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Self-organized charge puddles in a three-dimensional topological material
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In three-dimensional (3D) topological materials, tuning of the bulk chemical potential is of crucial importance
for observing their topological properties; for example, Weyl semimetals require chemical-potential tuning to
the bulk Weyl nodes, while 3D topological insulators require tuning into the bulk band gap. Such tuning is often
realized by compensation, i.e., by balancing the density of acceptors and donors. Here we show that in such a
compensated 3D topological material, the possibility of local chemical-potential tuning is limited by the formation
of self-organized charge puddles. The puddles arise from large fluctuations of the Coulomb potential of donors
and acceptors. Their emergence is akin to the case of graphene, where charge puddles are already established as
a key paradigm. However, there is an important difference: Puddles in graphene are simply dictated by the static
distribution of defects in the substrate, whereas we find that puddles in 3D systems self-organize in a nontrivial
way and show a strong temperature dependence. Such a self-organization is revealed by measurements of the
optical conductivity of the bulk-insulating 3D topological insulator BiSbTeSe2, which pinpoints the presence
of puddles at low temperatures as well as their surprising “evaporation” on a temperature scale of 30–40 K.
The experimental observation is described semiquantitatively by Monte Carlo simulations. These show that the
temperature scale is set by the Coulomb interaction between neighboring dopants and that puddles are destroyed
by thermally activated carriers in a highly nonlinear screening process. This result indicates that understanding
charge puddles is crucial for the control of the chemical potential in compensated 3D topological materials.
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I. INTRODUCTION

After the discovery of three-dimensional (3D) topological
insulators [1–4], new types of topological states of matter
are intensely sought after [5–8]. As a result, 3D topological
crystalline insulators [9–13], 3D Dirac semimetals [14–20],
and 3D Weyl semimetals [21–27] have been discovered. In
all of these materials, control of the bulk chemical potential
is of fundamental importance to study their topological
properties. In topological insulators and topological crystalline
insulators, the chemical potential should be tuned into the
bulk band gap so that only the surface carriers contribute
to transport; similarly, the peculiar properties of 3D Dirac
and Weyl semimetals such as the chiral anomaly [8] or
Fermi-arc transport [28] only manifest themselves if the
chemical potential is close to the Dirac/Weyl node. How-
ever, for compound materials it is very difficult to obtain
perfectly stoichiometric, defect-free samples. For instance,
single crystals of the prototypical topological insulators Bi2Te3

and Bi2Se3 typically show defect-induced charge carriers
with densities above a few 1018 cm−3 [29–35]. To realize
bulk-insulating samples, compensation between donor-type
and acceptor-type defects is often employed [4]. A drawback
of this strategy is that it necessarily creates Coulomb disorder,
i.e., randomly distributed ionized acceptors and donors [36]. In
3D topological materials, the consequences of compensation
have not received much attention. For example, the residual
bulk transport in compensated topological insulators such
as Bi2Te2Se [31] or Bi2−xSbxTe3−ySey [37,38] is usually
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considered to be due to “impurity bands.” The existence of
impurity bands may explain, e.g., the observation of activated
behavior with a small activation energy, i.e., substantially
smaller than the intrinsic value given by half the gap size, �/2
[38]. However, based on optical measurements of compensated
BiSbTeSe2 and Monte Carlo simulations, we show that such a
simplistic notion is not applicable in the case of compensated
3D topological materials.

In this context, an alternative explanation of the small
activation energy in compensated 3D topological insulators
has recently been suggested by Skinner, Chen, and Shklovskii
[39–41] building on previous work [36]. They considered
a perfectly compensated semiconductor (ND = NA ≡ Ndef ,
where ND and NA are the densities of donors and acceptors,
respectively) with shallow donor and acceptor levels. In such
a system, donors give electrons to acceptors, resulting in posi-
tively charged empty donors and negatively charged occupied
acceptors. In this situation, however, the long-range Coulomb
interactions necessarily enforce a reorganization of the charge
distribution by the formation of large puddles, i.e., regions in
the bulk which locally contain either p- or n-type carriers. The
reason for puddle formation is that in a volume of size R3,
random fluctuations of the donor and acceptor densities ND

and NA locally lead to an uncompensated charge of order
e
√

NdefR3 and therefore to a Coulomb potential of order
e2

√
NdefR3/(4πε0εR), where ε denotes the dielectric constant

and e the elementary charge. These potential fluctuations
grow in proportion to

√
R and become as large as �/2 at a

length scale Rg = (�/Ec)2 ddef/8π [39], where ddef = N
−1/3
def

denotes the average defect distance and Ec = e2/(4πε0εddef)
the Coulomb interaction between neighboring dopants. Note
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FIG. 1. Illustration of puddle formation. The left panel depicts the
spatial variation of the energies E±(r) = V (r) ± �/2 of conduction
and valence bands (upper and lower lines) caused by the long-ranged
Coulomb potential V (r) arising from randomly placed donors and
acceptors. At T = 0, the bands fluctuate so strongly that the chemical
potential μ is crossed (shaded areas; data for �/Ec = 5). This leads
to the formation of metallic puddles, i.e., extended regions which
are either n or p doped. An example is shown on the right (T = 0,
�/Ec = 10, green/brown: n/p doped). With increasing temperature,
the fluctuations of the potential decrease (dashed lines in left panel)
due to screening by thermally activated carriers thereby suppressing
puddle formation.

that Rg � ddef in the experimentally relevant regime ��Ec

(typical values are � = 0.3 eV and Ec < 4 meV for Ndef <

1020 cm−3 and ε = 200; see below). As a consequence, the
valence and conduction bands are deformed so strongly that
they touch and cross the chemical potential, giving rise to a
redistribution of charges which modifies again the Coulomb
potential. Electrically conducting puddles form as a result of
this highly nonlinear self-organization process (see Fig. 1). In
the case of electron puddles, for example, electrons confined
within the puddle compensate the charge of some of the
positive donors, creating charge-neutral donors (green areas
in Fig. 1). If such a dramatic bending of the bands takes place,
the aim of tuning the bulk chemical potential to a specific value
relative to the band edge is doomed to failure.

Based on this puddle scenario, Shklovskii and coworkers
[39] find activated behavior of the bulk resistivity, ρb(T ) ∝
exp(EA/kBT ), with a small activation energy EA ≈ 0.15 �,
consistent with experimental values [38]. Puddle formation
is an intrinsic property of disordered Coulomb systems and
a prime candidate to explain why it is so difficult to reach
high bulk resistivities in compensated topological insulators.
To examine the validity of the puddle scenario, a direct
experimental detection of locally conducting puddles in the
bulk of compensated topological insulators is highly desirable.
Surface-sensitive techniques are not ideally suited, as puddles
are strongly suppressed close to the metallic surface which
provides an extra screening channel [40]. Nevertheless, the
size of potential fluctuations observed in scanning tunneling
microscopy [42] appears to be consistent with puddle forma-
tion [40].

Optical spectroscopy is a bulk-sensitive method ideally
suited to detect large conducting regions. The optical prop-
erties of Bi2Te3, Bi2Se3, and of solid solutions thereof were
investigated intensively already half a century ago [43–47]
in view of their favorable thermoelectric properties [48,49].
Recently, optical data were reported for single crystals of
Bi2Te2Se and Bi2−xSbxTe3−ySey showing reduced carrier

density [50–54]. However, the bulk carrier dynamics at very
low densities were not addressed in detail. In particular, these
data do not allow one to draw conclusions on the presence
of puddles. Here, we give a detailed account of the optical
properties of the approximately fully compensated topological
insulator BiSbTeSe2 in the infrared range. We reveal clear
signatures of conducting puddles, making use of the recent
achievement [38] of very low carrier densities in BiSbTeSe2

and the sensitivity of transmittance measurements to weak
absorption features. The corresponding spectral weight is
strongly temperature dependent at low temperatures. Based
on numerical simulations, we will argue that this temperature
dependence is indeed characteristic of the mechanism of
puddle formation by fluctuations of the Coulomb potential.

II. COMPENSATED BiSbTeSe2

The binary tetradymites Bi2Te3 and Bi2Se3 can be cate-
gorized as degenerate semiconductors due to defect-induced
charge carriers. Understanding the defect chemistry allowed
for a dramatic reduction of the carrier density [4,55,56]. Near-
stoichiometric Bi2Se3 exhibits n-type conductivity originating
from Se vacancies acting as donors, whereas p-type conduc-
tivity predominates in Bi2Te3 due to antisite defects (i.e., Bi
ions sitting on Te sites). The most successful route to reduced
bulk conductivity aims at two goals in parallel: reduction of
the defect density and compensation of the remaining defects,
i.e., K ≡NA/ND = 1. In Bi2−xSbxTe3−ySey , a reduced defect
density is achieved by chalcogen order [37,38] (see Methods,
Sec. VII A), while variation of both x and y allows for
optimized compensation in combination with the possibility
to independently tune the (average) energy of the Dirac point
with respect to the Fermi energy EF [57,58]. In particular, the
Dirac point nearly coincides with EF in BiSbTeSe2, which
means that this composition may serve as a benchmark for the
bulk carrier dynamics at very low carrier concentrations with
minimal contribution from the surface.

For a sample thickness d �10 μm, the bulk conductance
of Bi2−xSbxTe3−ySey is low enough at low temperatures to
be out-weighted by the surface conductance [37,59,60]. This
allows one, for example, to observe the half-integer quantum
Hall effect on the topological surface state at temperatures
up to 35 K [59]. Nonetheless, the bulk resistivity ρb(T ) in
thick samples of Bi2−xSbxTe3−ySey and also of Bi2Te2Se is
puzzling, because it never exceeds 10–20 �cm [31,38,60–67]
even after correcting for the shunting effect of the surface [60].

III. EXPERIMENTAL RESULTS

A. Optical spectroscopy

In single crystals of BiSbTeSe2, the complex optical
conductivity σ1(ω) + iσ2(ω) was determined from infrared
transmittance and reflectance data which were complemented
at higher energies by ellipsometric measurements (see Meth-
ods, Sec. VII B). An overview of σ1(ω) in the infrared range
is plotted in Fig. 2 on a logarithmic scale. The spectra reveal
the steep increase of σ1(ω) caused by the onset of excitations
across the gap �. At 5 K, we find � = 0.26 eV (2100 cm−1). At
300 K, � is reduced by about 40%, it decreases with a slope of
∼3.6 cm−1/K. Similar results for the temperature dependence
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FIG. 2. Optical conductivity of BiSbTeSe2 on a logarithmic scale.
Weak absorption features below the gap with σ1(ω)<10 (�cm)−1

were obtained from the transmittance T (ω) for a sample thickness of
d = 102 μm. For a given thickness, the frequency range in which
the sample is transparent varies with temperature, see Fig. S1 in
Supplemental Material [68]. Data with σ1(ω)>20 (�cm)−1 in the
opaque range were derived via a Kramers-Kronig analysis of the
reflectivity. In combination, these data sets give an excellent account
of σ1(ω).

�(T ) were reported for related topological insulators. For
more details on �(T ), see Supplemental Material [68].

The main focus of the present study is on the electronic
contribution to the optical conductivity below the gap and its
peculiar temperature dependence. In the temperature window
from 40 to 60 K, σ1(ω) reaches values as low as 0.3 (�cm)−1.
Most remarkably, the temperature dependence of σ1(ω) is
highly nonmonotonic. In the frequency range of about 300–
1100 cm−1, σ1(ω) is more than three times larger at 5 K than at
50 K. The rise of σ1(ω) upon heating above 50 K agrees with
the dc conductivity σ1(ω = 0) measured in transport, but the
increase of σ1(ω) upon cooling below 50 K strongly deviates
from the transport results (see Fig. 3). At the same time, the
spectral shape of σ1(ω) below the gap is very similar at low
and high temperatures, i.e., it can be described by a Drude
peak with similar width (see below). In other words, the carrier
density appears to display a nonmonotonic temperature depen-
dence. We will show below that this feature and the discrepancy
of dc and optical conductivities at low temperature are natural
consequences of the carrier confinement within puddles and
of the temperature dependence of puddle formation, providing
the smoking gun for puddles.

Note that for all temperatures the measured values of σ1(ω)
below the gap are by far the lowest reported thus far for the
entire family of Bi2−xSbxTe3−ySey . In Bi2Te3 and Bi2Se3, the
Drude contribution of extrinsic carriers with typical densities
N ≈1019 cm−3 extrapolates to dc values of σ1(0)≈1000
(�cm)−1 [32,35,51,52,69–72]. In compounds with smaller
N such as Bi2Te2Se, impurity absorption bands with peak
values of 50–100 (�cm)−1 were reported [50–52], one to two
orders of magnitude larger than the conductivity observed by
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FIG. 3. Comparison of the dc resistivity of BiSbTeSe2 with
optical results. All data were obtained on pieces cut from the
same crystal. Transport was measured on one piece, optical data on
another piece which was thinned down subsequently; see Methods,
Sec. VII B. Open symbols refer to σ1(ω) at 800 cm−1 for the data
plotted in Figs. 2 and 4. Drude fits to the data (cf. Fig. 4) roughly
yield a peak width of 800 cm−1. Therefore we plot 1/[2σ1(800cm−1)],
a rough estimate of the corresponding dc value. Full symbols denote
the dc values obtained in these Drude fits on samples with different
thicknesses. Above 50 K, transport and optical results agree within
about a factor of 2, which strongly corroborates the assignment of the
observed spectral weight to a Drude peak in this temperature range.
At lower temperatures, carriers within puddles are indistinguishable
from free carriers in the measured frequency range (see Sec. III C),
but the strong discrepancy concerning the dc value is a very clear sign
for puddle formation.

us. Such pronounced impurity bands are apparently absent
in BiSbTeSe2, in agreement with recent reflectivity data
[54], which were, however, not sensitive enough to reveal
the comparably weak absorption features with σ1(ω)<10
(�cm)−1 observed by us in transmittance.

B. Absence of surface contributions

An important question is whether the spectral weight
observed below the gap can be related to the surface states
of the topological insulator. This can, however, be excluded
by comparing data for different thicknesses d obtained
successively on the same sample (see Methods, Sec. VII). Note
that the transmittance depends exponentially on the thickness
d. Neglecting any contribution of surface states in the analysis,
results for σ1(ω) for d = 102, 130, and 183 μm agree very
well with each other within the experimental uncertainty of
about 0.2 (�cm−1) (see Fig. S3 in Supplemental Material
[68]). This proves the bulk character of the excitations in
the investigated frequency range. This conclusion has been
confirmed by an analysis using an optical three-layer model
in which the three layers correspond to the bulk and the two
surfaces (see Supplemental Material [68]).

Theoretically, one may expect two contributions from the
surface state: a Drude peak arising from surface conduc-
tion and interband excitations within the Dirac bands. In
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BiSbTeSe2, the Fermi level is close to the (average) position
of the Dirac point [57], giving rise to a small density of surface
states. Moreover, Dirac fermions show a large mobility. The
respective narrow Drude peak is located below the frequency
range addressed in our data, in agreement with terahertz
data on thin films of Bi2Se3 and Bi1.5Sb0.5Te1.8Se1.2 [73,74].
Interband excitations within the Dirac bands contribute at
higher frequencies. For �ω�2 EF , a universal conductance
G0 = πe2/8h ≈ 1.5 × 10−5/� has been predicted [75,76].
For d = 100 μm, this is equivalent to a bulk conductivity of
0.0015 (�cm)−1, which is two orders of magnitude smaller
than the lowest values observed in BiSbTeSe2; see Fig. 2. We
therefore conclude that all of our observations reflect bulk
properties.

C. Electronic contribution to σ1(ω)

Figure 4 shows σ1(ω) on a linear scale for frequencies
below the gap. The broad electronic absorption feature is
only observable in a frequency window where the sample
is sufficiently transparent. This window is limited by strong
phonon absorption at low frequencies and by excitations across
the gap � at high frequencies. A particularly strong phonon
mode can be identified in reflectivity data (see Fig. S6 in
Supplemental Material [68]), it is located at about 70 cm−1

with a peak value of the order of 103 (�cm)−1 [52,54]. In order
to separate the electronic contribution, we first address σ1(ω)
at 40 K where the electronic contribution is the smallest and
thus allows a clear view on the remaining features (see inset of
Fig. 4). On top of the high-frequency tail of phonon absorption,
we find a tiny absorption band extending up to about 350 cm−1

with a peak value of about 1 (�cm)−1. Based on the frequency
range and the tiny spectral weight, this can be attributed
to a multiphonon contribution, i.e., two- and three-phonon
excitations. The remaining contributions of electronic origin
we fit with a tiny, temperature-independent constant term
of about 0.2 (�cm)−1 and a strongly temperature-dependent
Drude peak. The tiny constant offset roughly corresponds to
the experimental uncertainty.

Well above 50 K, the interpretation of the broad absorption
feature as a Drude peak of thermally activated carriers is
supported by the absolute value of σ1(ω) (see Fig. 3), by
the peak width, and by the temperature dependence of the
spectral weight, as shown below. The main focus of our
study is, however, on the reappearance of spectral weight
at low temperatures, which can be attributed to locally n-
or p-doped puddles. In the presence of puddles with a size
smaller than the wavelength (λ = 10 μm at 1000 cm−1),
the effective dielectric function εeff can be described by an
effective medium approximation. Due to the large value of the
dielectric function in BiSbTeSe2, puddles can be taken into
account by a simple additive oscillator term (see Supplemental
Material [68]). Carriers localized in puddles do not contribute
to the dc conductivity and thus have to be described by a
Lorentzian oscillator. However, for frequencies above a cutoff
ωc given by the Thouless energy, the carriers within puddles are
indistinguishable from free carriers, i.e., their contribution is
expected to be of Drude form for ω � ωc. The Thouless energy
is determined by the time scale needed to diffuse through a
puddle, ωc = D/L2, where D denotes the diffusion constant
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FIG. 4. Optical conductivity below the gap. At 40–50 K, σ1(ω)
is tiny below the gap. With increasing temperature, we identify
a Drude peak of activated carriers with a strongly temperature-
dependent spectral weight (see bottom panel and Fig. 5) and a large
and approximately temperature-independent scattering rate, 1/τ ≈
1.4 × 1014 s−1. Most remarkable is the reappearance of low-frequency
spectral weight below about 50 K, which reveals the formation of
puddles (see top panel). The inset shows a fit of the 40 K data
where the broad low-frequency band of carriers localized within
puddles (red) is smallest. This allows us to determine three further
contributions: a phonon at 70 cm−1, a multiphonon band at 275 cm−1,
and a tiny constant background of 0.23 (�cm)−1. The phonon and the
background are kept constant in the fits of the optical data measured
at other temperatures (see Supplemental Material [68]). Dashed lines
in both panels depict the fit curves.

and L the puddle size. Due to the large size of the puddles, the
cutoff ωc is expected to be more than three orders of magnitude
smaller than the frequency range investigated by us. A rough
estimate yields �ωc � 0.01 meV (0.1 cm−1); see Supplemental
Material [68]. Accordingly, it is well justified to fit the data in
the transparent range above 180 cm−1 with the Drude model
also at low temperatures. The distinction between free carriers
and localized carriers is then based on the comparison with dc
resistivity data; see Fig. 3.
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TABLE I. Effective carrier densities Neff = Nme/m∗ and scatter-
ing rates for different compounds. Carrier densities from Refs. [32,50]
were calculated from the unscreened plasma frequencies given there.
In Ref. [70], the screened plasma frequency ωp/

√
ε∞ is given together

with ε∞ = 29.5 for Bi2Se3.

Compound Neff (1019/cm3) 1/τ (1012/s) T (K) Ref.

BiSbTeSe2 0.02 / 0.6 140 50 / 300 This work
Bi2Te2Se 1.9 40 300 [50]
Bi2Se3 2.9; 18 4; 23 6; 300 [32]; [70]
Bi2Te3 33; 46 4.7; 5.6 10; 10 [69]; [71]

In the Drude model, σ1(ω) depends on the scattering rate
1/τ and the effective carrier density Neff = N me/m∗,

σ1(ω) = σ1(0)

1 + ω2τ 2
= Neff e2 τ/me

1 + ω2τ 2
, (1)

where e and me denote charge and mass of a free electron,
respectively, and m∗ is the effective band mass. Well above
50 K, the fit results for σ1(0) are consistent with the dc resis-
tivity (see Fig. 3). From the peak width we obtain 1/τ ≈1.4 ×
1014 s−1 roughly independent of temperature as expected for
a scattering mechanism arising from the random position of
defects. Scattering rates of different compounds are compared
in Table I. Compensated BiSbTeSe2 shows the smallest carrier
density and by far the largest value of 1/τ which supports
that defect scattering is dominant. We tentatively attribute
the much lower scattering rates observed in compounds with
higher carrier densities to an enhanced screening of defects
by itinerant carriers. With a roughly temperature-independent
scattering rate, the temperature-driven increase of the spectral
weight above about 50 K corresponds to an increase of Neff

that can be described as activated behavior with an activation
energy EA = 26 meV ≈ 0.1 � (see inset of Fig. 5). This
roughly agrees with EA = 31 meV derived from the dc
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FIG. 5. Effective carrier density Neff . Symbols depict fitting
results for the low-frequency absorption band obtained for different
sample thicknesses d . Below about 50 K, the carriers can be attributed
to puddles. (Solid line) Activated behavior with an activation energy
EA = 26 meV. (Inset) Same data on a log scale vs 1/T .

resistivity in the temperature range of 80–170 K. The small
activation energy has been proposed to be a clear signature of
strong Coulomb fluctuations [39,40].

Combining our optical result for τ with the mobility
μ = eτ/m∗ = 62 cm2/Vs obtained at 300 K in transport
measurements on pieces cut from the same crystal, we may
estimate the effective mass as m∗/me ≈0.2. In BiSbTeSe2,
the cyclotron mass of the bulk bands is unknown since the
measured quantum oscillations arise only from the surface
states [38]. However, the cyclotron mass of the bulk conduction
band has been measured in Bi2Se3, showing m∗/me between
0.14 and 0.24 depending on the orientation of the cyclotron
orbit [34], in agreement with our result. Using m∗/me = 0.2,
we deduce a carrier density as low as N = Neff m∗/me ≈
4 × 1016 cm−3 between 40 and 60 K.

D. Puddles

Our main result is the dramatic reappearance of low-
frequency spectral weight at temperatures below 50 K; see
Fig. 5. The charge carriers responsible for this do, however,
not contribute to the dc conductivity. The extrapolated low-
frequency value of σ1(ω) at 5 K is about an order of magnitude
larger than the dc transport result for σ1(ω = 0); see Fig. 3.
This is consistent with a picture of well-separated metallic
puddles contributing to σ1(ω) but not directly to dc transport.

The effective carrier density amounts to Neff,p ≈1.2 ×
1018cm−3 at 5 K. Using the value of the effective mass
determined at 300 K, this corresponds to an average carrier
density Np ≈2.4 × 1017cm−3, which is, however, expected to
be distributed in a highly nonuniform way due to puddle
formation. With increasing temperature, the carrier density
shows a rapid drop by a factor of 4–6 at a temperature scale of
the order of 30–40 K; see Fig. 5. Below we will show that this
temperature scale has to be identified with the energy scale
Ec, which agrees quantitatively with theoretical expectations.
Also the average carrier density Np can be explained by our
numerical simulations.

Note that an unconventional–but much weaker–temperature
dependence of the carrier density has been observed before in
this family of topological insulators. In Bi2Te3, an uncon-
ventional decrease of Neff by up to a factor of 2 has been
observed between 5 and 300 K [69,71,72]. For compensated
Bi2Te2Se with Neff ≈1019 cm−3, a nonmonotonic behavior of
Neff with a minimum in the range of 50–150 K was reported
[53]. However, Neff in Bi2Te2Se changes by less than 10%
between 5 and 50 K and by about 20% between 50 and 300 K,
whereas we find a drastic change by more than a factor of 10 in
BiSbTeSe2; see Fig. 5. We emphasize that our results are based
on samples with very low carrier density in combination with
the enhanced sensitivity for weak absorption features offered
by transmittance measurements.

IV. MODELING THE FORMATION AND DESTRUCTION
OF PUDDLES

In order to describe the formation of puddles in a com-
pensated semiconductor and in particular the temperature
dependence observed in our optical data, we use a simple
classical electrostatic model as discussed by Skinner, Chen,
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and Shklovskii [39]. The model assumes that donors and
acceptors are located at random positions ri in space. Their
average densities are given by ND and NA, respectively, with
Ndef = (NA + ND)/2. We address the experimentally relevant
limit of almost perfect compensation where K = NA/ND

is close to 1. The binding energy of charges to defects is
small due to the large static dielectric constant ε ≈ 200 (see
Supplemental Material [68]). A simple hydrogenlike model
yields a binding energy of 1 Ry m∗

m
1
ε2 < 0.3 meV ≈ 10−3�,

thus donors and acceptors are shallow with energy levels very
close to ±�/2. This situation is described by the Hamiltonian,

H =
∑

i

�

2
fini + 1

2

∑

i,j

Vri−rj
qiqj , (2)

where ni = 0,1 denotes the number of electrons on a donor
(fi = 1) or acceptor (fi = −1) site. The charge of a donor
(acceptor) amounts to qi = 1(qi = −1) if it has donated
(accepted) an electron to (from) another defect, otherwise
defects are charge neutral, qi = 0. The Coulomb poten-
tial is supplemented by a short-distance cutoff aB, Vri−rj

=
e2/{4πε0ε(|ri − rj |2 + a2

B)1/2}, which effectively takes into
account the finite extent of the wave functions of the shallow
impurity states [39]. It was set to aB = 2/N

1/3
def for all of our

simulations. Expressing all distances in units of the average
distance of dopants, ddef = 1/N

1/3
def , and all energies in units

of the Coulomb interaction between neighboring dopants,
Ec = e2/(4πε0εddef), all properties of the model depend on
�/Ec,K , and T/Ec.

Besides the donor and acceptor states, no further conduction
or valence electron states are taken into account in Eq. (2). For
a gap of �/kB ∼3000 K, the contribution of intrinsic carriers
thermally activated across the gap can be neglected at low
temperatures. Also the intrinsic carrier density within a puddle
can be neglected. This is due to the small effective mass m∗ in
combination with the small value of the Fermi energy EF ∼Ec

within the puddles (see below). Using m∗/me = 0.2 and EF

= 50 K for a single spherical band, one obtains an electron
density of 1017 cm−3, more than an order of magnitude smaller
than the typical density of defects.

While the classical model of Eq. (2) is strongly simplified,
it has been established as a powerful tool [36,39–41] which
yields a semiquantitative understanding of puddle formation
at T = 0. We reproduce the T = 0 results of Ref. [39],

minimizing the energy by a pairwise exchange of charges.
Most importantly, the model is sufficiently simple to allow for
quantitative numerical simulations also at finite temperatures
using a Monte Carlo approach (see Methods, Sec. VII C, and
e.g., Ref. [77] for finite T simulations for other Coulomb
systems). We obtain results with only small finite-size effects
for values of �/Ec up to 25 (see Supplemental Material [68]).

Puddles are formed from occupied donor states or empty
acceptor states (see Fig. 1). These correspond to neutral
dopants, where, e.g., an electron compensates a positively
charged donor ion. However, not all neutral dopants contribute
to puddles which are extended regions of neutral dopants.
These have to be distinguished from isolated sites which arise,
e.g., due to thermal activation from an occupied acceptor to an
empty donor. This distinction between isolated neutral dopants
and puddles is achieved by counting the number of neutral
dopants in the vicinity of a given neutral dopant (for details,
we refer to the Supplemental Material [68]).

V. DISCUSSION

Our main experimental results are the presence of a sizable
optical weight at low temperature and its rapid drop on a small
temperature scale of the order of 30–40 K (see Fig. 5). We
attribute this behavior to a pronounced temperature depen-
dence of the average carrier density Np(T ) of puddles. In the
following we will show that our numerical simulations yield a
semiquantitative description of the experimental results.

Figure 6 depicts numerical results for the fraction of dopants
located in puddles, p(T ) = Np(T )/Ndef , for different values of
�/Ec and K ≡ NA/ND . All of the data show a finite fraction
of carriers inside of puddles at T = 0 as well as a strong re-
duction of p(T ) upon increasing T . Note that the total density
of neutral dopants increases with increasing T due to thermal
activation (see Supplemental Material [68]). Since the volume
fraction of puddles is small, thermal activation predominantly
occurs at isolated sites. These thermally activated charges
screen the Coulomb potential, which leads to a pronounced
reduction of the fluctuations of the Coulomb potential (see
Fig. 1), and therefore to the destruction of puddles in a highly
nonlinear process. Figure 6 demonstrates that this destruction
of puddles occurs on a temperature scale which is set by the
Coulomb interaction Ec between neighboring dopants. This
temperature scale is remarkably robust against changes of

FIG. 6. Destruction of puddles with increasing temperature. The fraction p(T ) of dopants organized in puddles drops rapidly as a function
of temperature at a temperature scale set by the Coulomb interaction Ec between neighboring dopants. This temperature scale is valid both for
perfect compensation K = 1 (left panel) as well as for small deviations from K = 1 (middle, K = 0.98; right, K = 0.95). Numerical results
are given for �/Ec = 15, 20, and 25. Note that the increase of p(T ) for larger values of T/Ec and smaller values of �/Ec is due to thermal
activation.
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FIG. 7. Puddle formation and doping. At T = 0, the fraction
p of dopants organized in puddles depends on �/Ec and on the
degree of compensation K = NA/ND . However, plotting p · �/Ec

as a function of |1 − K| �/Ec we obtain a scaling collapse for all
values of �/Ec. In systems with small deviations |1 − K| 
 1 from
perfect compensation, p rises linearly with increasing deviation,
p ≈ 0.316 |1 − K| for |1 − K| � 0.2 Ec/�. In the experimentally
relevant range of �/Ec = 75–100, the linear regime is reached already
for K � 0.997.

�/Ec and deviations from perfect compensation, at least in
the investigated parameter regime (|1 − K| 
 1 and � � Ec)
which is relevant to our experimental data. Accordingly, we
identify Ec with the experimentally observed temperature
scale, Ec/kB = 30–40 K (see Fig. 5). This translates to a
ratio of �/Ec ≈ 75–100. Using

Ec = e2

4πε0ε
N

1/3
def , (3)

with ε = 200, we obtain the defect density Ndef = 4.6–11 ×
1019 cm−3. This is fully consistent with the carrier density ob-
served in uncompensated samples; see Table I. This agreement
indicates that the optical determination of Ec may turn out to
be a useful tool to estimate the defect density Ndef , a quantity
which is difficult to assess in a compensated semiconductor.

In the next step, we address the absolute value of the spectral
weight at low temperature. With the experimental results for
Ndef = 4.6–11 × 1019 cm−3 and the average carrier density
Np ≈2.4 × 1017cm−3 at 5 K (see Sec. III D), we find p =
Np/Ndef ≈ 0.002–0.005. Figure 6 suggests that this value is
of the same order of magnitude as found numerically for small
deviations from perfect compensation, i.e., 1 > K � 0.98.
This is supported by Fig. 7 which shows a scaling collapse
of all data at T = 0 when plotting p · �/Ec vs |1 − K| �/Ec.
For K = 1, we find p · �/Ec ≈ 0.06, which is smaller than
the experimental result 0.2–0.5. However, p · �/Ec rapidly
increases when small deviations from perfect compensation
are taken into account. In the experimentally relevant range
p · �/Ec = 0.2–0.5, we find a linear dependence p =
0.316 · |1 − K| which is independent of �/Ec. This allows
for a direct comparison of theory and experiment even in
the experimentally relevant regime �/Ec = 75–100. We find
that a small deviation of �2% from perfect compensation is
sufficient to obtain a consistent description of the spectral
weight observed at low temperature.

FIG. 8. Comparison of experimental and numerical results for the
average carrier density Np(T ) of puddles. At each temperature, we
averaged over the results obtained for different sample thicknesses
shown in Fig. 5, using m∗/me = 0.2. Error bars indicate the
uncertainty arising from the fitting procedure (see Fig. 4). Excellent
agreement between experiment and theory is obtained for K =
0.98–0.99.

The linear dependence p∝|1 − K| sets in roughly when
|ND − NA|, the uncompensated part of the doping, becomes
larger than the density of neutral dopants organized in puddles
at K = 1. This linear growth of p corresponds to the effect that
adding, e.g., a small amount of extra donors to the perfectly
compensated system does not give rise to a uniform doping
but instead increases the number of neutral donors organized
in puddles. This nonuniform doping originates again in the
large-scale inhomogeneities of the Coulomb potential and is
important also for the behavior at finite temperature.

Finally, we compare the numerical simulations with the ex-
perimental result for the temperature dependence Np(T ). For
K = 0.98–0.99 and Ec/kB = 32–40 K, we find excellent agree-
ment between experiment and theory (see Fig. 8). Our model
thus is capable of describing the observed spectral weight as
well as its evolution with temperature. This agreement clearly
corroborates the existence of puddles in BiSbTeSe2 and also
confirms the scenario that they arise from strong fluctuations
of the Coulomb potential. For any choice of K < 0.997, the
value of Ec ∝ N

1/3
def is fixed by the low-temperature value of

Np = p · Ndef = 0.316 |1 − K| · Ndef (see Fig. 7). For larger
deviations |1 − K| from perfect compensation such as K =
0.97, we have to choose a value of Ec/kB smaller than 30 K in
order to describe the spectral weight at low temperatures. For
such small values of Ec, however, the experimentally observed
temperature dependence is not described very well anymore
(see Fig. 8). We thus conclude that the degree of compensation
K in our sample lies in the range 0.98–0.99, i.e., close to perfect
compensation.

Taking both the extremely simplified nature of the the-
oretical description and the uncertainties in parameters like
the effective mass into account, the quantitative determination
of the parameters should perhaps not be taken too literally.
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They are, however, highly plausible, suggesting that at low
temperatures we achieve agreement between theory and
experiment at least on a semiquantitative level.

VI. CONCLUSION

Our optical conductivity data of the almost perfectly com-
pensated topological insulator BiSbTeSe2 reveal the existence
of puddles at low temperatures as well as their destruction on
a temperature scale of 30–40 K. The temperature dependence
of the average carrier density of puddles, Np(T ), is described
very well by our numerical simulations based on a model
of shallow donors and acceptors interacting by long-ranged
Coulomb interactions. In particular, theory and experiment
semiquantitatively agree on both the spectral weight and
the temperature scale of puddle formation. We have shown
that puddles are suppressed by thermally activated charges
which screen the Coulomb potential. The temperature scale
of puddle formation is set by the Coulomb interaction Ec

between neighboring dopants. This mechanism works both for
near-perfect and perfect compensation. Our approach builds
on the Efros-Shklovskii theory, one of the central pillars for
the description of disordered Coulomb systems. The result that
thermal excitations lead to an efficient screening of long-range
Coulomb fluctuations and thus to a breakdown of puddle
formation is an important effect which is highly relevant for
disordered Coulomb systems in general.

Puddle formation driven by long-ranged Coulomb interac-
tions is not only of importance in compensated semiconductors
but also for other materials with a vanishing density of
electronic states including Dirac matter in two or three
dimensions, like graphene [78] or Weyl semimetals. For the
latter, it has been shown that long-range potential fluctuations
as introduced by charged impurities have a large effect,
giving rise to a finite density of states which smears out
the differences between a Weyl semimetal and a real metal
[79–81]. Furthermore, controlling puddles may turn out to
be important for the experimental confirmation of the chiral
anomaly, a well-known phenomenon in high-energy physics
which is heavily sought after in condensed matter [82]. In Weyl
semimetals, the observation of the chiral anomaly requires that
the Fermi level is very close to the Dirac point. Band bending
and puddle formation may therefore impede the observation
of the chiral anomaly, even when the Fermi level is close to
the average position of the Dirac point.

For the physics of topological insulators, puddle formation
in compensated samples has both positive and negative effects.
While the strong fluctuations of the Coulomb potential imply
that it is more difficult to reach high bulk resistivities despite
perfect compensation, they can also help to localize electrons
or holes in puddles in situations where the compensation of
donors and acceptors is not perfect. The surface states of
topological insulators can provide extra screening channels,
thus suppressing puddle formation close to the surface or
in thin samples. It will therefore be interesting to study
both experimentally and theoretically, how puddle formation
depends on sample thickness and other parameters and how it
interacts with the charge density of the topological surface
states. Controlling puddle formation may turn out to be a

key step for further reduction of bulk transport in topological
insulators.

VII. METHODS

A. Samples

The compound BiSbTeSe2 belongs to the family of A2B3

tetradymites (A = Bi,Sb; B = Te,Se) showing rhombohedral
structure (space group R3̄m) [38,83] with three quintuple
layers per unit cell stacked along the [111] direction. Single
crystals of BiSbTeSe2 were grown starting from high-purity
elements as described in Ref. [38]. The crystals were cut
into platelets with typical dimensions of 3 × 3 mm2 within
the (111) plane. Due to the weak van der Waals bonding
between quintuple layers, the samples can be cleaved easily
along the (111) plane using adhesive tape. This yields shiny
plane-parallel surfaces.

The defect chemistry of ternary compounds has been
discussed in Ref. [56]. For quaternary BiSbTeSe2, one expects
that donors are formed by Se and Te vacancies as well as by
Te antisite defects on Bi(Sb) sites, while acceptors correspond
to Bi and Sb vacancies as well as Bi(Sb) antisite defects on
Te sites. The defect density can be reduced by chalcogen
order BI − A − BII − A − BI within the quintuple layers
[31,37,38,61]. In Bi2Te2Se with Te - Bi - Se - Bi - Te
order [31,61], the BII sites are exclusively occupied by Se
ions. In the solid solutions Bi2−xSbxTe3−ySey with y � 1, the
composition has been optimized with the aim to achieve full
compensation [38,60]. Chalcogen order is preserved to some
extent, as shown by x-ray diffraction [38]. Among these solid
solutions, BiSbTeSe2 was reported to show the highest dc
resistivity at 2 K [38]. It reaches 3 �cm but varies by about
a factor of 3 for samples with the same nominal composition.
This can partially be attributed to a thickness dependence
[37,59,60] related to a finite conductance contribution of the
surface but also reflects different defect concentrations [38].

B. Optical measurements

Infrared reflectance and transmittance measurements were
performed with unpolarized light in the frequency range of
50–7500 cm−1 (6 meV–0.93 eV) using a Bruker IFS 66v/S
Fourier-transform spectrometer equipped with a continuous-
flow He cryostat. The transmittance T (ω) was recorded
at normal incidence with the electric field parallel to the
cleavage plane, while the reflectivity R(ω) was measured
under near-normal incidence. Additionally, ellipsometric data
were obtained using a rotating analyzer ellipsometer (Woollam
VASE) equipped with a retarder between polarizer and sample.
The ellipsometric data were collected at room temperature in
the photon energy range of 0.75–5.5 eV (6050–44 360 cm−1)
for three different angles of incidence (60◦, 70◦, and 80◦).
Reflectance data and ellipsometric data were measured on a
sample with a thickness of d ≈1.1 mm. For the transmittance
measurements, we started on a sample with a thickness of
d = (183 ± 5) μm (see Fig. S1 in Supplemental Material
[68]). The value of d was determined mechanically using a
micrometer screw. For this rather thick sample, the accuracy
of 5 μm corresponds to an error of 2.7 %. Subsequently this
sample was cleaved several times using adhesive tape, and the
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transmittance was measured successively on the same sample
for a series of different thicknesses, d = 183, 130, and 102
μm. The latter two values were determined by comparing the
Fabry-Perot interference fringes which arise in a transparent
frequency range due to multiple reflections within the sample.
Due to the shiny and plane-parallel surfaces obtained by
cleaving, the interference fringes are particularly pronounced;
see Fig. S1 in Supplemental Material [68]. For two samples a

and b with different thicknesses da and db, the thickness ratio
can be determined from the fringe periods, �νa/�νb = db/da ,
with an accuracy of better than 0.5 %. This is important for
the comparison of results obtained for different thicknesses
(see Fig. S3 in Supplemental Material [68]), and thus for the
question whether there is a finite contribution of surface states.

In the transparent frequency range, the complex optical con-
ductivity σ̃ (ω) = σ1(ω) + iσ2(ω) can directly be determined
from T (ω) and R(ω). The analysis is straightforward if one
neglects interference effects and averages over the interference
fringes by Fourier filtering [84]. The resulting complex σ̃ (ω)
has been tested by calculating, e.g., the transmittance including
interference effects, which agrees nicely with the experimental
data. In the opaque range, σ̃ (ω) was obtained via a Kramers-
Kronig analysis of the single-bounce reflectivity, i.e., the
interference fringes need to be averaged by Fourier filtering.
For the Kramers-Kronig analysis, we have used our results in
the transparent range for the low-frequency extrapolation of
R(ω), while the ellipsometric results have been employed for
the high-frequency extrapolation.

C. Monte Carlo simulations

The model defined in Eq. (2) was simulated at finite T with
a standard Monte Carlo algorithm (Metropolis). For T = 0 the

algorithm is identical to the one used in Ref. [39]. It yields only
a local and not a global minimum of the (free) energy but such
pseudo-ground-states are known to describe the properties of
real ground states with high accuracy [39].

Periodic boundary conditions for the Coulomb potential
were imposed by using always the shortest distance on the
3-torus for its computation. We started the simulations from a
configuration where all NA acceptors and (1 − K) ND donors
are occupied, such that the total system is charge neutral. We
only considered configurations which keep charge neutrality
by using a pairwise exchange of charge in each Metropolis
step.

For T → 0 we averaged over 300 disorder realizations.
At finite temperatures, averages over 30 different realizations
turned out to be sufficient. For the simulations at finite temper-
atures we used 2 × 403 ≈ 130 000 dopants for �/Ec = 15,
2 × 443 ≈ 170 000 dopants for �/Ec = 20, and 2 × 483 ≈
220 000 dopants for �/Ec = 25. For finite size checks we
simulated up to 2 × 643 ≈ 520 000 dopants. Finite-size effects
are largest for K = 1, T = 0, and �/Ec = 25; see Supplemental
Material [68] for details.
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