharp
resonances. We numerically plot (24) for various values of η0

in Fig. 2.
As the assumption that Coulomb interactions are negligible

is best near the charge neutrality point (as we will discuss
later), we now assume that μ = 0 and discuss the practical
consequences of (28) in d = 2 (relevant for experiments on
graphene). Let us first assume that the sample is perfectly
clean. At charge neutrality, then (d + 1)P = T s, and sharp
resonances occur when

η

s
� T L

10n2
∼ 1

10n2

L

lth
. (29)

Ideally, we could observe at least n = 3 resonances, mean-
ing that experimentally L > lth × 100η/s. If we use the
experimentally-derived estimate that η/s ∼ 10 [2], (1) implies
that L > 100 μm, which is an order of magnitude too large

FIG. 3. A plot of |J̃ | as given in Eq. (24), and a comparison to
numerics, for η0 = 0.1, and otherwise the same parameters in Fig. 2.
Here we focus on the limit ω → 0, where we see that J̃ → 0.

for many experiments. Of course, if we only wish to see
the first resonance, or (as postulated in Ref. [2]) η/s is in
reality closer to 2, then L > 10 μm may be sufficient, and
within experimental reach. Alternatively, we may say that if
n resonances are observed, then the ratio η/s is heuristically
bounded from above by (29).

Finally, let us also note that in the limit ω → 0,J̃ as given
in Eq. (24) vanishes—see Fig. 3. Hence, the signal we are
looking for is strictly finite frequency. However, the frequency
scale at which the vanishing of this signal disappears is ω ∼
D/L2, which (for realistic parameters for graphene) is about 1
GHz. Hence, for all practical purposes, this effect is incredibly
suppressed by the time we reach the scale of sound resonances
at ∼30 GHz.

C. The diffusive limit

Figure 4 shows the consequences of adding γ > 0. As
expected, the presence of electron-phonon coupling degrades
the sharpness of the acoustic resonances of the electron fluid,
surprsingly quickly, even when γ ∼ 0.04. We can estimate γ

in charge-neutral graphene, following [43,44], assuming that

FIG. 4. A plot of |J̃ | as given in Eq. (24), assuming � = 1,L =
100,C0 = C2 = 1,σ0 = 0.1,μ = 0.3, and η0 = 0.1, for different val-
ues of γ . Upon increasing γ , the strength of the observed signal
decreases exponentially, and fewer resonances are easily visible.
Furthermore, the maximal strength of the observable signal is set
by γ .
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the electrons are noninteracting:

γ

(d + 1)P
∼ D2(kBT )2

�3ρmv2
Fv

2
ph

∼ 1010 s−1 ∼ 10−3 (natural units).

(30)

Here, D is the deformation potential of graphene, ρm is the
mass density of the graphene crystal, and vph ∼ 0.02vF is the
speed of acoustic phonons; appropriate numbers are given in
Ref. [43]. This simple estimate suggests that the effects of γ

are rather negligible for a realistic experiment.
If γ � (d + 1)Pω, then we never see any resonances.

Defining

D̃ = (d + 1)P

dγ
(31)

and

qω ≡
√

− iω

D̃
, (32)

we obtain from (24) that the current flow at the endpoints is
approximately given by

|J̃ | ∼
∣∣∣∣ sinh(qω(L − x0))

sinh(qωL)

∣∣∣∣. (33)

It is straightforward to check that this function of ω is
monotonically decreasing, and will admit no resonances.

At higher frequencies, neglecting viscosity, we may expand
qs to first nontrivial order in ω. (24) and (28) lead to

|J̃ | ∼ exp

[
−

√
dx0γ

2(d + 1)P

]
, (34)

and so even at high frequencies, the remnants of the ho-
mogeneous (electron-phonon) momentum relaxation channel
leads to exponential suppression of the signal. This effect is
readily observed in Fig. 4. We will see that the inhomogeneous
momentum relaxation channels do not have this property.

The absence of resonances in a diffusive limit implies that
the detection of nonmonotonic behavior in J̃ (ω) is a powerful

test for clean hydrodynamics in an electronic fluid. In contrast,
Ohmic models such as “hot carrier dynamics” [33] predict
monotonically decreasing J̃ (ω) once ω � D/L2.

IV. COULOMB INTERACTIONS

In this section, we discuss the role of long-range Coulomb
interactions more carefully. As we will see, unlike for ω = 0
phenomena, at finite ω it is important to account for such
interactions. As a “worst case scenario,” we will assume that
long-range Coulomb interactions are completely unscreened.
In reality, thermal fluctuations can lead to additional screening,
analogous to the Debye screening of ions in water [45], on the
longest wavelengths. Secondly, in an experiment such as in
Ref. [1], the presence of gates near the sample leads to image
charges ∼600 nm from the sample, which modifies further the
Coulomb kernel beyond this length scale. Both of these effects
will reduce the complications of Coulomb screening—and
possibly eliminate them (qualitatively) when looking for sound
modes with wavelengths ∼10 μm. Nonetheless, it is instructive
to understand possible complications such Coulomb effects
could lead to.

Following [2,15], we account for long-range Coulomb in-
teractions by replacing μ0(x), the externally imposed chemical
potential, with the “external” electrochemical potential

μ0 − ϕ = μ0 −
∫

ddy K(x; y)n(y), (35)

where K is a long-range Coulomb kernel which we will
describe in more detail later. This causes two changes. Firstly,
the background is no longer given by μ = μ0, but by a
more complicated solution where μ varies so that μ(x) =
μ0 − ϕ[μ0]. Since the hydrodynamic equations depend either
on μ (through the local equations of state), or μ0 − ϕ = μ, it
is acceptable to “ignore” this effect through a redefinition of
μ0. Physically, this is the statement that the electronic fluid
only is sensitive to the electrochemical potential. The second
change is nontrivial, however. The linear response equations
now read

[
nṽ − σQ

(
∂xμ̃ + ∂x(K ⊗ ñ) − μ

T
∂xT̃

)]
∂xμ + S0(x) + iωd(nμ̃ + sT̃ ) = ∂x((ε + P )ṽ), (36a)

n∂xμ̃ + n∂x(K ⊗ ñ) + s∂xT̃ − ∂x(η′∂xṽ) = [iω(ε + P ) − γ ]ṽ, (36b)

∂x

[
nṽ − σQ

(
∂xμ̃ + ∂x(K ⊗ ñ) − μ

T
∂xT̃

)]
= iω

(
∂n

∂μ
μ̃ + ∂n

∂T
T̃

)
, (36c)

where K ⊗ ñ denotes the convolution in Eq. (35), but only over
the linear response perturbation to the local charge density,
ñ = (∂μn)μ̃ + (∂T n)T̃ .

We now describe the form of K(x,y). The Poisson equation
governing the long-range Coulomb interactions in the physical
three spatial dimensions reads(

∂2
x + ∂2

z

)
ϕ = −4παn δ(z), (37)

where z is the out-of-plane direction, we have placed the
graphene sheet at z = 0, and α is the effective fine structure

constant, discussed in the introduction. In the infinite plane,
one finds

K(x,y) = −2α ln|x − y|. (38)

It is helpful to Fourier transform this expression

(K ⊗ ñ)(q) = 2πα

|q| ñ(q). (39)

In a finite domain, subject to the boundary conditions ϕ̃(x =
0,L) = 0,K(x,y) can be expressed as a Fourier series, which
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FIG. 5. A plot of |J | vs ω for various values of η0 and σ0, keeping � = 1,C0 = C2 = 1,μ = 0.6,γ = 0,x0 = L/2, and L = 50 fixed.
Vertical dotted lines denote the predicted resonances of (45) when q = nπ/L, for n = 1,3,5, . . . .

we explicitly compute in Appendix F. For distances |x − y| �
L, it reduces approximately to (38).

A. Sound waves and plasmons

The normal modes of a fluid, accounting for long-range
Coulomb interactions, may be found analogously to Sec. III A.
We state the results—now explicitly plugging in for d = 2.
Assuming that n �= 0, the frequencies of the normal modes are
given by the solutions to the equation

0 = γ − 3iωP + η′q2

+ 3iPq2

2ω
+ iαn|q|

2ω

2inω − 3CPq2

iω − Dq2 − σQα|q| . (40)

We find a diffusive mode given by

ω = −i
9σQP 2∂μn

2T (n2 + σQγ )(s∂μn − n∂μs)
q2 + · · · (41)

and propagating plasmon modes with

ω≈ −i(γ+6παPσQ|q|)±√24παPn2|q|−(γ+6παPσQ|q|)2

6P

+O(q3/2,η′). (42)

When γ � 6παPσQ|q|,

ω =
√

2παn2

3P
|q| − iπασQ|q| + · · · , (43)

and when γ � 6παPσQ|q|, we find a damped mode with
ω = −iγ /3P , and a “diffusive” mode with

ω = −i
2παn2

γ
|q|. (44)

In the dissipationless limit where γ = η′ = σQ = 0, the prop-
agating modes have dispersion relation

ω2 = q2

2
+ 2παn2

3P
|q|. (45)

Equation (45) was found earlier in Ref. [38]; the above formula
is written in terms of simple thermodynamic quantities. Equa-
tion (45) recovers the well-known square root dispersion of
plasmons in graphene [46], interpolating between propagating
plasmons as q → 0 and propagating sound modes as q → ∞.
The long-range nature of the Coulomb interactions, with
K ∼ |q|−1, is responsible for the curious scaling of the second
term of (45).

Let us note a few things about these results. Firstly, by
studying the dissipationless limit, it is easy to identify the
diffusive mode (41) as associated with the dynamics of the
combination P̃ + 2παn|q|−1ñ. Secondly, if n = 0, then no
matter how strong the Coulomb interactions are, the dispersion
relation reduces to that of simple sound modes. At finite
density, the excitations look like plasmons whenever

ω � 4παn2

3P
∼ αμ2

T
(μ � T ). (46)

Above this frequency, the propagating modes will look very
similar to ordinary sound. However, this crossover is quite
slow.

We show in Appendix F 1 that normal modes are exactly
present in our finite domain, with (39) obeyed exactly when
q = nπ/L with n a positive integer. Hence we predict that
in our setup, at any odd n there is a normal mode in the
dissipationless limit when x0 = L/2, so we expect to see sharp
resonances in J at the associated values of ω, predicted by (45).
in Fig. 5, we numerically show this is the case.

V. DISORDER

In this section, we will study the role of disorder on
the propagation of sound modes, and the observation of
resonances. Analogous to [2,41], we assume that disorder is
introduced via inhomogeneity in the chemical potential:

μ(x) = μ̄0 +
N∑

n=1

μn sin

(
nπx

L
+ φk

)
, (47)

with μk and φk random variables. μ̄0 denotes the average value
of the chemical potential, and N counts the number of disorder
modes that are included. Such disorder is externally imposed
on the fluid via charged impurities, and is known to be the
dominant source of disorder in graphene, for example [47].
We denote with u the strength of disorder, defined through the
variance of the chemical potential profile:

u2 ≡ E[(μ − μ̄0)2] ≡ 1

L

∫ L

0
dx (μ(x) − μ̄0)2. (48)

In graphene, the local μ(x) does not fluctuate with heavy-
tailed statistics [47]. For this reason, we approximate that μ(x)
consists of a sum of sine waves with random coefficients, as in
Ref. [2]. We assume that the μk are independent and identically
distributed with a uniform distribution, chosen so that (48)
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holds. The disorder correlation length ξ is defined by

ξ ≡ L

N
. (49)

For simplicity, in this section, we usually assume that
the fluid is on average charge neutral (to avoid, as much as
possible, the transition to plasmons described in the previous
section). Hence, we will set μ̄0 = 0 unless otherwise stated.

Disorder has a variety of interesting consequences. One of
them can be observed already at ω = 0. Before, we showed
that there is no signal in our setup at ω = 0, but in the presence
of disorder, we generally find a finite (though small) value of
|J̃ (x = 0,ω = 0)|—see Appendix G.

A. Analytic results

Recall that x0 is the distance between our source of energy
and (one) boundary. The measurable signal at the boundary is
generically exponentially small in x0:

|J̃ (x = 0)| ∼ exp

(
− x0

ξloc

)
. (50)

ξloc corresponds to the length scale over which the fluid
effectively responds to our localized injection of energy, and
it is now our goal to compute of ξloc in a disordered fluid.
This allows us to understand what the limiting effects are for
observing signatures of sound waves in experiments. It is also
of interest from a theoretical viewpoint: we will discover mul-
tiple time scales between which the hydrodynamic response of
the disordered electron fluid is dominated by entirely different
processes.

For now, we will neglect long-range Coulomb interactions,
which allows us to derive some analytic results for ξloc. We
will later justify this assumption when μ̄0 = 0 numerically.

So far, dissipative effects for the electronic fluid (viscosity,
electron-phonon coupling) have been entirely responsible for
finite ξloc. In the clean limit,

1

ξloc
= |Im(qs)|. (51)

For simplicity, let us focus on what happens as ω → 0. If
γ = 0 then

1

ξloc
=

√
dηω2

2(d + 1)P
. (52)

If γ �= 0, we instead find

1

ξloc
=
√

dωγ

2(d + 1)P
. (53)

In this section, we address how ξloc is modified in the presence
of disorder, both as ω → 0 and at higher frequencies. The com-
putations of ξloc are much more involved in disordered fluids. In
some limiting cases, we may compute ξloc analytically. These
computations can be found in Appendix H—we summarize the
results here and discuss the physical interpretations. We also
caution the experimentally oriented reader that many of the
parameters we employ in numerical simulations in this section
are unrealistic for experiments—the numerical parameters are
chosen to make quantitative contact with simple theoretical

FIG. 6. Numerical simulations measuring ξloc, as defined by (50).
We compare to the theoretical prediction given in Eq. (54), as ω → 0.
Each set of data points corresponds to a single disorder realization. All
simulations used d = 2, η0 = 0.1, C0 = C2 = 1, L ∼ 1000 (precise
values vary, but were unimportant), and α = γ = 0. The y axis
has been rescaled for each curve in accordance with theoretical
predictions, and the only fit parameter in numerics is the overall
amplitude of J̃ . Hence there is a constant offset in the vertical
direction, but the slope of the lines is not a fit parameter. The scaling
behavior ends when ω � τ−1

cp , the predicted momentum relaxation
rate: for the simulations displayed, τ−1

cp � T .

predictions. Some of these parameters can be made more
realistic using the rescaling symmetries (15).

As ω → 0, assuming μ̄0 = 0, we generically find

1

ξloc
=
√

dω

2σQ(ε + P )

(
∂n

∂μ

)2

u2. (54)

Figure 6 demonstrates that (54) is indeed found in numerical
simulations. We can understand (54) as follows. The particular
power of ω, which appears in Eq. (54), is consistent with
homogeneous diffusive transport on the longest length scales,
analogous to the case of momentum relaxation due to coupling
with acoustic phonons (22). Indeed, we may interpret (54) as

1

ξloc
=
√

dω

τcp
, (55)

where τcp is the momentum relaxation rate of the fluid due
to the inhomogeneous chemical potential [2].2 Equation (55)
holds even for μ̄0 �= 0, and is derived in Eq. (H33). Upon
comparing to (53), it is natural to postulate (as is done almost
uniformly in the recent literature on hydrodynamics of electron
fluids) that (13) is a good model of dynamics in disordered
media, with γ accounting for momentum relaxation due to all
channels—both electron-phonon coupling and disorder:

γeff ≡ ε + P

τeff
≡ γel−ph + ε + P

τcp
. (56)

Indeed, it was shown perturbatively in Refs. [2,41] that for
the purposes of computing dc transport (in higher dimensions
as well), we may approximate that the fluid is exactly

2In Ref. [2], τcp was computed by studying the thermoelectric
conductivities, which characterize the response of the fluid to uniform
electric fields and temperature gradients. That these two different
computations lead to the same τcp justifies our interpretation.
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FIG. 7. Numerical simulations measuring ξloc, as defined by (50). We compare to the theoretical prediction given in Eq. (57), which is
the localization length for sound waves. We have split the data into two plots, to emphasize the scaling at slightly larger values of ωξ . All
simulations used d = 2,σ0 = η0 = 10−3,C0 = C2 = 1,L ∼ 2000 (precise values vary, but were unimportant), and α = γ = 0. The y axis has
been rescaled for each curve in accordance with theoretical predictions, and the only fit parameter in numerics is the overall amplitude of J̃ .
Hence there is a constant offset in the vertical direction, but the slope of the lines is not a fit parameter. Each set of data corresponds to a
single realization of disorder; the “rugged” nature of some curves is related to high frequency resonances that are pronounced. The agreement
between numerics and theory is insensitive to the specific values of σ0 and η0, so long as they are small. Changing N corresponds to changing
ξ , through (49).

homogeneous, but with a correction to γ due to the disorder
in the chemical potential. This can be understood on rather
general grounds at the quantum mechanical level [48].

However, this “relaxation time approximation” is not al-
ways accurate for spatiotemporal dynamics at finite frequency.
(1) Even at rather small values of ω. Equations (22) and (56)
predict that only when ωτcp � 1 will we see the breakdown of
(54). In fact, Fig. 6 shows the breakdown of the ξloc ∼ ω−1/2

scaling when ωτcp ∼ 0.01, in some cases. Hence, at finite
frequency, approximation (56) will fail.

(2) We predicted in Eq. (34) that (56) implies that |J̃ | is
always exponentially suppressed, even when ωτcp � 1. In Fig.
9, we will show that the exponential suppression of resonances
is far less pronounced for actual disordered systems.

Why does approximaton (56) fail? An intuitive argument
is as follows: Eq. (54) appears independent of the disorder
correlation length ξ , defined in Eq. (49). However, if we send
a finite-frequency sound mode through the fluid, we expect the
response to be different depending on whether or not ωξ � 1
or ωξ � 1. In the latter regime, the wavelength of sound is
very small compared to ξ , and so locally the medium will look
completely homogeneous. The WKB approximation suggests
that once ωξ � 1, a sound mode should hardly feel the effects
of the disordered background.

This intuition is almost—but not exactly—correct. Ne-
glecting dissipative effects in the equations of motion, when
ωξ ∼ 1, waves may become classically Anderson localized.3

As a wave phenomenon, Anderson localization has been
studied in a variety of disordered classical wave equations
[49,50]; the localization of classical sound has even been
observed experimentally in solids [51]. The breakdown of
(56) will be due to the onset of a regime where Anderson
localization dominates the response.

3In truth, waves are always localized in low dimensions, but when
ωξ � 1 the localization length is essentially negligible for practical
purposes.

Equation (52) suggests that when η is small, if γ = 0 then
there is a very large window over which the dissipative decay
of sound waves should be negligible (at high frequency). So
let us focus on the (for now, heuristic) limit where η,σQ → 0
and ξ → ∞. In this limit, ω ∼ 1/ξ should be small enough
so that viscous dissipation is relatively weak. Neglecting
dissipative (η,γ,σQ) terms in the hydrodynamic equations, we
find in Appendix H that the dynamics reduces to a simple
inhomogeneous wave equation. Once ωξ � 1, a calculation
reveals that

1

ξloc
≈ 2dπ4

5

(
∂n

∂μ

)2
u4

(T sω)2ξ 3
. (57)

For the first time, we see that ξloc can be finite even in a
dissipationless4 fluid, so long as there is disorder. The inter-
pretation of this is natural. (57) is the Anderson localization
length of classically localized sound waves. In contrast to (54),
(57) predicts that the decay of the signal now decreases as
ω increases. Figure 7 demonstrates (57) can be observed in
numerical simulations.

We have seen that the localization length of sound modes
can control the response of our fluid to a localized perturbation
at frequencies ωξ ∼ 1, and that this response is effectively
dissipationless. It is rather strange, then, that the response given
by (54) as ω → 0 is a dissipative response (as ξloc depends on
σQ). To understand how this can occur, we first note that the
dissipationless hydrodynamic equations become ill-posed at
ω = 0: we find two conservation laws (entropy and charge)
which are inconsistent with one another when σQ = 0 [2].
Hence dissipation is necessary to even have a well-posed set of
equations. More physically, the presence of conservation laws
means that the full, dissipative hydrodynamic equations of

4Here, we are using the term dissipationless to refer to the fact that
entropy production vanishes. Energy and momentum can, however,
be exchanged via coupling to the external chemical potential.
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FIG. 8. A plot of |J̃ | vs ω for various disorder realizations. We
used parameters L = 1000, σ0 = η0 = 0.01, C0 = C2 = 1, and γ =
0. Dashed lines have u = 0.1 and solid lines have u = 0.2. Note in
particular how all solid lines overlap at small frequencies, independent
of N (and thus ξ ), in agreement with (54). The transition between
(54) and (57) is qualitatively visible. We also caution that data points
with |J̃ | � 10−30 may be unreliable as our numerical computation
employs double-precision arithmetic.

motion must have delocalized modes at ω = 0, corresponding
to the transport of conserved quantities. These delocalized
modes suggest that the true localization length must diverge as
ω → 0, in a manner which is consistent with (54) [52,53].
Indeed, when (54) holds, the localization length of the
eigenstates of the hydrodynamic equations may generically
grow faster than ω−1/2, and will not generically equal ξloc. This
is acceptable: at low frequencies, dissipative processes—and
not wave interference—are responsible for the spatial decay
of the signal which is measured by ξloc.

We thus find that disordered electron fluids are rather
interesting. At both low and high frequency, hydrodynamic
dissipation (σQ and η) plays a crucial in the spatiotemporal
dynamics. However, there may be a broad range of inter-
mediate frequencies, near ωξ ∼ 1, where dissipative effects
become rather negligible. In sharp contrast to clean fluids,
where ideal hydrodynamics emerges on very long time scales,
ideal hydrodynamics is best probed in an electron fluid at
strictly finite frequencies.

So far, the discussion of the difference between (54) and
(57) has been qualitative. in Fig. 8, we show numerically the
transition from (54) to (57) and beyond. In the Appendix, we
discuss this transition a bit more quantitatively. The punch line

is as follows: the momentum relaxation time approximation
(54) is quantitatively accurate for

ω � ωbd ≡ A0
σQ

ξ 2
, (58)

where A0 is a dimensionful quantity, dependent on the
thermodynamic equations of state, but seemingly not on u.
We expect that above this scale, but below ωξ ∼ 1, (57)
properly describes the response. Since (58) scales as ξ−2,
as ξ → ∞, there can be a parametrically large regime of
frequencies where the classical localization of sound waves
dominates the nonlocal response in our setup. Interestingly,
the localized response is larger than the response predicted by
(54).

The theory that we have discussed is particular to one-
dimensional disorder. As is well-known, localization becomes
much weaker in higher dimensions [54]. This one-dimensional
theory is probably not relevant to experiments, except in very
long and thin samples. Nonetheless, the qualitative signatures
of Anderson localization may show up in experiments, as we
will detail in the next section.

B. Numerical results

Figure 8 compares the signals between two different
disorder realizations; on a logarithmic scale, we see that
for the large samples being studied, the difference between
disorder realizations is qualitatively rather minor. However,
keeping in mind the relevant length scales for graphene, we
note that L = 1000 is about a factor of 10 larger than what is
currently feasible. Hence we now turn to numerical simulations
in smaller samples, where finite size effects are important,
to discuss the practical feasibility of our setup. Figure 9
compares the response six disorder realizations for samples
with a smaller amount of disorder. We see that depending on
the ratio C2/C0, the response is more or less sensitive to the
particular disorder realization, especially as ω increases. At
smaller values of C2/C0, we see that higher order resonances
(n = 5,7, . . .) occur at frequencies similar to the clean theory,
whereas at higher values some samples either do not have
visible resonances, or these resonances do not appear at the
same frequencies.

In Fig. 10, we demonstrate the effects of increasing disorder
strength for a large variety of different possible equations of
state. In each case, we assume that μ̄0 = 0. Below we comment
on general lessons. (1) We see that when σ0 is small enough,

FIG. 9. A plot of |J̃ | vs ω for six disorder realizations. We used parameters μ̄0 = 0, N = 8, L = 100, σ0 = η0 = 0.1, C0 = 1, γ =
0, and x0 = L/2. (Left) C2 = 0.3. (Right) C2 = 1. In the left panel, we see a generic alignment of higher order resonances in ω between
disorder realizations. In the right panel, we see hints of localizaton at small frequencies, and spurious resonances at higher frequencies.
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FIG. 10. A plot of |J̃ | vs ω for μ̄0 = 0.1 and a single disorder realization, but with the amplitude of disorder rescaled. Parameters
are generically as follows: α = 0, C0 = C2 = 1, γ = 0, x0 = L/2, and η0 = σ0 = 0.1, with the following exceptions: (b) η0 = σ0 = 1;
(c) γ = 0.02; (d) C2 = 0.3; (e) σ0 = η0 = 0.01; and (f) σ0 = 1. Extensive comments on this figure may be found in the main text.

the effects of localization become quite severe. This follows
from the fact that 1/ξloc ∼ σ

−1/2
0 in Eq. (54). This is especially

visible in (e), which is reminiscent of Fig. 8. As σ0 increases,
we first observe the effects of localization becoming less and
less important, albeit visible in (a), and the main challenge is
that resonances are shifted away from their ideal frequencies.
Once σ0 is large enough, then higher order resonances are not
quantitatively shifted from their predicted frequencies.

(2) The dominant effect of viscosity near charge neutrality
determines the sharpness of resonances, as well as the number
of visible resonances: compare panels (a), (b), and (f).

(3) As we emphasized in this section, momentum relaxation
due to electron-phonon coupling is qualitatively distinct at
higher frequencies, compared to momentum relaxation due to
disorder. This is most evident in panel (c), where we see that
the dominant effect of electron-phonon scattering, encoded in
γ , is simply to reduce the overall signal J̃ , as well as further
broaden the resonances. Other qualitative features of (c) are
shared with panel (a), which has identical parameters up to
γ = 0: shifting of resonances at large disorder, and hints of
localization at stronger disorder.

(4) As in Fig. 9, we see that when C2 ∼ ∂n/∂μ is smaller,
the signal becomes much cleaner, at all disorder strengths: see
panel (d).

Figure 10 neglects the effects of long-range Coulomb
interactions. In Fig. 11, we demonstrate the consequences of
long-range Coulomb interactions in disordered samples. The
key points are as follows. (1) Depending on C2, the effects of
Coulomb interactions when disorder is taken into account can
either nearly destroy resonances (a) and (b), or have relatively

minor effects (c)–(f). In the Dirac fluid, it is predicted [see
(A2)] that C2/C0 is closer to 0.3, suggesting that the effects of
Coulomb screening may not be as severe in experiment.

(2) If finite α not outright destroy resonances, as in panels
(c)–(f), then they do not shift substantially the locations of a
given resonance. Indeed if disoder is weak, as in panel (e), it
is possible for the signal to be practically immune to α.

(3) In panels (c)–(f), increasing α decreases the amplitude
of the observable signal, though this effect rarely destroys
resonances outright.

(4) Perhaps surprisingly, some of the features of localization
(lack of low ω resonances) are visible irrespective of the
strength of nonlocal Coulomb interactions. This effect is most
evident in panels (a) and (d).

VI. OUTLOOK

In this paper, we have theoretically demonstrated that
charge neutral strongly interacting electron-hole plasmas that
arise in ultrapure solid state systems, such as the Dirac fluid
in graphene, have sharply defined sound modes that can be
observed upon injecting energy into the system at a modulated
rate. At the charge neutrality point, we have emphasized that
the acoustic resonances are essentially immune to any possible
long-range Coulomb screening, and are also robust to moderate
amounts of disorder.

A. Experimental viability of ac response in graphene

Is the detection of such acoustic resonances experimentally
plausible in graphene? As we noted earlier, our setup is
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FIG. 11. A plot of |J̃ | vs ω for μ̄0 = 0 and a single disorder realization, but with the amplitude of α rescaled. Parameters are generically
as follows: N = 8, C0 = 1, C2 = 0.3, γ = 0,x0 = L/2, η0 = σ0 = 0.1, and u = 0.2, with the following exceptions: (a) and (b) C2 = 1;
(b) η0 = σ0 = 1; (d) N = 20; (e) u = 0.1; and (f) γ = 0.02.

somewhat similar to the setup in Refs. [33–37], where a laser
locally injects energy into the sample. The crucial difference
in this paper is that energy is not injected at a constant rate,
but instead at a finite (angular) frequency ω.

The most important question to ask is whether or not it is
feasible to drive the electronic system in the linear response
regime. Here we make a crude estimate of this. The total energy
rate injected into the system is given by

�tot = �W ∼ �ωEM × αEM, (59)

where W is the transverse width of the sample, ωEM is the
(angular) frequency of laser light, and αEM is the rate at which
photons are absorbed. In principle, we require αEM � ω, where
ω is the modulation frequency of the signal. Assuming W ∼
10 μm, ω ∼ 100 GHz, and ωEM ∼ 1000 THz, we obtain

�

ε + P
∼ 104 m

s
∼ 10−2 × vF. (60)

Hence the velocity of the excited fluid is much smaller than
vF and indeed the velocity of the electronic fluid should be
small. At an extremely sharp resonance, linear hydrodynamics
would break down—however, this is acceptable since there
would nevertheless be strong evidence for a resonance.

The most serious challenge is to detect the rapid changes in
the electric current at angular frequency ω. Plasmons have been
detected at ω � 1 THz [55–57], but such high frequencies are
beyond the regime of validity of hydrodynamics. It may also be
easier to study the second order response to a finite-frequency
drive, which will contain an ω = 0 component. This static

response will be easier to detect experimentally, given the
challenges with driving the electronic fluid at ω � 1 THz.

It may also be possible to use optical transmission exper-
iments to detect signatures of hydrodynamics (see Ref. [58]
for a theoretical model in a Fermi liquid). However, here the
“bumps” in the signal are exponentially suppressed, in contrast
to the resonances in Fig. 2.

B. Open theoretical questions

The main theoretical development presented in this paper
is the analysis of nonlocal finite-frequency response of
disordered electron-hole plasma. With or without Coulomb
interactions, we see that the finite-frequency response can
behave qualitatively differently from the response predicted
by “momentum relaxation time” theories, at parametrically
smaller frequencies than predicted by τ−1

eff , as given in
Eq. (56). Hence these toy models of disorder can exhibit
qualitatively different finite-frequency response than other
models of disorder. This almost certainly has relevance
for many other quantum systems, including those studied
using holographic duality, where similar cartoons of disorder
which neglect inhomogeneity are quite popular [59–61]. We
expect the dynamical response of disordered electron fluids to
hence be much more interesting—especially on intermediate
time scales—than previous studies would suggest. It would
be interesting to investigate this further in future work.

Deep in the Fermi liquid regime, it is possible to crisply
use nonlocal electrical measurements to detect viscous elec-
tron flow [10,11,13]. However, near charge neutrality the
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energy-momentum and charge sectors decouple within hy-
drodynamics (up to charged disorder). Indeed, Ref. [13]
found no experimental evidence for viscous electron flow
at charge neutrality. In this work, we have focused on
finite-frequency response as a way to detect hydrodynamics
near charge neutrality, but it is also important to develop
tests for time-independent hydrodynamic flows near charge
neutrality. Thermoelectric transport has been one proposal
[1,2,40], but there may be a nonlocal measurement which
provides complementary evidence for hydrodynamics.

Although we have focused on graphene in relating our
theory to experiment, there are other materials of interest,
which are charge neutral, including recently realized Weyl
semimetals [62–64]. It would be of interest to observe sound
resonances in any such electron-hole plasma.

Finally, it is of great interest to move beyond the linear
response regime when studying hydrodynamic electron flow
in solid-state systems. Indeed, experimental observation of
nonlinear hydrodynamic phenomena such as turbulence would
be remarkable. However, electron fluids are complicated by
the breaking of boost invariance by Coulomb interactions,
mediated by the true speed of light c, and so the equations
of state may pick up a complicated velocity dependence.5

Whether or not these effects have a qualitative change on
nonlinear flow patterns is an important question for future
study.
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APPENDIX A: DIMENSIONAL ANALYSIS

Here we present the relevant energy, length, etc., scales for
graphene, assuming temperature T ∼ 100 K:

velocity ∼ vF ∼ 106 m/s, (A1a)

length ∼ �vF

kBT
∼ 100 nm, (A1b)

time ∼ �

kBT
∼ 0.1 ps, (A1c)

energy ∼ kBT ∼ 100 K ∼ 0.01 eV, (A1d)

conductivity ∼ e2

�
∼ 0.25 k�−1. (A1e)

For example, we frequently plot the response in the main
text as a function of frequency. ω = 0.1 refers to ω = 0.1 ×
1013 s−1 = 1012 s−1. We also note that chemical potential
scales as energy, and charge density scales as [length]−d , in
our notation.

5This phenomenon seems to be hinted at in Ref. [65] and may be
an entirely quantum mechanical effect.

For the Dirac fluid, kinetic theory predicts that at leading
order in α [3,4,17,18]:

C0 ≈ 3.44α2, (A2a)

C2 ≈ 0.88α2, (A2b)

σ0 ≈ 0.12α−2, (A2c)

η0 ≈ 0.45. (A2d)

APPENDIX B: BOUNDARY CONDITIONS

Here we justify the claim in the main text that the hy-
drodynamic equations are well-posed with Dirichlet boundary
conditions only on μ̃ and T̃ . More precisely, we will show that
four boundary conditions are sufficient to fix the problem. To
do so, let us consider a junction between two domains R− =
[x−,x0) and R+ = (x0,x+] where we have a solution to the
differential equations in the domains R− and R+ separately. We
will show that there are two linearly independent constraints
relating μ̃,T̃ ,ṽ and their first derivatives.

Let us begin by supposing that ∂xμ(x0) = 0. Using that all
parameters in the hydrodynamic equations are functions of μ,
we conclude that all parameters in Eq. (13) are locally constant
at x0. Then we obtain a constraint equation

(ε + P )∂xv = iωd(nμ̃ + sT̃ ) + S0. (B1)

Upon plugging this equation into (13b), we obtain

n∂xμ̃ + s∂xT̃ − η′

ε + P
∂x[iωd(nμ̃ + sT̃ ) + S0]

= [iω(ε + P ) − γ ]ṽ, (B2)

which provides us a linearly independent constraint equation.
At this point, we can see that we may locally remove both ṽ and
∂xṽ and are left with two independent second-order equations
for μ̃ and T̃ ; hence we have exhausted our constraints.

If ∂xμ �= 0 locally, then we follow a similar procedure,
beginning with the first constraint:[

nṽ − σQ

(
∂xμ̃ − μ

T
∂xT̃

)]

= ∂x((ε + P )ṽ) − S0 − iωd(nμ̃ + sT̃ )

∂xμ
. (B3)

Now, taking the derivative of both sides, we obtain

iω

(
∂n

∂μ
μ̃ + ∂n

∂T
T̃

)

= ∂x

[
ṽ∂x(ε + P ) + −S0 − iωd(nμ̃ + sT̃ )

∂xμ

]

+ ε + P

∂xμ
∂2
x ṽ. (B4)

Equation (13b) gives us a linearly independent expression for
∂2
x ṽ in terms of μ̃,T̃ ,ṽ and their first derivatives. Hence we

find a second linearly independent constraint, just as before.
Again, this set of constraints is exhaustive, and the remaining
equations are independent second order equations for μ̃

and T̃ .
A heuristic argument for the reason that there are 4

independent modes to these equations from the fact that
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there are a pair of sound modes and an independent diffusive
mode. Each such mode would correspond to one second order
differential equation, implying that in total there are four
boundary conditions to fix.

APPENDIX C: NUMERICAL METHODS

We solve differential equations numerically using standard
pseudospectral methods [66]. We discretize the spatial coor-
dinate x into a list of N points {xj } = x. We further discretize

μ̃(x) ≈
N−1∑
α=0

μ̃αTα

(
x

L

)
=

N∑
i=1

μ̃ifi(x), (C1)

where μ̃α are coefficients, Tα is the Chebyshev polynomial
of order α, and μ̃i ≡ μ̃(xi). Exactly at the grid points of
interest, the discretized vector is chosen to agree with the
exact function; away from these points, we interpolate the
true function with a sum of polynomials. Defining the 3N × 1
vector

u ≡ (μ̃(x1), . . . ,μ̃(xN ),T̃ (x1), . . . T̃ (xN ),ṽ(x1), . . . ,ṽ(xN ))T

(C2)

and definining an appropriate N × N (nonlocal) derivative
matrix D, acting on μ̃i to approximate ∂xμ̃(xi), differential
equations of the form (13) may then be written as

Lu = s (C3)

with L a 3N × 3N matrix which is built as follows: local
functions such as n(μ) are turned into diagonal matrices with
entries n(μ(xj )), and ∂x is replaced by D.

It is straightforward to implement K ⊗ ñ numerically. K

becomes a nonlocal matrix acting on a discrete vector of
data ñj = ñ(xj ). Hence, as a discretized matrix, the Coulomb
kernel K becomes

Kij ≈ xj+1 + xj−1 − 2xj

2
K(xi,xj ), (C4)

with straightforward modifications for the endpoints.

1. Domain decomposition

For more complicated problems without long-range
Coulomb interactions, we employ domain decomposition
[67] to greatly increase the number of grid points in the
computational domain. The essential idea is as follows: we
divide our total grid

[0,L] =
[

0,
L

Nd

]
∪
[

L

Nd

,2
L

Nd

]
∪ · · · ∪

[
L − L

Nd

,L

]
.

(C5)

In each domain, we solve an equation of the form (C3), subject
to the boundary conditions μ̃ and T̃ fixed but arbitrary at the
endpoints; hence, we solve the equation four times in each
domain, to account for all possible linearly independent sets
of boundary conditions.

We then must glue the domains together. We demand
continuity of ṽ and ∂xμ̃, which we have found to be
more numerically stable at extremely low frequencies than

continuity of ∂xT̃ and ∂xμ̃. This leads to a second linear algebra
problem, which we may solve for μ̃ and T̃ at all (interior)
endpoints, as μ̃(0,L) = T̃ (0,L) = 0. Once we have fixed the
interior values of μ̃ and T̃ , we may glue the solutions in each
domain together to find a global solution.

APPENDIX D: GALILEAN INVARIANT FLUIDS

In this Appendix, we briefly review the theory of sound
waves in ordinary Galilean invariant fluids [68]. Galilean
invariance imposes a slightly different form of the constitutive
relations than (9). In particular, it is no longer appropriate to
think about a relativistic stress-energy tensor—such a tensor
would no longer be isotropic, as the momentum density and
energy current are distinct. The linearized conservation laws
for “charge,” energy, and momentum read

∂t ñ + n∂xṽ = 0, (D1a)

mn∂t ṽ + ∂xP̃ − η′∂2
x ṽ = 0, (D1b)

∂t ε̃ + (ε + P )∂xṽ − κQ∂2
x T̃ = 0. (D1c)

In many cases—such as the classical fluid water—the “charge”
conservation listed above is not conservation of electric charge.
However, Galilean invariance affords an additional conserved
quantity, which we commonly take to be particle number. In the
above equations m is a mass parameter, and κQ is a dissipative
coefficient.

We emphasize that κQ is distinct from σQ. In a relativistic
fluid, the energy current is proportional to the momentum
current, but in a Galilean-invariant fluid, the particle current
is proportional to the momentum current. This has important
consequences for dissipation, as we will shortly see.

It is straightforward to construct the dispersion relations
associated with (D1). One finds a diffusive mode where P̃ ≈ 0
and

ω ≈ −iDk2 (D2)

and a pair of sound modes:

ω ≈ ±ck − i�sk
2, (D3)

with

c2 = 1

m

(
∂P

∂n

)
s/n

, (D4a)

D = κQ

T n(∂T (s/n))P
, (D4b)

�s = η′

2mn
+ κQ

2

(∂nT )s/n(∂εP )n
(∂nP )s/n

= η′

2mn
+ κQ

2T n

[(
∂T

∂(s/n)

)
n

−
(

∂T

∂(s/n)

)
P

]
. (D4c)

As standard, thermodynamic derivatives with objects outside
parentheses imply that the derivative is taken with the external
quantity held fixed. The thermodynamic identity

T nd
s

n
= dε − ε + P

n
dn (D5)

is helpful to simplify the resulting expressions above.
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There are two points worth emphasizing, to contrast with
the theory of sound waves in the gapless relativistic fluids.
(1) A gapped relativistic fluid (or more generally, a relativistic
fluid with a third energy scale beyond μ and T ) will also have
�s not proportional to η′. �s ∼ η′ for “relativistic” electron-
hole plasma, where measuring sound attenuation can directly
measure the viscosity.

(2) In Ref. [38], the dissipative structure of the above
equations was used (the energy current had a dissipative con-
tribution). While this hydrodynamics is suitable for Galilean
invariant fluids, we see that the charge neutral (n → 0) limit of
(D1) is very singular, with the momentum and charge currents
identically vanishing. It is necessary to use the hydrodynamics
presented in this paper for a consistent theory of sound in
charge neutral fluids such as the Dirac fluid in graphene.

APPENDIX E: DRIVING A CLEAN FLUID

Recall from (17) that the dynamics of P̃ and ṽ—the only
variables sourced by S—decouple from ñ in a clean fluid.
Keeping ω fixed, the solution to the wave equations is

P̃ =
{
A sin(ωx/vη) 0 < x < x0

B sin(ω(L − x)/vη) x0 < x < L
, (E1)

as we impose boundary conditions at x = 0 and x = L are
that the electronic fluid does not exchange momentum with
the leads. Indeed, one can readily see from (17b) in position
space that P̃ = 0 implies ∂xṽ = 0, and hence the perturbed
stress tensor will vanish at the boundaries. Further integrating
over the equations at x = x0, we find that

ṽ(x+
0 ) − ṽ(x−

0 ) = �

(d + 1)P
, (E2)

and that P is continuous at x0. Using that

∂xP = ṽ
[
iω(d + 1)P − γ − ηq2

s

]
, (E3)

we fix

A = − �

(d + 1)Pqs sin(qsL)

[
iω(d + 1)P − γ − ηq2

s

]
× sin (qs(L − x0)), (E4a)

B = − �

(d + 1)Pqs sin(qsL)

[
iω(d + 1)P − γ − ηq2

s

]
× sin(qsx0). (E4b)

Hence the velocity field is given by

ṽ(x)=
{− �

(d+1)P
sin (qs(L−x0))

sin(qsL) cos(qsx) 0 < x < x0

�
(d+1)P

sin(qsx0)
sin(qsL) cos(qs(L − x)) 0 < x < x0

.

(E5)

As we mentioned in the main text, ñ is slave to P̃ in a sound
wave. The precise relation is

(
iω − Dq2

s

)
ñ = n∂xṽ + C∂2

x P̃ =
(

n + iCq2
s (d + 1)P

dω

)
∂xṽ.

(E6)

Hence, in a sound wave, the electric current is given by

J̃ =
(

n + iCq2
s (d + 1)P

dω

)
iω

iω − Dq2
s

ṽ. (E7)

Equation (E2) implies that J̃ is not continuous at x = x0,
which violates the equations of motion. Hence we must add to
our solution a charge diffusion mode which makes the net
J̃ continuous at x = x0. This diffusive mode (which only
involves ñ) takes the form

ñ(x) = c ×
{

sin (qd (L − x0)) sin(qdx) 0 < x < x0

sin (qdx0) sin(qd (L − x)) x0 < x < L
,

(E8)

where c is a constant to be determined. Note that, as required,
ñ is continuous at x = x0. Employing (E7), that the diffusive
mode above creates electric current J̃ = −D∂xñ, and requiring
continuity of the net J̃ at x = x0 fixes

qdD sin(qdL)c =
(
n+ iCq2

s (d+1)P

dω

)
iω

iω −Dq2
s

�

(d + 1)P
.

(E9)

From here, it is straightforward to obtain (24).

APPENDIX F: COULOMB KERNEL IN A FINITE DOMAIN

In a finite domain, the Coulomb kernel K(x,y), defined via

ϕ̃(x) =
∫

dyK(x,y)ñ(y) (F1)

is not translation invariant. We construct it by solving (37) in
a Fourier series, assuming a point source ñ = δ(x − y):(

∂2
x + ∂2

z

)
ϕ̃ = −4παδ(x − y)δ(z). (F2)

K(x,y) is then given by ϕ̃(x,z = 0). Away from z = 0 we may
solve (F2) in a Fourier series:

ϕ =
∞∑

n=1

ϕne−nπ |z|/L sin
nπx

L
. (F3)

Integrating (F2) over z = 0, we find that

−
∞∑

n=1

2nπ

L
ϕn sin

nπx

L
= −4παδ(x − y), (F4)

from which we find

2nπ

L
ϕn = 2

L

∫ ∞

0
dx4παδ(x − y) sin

nπx

L
= 8πα

L
sin

nπy

L
,

(F5)

so we conclude that

K(x,y) = lim
nmax→∞

nmax∑
n=1

4α

n
sin

nπx

L
sin

nπy

L
. (F6)

In our numerics, we evaluate K(x,y) by keeping nmax � 1
finite. in Fig. 12, we show that our calculation of the acoustic
response is not sensitive to nmax once nmax � 50. All plots in
the main text use nmax = 200.
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FIG. 12. A comparison of |J | as a function of ω, for more precise
estimates of the Coulomb kernel K(x,y) (parameterized by nmax).
We show the response in a clean plasma with the parameters L =
50, α = 1, C0 = C2 = 1, η0 = σ0 = 0.01, and μ̄0 = 0.6, with 571
grid points. Rapid convergence is observed so long as nmax � 50.

1. Normal modes

Here we justify the claim that in the main text, this
finite-domain Coulomb kernel nonetheless supports the same
plasmonic modes of the infinite plane, subject to the constraint
q = mπ/L, for m ∈ N. To do this, we simply note that∫ L

0
dy K(x,y) sin

mπy

L

=
∫ L

0
dy

∞∑
n=1

4α

n
sin

nπx

L
sin

nπy

L
sin

mπy

L

= 2πα

mπL−1
sin

mπx

L
, (F7)

as all terms in the sum over n vanish by orthonormality, except
for the term where m = n. Hence we see that K ⊗ ñ ∼ ñ as
promised in the main text, with the proportionality coefficient
given in Eq. (39).

APPENDIX G: ANALYTIC DC RESULT

In this Appendix, we analytically compute J̃ in the case
ω = 0. Assuming S(x) = 0 locally, both the charge J̃ and
heat current Q̃ are exactly conserved [2], giving us a simple
expression for the velocity

ṽ = Q̃

ε + P
+ μJ̃

ε + P
. (G1)

We have the remaining two equations

T s

ε + P
J̃ − n

ε + P
Q̃ = −σQ∂xμ̃ + σQ

μ

T
∂xT̃ ,

(G2a)

∂x

(
η∂x

μ

ε + P

)
J̃ + ∂x

(
η∂x

Q̃

ε + P

)
= n∂xμ̃ + s∂xT̃ .

(G2b)

Upon solving these equations, we obtain

∂xμ̃ = J̃

[
μ

ε + P
∂x

(
η∂x

μ

ε + P

)
− (T s)2

σQ(ε + P )2

]

+ T snQ̃

σQ(ε + P )2
+ μ

ε + P
∂x

(
η∂x

Q̃

ε + P

)
, (G3a)

∂xT̃ =
[

T 2sn

σQ(ε + P )2
+ T

ε + P
∂x

(
η∂x

μ

ε + P

)]
J̃

+
[

T

ε + P
∂x

(
η∂x

Q̃

ε + P

)
− T n2Q̃

σQ(ε + P )2

]
.

(G3b)

Assuming S = �δ(x − x0), then J̃ is a constant and

Q̃(x) = Q̃(0) + ��(x − x0). (G4)

Defining the spatially averaged heat current as

Q̃0 ≡ �

(
1 − x0

L

)
+ Q̃(0), (G5)

in the thermodynamic limit we find, upon demanding that
μ̃(0) = μ̃(L) = T̃ (0) = T̃ (L) = 0:

�

L

(
η

ε + P
∂x

μ

ε + P

)
x=x0

= −J̃E

[
η

(
∂x

μ

ε + P

)2

+ (T s)2

σQ(ε + P )2

]

+Q̃0E

[
T sn

σQ(ε + P )2
− η∂x

μ

ε + P
∂x

1

ε + P

]
, (G6a)

�

L

(
η

ε + P
∂x

1

ε + P

)
x=x0

= J̃E

[
T sn

σQ(ε + P )2
− η∂x

μ

ε + P
∂x

1

ε + P

]

−Q̃0E

[
η

(
∂x

1

ε + P

)2

+ n2

σQ(ε + P )2

]
, (G6b)

where we denote E[· · · ] = L−1
∫ L

0 dx · · · . This set of two
equations is straightforwardly solved for J̃ . In the weak
disorder limit, we find

J̃ ≈ �τcp

L

[
dηn2∂xμ

((d + 1)P )3

]
x=x0

, (G7)

where we have defined τcp in Eq. (H33).

APPENDIX H: LOCALIZATION

1. Short wavelengths

We begin by studying the localization problem at short
wavelengths (a notion which we will clarify in the course
of the calculation). For simplicity, we neglect the dissipative
terms in the equations of motion, which themselves lead to
the decay of sound modes—our purpose here is to isolate
the effects coming from classical Anderson localization (and
hence beyond the “mean field” descriptions of disorder which
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frequently appear in the literature). The equations of motion
(13) are, without microscopic dissipation,

0 = −iωñ + ∂x(nṽ), (H1a)

nṽ∂xμ = −iωdP̃ + ∂x((d + 1)P ṽ), (H1b)

ñ∂xμ = −iω(d + 1)P ṽ + ∂xP̃ . (H1c)

Defining the energy current

�̃ ≡ (d + 1)P ṽ (H2)

and the parameter

G ≡ n

(d + 1)P
, (H3)

(H1) can be reduced to the equation

∂2
x �̃ + k2�̃ = (

G∂2
xμ
)
�̃ + ((d + 1)∂xμ)∂x(G�̃), (H4)

where we have defined k = ω
√

d , as usual.
Next, we employ a trick from [69,70] in order to calculate

the localization length of short wavelength (large k) sound
waves described by (H4). To do so, we define the two functions
r(x) and θ (x) as

�̃ ≡ r sin θ, (H5a)

∂x�̃ ≡ kr cos θ. (H5b)

If there was no disorder, then the solution to these equations
would be r = constant and θ = kx. Our goal will be to
perturbatively construct a solution accounting for the disorder.
Upon plugging in Eq. (H5) into (H4), we obtain

∂xr

r
= U 1 + cos(2θ )

2
+ sin(2θ )

2
V, (H6a)

∂xθ − k = −U
2

sin(2θ ) − 1 − cos(2θ )

2
V, (H6b)

where we have defined

U ≡ (d + 1)G∂xμ, (H7a)

V ≡ (d + 1)∂xμ∂xG + G∂2
xμ

k
. (H7b)

At first order in U and V , we find that

θ ≈ kx − 1

2

∫ x

0
dx ′ [sin(2kx ′)U(x ′) + (1 − cos(2kx ′))V(x ′)]

≡ kx + θ̃(x), (H8)

and hence

ln
r(x)

r(0)
≈
∫ x

0
dx ′

[
U(x ′)

(
1 + cos(2kx ′)

2
− sin(2kx ′)θ̃ (x ′)

)

+
(

sin(2kx ′)
2

+ cos(2kx ′)θ̃ (x ′)
)
V(x ′)

]
. (H9)

We wish to isolate the terms in the above expression where the
integrand is, on average as a function of x, a constant. In this
case, we will find

ln
r(x)

r(0)
≈ x

ξloc
, (H10)

with ξloc the localization length of the Anderson localized
waves. The most obvious such term is U(x ′). However, upon
recalling the definition of U , we note that

U(x) = n

P
∂xμ = ∂ ln P

∂μ
∂xμ = ∂ ln P

∂x
, (H11)

and so in fact this term is a total derivative which will
not contribute parametrically to the integral. The dominant
contributions to this integral come from expanding out θ̃ , and
re-arranging terms. For example,

U(x ′) sin(2kx ′)θ̃(x ′)

= −1

2

∫ 0

−x ′
dx ′′U(x ′) sin(2kx ′){U(x ′+x ′′) sin(2k(x ′+x ′′))

+[1− cos(2k(x ′ + x ′′))]V(x ′ + x ′′)}

= −1

4

∫ 0

−x ′
dx ′′[cos(2kx ′′)U(x ′)U(x ′ + x ′′)

−U(x ′)V(x ′ + x ′′) sin(2kx ′′)] + O(sin(x ′), cos(x ′)).

(H12)

Collecting the pieces in which the integrand is independent of
x ′, and assuming the disorder distribution is stationary (in x),
we obtain

1

ξloc
= 1

4

∫ 0

−∞
du[E[U(0)U(u) + V(0)V(u)] cos(2ku)

−E[U(0)V(u) + V(0)U(u)] sin(2ku)]. (H13)

The localization length of sound modes of frequency ω is
inversely proportional to certain disorder autocorrelations at
frequency 2

√
dω.

To make further progress in analyzing (H13), let us now
specialize to the case where the fluid is overall charge neutral,
and assume that ωξ � 1 and that μ(x) � T . In this limit, U
may be neglected relative to V . We further assume that μ(x)
takes the form

μ(x) ≈ T s0

χ0
G(x) =

N∑
n=−N

ane2π inx/L, (H14)

with s0 and χ0 the entropy density and charge susceptibility
χ = ∂μn of the clean fluid, a0 = 0 and an zero mean (complex)
Gaussian random variables obeying an = a−n and

Ed [anam] = u2 δn,−m

2N
, (n �= 0). (H15)

Ed [· · · ] denotes averages over the quenched random variables
an. This normalization is chosen so that

Ed [E[μ(x)2]] =
N∑

m,n=−N

Ed [aman]E[e2π i(m+n)x/L]

=
N∑

n=−N

u2

2N
= u2, (H16)

consistent with our definition of u in the main text. Henceforth,
we will usually be sloppy about distinguishing between
E[· · · ] and Ed [· · · ], which we expect are equivalent in the
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thermodynamic limit. Defining

km ≡ 2πm

L
, (H17)

we obtain from (H7b)

V(x) = − χ0

T s0

√
dω

∑
kn,km

[
(d + 1)knkm + k2

m

]
anamei(kn+km)x.

(H18)
Using Wick’s theorem, and neglecting an overall constant
contribution,

E[V(0)V(x)] = χ2
0

d(T s0ω)2

∑
knkm

u4

8N2

(
2(d+1)kmkn+k2

m+k2
n

)2

× ei(kn+km)x + constant. (H19)

Next, consider for kl �= 0:

1

ξloc(kl)
≡ 1

8

∫ L

0
dxE[V(0)V(x)]eiklx

= L

8N

χ2
0

d(T s0ω)2

u4

8N

∑
km

(
k2
m + (km + kl)

2

− 2(d + 1)km(km + kl)
)2

. (H20)

The spatial integral enforces kn = −km − kl . Defining

ξ ≡ L

N
, (H21)

we note that when ωξ � 1,ω ∼ kl and kl � kN = 2π/ξ

and hence at leading order, (H20) is independent of kl and
approximately given by

1

ξloc(0)
≈ ξ

64N

χ2
0 u4

d(T s0ω)2

∑
km

(
2dk2

m

)2 ≈ (2π )4

40

dχ2
0 u4

(T s0ω)2ξ 3
.

(H22)

The result is independent of L, as it should be. Hence we
obtain the expression for ξloc quoted in Eq. (57).

For ωξ � 1, then we obtain a finite value of ξloc by either
extending our perturbative calculation to higher orders, or
using very high order corrections to the equations of state,
which enter the equation through U and V in nontrivial ways.
In particular, 1/(ε + P ), and hence U and V , will generally
contain Fourier modes of arbitrarily large wave number, as it
is not a polynomial of fixed order in μ(x). We expect such
effects to be suppressed as (u/T )ωξ when ωξ � 1.

2. Long wavelengths

As ω → 0, the corrections to the equations from η and σQ

cannot be ignored. The reason for this is simple—as noted in
Appendix G, at ω = 0 both the charge and heat currents are
conserved. Without dissipative corrections to hydrodynamics,
this means that nṽ = constant and sṽ = constant. But n and s

are not proportional in an inhomogeneous medium, and hence
the hydrodynamic equations become ill-posed. It is crucial
to account for dissipation to resolve this discrepancy, and as
noted in the main text, this leads to interesting ω dependence
of localization in a disordered electron-hole plasma.

It now becomes helpful to write the hydrodynamic equa-
tions (away from x = x0) in the form

∂x

⎛
⎜⎜⎝

μ̃

T̃

J̃

Q̃/T

⎞
⎟⎟⎠ = M

⎛
⎜⎜⎝

μ̃

T̃

J̃

Q̃/T

⎞
⎟⎟⎠+ y ≡

(
0 A

iωB 0

)
� + y,

(H23)

where

A =
⎛
⎝ μ

ε+P
∂x

(
η∂x

μ

ε+P

)− (T s)2

σQ(ε+P )2
T 2sn

σQ(ε+P )2 + μ

ε+P
∂x

(
η∂x

T
ε+P

)
T 2sn

σQ(ε+P )2 + T
ε+P

∂x

(
η∂x

μ

ε+P

)
T

ε+P
∂x

(
η∂x

T
ε+P

)− (T n)2

σQ(ε+P )2

⎞
⎠, (H24a)

B =
⎛
⎝ ∂n

∂μ
∂n
∂T

1
T

(
∂ε
∂μ

− μ ∂n
∂μ

)
1
T

(
∂ε
∂T

− μ ∂n
∂T

)
⎞
⎠ =

⎛
⎝ ∂n

∂μ
∂n
∂T

∂s
∂μ

∂s
∂T

⎞
⎠, (H24b)

and

y ≡

⎛
⎜⎜⎜⎜⎜⎝

μ

ε+P
∂x

(
η∂x

μJ̃+Q̃

ε+P

)− J̃
μ

ε+P
∂x

(
η∂x

μ

ε+P

)− μQ̃

ε+P
∂x

(
η∂x

1
ε+P

)
T

ε+P
∂x

(
η∂x

μJ̃+Q̃

ε+P

)− J̃ T
ε+P

∂x

(
η∂x

μ

ε+P

)− T Q̃

ε+P
∂x

(
η∂x

1
ε+P

)
0
0

⎞
⎟⎟⎟⎟⎟⎠. (H25)

Note that B is symmetric—this can be shown using thermo-
dynamic identities including (7),

ε + P = μn + T s, (H26)

and the assumption that the pressure takes the form

P (μ,T ) = T d+1F
(

μ

T

)
(H27)
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for some function F , which follows from general principles
for relativistic gapless fluids [2]. Note that the function F is
not completely arbitrary—it must be chosen so that D > 0,
for example.

We have written the equations in the form (H23) for
the following reason. Our ultimate goal is to argue that the
y-corrections to (H23) are negligible as ω → 0. Assume this
to be the case. Then the eigenvectors of M scale as

√
ω.

The corrections y are all proportional to derivatives of J̃

and Q̃, which scale as ω according to (H23). More precisely,
accounting for y and using the results of Appendix B, we
conclude that the local eigenvalues λ of M solve the equation6

0 = det(λ2 − iωAB + O(ω,λ) × O(ω)) ≈ det(λ2 − iωAB)

(H28)

and, indeed, at leading order, all O(ω) corrections to this
equation are negligible. The dominant contributions to (H23)
come from M alone. To derive (H28), we have used the
properties of determinants of block diagonal matrices.

We are now in a good position to approximate the solutions
to (H23) as ω → 0. We employ the Magnus expansion [71]:7

�(x) = exp

[ ∫ x

0
dsM(s)

+ 1

2

∫ x

0
ds

∫ s

0
ds ′[M(s),M(s ′)] + · · ·

]
�(0).

(H29)

To capture the leading order response as ω → 0, we need
keep only the first term in Eq. (H29). In particular, we need to
determine the eigenvalues of E[M]. This is greatly simplified
by (H28), which tells us that λ = ±

√
iωλ̃, where λ̃ are the

eigenvalues of E[A]E[B]. For simplicity, let us focus on the
limit where disorder is weak, and given by (H14) and (H15).
Since AB is a 2 × 2 matrix,

λ̃+ + λ̃− = tr(E[A]E[B]), (H30a)

λ̃+λ̃− = det(E[A]) det(E[B]). (H30b)

In the limit u → 0, it is easy to see that det(E[A]) = 0. Hence
for small u, we conclude that one of the eigenvalues, which
we call λ̃−, is parametrically small. From (H30), we may
approximate it by

λ̃− ≈ det(E[A]) det(E[B])

tr(E[A]E[B])
. (H31)

6Note that only the top two rows of (H23) are corrected by y, and
so O(ω) corrections only enter here.

7We neglect issues of convergence, which can be subtle. We will
see that this expansion provides the quantitatively correct result in the
limit ω → 0 and will comment on its breakdown in the next section.

Using thermodynamic identities for a gapless relativistic fluid
[2], we obtain

det(B) = d

T

(
s
∂n

∂μ
− n

∂s

∂μ

)
, (H32a)

λ̃+ ≈ tr(AB) = 1

σQ

[
dn2

ε + P
− ∂n

∂μ

]

= T

σQ(ε + P )

(
s
∂n

∂μ
− n

∂s

∂μ

)
= 1

D
. (H32b)

We have employed (18b) in the last step. Since all the disorder
dependence in λ̃− comes from det(E[A]), at leading order we
may directly employ (H32) when approximating λ̃−. We find
after some more algebra that

λ̃− = d

{
T 2

(
n0

(
∂s

∂μ

)
0

− s0

(
∂n

∂μ

)
0

)2 E[(μ − μ0)2]

σQ0(ε0 + P0)3

+ d2η0n
2
0

(ε0 + P0)3
E[(∂xμ)2]

}
= d

τcp
, (H33)

where τ−1
cp is the momentum relaxation rate, caused by the

disorder in μ, in the weak disorder limit [2].8 Subscripted
variables such as η0 denote the viscosity (in this case) of the
clean fluid.

Upon first glance, it is λ̃+ which dominates the response of
the fluid. However, this mode is simply the charge diffusion
mode of a clean fluid (with perturbative corrections due to
disorder). This mode cannot be sourced by our injection of
energy, as we emphasized in the main text. Hence it is the sub-
leading λ̃− which governs the response. We straightforwardly
obtain that

|J̃ (x = 0)| ∼ exp

(
−
√

dω

2τcp
x0

)
. (H34)

Upon specializing to the limit where μ0 = 0, we obtain
(54).

3. Crossover scale

We now give a set of heuristic arguments for (58), assuming
that μ̄0 = 0. Let us begin by studying the higher order
corrections in the Magnus expansion. For simplicity, we
suppose that ξ is very large, so that the viscosity-dependence
in M can be neglected. From the schematic form of M, the
components of E[[M(s),M(s ′)]] and any higher order term in
the Magnus expansion are at least

u2

(
ω

σQ

)#

× function(T ,ξ, . . .).

If there are an odd number of M in the commutator, then
there is an additional factor of either ω or σ−1

Q . The overall

8Upon employing thermodynamic identities and using that our
disorder is only in one spatial direction, our “definition” of τcp is
the same as (54) in Ref. [2].
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factor of u2 is necessary since on the clean background, all
commutators vanish and the first term in the Magnus expansion
is exact. This logic implies the perturbative Magnus expansion
qualitatively fails when ω ∼ σQ. As (15) is an exact symmetry
of our equations, we are forced to add the powers of ξ found
in Eq. (58).

We can also understand (58) by studying the breakdown of
our WKB-like approximation at short wavelengths. Keeping
track of only σQ, which we expect is the most important
dissipative correction near charge neutrality given (H33),
(H1a) should be modified to

0 = −iωñ + ∂x(nṽ − D∂xñ + C∂xP̃ ). (H35)

Recall that D,C ∼ σQ. In fact, further modifications are
necessary, since the field transformation between μ̃ and T̃ and
ñ and P̃ leads to further complications in an inhomogeneous
medium. Still, (H35) suffices for our heuristic argument. In
the ω → 0 limit, we expect that ñ, ṽ and P̃ have spatial
fluctuations on the order of ξ—for example, this is to enforce
the (almost) conservation of charge and heat currents as
ω → 0. It is then clear that when ω ∼ D/ξ 2 ∼ σQ/ξ 2, the
D and C terms in (H35) are no longer small, and ñ will not be
given in terms of ṽ simply by (H1a).

FIG. 13. A plot of |J̃ | vs
√

ω, properly rescaled to obtain data
collapse for ω smaller than (58). Unimportant multiplicative constants
have been rescaled out of J̃ . For ω larger than (58), we see that
the transition to (57) is highly sensitive to the fluid parameters.
We employed d = 2, μ̄0 = 0, L = 1000, γ = 0, C0 = C2 = 1, and
variable η0. Different symbols represent different parameters other
than ξ ; red represents N = 70, blue represents N = 140, purple
represents N = 210, and green represents N = 280.

Figure 13 demonstrates numerically that for a broad variety
of parameters, the relaxation time scaling indeed breaks down
where predicted. Although our arguments are not rigorous,
they are qualitatively justified numerically over a broad range
of parameters.
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