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Phase structure of one-dimensional interacting Floquet systems. II. Symmetry-broken phases
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Recent work suggests that a sharp definition of “phase of matter” can be given for periodically driven “Floquet”
quantum systems exhibiting many-body localization. In this work, we propose a classification of the phases of
interacting Floquet localized systems with (completely) spontaneously broken symmetries; we focus on the
one-dimensional case, but our results appear to generalize to higher dimensions. We find that the different
Floquet phases correspond to elements of Z(G), the center of the symmetry group in question. In a previous
paper [C. W. von Keyserlingk and S. L. Sondhi, preceding paper, Phys. Rev. B 93, 245145 (2016)], we offered a
companion classification of unbroken, i.e., paramagnetic phases.
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I. INTRODUCTION

In this, the second of a series of two papers, we continue
our investigation of Floquet drives which are many-body
localized (having a near complete set of bulk integrals
of motion) and which also exhibit eigenstate order thus
sharply defining phases for driven quantum systems. In our
first paper [1], henceforth I, we discussed Floquet drives
with unbroken quantum order, which includes drives with
symmetry-protected topological (SPT) order (see Refs. [2–4]
for closely related work). In this work, we discuss Floquet
drives with spontaneous symmetry-broken (SSB) order.

Here, we briefly summarize the logic that leads to I and
this work; we direct readers to the Introduction to I for
a more complete account of the setting of this work, as
well as indirectly related references. We consider many-body
Floquet localized systems whose eigenstates are nonthermal.
In particular, in part to avoid the runaway heating effect
discussed in Refs. [5–7], we assume that such localized Floquet
systems are characterized by a set of commuting local integrals
of the motion (which we call “l-bits”) of the same form as those
characterizing undriven many-body localized systems [8–10].
Thus, the task of classifying possible Floquet phases reduces
to classifying commuting stabilizer1 unitaries much as the task
of classifying possible many-body localization (MBL) phases
reduces to classifying commuting stabilizer Hamiltonians [11].

In this paper, we carry out this task for symmetry-broken
phases. Further, we consider only finite symmetry groups G;
for continuous groups, spontaneously broken states have Gold-
stone bosons which cannot be localized [12]. For simplicity,
we further restrict to finite onsite unitary symmetry groups G,
and assume that G has been completely spontaneously broken.
In this task, we again begin with the results obtained in Ref.
[13] which analyzed one-dimensional (1D) driven spin chains
with Ising/Z2 symmetry and showed that they exhibited two
symmetry-broken phases, one of which has no analog in the
undriven setting. While we will improve upon the analysis in

1Commuting stabilizer unitaries are unitaries with an extensive
number of local conserved quantities. See Sec. II for examples.

Ref. [13] in understanding the structure and generality of the
results obtained there and then generalize to arbitrary finite
groups, we will rely on the computational evidence assembled
there to argue that our classification describes stable Floquet
phases of matter.

We can summarize our main result: We find that for
MBL Floquet drives with a completely (spontaneously) broken
onsite finite unitary symmetry group G, the distinct Floquet
drives are in correspondence with the elements Z(G) of the
center of the group. Unlike in I, where for unbroken (i.e., SPT)
phases we considered systems with edges, our classification
here is done for a bulk system and the presence or absence of
edges is not important. We show that the full period unitary
U (T ) has a specific structure that reflects the center of the
group. We also show that the evolution of the correlations
inside the period has a characteristic form that derives from
this structure on the lines discussed in Ref. [13] for the Ising
case.

Table I gives examples of predictions arising from our
framework. Groups G with trivial center, e.g., the symmetric
group Sn on n � 3 elements, or the odd dihedral groups D2m+1

for m � 1, have just one Floquet phase with completely SSB
order. The opposite extreme is Abelian G, for which there are
|G| different Floquet fully SSB phases. On the other hand, the
even dihedral groups G = D2n have a Z2 classification.

This work is set out as follows. In Sec. II, we investigate
Floquet drives with Ising symmetry-broken order, verifying
that there are two qualitatively different such drives. In
Sec. II B, we bring together some of our observations in this
special case, discuss the stability of the Ising Floquet phases,
and generalize them to drives with Zn completely SSB order,
showing that there are n qualitatively different drives. Then,
in Sec. IV we extend all of these observations to consider
fully symmetry-broken orders for general finite G, and discuss
the stability of these phases in general. Here, we find |Z(G)|
qualitatively distinct Floquet phases. In Sec. V, we give a
general prescription for constructing drives which realize the
predicted Floquet phases. Finally, in Sec. VI we reflect on
the structure of the spectra of these Floquet phases and make
a connection to recent work on “time crystals” [14], before
concluding in Sec. VII.
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TABLE I. This table gives examples of our proposed Z(G)
classification scheme for MBL Floquet drives in 1D with finite onsite
symmetry group G, and fully SSB eigenstate order. Z1 denotes the
trivial group with one element. Only certain many-body localizable
[11] eigenstate orders are expected to persist in the Floquet setting
[13]. For this reason, we restrict attention to SSB orders with finite
G (see discussion in Sec. I).

G Classification (Z(G))

Zn Zn

Q8 Z2

Dn>2 Z 3+(−1)n
2

Sn>2 Z1

II. MOTIVATING EXAMPLE: ISING CHAINS

We begin with a discussion of our motivating case, that of
spin chains with Ising symmetry. This was first discussed in
Ref. [13] and in more detail in I as the case of class D fermionic
chains. Our discussion will be mostly in the character of a
review, albeit with many details filled in.

A. Solvable binary drives

To this end, we consider a set of binary drives which
are exceptionally convenient and lead to the phase diagram
(Fig. 1) with two paramagnetic and two ferromagnetic phases
[1,13,15]. Indeed, they are spin versions of the class D
free-fermion drives considered in I. The drives are constructed

t1

t0 π/2

π/2

0
0

(u, p), (u,−p) (u, p), (−u,−p)

(u, p), (−u, p), (u,−p), (−u,−p)

(u, p)

FM π FM

PM

0π PM

FIG. 1. This shows the phase diagram for the binary drive in
Eq. (1). The red and blue lines separate distinct Floquet phases.
The lists involving (u,p) summarize the protected multiplets in the
spectrum for an open chain, e.g., in the 0π trivial phase, if there
is a state with Uf ,P eigenvalues (u,p), then there are guaranteed
to be states at (−u,p),(u, − p),(−u, − p) for the same u, up to
exponentially small corrections in system size.

from the Hamiltonians

H0 = −
∑

s

hsXs, H1 = −
∑

s

JsZsZs+1,

where X,Z are Pauli-matrix operators and hs,Js are made
random to obtain localization, but for the purposes of obtaining
the phase boundaries will be taken to be (almost) spatially
uniform. Both Hamiltonians commute with a Z2 global Ising
symmetry operator P = ∏

s Xs .
H0 is a paramagnetic fixed-point Hamiltonian; its eigen-

states exhibit zero correlation length in the Ising order param-
eter Zs . It has a complete set of N local conserved quantities
(or l-bits) {Xs} for a chain of length N , which themselves make
up the terms in the Hamiltonian and are Ising symmetric. On
the other hand, H1 is a ferromagnetic fixed-point Hamiltonian.
Its eigenstates resemble classical configurations of the Ising
order parameter Zs , and indeed have perfect long-range
correlations in this order parameter. We say that H1 has Z2

SSB eigenstate order because its eigenstates break the Z2

symmetry. H1 is somewhat special in that its eigenstates can
be chosen to be eigenstates of the Zs . For a more general
SSB Hamiltonian, the exact eigenstates of the system come
in nearly degenerate doublets of feline/cat states, consisting
(roughly) of symmetric and antisymmetric combinations of
Ising reversed order parameter configurations. Such pairs of
cat states are labeled in part by l-bits of the form Bs = ZsZs+1

which track the positions of domain walls. Only N − 1 of these
l-bits are independent for an N site chain. The one additional
integral of the motion needed to specify the eigenstates is
the global Ising generator P which commutes with H1 and
all the Bs–P = ±1 determine (roughly) whether or not the
cat state is a symmetric or antisymmetric combination of
spin configurations. The operator Zr for any site r can be
used to toggle between these cat states because it commutes
with H1 and anticommutes with P . In summary, Bs,P are
a complete set of integrals of motion for Hamiltonians with
SSB Ising order, although P clearly cannot appear in any local
Hamiltonian.

Following Ref. [13] (see also Ref. [16]), we now define
binary Floquet drives using the reference Hamiltonians H0,H1:

U (t) =
{
e−iH0t , 0 � t < t0
e−iH1(t−t1)e−iH1t0 , t0 � t < t0 + t1.

The final Floquet unitaries are of the form

Uf ≡ U (T ) = e−iH1t1e−iH0t0 . (1)

If we choose spatially uniform couplings hs = Js = 1, the
phase transition lines are easily derived and lead to a phase
diagram with four distinct phases as in Fig. 1. In reality, we
will need disorder for a proper realization of the phases listed
thereon but much can be learned by simply working on the
boundaries of the diagram. For the same reasons as explained
in I, it suffices to consider Floquet drives with t0,t1 ∈ [0,π/2]
(see Fig. 1). We will primarily be interested in those regions
labeled FM (ferromagnetic), as our previous work covers the
cases with paramagnetic bulk order, but we discuss the latter
as well for completeness (Sec. II A 2).
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1. Ferromagnetic phases

In the region labeled FM, all of the eigenstates have
long-range Ising symmetry-broken order. A representative
Floquet unitary is obtained by setting t0 = 0, i.e., Uf = e−iH1t1 .
The eigenstate properties of this unitary are simply those
of the local Hamiltonian H1 which is the so-called Floquet
Hamiltonian for this drive, i.e., the logarithm of Uf . Clearly,
the l-bits which commute with Uf are then the set Bs and
there is one global integral of the motion P . Note that P

does not appear in Uf . This unitary inherits the spectral
pairing characteristic of the SSB broken order present in the
eigenstates of H1. That is to say, as Zr commutes with H1 but
anticommutes with P , eigenstates at a given quasienergy come
in P = ±1 pairs. The time dependence of the order parameter
in the Floquet eigenstates is also interesting; it returns to itself
at the end of the period [13].

The πFM phase is unique to the driven setting. To
understand the nature of this phase, we work along the line
t0 = π/2 and 0 < t1 < π

2 where

Uf = e−it1H1
∏

s

Xs ∝ e−it1H1P.

This Uf looks like the unitary associated with a FM drive
(discussed above) multiplied by P . Observe that Uf is not
the exponential of a local Hamiltonian although it is a local
unitary generated by a local time-dependent Hamiltonian. The
complete set of integrals of the motion are again the Bs and
P but now P does appear in Uf . The consequence of this last
fact is that whereas in the FM case considered above there was
spectral pairing at any given quasienergy, there is now spectral
pairing between states split by quasienergy π . That is to say,
as Zs anticommutes with both Uf and P , eigenstates come in
(u,p),(−u, − p) pairs as opposed to (u,p),(u, − p) pairs.

The fact that Zl anticommutes with Uf in the π FM case
can be reinterpreted as a dynamical statement about the order
parameter Zl , namely, that it changes sign over the course
of a Floquet cycle. This observation formed the basis for
the spin-correlation-based diagnostic reported in Ref. [13].
Thinking just about our family of binary drives it would appear
that what is at issue is a rotation of the order parameter
about the x axis and thus there may exist Floquet phases
corresponding to rotation of the Zl order parameter for any
multiple of π . However, this is not the case for more general
drives; in Appendix D we show that only the angle of rotation
modulo 2π matters, which is consistent with our seeing only
two distinct Floquet phases. Finally, we note we were able to
distinguish the FM phases by looking just at their bulk spectra;
there was no need to examine their edge spectra. We will later
argue in Sec. IV A in general that for SSB drives there is no
analog of the “pumped charge” appearing at the edges, which
gave rise to protected edge modes in the unbroken SPT ordered
drives examined in I.

2. Paramagnetic phases

As an aside, we very briefly comment on the paramagnetic
phases. The physics of these regions is covered in I, where we
argued that the Floquet paramagnetically ordered drives with
unitary finite symmetry group G are classified by ClG × AG

where ClG is the SPT classification for G and AG are the 1D

reps of G. In the present case G = Z2, for which Cl = {0} and
A = Z2 so that there are two qualitatively different Floquet
drives with paramagnetic (PM) order. In contrast to the FM
case, it turns out that in line with I, both of these drives have
the same bulk spectral properties, and the difference between
them is only visible on a system with a boundary. We present
examples of drives in these two classes in Appendix A.

Two additional observations may interest the reader. First,
as noted in Ref. [13], the PM phases are related to the
FM phases by duality and hence can be diagnosed by bulk
dual order parameter correlations which are nonlocal in the
spin variables. Second, the two PM and two FM phases are
related by Jordan-Wigner transformation to the class D drives
examined in Ref. [1]: the FM regions correspond to those
drives with bulk SPT (Kitaev wirelike order), while the PM
regions correspond to the drives with trivial (non-SPT) bulk
order.

B. Generalizing to the MBL regime

We have examined two idealized Floquet drives (FM and π

FM) with Ising ferromagnetic order, and shown that they have
markedly different spectral structure. The goal of this section is
to argue, based on assumptions to be stated, that the differences
between these Floquet drives is robust to adding interactions
and strong disorder, in other words, to show that the FM and π

FM drives are representatives of two sharply defined phases.
We then attempt to distill the previous section’s observations
into a more readily generalizable framework, which we apply
to drives with spontaneously broken Zn eigenstate order in
Sec. III. Building on this in Sec. IV we present the general
case of Floquet drives with spontaneously broken non-Abelian
symmetry.

Recall that the idealized drives in Sec. II have Floquet
unitaries with a set of exactly local bulk l-bits of the form
ZsZs+1. How might this picture change away from the ideal
point, in the presence of strong disorder and interactions?
Returning to the discussion of the Ising ordered drives in
Sec. II A 1, recall that the Ising order parameter Zr operators
can be used to toggle between the degenerate (or π quasienergy
split) Ising even/odd eigenstates. Using the specialized drives
[Eq. (1)], these degeneracies (or π quasienergy pairings) are
exact. Perturbing symmetrically away from the fixed point,
and in the presence of sufficiently strong disorder, we expect
the degeneracies (or π quasienergy pairings) to be exact up
to exponentially small corrections in system size [17]. In line
with the expected behavior of MBL phases in the undriven
setting [10,17], and the observed behavior of the Floquet
spectra in numerics [13], we will henceforth assume that upon
perturbing symmetrically away from the fixed point the SSB
ordered Floquet drives obey the following conditions: There
exist smeared out (but local) analogs of Zs (which we continue
to denote Zs) which are Ising odd, obey Z2

s = 1, and which
commute amongst themselves all up to exponentially small
corrections in the system size. In particular, the operators
ZsZs+1 continue to be Ising even, and are the l-bits of the
new system, also up to exponentially small corrections in the
system size. The upshot is that we are working now with l-bits
and order parameters very like those in the idealized models,
but many of the previous relations between these operators
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hold only up to exponentially small corrections in system size,
which we henceforth ignore.

With these assumptions in place, we can constrain the
general form of an Ising symmetric Floquet unitary Uf with
full SSB eigenstate order. Such a Floquet unitary has a set
of l-bits Bs = ZsZs+1, only N − 1 of which are independent.
Note, however, that P,Bs gives a set of N independent integrals
of the motion. By this we mean there is a complete eigenbasis
labeled by P = p,Bs = bs :

Uf |p,{bs}〉 = uf (p,{bs})|p,{bs}〉, (2)

where the eigenvalues uf depend on the p,bs eigenvalues.
It follows straightforwardly that we can write Uf entirely in
terms of operators Bs,P :

Uf = Uf (P,{Bs}). (3)

We now use the locality of the instantaneous drive Hamilto-
nians H (t ′) to constrain the functional dependence on P . To
begin, note that Uf commutes with ZlZr for any l,r . In other
words, using notation [A : B] = ABA−1B−1 for unitaries
A,B we have

[Uf : ZlZr ] = 1. (4)

As Uf is a local unitary, Uf ZlU
−1
f = Zlθl and Uf ZlU

−1
f =

θrZr , where θl,r are unitaries with exponentially localized
support near l,r , respectively, using Lieb-Robinson bounds
[18]. However, Eq. (4) implies that θl = θ−1

r , for l,r arbitrarily
distant from one another. The only possible resolution is that
θl = θ−1

r = eiϕ1 for some phase eiϕ . This phase is moreover
constrained to be eiϕ = ±1, using Z2

l = 1 and the resulting
equality 1 = Uf Z2

l U
−1
f = θ2

l 1. It follows that

ZlUf (P,{Bs})Z−1
l = Uf (−P,{Bs}) = ±Uf (P,{Bs}), (5)

where the second equality reflects the conclusion eiϕ = ±1 in
the paragraph above, while the first equality follows from the
fact that Zl anticommutes with global Ising generator P . In
the +1 case, Uf is independent of P , while in the −1 case, it
is odd in P , i.e.,

Uf = U ′
f ({Bs}) or PU ′

f ({Bs})
for eiθ = ±1, respectively, where U ′

f ({Bs}) is some unitary
depending only on the bond operators Bs . These two distinct
types of Floquet unitaries are consistent with the different
structures of the FM and 0π FM examined in the examples
in Sec. II A 1. Indeed, by the same reasoning as in Sec. II A 1,
they have the same spectral properties, namely, labeling the
eigenstates of Uf ,P by pairs (u,p): In the eiϕ = 1 case there
are protected doublets of eigenstates with (u, + 1),(u, − 1),
while in the eiϕ = −1 example there is a π quasienergy
spectral pairing, i.e., doublets of states with (u,1),(−u, − 1).

In summary, we have argued that there are two fundamen-
tally different kinds of Ising symmetric Floquet unitary with
FM Ising order, distinguished by their commutation with the
Ising order parameter [Uf : Zl] = ±1. The FM and 0π FM
Floquet drives examined in Sec. II are idealized examples
of these two kinds of unitary. We have not yet argued,
however, that these distinct kinds of Floquet unitary define
genuinely distinct Floquet phases stable to sufficiently small
perturbations to the unitary. We will return to this issue when

we treat the general case, but we give a summary of the
argument here.

We now argue that the eigenstate properties of the Floquet
drives constructed above are stable to sufficiently small Ising
symmetric changes to the Floquet drive. Assuming a small
change in Uf leads to a small change in the Zl operators, then
[Uf : Zl] must change by a small amount as well. However,
we have argued that this quantity is independent of l and
discrete; above, we argue it is equal to ±1. Hence, it cannot
change continuously, so it does not change at all. In this
way, making the stated assumptions about the forms of the
l-bits and their dependence on Uf , we have argued that our
diagnostic [Uf : Zl] = ±1 distinguishing different Floquet
drives is robust. Hence, we expect the two distinct drives
constructed in Sec. II correspond to genuinely distinct Floquet
phases. Having discussed the Ising case in general, we now
examine more briefly how these results generalize to Floquet
drives with Zn completely SSB order.

III. Zn SSB DRIVES

Here, we extend the results in the previous section to
theories with completely broken Zn symmetry, and introduce
a notation which more readily generalizes to the non-Abelian
cases studied in Sec. IV. In the Ising case, our onsite Hilbert
space consists of Z = ±1 onsite Ising degrees of freedom. In
the rest of the paper, we consider the more general Hilbert
space H, where the onsite Hilbert space consists of gr ∈ G

degrees of freedom, where G is an onsite unitary global
symmetry group.

It is convenient to view G = Zn as a subset of U(1)
generated by ω = e2πi/n. Let us now define some useful linear
operators [which live in L(H)]. First, there are the global
Zn symmetry generators V : G → L(H) of form V (g) =∏

r Vr (g) where

Vr (x)|{gs}〉 = |{xδrs gs}〉 (6)

for any x,gr ∈ G. In the Ising problem, Vr (±1) = 1,Xr ,
respectively, and V (±1) = 1,P , respectively. Additionally,
define a unitary operator

gr |{gs}〉 = gr |{gs}〉,
where gr ∈ G is taken to be an nth root of unity. In the G = Z2

case, gr = Zr . The commutator

[Vr (x) : gr ] = x−1 ∈ U(1) (7)

follows from these definitions, as does

[V (x) : gr ] = x−1 ∈ U(1). (8)

At this point, let us describe more precisely what we mean
by SSB eigenstate order. It is useful to give an example of a
fixed-point Hamiltonian with SSB Zn order

H1 =
∑

r

Jr (g†rgr+1), (9)

where Jr is some disordered Hermitian function of the Zn

variables. Note that H1 commutes with the global symmetry
generators V (x) using Eq. (8). We interpret gr as our new
Zn valued order parameter, and as in the Ising case we will
assume that away from the fixed-point model Hamiltonian
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(9), there are smeared out analogs of gr which commute
amongst themselves, obey Eq. (8) with the global symmetry
generators V (x), as well as gn

r = 1, all up to exponentially
small corrections in system size which we ignore. As a
corollary, Br ≡ g

†
rgr+1 are a set of l-bits. These we take to

be the defining features of Zn eigenstate order.
We now investigate unitaries Uf with the aforementioned

eigenstate order, i.e., with a set of gr operators, and a set of local
integrals of motion Br = g−1

r gr+1. The variables Br ,V (ω)
constitute a complete set of conserved quantities which all
commute with the global symmetry generators: there are N −
1 independent l-bits, taking n possible values, and the global
symmetry generator V (ω) taking n possible values. The set is
complete because the total degrees of freedom Nn coincide
with the total Hilbert space size. Note that we call the Br =
g
†
rgr+1 variables l-bits, even though they take values in the

nth roots of unity. Just as was argued in the Ising case [near
Eq. (2)], the unitary must have functional dependence

Uf = Uf ({g†sgs+1},V (ω)).

Using a straightforward extension of the argument below
Eq. (3) where we showed [Uf : Zl] = ±1, it follows that
[Uf : gl] = ω−k ∈ Zn for some k. This in turn ensures that
the Floquet unitary takes the form

Uf = Uf ({g†sgs+1})V (ωk) (10)

for some k = 0,1, . . . ,n − 1. In fact, we can readily con-
struct any such unitary taking local Hamiltonian H0 =∑

s ln[Vs(ωk)] and combining it with H1 defined in Eq. (9)
according to the prescription Eq. (1). We are thus led to the
conclusion that there are n distinct Zn completely symmetry-
broken drives.

Let us briefly mention the kinds of spectral pairing in
this model. Fixing k in Eq. (10), we find the Floquet
spectrum has degenerate multiplet of n states at each
quasienergy. This follows from choosing a simultaneous eigen-
basis of Uf ,V (ω) labeled by (u,v). Applying the operators
1,gl , . . . ,g

n−1
l to this state generates a multiplet of states

(u,v),(uω−k,vω−1), . . . ,(uω−k(n−1),vω−(n−1)). So, for k = 0
the eigenstate order is simply that of a SSB undriven Zn state,
exhibiting the characteristic n-fold degeneracy. For k �= 0
mod n there is no undriven analog: we find a multiplet of
n states with protected quasienergy gaps. We can also argue
that no protected edge modes arise when we restrict such a
unitary to a system with edges (see Sec. IV A).

Last, we argue that the eigenstate properties of the newly
predicted Floquet drives constructed above are stable to small
symmetric perturbations. If we assume that the operators gr

change continuously as we perturb Uf symmetrically, then
[Uf : gr ] changes continuously too; the analog of this quantity
in the Ising case was [Uf : Zr ]. However, we have argued that
this quantity is a pure phase and discrete: it is an nth root of
unity. Hence, it cannot change continuously. So, it does not
change at all. In this way, with some assumptions about how
the l-bits vary with small changes in Uf , we have argued that
our diagnostic distinguishing different Floquet drives is robust.
Hence, we expect that the n types of Floquet unitaries, listed
in, and constructed explicitly below Eq. (10), correspond to
distinct and stable Floquet phases. We have extended many of

the arguments of Sec. II B to drives with Zn SSB eigenstate
order, paving the way for the case of general finite G.

IV. GENERAL FINITE G SSB ORDER

Here, we classify Floquet unitaries with SSB eigenstate
order, for general potentially non-Abelian G. This section is
structured as follows. After setting up some notation, we state
more comprehensively what we mean by SSB eigenstate order
for general G. Using this definition, and certain more technical
locality arguments in Appendix B, we constrain the form of a
Floquet unitary to Eq. (19), showing that the different classes
of fully SSB ordered Floquet unitaries Uf are labeled by the
elements of Z(G), the center of the group G. Thus, we predict
a Z(G) classification for completely spontaneously broken
Floquet drives. Last, in Sec. IV A we argue that there are
no protected edge modes for the predicted fully SSB Floquet
phases.

Consider a Hilbert space with onsite gr ∈ G degrees
of freedom, with G potentially non-Abelian. It is useful
to identify each such gr with its matrix {gr,ij } taken in
some complex faithful representation of G (e.g., the regular
representation always works) so that in particular

d∑
k=1

gikhkj = (gh)ij , (11)

where d is the dimension of the representation. As in Eq. (6),
we define onsite symmetry generator Vr (x)|{gs}〉 = |{xδrs gs}〉,
and right multiplication V

op
r (x)|{gs}〉 = |{gsx

δrs }〉. As for the
Zn case, we define “order parameter” operators gr , except
these operators are matrix valued with

gr,ij |{gs}〉 = gr,ij |{gs}〉, (12)

where i,j = 1, . . . ,d. It follows from Eq. (11) that gr is a
unitary matrix in the sense that

d∑
k=1

g
†
r,kigr,kj = δij 1.

Similarly, we obtain commutation relations

Vr (x)gr,ijV
−1
r (x) =

∑
k

(xr )−1
ik gr,kj , (13)

V (x)gr,ijV
−1(x) =

∑
k

(xr )−1
ik gr,kj . (14)

To describe more precisely what we mean by SSB eigenstate
order for non-Abelian G, it is useful examine the fixed-point
Hamiltonian

H1 =
∑

r

Jr (g†rgr+1), (15)

where the matrix indices on gr are left implicit. Here, Jr : G →
R is some random set of functions associated with the r,r + 1
bond. Equation (15) is our prototypical example of SSB for
general finite group G. Using Eq. (13), H1 is G symmetric.
Note too that

Br ≡ g†rgr+1 (16)
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is a near complete set of local conserved quantities, which
entirely determine the positions of domain walls in a “spin-
glass” configuration of a group valued order parameter gr ;
specifically, these operators tell us how the order parameter
changes as we hop across the bond. Now, pick a particular site
r = 1. The operators Br ,g1 give a complete set of labels on
the whole Hilbert space. That is, a spin-glass configuration is
completely specified by the order parameter at a particular site
g1 = g1 and the manner in which the order parameter changes
site to site Br = Br . In analogy with the results in the previous
section, perturbing symmetrically away from the fixed-point
model, we expect a smeared out analog of the gr operators
obeying commutation relation (14) with the global symmetry
generator V (x). Additionally, we expect modified l-bits of
form Br = g

†
rgr+1, with Br = Br, g1 = g1 giving a complete

set of conserved quantities (all commuting up to exponentially
small corrections in system size).

Having defined SSB order, we move to the Floquet problem.
Consider a local symmetric unitary Uf which has SSB ordered
eigenstates as per the above specification. The unitary Uf must
commute with all of the l-bits Br , implying

Uf =
∑
g,g′

u′
{B}(g

′,g)|g′,{B}〉〈g,{B}|,

where g,g′ is the value of the group element at site 1 and
we have chosen to label our basis states by g1 = g1, Br = Br .
We are interested only in some such operators which commute
with the global symmetry generators V (x). This imposes con-
dition u′

{B}(g
′,g) = u′

{B}(xg′,xg) for any x, which is equivalent
to the statement that

Uf =
∑
g,g′

u{B}(g−1g′)|g′,{B}〉〈g,{B}|

=
∑
g,g′

∑
x

δ(x = g−1g′)u{B}(x)|gx,{B}〉〈g,{B}|

=
∑

x

u{B}(x)
∑

g

|gx,{B}〉〈g,{B}|
︸ ︷︷ ︸

Q(x)

, (17)

where u′
{B}(g

′,g) = u{B}(g−1g′) defines u. In the original
convention for labeling basis vectors with their gr eigenvalues,
this newly defined operator Q acts like

Q(x)|{gr}〉 = ∣∣{g1xg−1
1 gr

}〉
. (18)

For x ∈ Z(G), the center of G, Q(x) just acts like the global
left symmetry action V (x), and in particular Q(x) is a local
circuit. For noncentral x, this operator is not low depth (see
Appendix B). Moreover, we show in Appendix B that Uf is
local only if u{B}(x) vanishes except for x = z, where z is a
particular element in the center. In other words,

Uf = u{Br }V (z), (19)

where u{Br } is some unitary function of the l-bits and z ∈
Z(G) is a particular element of the center. We thus arrive
at the conclusion that Floquet unitaries with full SSB order
are characterized by some z ∈ Z(G). Using the methods of I,
u{Br } can be argued to be a local functional of domain-wall
configurations.

Last, we might ask if there is an operator diagnostic allow-
ing us to discern the value of z appearing in Eq. (19). Indeed,
there is. Let g

χ

ij be a matrix presentation of g ∈ G within
irreducible representation χ of G, with i,j ∈ 1, . . . ,dimχ .
Define, in analogy with Eq. (12),

g
χ

r,ij |gr〉 = g
χ

r,ij |gr〉. (20)

Using Eq. (13), and the fact that z ∈ Z(G) acts like a phase in
any irreducible representation, it follows that

V (z)gχ

r,ijV
−1(z) = χ (z)

χ (1)
g

χ

r,ij , (21)

where χ is the irreducible character, and χ (z)/χ (1) is a pure
phase again because z ∈ Z(G). Multiplying Eq. (21) by g

†
r,j1,

setting i = 1, and summing over j gives∑
j

V (z)gχ

r,1jV
−1(z)g†,χr,j1 = χ (z)

χ (1)
.

Now using the orthogonality of the character table∑
χ

χ∗(C)χ (C ′) = δC,C ′
|G|
|C| (22)

for conjugacy classes C,C ′ we find that for any z′ ∈ Z(G),

1

|G|
∑
j,χ

V (z)gχ

r,1jV
−1(z)g†,χr,j1χ

∗(z′) = δz,z′ .

Using this identity, and the fact that gχ commute with the
l-bits, we extract z from Uf in Eq. (19) using operation

1

|G|
∑
j,χ

Uf g
χ

r,1jU
−1
f g

†,χ
r,j1χ

∗(z′) = δz,z′ . (23)

Having argued that Uf takes canonical form (19) for some
z ∈ Z(G), we now argue that the Floquet drives corresponding
to different z correspond to distinct stable Floquet phases.
We argue for the stability of these phases much as we did in
Sec. III. In the present case, the quantity (23) for any z′ ∈ Z(G)
entirely determines the z ∈ Z(G) characterizing the Floquet
unitary (19). It is discrete (either 0,1), and appears to depend
continuously on Uf , so by the argument in Sec. III it is expected
to be stable to sufficiently small symmetric perturbations.

A. Absence protected edge modes in SSB ordered drives

Having classified completely SSB Floquet phases accord-
ing to their bulk spectra, we now argue that they have no
protected edge modes; this is in contrast to the unbroken
examples in I, where the nontriviality of the Floquet drives
manifested itself through the presence of additional (or
modified) edge modes. Consider an SSB drive on a system
with boundary. Using arguments like those in I (Appendixes
A and B), together with Eq. (19), we can argue that the Floquet
unitary on a system with large number N sites takes the form

Uf = vLvRe−if V (z), (24)

where z ∈ Z(G), f is a local function only of bulk l-bits,
and vL,vR are unitaries local to the L,R edge of the system
which commute with all the bulk l-bits. As in I, we can show
that vL,vR commute with global symmetry V (g) up to some

245146-6



PHASE STRUCTURE OF . . . . II. SYMMETRY-BROKEN . . . PHYSICAL REVIEW B 93, 245146 (2016)

phase characterized by a pumped charge [V (g) : vL] = κ(g)
for some 1D representation κ of G. However, it turns out
that due to the bulk SSB order, the pumped charge is just an
artifact of the particular way we have decomposed the unitary
in Eq. (24), rather than a robust feature of the unitary.

To see why, form operators gκ
r corresponding to the 1D

representation κ . As κ is a 1D representation, gκ
r is a scalar

unitary operator with eigenvalues which are roots of unity
(as opposed to a matrix valued operator like gr,ij ). Now,
redefine vL,R by multiplying them with gκ operators based at
the left/right of the system, respectively: v′

L,R = vLg
†,κ
L ,vRgκ

R .
Simultaneously, redefine f by adding a local Hermitian
functional of the l-bits f ′ = f + i

∑R−1
s=L ln(gκ

s g
†,κ
s+1). Using

the identity

e
∑R−1

s=L ln(gκ
s g

†,κ
s+1) =

R−1∏
s=L

gκ
s g

†,κ
s+1 ∝ gκ

Lg
†,κ
R , (25)

together these modifications leave Uf unchanged, but v′
L,R

now commute with the global symmetries. Therefore, we
may as well assume vL,vR are symmetric. This means we
can exchange them for any local symmetric edge unitaries
while preserving the symmetry of Uf . In particular, there are
no protected edge states. The physical intuition behind this
calculation is as follows. In the dual language, we can view
SSB order as a condensate of particles carrying representations
of G, e.g., in dual variables, the Ising ferromagnet is a
condensate of Ising odd particles. In such a situation, there
is no solid notion of pumped charge; any charge pumped into
the edge is immediately screened by the delocalized soup of
charges in the bulk.

V. CONSTRUCTING DRIVES

The explicit Ising symmetric drives we examined at the
start of this work inspired a more general classification of SSB
Floquet phases. We saw that Floquet MBL phases with a fully
spontaneously broken finite symmetry group G are classified
by Z(G). We now construct explicit (fixed-point) drives for
each of the new predicted phases. Pick a z ∈ Z(G) labeling
the desired phase and let

Kz = −
∑

r

i ln[Vr (z)]. (26)

As Vr (z) is a unitary operator, a logarithm ln Vr (z) exists; for
concreteness, we define this explicitly in Eq. (C1). Now, take
the random SSB spin-glass Hamiltonian H1 from Eq. (15).
The unitary circuit

U (t) =
{
e−iKzt , 0 � t < 1
e−iH1(t−1)e−iKz , 1 � t < 1 + t1

(27)

has Floquet unitary

Uf = e−iH1t1V (z),

where V (z) is a global symmetry generator, and H1 has a
fixed-point spin-glass order and is a functional only of the Br

operators from Eq. (16). This unitary explicitly has the form
(19), for the phase corresponding to z ∈ Z(G).

VI. STRUCTURE OF THE FLOQUET SPECTRUM
AND TIME CRYSTALS

The Floquet phases predicted above are characterized by
a central element. The spectral properties of these drives are
obtained by considering a subspace corresponding to some
fixed configuration of domain walls {B}. We wish to consider
the possible values of Uf on this subspace. We can certainly
decompose this subspace into irreducible representations of G.
Starting in a state which is a singlet under global symmetry, we
can toggle to a state living in irreducible representation χ using
operator g

χ

r,ij . However, Uf g
χ

ijU
−1
f = χ(z)

χ(1)g
χ

ij where χ (z) is the
character evaluated at z ∈ Z(G) corresponding to irreducible
representation χ . In other words, the Floquet evolution flips our
non-Abelian generalization of a spin-glass order parameter g

χ

ij .
We see that states living in irreducible representation χ have
their spectra shifted by χ (z)/χ (1) relative to the original state;
this is a pure phase because χ is an irreducible representation
and z ∈ Z(G).2

With the basic structure of the spectra in place, we note
a connection between our work and time crystals [14].
The Hamiltonians H (t) for the Floquet phases considered
above not only have an onsite symmetry group G, but also have
a symmetry under time translation H (t + T ) = H (t). In this
sense, the total symmetry group is G × Z, where Z represents
time translation. As stated above, the additional information
characterizing the drives is an element of the center z, or
equivalently a homomorphism from the Abelian group of time
translations to the global symmetry group ϕ : Z → G.

The drives above spontaneously and completely break
the symmetry G, but there is also a sense in which they
spontaneously break the Floquet time translation symmetry
t → t + T , in a manner characterized by the central element
z alluded to above. For z �= 1, the order parameter oscillates
nontrivially:

g
χ

ij (nT ) =
[

χ (z)

χ (1)

]n

g
χ

ij (0),

with period larger than T , even though the Hamiltonian
has period T . In other words, the order parameter time
dependence does not enjoy t → t + T translation symmetry.
In the πFM Ising case of Sec. II, this is the statement that the
order parameter oscillates Z(nT ) = (−1)nZ(0) with period
2T oven though the underlying Hamiltonian has period T .
The connection between this statement, and time crystals was
pointed out to us by Altman.3 This oscillation is detectable
if one prepares a spin-glass configuration state and measures
the SG order parameter stroboscopically, although the full time
dependence of spins in such systems is much more complicated
as we will discuss elsewhere.4 This notion of time crystal is
close in spirit to the attempted definition in Ref. [19], where a
no-go theorem was proved concerning spontaneous breaking
of continuous time translation symmetry. This no-go theorem

2z gives rise to a unitary automorphism of irreducible representation
space corresponding to χ , so by Schur’s lemma acts like a phase eiθ 1.

3Private communication.
4C. W. von Keyserlingk, V. Khemani, and S. L. Sondhi (unpub-

lished).
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is inapplicable to the present systems for a number of reasons,
in particular our Hamiltonians explicitly break continuous time
evolution symmetry.

VII. GENERALIZATIONS AND CONCLUSION

We have put forward a classification scheme for 1D
many-body localized Floquet SPT states with completely
spontaneously broken onsite symmetry G, and with onsite
group valued degrees of freedom. We conjecture that there
are |Z(G)| different possible Floquet drives, each of which
can be brought into a canonical form (19). We have argued
that these putative Floquet phases are stable to sufficiently
small modifications to the unitary Uf in the bulk, although our
arguments are only heuristic and make certain assumptions
about the behavior of l-bits away from our exactly solvable
fixed points.

This work can be extended in several directions. Although
we have focused on 1D, none of the arguments seem specific
to 1D, so we tentatively conjecture a Z(G) classification for
higher-dimensional completely symmetry-broken phases too.
However, with the nature and stability of MBL order in higher
dimensions currently in question, we make this proposal very
tentatively. As in our previous work I, there remains the
challenge of understanding the dynamical stability of these
new phases for realistic drives, and the need for proposals for
realizing and detecting them in experiments.
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APPENDIX A: ISING PARAMAGNETIC REGIONS

In this Appendix, we investigate binary drives of form (1)
corresponding to the PM regions in Fig. 1. To distinguish the
two possible Floquet unitaries, we will need to consider the
drives on a system with boundary. We will here demonstrate
the existence of two distinct such paramagnetic Floquet drives
by looking at specific points on the Fig. 1 phase diagram. The
two distinct drives correspond to two possible phases of the
ClG × AG = Z2 classification for G = Z2 in I.

In the region labeled PM in Fig. 1, all of the eigenstates
have paramagnetic order. A representative unitary is obtained
by setting t1 = 0, i.e., Uf = e−iH0t0 , in which case that the
eigenstate properties of this unitary are simply those of the
topological Hamiltonian H0 with l-bits of form Xs . Note that
a such a PM Hamiltonian (in the disordered setting) does not
have the spectral pairing present in the FM problem.

Finally, consider the 0π (PM) on an open system. For ease
of explanation, set Js = 1 and hs disordered. As an example,

TABLE II. This table shows the structure of the spectrum of an
Ising symmetric Floquet drive with paramagnetic order.

Uf,edge Pedge

|1,1〉 1 1
X1|1,1〉 −1 1
Z1|1,1〉 1 −1
X1Z1|1,1〉 −1 −1

set t0 < π
2 and t1 = π/2:

Uf =
N−1∏
s=1

ZsZs+1e
−it0H0 → Z1ZNe−it0

∑N−1
s=2 hsXs , (A1)

where we performed a local symmetric unitary change of
basis to simplify the unitary near the edges. Now, in the
bulk (s = 2, . . . ,N − 1), the Uf eigenstates are eigenstates
of the local bulk integrals of motion Xs . In total Uf looks
like a bulk PM drive multiplied by an Ising tunneling operator
Z1ZN . Note that the edge degrees of freedom are completely
decoupled from the bulk so we can separately diagonalize the
bulk Hamiltonian e−it0

∑N−1
s=2 Xs and the two-site unitary

Uf,edge = Z1ZN.

This two-site Hamiltonian has two useful independent inte-
grals of motion Uf,edge = Z1ZN and Pedge = X1XN ; note these
are also integrals of motion of the original unitary Uf . Picking
a reference eigenstate |1,1〉, we can toggle between the four
eigenstates of Uf,edge as demonstrated in Table II.

Combining these edge results with the bulk unitary, we
conclude that for the drive in question, eigenstates of the full
unitary |u,p〉 of the Floquet drive come in quadruplets with
Uf ,P eigenvalues (u,p),(u, − p),(−u,p),(−u, − p).

APPENDIX B: LOCALITY ARGUMENTS

In this Appendix, we assume Uf is local and has a full
set of l-bits of the form explained in Sec. IV. Using these
assumptions, we will show first that the operator Q(x) defined
in Eq. (18) is local iff x ∈ Z(G). We then show that the
full Floquet unitary takes the form Uf = u{B}(z0)V (z0) where
z0 ∈ Z(G). The reader should be aware that these two target
equations, and many others in this Appendix, will hold only
up to exponentially small corrections in system size.

1. Q(x) local iff x ∈ Z(G)

We argue now that Q(x) as defined above in Eq. (17) is
local iff x ∈ Z(G). If x is central, the conclusion follows
readily from the fact that Q(x) = V (x) = ∏

r Vr (x), which
is manifestly local. If x is not central, consider the operator
V1(y) which has support on site 1. Were Q(x) local, a Lieb-
Robinson bound would imply that [Q(x) : V1(y)] commutes
with operators based at sites s very distant from 1 (up to
exponentially small corrections in |s|). Let F be an operator
F |{gr}〉 ≡ δ(gs,1)|{gr}〉; clearly, the operator has support only
at site s. We will show that the commutator [[Q(x) : V1(y)],F ]
does not decay with s. It suffices to show that some matrix
elements of the commutator do not decay with s. Thus, we
will have shown that Q(x) is not a local unitary if x /∈ Z(G).
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First, let us look at the matrix elements of [Q(x) : V1(y)].
For clarity, we will calculate these step by step. First, recall

Q(x)|{gr}〉 = ∣∣{g1xg−1
1 gr

}〉
,

(B1)
Q−1(x)|{gr}〉 = ∣∣{g1x

−1g−1
1 gr

}〉
,

so that Q−1(x) = Q(x−1). Next, note that

V −1
1 (y)|g1,{gr}′〉

= |y−1g1,{gr}′〉,
Q−1(x)V −1

1 (y)|g1,{gr}′〉
= ∣∣y−1g1x

−1,
{
y−1g1x

−1g−1
1 ygr

}′〉
,

V1(y)Q−1(x)V −1
1 (y)|g1,{gr}′〉

= ∣∣g1x
−1,

{
y−1g1x

−1g−1
1 ygr

}′〉
,

Q(x)V1(y)Q−1(x)V −1
1 (y)|g1,{gr}′〉

= ∣∣g1,
{
g1xg−1

1 y−1g1x
−1g−1

1 ygr

}′〉
,

where the notation |g1,{gr}′〉 isolates the group element on site
1 from all of the labels on other sites {gr}′ = {gr : r �= 1}. This
allows us to calculate a group commutator between kets

〈{g′
r}|[[Q(x) : V1(y)],F ]|{gr}〉
= [F (gs) − F (g1xg−1

1 y−1g1x
−1g−1

1 ygs)]

× δg′
1,g1δg′

r ,g1xg−1
1 y−1g1x−1g−1

1 ygr
. (B2)

Using F (gs) = δgs ,1 and taking matrix elements be-
tween some state with g′

1 = g1 = 1, gs = 1, and g′
r =

g1xg−1
1 y−1g1x

−1g−1
1 ygr for r > 1, we get

〈{g′
r}|[[Q(x) : V1(y)],F ]|{gr}〉
= (1 − δxy−1x−1y,1).

This latter expression is equal to 1 provided we can find
a y which fails to commute with x. This statement is true
regardless of how large we choose s. Hence, the operator norm
of the commutator does not decrease exponentially with s.

2. U f local only if u{B}(x) ∝ u{B}(z0)δx,z0 where z0 ∈ Z(G)

Given a local unitary of form

Uf =
∑

x

u{B}(x)Qx, (B3)

we wish to show that u{B}(x) = u{B}(z0)δx,z0 holds up to
exponentially small corrections in system size, where z0 ∈
Z(G). We prove this statement in two steps. We first show that
u{B}(x) must vanish if x /∈ Z(G). We then show that there can
only be one term in the superposition Eq. (B3).

The first part of the proof begins by examining the
commutator of Uf with V1(y) as in the previous subsection.
As Uf is unitary, Q

†
x = Q−1

x , and the {B} operators commute
with all Qx ,

[[Uf : V1(y)],F ]

=
∑
x,x ′

u∗
{B}(x)u{B}(x ′)[QxV1(y)Q−1

x ′ V −1
1 (y),F ], (B4)

where again F is chosen to be a function with support on
some distant site s. As Uf is local, any matrix elements of this
commutator (with respect to some local basis) should tend to
zero exactly or exponentially fast for large s. Examine matrix
elements {g′

r ,},{gr} where g′
1 = g1 = a. Such matrix elements

disappear on terms in the double sum (B4) unless x = x ′:

〈a,{g′
r ,}′|[[Uf : V1(y)],F ]|a,{gr,}′〉

=
∑

x

|u{B}(x)|2〈a,{g′
r ,}′|[QxV1(y)Q†

xV
†

1 (y),F ]|a,{gr,}′〉

=
∑

x

|u{B}(x)|2[F (gs) − F (axa−1y−1ax−1a−1ygs)]

× δg′
r ,axa−1y−1ax−1a−1ygr

, (B5)

where again the notation |g1,{gr}′〉 isolates the group element
on site 1 from the group labels on other sites {gr}′ = {gr :
r �= 1}. We now show that |uB(x)| must vanish for x = x0

non-Abelian. Choose

F |{gr}〉 = δgs ,t |{gr}〉
for some fixed t ∈ G, noting F is clearly an operator localized
to site s. Then, the a = 1, gs = t component of Eq. (B5)
becomes∑

x

|u{B}(x)|2(1 − δxy−1x−1y,1)δg′
r ,xy−1x−1ygr

.

Further restrict attention to the g′
r = x0y

−1x−1
0 ygr component

of Eq. (B5), obtaining∑
x

|u{B}(x)|2(1 − δxy−1x−1y,1)δx0y−1x−1
0 y,xy−1x−1y.

The second delta function is nonvanishing only for a certain
subset of those x (which includes x0) which fail to commute
with y, hence, the expression further simplifies to∑

x

|u{B}(x)|2δx0y−1x−1
0 y,xy−1x−1y. (B6)

Using a Lieb-Robinson bound, this expression (a matrix
element of a commutator) should tend to zero exponentially
fast as |s| → ∞. But, Eq. (B6) bounds |u{B}(x0)|2 above, so
that |u{B}(x0)|2 also tends to zero exponentially fast as we
send |s| → ∞. But, Eq. (B6) is actually independent of s, so
|u{B}(x0)|2 must be exponentially small in the system size for
any non-Abelian x0. Hence, all x appearing appreciably in the
expression for Uf must be in Z(G), i.e.,

Uf =
∑

z∈Z(G)

u{B}(z)V (z), (B7)

where we used the fact Q(z) = V (z) for z ∈ Z(G) alluded to
in Sec. IV. We show that as a consequence of Uf being local,
u{B}(z) is nonvanishing for only one z = z0 ∈ Z(G). Recall
that the operators g

χ

r,ij defined in Eq. (20) obey commutation
relations

V (z)gχ

r,ijV
−1(z) = χ (z)

χ (1)
g

χ

r,ij (B8)

because z ∈ Z(G) acts like scalar multiplication in all irre-
ducible representations χ . Using Lieb-Robinson bounds, and
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the form of Eq. (B7), it follows that

Uf g
χ

s,i ′j ′U
−1
f = g

χ

s,i ′j ′ηχ,s, (B9)

where ηχ,s is an operator that depends only on χ and is
localized around s. However, it follows immediately from
Eq. (B8) that gχ,†

l,ijg
χ

s,i ′j ′ commutes exactly with Uf for any sites
l,s however widely separated. In conjunction with Eq. (B9),
this implies

η
†
χ,lg

χ,†
l,ijg

χ

s,i ′j ′ηχ,s = g
χ,†
l,ijg

χ

s,i ′j ′ .

Using the mentioned locality properties of the operators, and∑
k g

χ,†
l,ikg

χ

l,kj = δij , it is readily verified that

η†
χ,sηχ,l = 1.

But, as these two operators are localized very far from one
another, yet inverse to one another, they must act by scalar
multiplication up to exponentially small corrections in system
size. Dropping the s site label for now we find therefore that

Uf g
χ

ijU
−1
f = eiθχ g

χ

ij

for all i,j and irreducible representations χ where eiθχ ∈ U(1),
from which it follows∑

k

g
χ,†
1k Uf g

χ

k1 =
∑

k

g
χ,†
1k g

χ

k1e
iθχ Uf

= eiθχ Uf .

But, we can evaluate the left-hand side of this expression using
Eqs. (B7) and (B8) to find∑

z

u{B}(z)V (z)
χ (z)

χ (1)
=

∑
z

u{B}(z)V (z)eiθχ . (B10)

Now, each nonvanishing term in the sum is orthogonal [use
usual inner product for operators 〈A|B〉 = Tr(A†B)], so the
two sums must be equal componentwise, i.e.,

u{B}(z)

[
χ (z)

χ (1)
− eiθχ

]
= 0 (B11)

for all z ∈ Z(G) and all irreducible representations χ . Suppose
uB is nonzero for some z0. Then, we have

χ (z0)

χ (1)
= eiθχ

for all χ . Substituting this back into Eq. (B11) we find

u{B}(z)[χ (z) − χ (z0)] = 0

for all z ∈ Z(G) and all χ . Now, suppose z1 �= z0 is also in
the center. Multiplying by χ∗(z1) and summing over χ gives
[using the orthogonality relation (22)]

u{B}(z)δz,z1 = 0.

Hence, u{B}(z1) = 0 for any z1 �= z0 as required. It follows
therefore that

Uf = u{B}(z0)V (z0),

as required.

APPENDIX C: LOGARITHMS OF V (g)

Suppose V is a unitary operator with finite order q. Let ω

be a primitive qth root of unity. Here, an explicit expression
for the logarithm of this operator log will take the form (for an
order N character)

q ln(V )

2πi
= 0δ(V = 1) + 1δ(V = ω1)

+ · · · + (q − 1)δ(V = ωq−1)

=
q−1∑
j=0

jδ(V = ωj ) = 1

q

q−1∑
k,j=0

jV kω−jk

=
q−1∑
k=0

V kck, (C1)

where

ck = [(q − 1)ω−k(q−1) − qω−kq + ωk]

q(ω−k − 1)2
.

APPENDIX D: ORDER PARAMETER CORRELATIONS

In this Appendix, we argue that FM ordered binary drives of
the form (1) which involve a 2π rotation of the order parameter
can be continuously deformed to drives which involve no
rotation of the order parameter, without encountering an
eigenstate phase transition or breaking Ising symmetry. To
this end, it is convenient to specialize to a system with an even
number of sites. We show that a unitary of form

U (t) = e−it
∑N

r=1 Xr

for 0 � t � π can be tuned to a constant path continuously
while maintaining Ising symmetry and fixing the end points
U (0) = U (π ) = 1. This implies that binary Floquet drives of
the form

U (t) =
{

e−it
∑N

r=1 Xr , 0 � t < π

e−iH1(t−π)e−iπ
∑N

r=1 Xr , π � t < π + t1

where H1 is potentially disordered, can be continuously tuned
fixing the value of Uf , to

U (t) = e−iH1t , 0 � t � t1.

As the system has an even number of sites, we can split

U (t) =
∏
r odd

e−it(Xr+Xr+1).

It suffices to show that for each pair of sites, we can
continuously deform

Ur (t) = e−it(Xr+Xr+1)

to a constant unitary in an Ising symmetric manner, fixing the
end points Ur (0) = Ur (π ) = 1. Pick an explicit basis for this
two-site system (WLOG r = 1):

X1 ⊗ 12 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠,
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11 ⊗ X2 =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠,

X = X1 ⊗ X2 =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎠.

The basis is labeled by X1,X2 eigenvalues in order
11,11̄,1̄1,1̄1̄ where 1̄ = −1. At this point, it is convenient
to change basis slightly (2 ↔ 4 swap) to give

X1 ⊗ 12 =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎠,

11 ⊗ X2 =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠,

X = X1 ⊗ X2 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠.

The basis is now ordered 11,1̄1̄,1̄1,11̄. We wish to find all
unitaries which commute with the two-site Ising symmetry X.
Such a unitary must take block-diagonal form

W =
(

A 0
0 D

)
(D1)

with the only requirement being A,D ∈ U(2). Now, con-
sider the unitary U (t) which in the current basis takes the

form

U (t) = e−itX1e−itX2

=

⎛
⎜⎜⎝

e−it 0 0 0
0 eit 0 0
0 0 eit 0
0 0 0 e−it

⎞
⎟⎟⎠

⎛
⎜⎜⎝

e−it 0 0 0
0 eit 0 0
0 0 e−it 0
0 0 0 eit

⎞
⎟⎟⎠

=

⎛
⎜⎝

e−2it 0 0 0
0 e2it 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠.

To see whether U (t) is deformable to a constant in the space
of unitaries of the form (D1), we need only decide whether

A(t) =
(

e−2it 0
0 e2it

)
can be deformed to a constant, fixing its end points A(0) =
A(π ) = 12, within U(2). But, note that A(t) lies entirely in
SU(2) ⊂ U(2) because det A(t) = 1. As SU(2) is a simply con-
nected space, i.e, π1[SU(2)] = {1}, it must be the case that A(t)
can be continuously deformed to a constant while fixing its
end points. In other words, the closed loop defined by A(t) lies
entirely in simply connected space SU(2), and can thus be de-
formed to a point. We can WLOG reparametrize this unitary as

A(t) =
(

e−it 0
0 eit

)
,

0 � t � 2π . To deform this to a constant path, use an
interpolating family of unitaries

A(t ; λ) =
(

(e−it − 1)c2
λ + 1 cλsλ(1 − e−it )

−cλsλ(1 − eit ) (eit − 1)c2
λ + 1

)
,

where λ ∈ [0,1], cλ = cos(πλ/2), and sλ = sin(πλ/2). Then,
A(t,0) = A(t) while A(t,1) = 1 as required.
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