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Recent work suggests that a sharp definition of “phase of matter” can be given for some quantum systems out
of equilibrium, first for many-body localized systems with time-independent Hamiltonians and more recently for
periodically driven or Floquet localized systems. In this work, we propose a classification of the finite Abelian
symmetry-protected phases of interacting Floquet localized systems in one dimension. We find that the different
Floquet phases correspond to elements of ClG × AG, where ClG is the undriven interacting classification, and
AG is a set of (twisted) one-dimensional representations corresponding to symmetry group G. We will address
symmetry-broken phases in a subsequent paper C. W. von Keyserlingk and S. L. Sondhi, following paper, Phys.
Rev. B 93, 245146 (2016).
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I. INTRODUCTION

The past few years have seen considerable progress in our
understanding of the phenomenon of many-body localization
(MBL) which has built on the early [1], seminal, and rigorous
[2] work that established its existence. One of the more
interesting ideas that has emerged from this work is that of
eigenstate phase transitions wherein individual many-body
eigenstates and/or the eigenspectrum exhibit singular changes
in their properties across a parameter boundary even as the
standard statistical mechanical averages are perfectly smooth.
In recent work [3], this idea was generalized to disordered
Floquet systems taking advantage of the fact that they exhibit
generalizations of the notions of eigenstate and eigenvalue in
the form of time-periodic Floquet eigenstates and associated
quasienergies. Reference [3] presented evidence that one-
dimensional (1D) spin chains with Ising symmetry exhibit four
distinct Floquet phases with either paramagnetic or spin-glass
order: two of the resulting Floquet phases have no analogs in
undriven systems. Disorder seems to be an essential ingredient
in this generalization, if the driving Hamiltonians are clean
[4–7], or lack sufficiently strong disorder [8], the eigenstate
properties of periodically driven systems seem to exhibit
“infinite temperature” ergodic behavior, with no vestige of
paramagnetic or spin-glass quantum order.

In this paper, we pick up the thread from this point
and address the question of obtaining an enumeration of all
possible Floquet phases in one dimension. Specifically, we
restrict ourselves to Floquet phases which do not sponta-
neously break any symmetry of the drive; we will analyze
the case of broken symmetry in a subsequent paper. In
1D, this implies that we are looking for Floquet versions
of symmetry-protected topological (SPT) phases of matter,
which generalize topological insulators and superconductors
to interacting systems.

All SPT phases of matter are associated with some global
symmetry group G, which is not spontaneously broken. Given
a symmetry group G there may be many distinct SPT phases,
each of which can be distinguished by their ground states;

two ground states represent the same SPT phase iff they can
be connected to one another by a symmetric local unitary.
A complete classification of SPTs in 1D is available [9,10].
The first step away from the purely ground-state classification
was taken in Refs. [11,12] where it was shown that in
the presence of localization induced by sufficiently strong
disorder, the entire spectrum (not just the ground state) of
certain SPTs can carry a signature of the underlying SPT
order. In 1D, this is the statement that in many-body localized
SPT systems, the entire spectrum has a characteristic string
order. This idea was clarified recently in Ref. [13]. On the
one hand, MBL Hamiltonians are believed to be characterized
by the appearance of a complete set of local integrals of the
motion or l-bits [14–16]. On the other hand, it is known
that a proper subset of the possible SPT orders can be
captured by commuting stabilizer Hamiltonians.1 Reference
[13] synthesized these observations arguing that only those
SPT orders captured by commuting stabilizer Hamiltonians
can have eigenstate order.

In another line of work, noninteracting Floquet systems
have been investigated for nontrivial topology and building on
various examples [17–23] a classification has recently been
obtained [24,25], and also investigated in a disordered setting
[26,27]. This classification is indeed richer than for the un-
driven problem. As Ref. [24] shows, if the original equilibrium
noninteracting classification was Cl = Z,Z2 or {0} [28], then
the Floquet classification is of the form Cl × Cl.

Here, we will show that the classification of symmetric
Floquet states is different from both the undriven MBL SPT
classification and the noninteracting Floquet classification; a
simple example is given by the G = Z2 × Z2 bosonic SPT
considered in detail in Sec. V. Our general approach is as

1A commuting stabilizer Hamiltonian takes form H = ∑
r Hr ,

where the Hr are local and commute amongst themselves. See
Ref. [12] for a well-explained example of a commuting stabilizer
SPT Hamiltonian, and examples in the main text.
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follows. We start with a Floquet drive with associated Floquet
unitary Uf ≡ U (T ). We assume that Uf has a prescribed
eigenstate order which we call the bulk order (measured
by a string order parameter for unitary G, and encoded in
the form of the local conserved quantities). To focus on
those Floquet systems potentially resilient against heating to
“infinite temperature,” we consider only those bulk orders
which are many-body localizable in the sense of Ref. [13];
in practice, this means we restrict ourselves to states with
onsite symmetry groups G. We make a further simplification
by assuming G is Abelian.

In the undriven setting, the classification of 1D SPT
eigenstate order is captured by how the symmetries in the
problem act projectively at the edge [9,10,29], this being
captured almost entirely2 by a so-called 2-cocycle c(g,h) ∈
U(1).3 We conjecture that in the driven MBL setting in addition
to this information there is just one further piece of data
κ : G → U(1) characterizing the commutation between the
symmetry action local to the edges and the Floquet unitary
Uf itself. For unitary symmetries, we show that this κ is a 1D
representation of G. For antiunitary symmetry groups of form
G = G′ × ZT

2 where G′ is unitary and ZT
2 is T 2 = 1 time

reversal, our results are less certain, but we conjecture that κ

obeys a twisted 1-cocycle condition (15). In any case, the set
of all such κ is denoted AG. Hence, our proposed interacting
classification for Floquet drives is of the form Cl × AG where
Cl is the undriven classification. A compatible set of results
was obtained independently shortly after the appearance of
this work in Refs. [30–32].

To support our conjecture, we investigate in more detail
the structure of local symmetric Floquet unitaries with a
complete set of local bulk integrals of motion. On an open
chain, we argue that such a unitary can be brought into a form
Uf = vLvRe−if where vL,vR are local to the left/right end
of the system and both commute with f , a local functional
of the local bulk conserved quantities characterizing the bulk
order. We formulate κ in terms of vL,vR , and show that it is
robust under arbitrarily large but symmetric modifications to
the Floquet drive local to the edges as well as small symmetric
perturbations to the bulk.

The balance of the paper is set out as follows. We start in
Sec. II with a 1D Floquet system with class D (fermion parity
protected) Kitaev chain eigenstate order. We use a framework
to reproduce the Z2 × Z2 classification obtained from band
theory, and verified in an interacting setting in Ref. [3]. This
helps us to motivate a more general framework in Sec. III.
Then, in Sec. IV we reinterpret our results more simply as an
extension of the undriven algebraic classification of Ref. [29].
In Sec. V, we examine the spectrum of the interacting bosonic
G = Z⊗2

2 drive, explaining what kinds of edge modes are
present. In Sec. VI we deal separately with two examples
of time reversal invariant SPTs, the latter being an interacting
driven version of fermionic Class BDI (i.e., fermion parity

2For fermionic states, the fermion parity of the symmetry action at
the edge is also important [29].

3See also Refs. [10,41] for a more pedestrian exposition, and
Ref. [42] and Sec. IV for an introduction to cocycles.

conserving systems with T 2 = 1 time reversal). We conclude
in Sec. VII.

II. MOTIVATING EXAMPLE: CLASS D IN 1D

We will now consider in some detail a particular case that
will explain the logic we follow in the general case. This is
the case of Floquet drives defined by fermionic Hamiltonians
H (t) which conserve fermion parity. For quadratic time-
independent Hamiltonians, this is class D in the Altland-
Zirnbauer classification. We will use the same nomenclature
for our interacting time-dependent problem. For the noninter-
acting Floquet problem, the list of phases for class D is known
and we will explain how this exhausts the list of phases in the
interacting MBL setting as well; we note that previous work
[3] has shown by explicit computation that the noninteracting
phases do continue into this setting but not settled the question
of whether others exist. We now, successively, review the
basics of the time-independent quadratic classification, its
Floquet analog, and an understanding of the latter appropriate
to the MBL setting and end with the promised generalization
to interacting MBL Floquet systems.

A. Time-independent SPT phases

There are just two SPTs with just Zfp
2 fermion parity

symmetry in 1D [9,29]. They have model Hamiltonians

H0 = −
N∑

i=1

ihiψiψ̄i,

H1 = −
N−1∑
i=1

iJiψiψ̄i+i ,

where the Hilbert space consists of N spinless fermion degrees
of freedom ĉ, or equivalently two ψ,ψ Majorana fermion
degrees of freedom per site defined by ĉ = (ψ − iψ)/2.
If we choose the hi,Ji to be translationally invariant, then
H0,H1 encode the well-known Kitaev trivial/topological 1D
wire fixed-point states. Hamiltonians in the same phase as
H1 are called topological because they are associated with
an (exponentially) protected spectral pairing on an open
system associated with a protected Majorana mode at its edge.
Concretely, for H1 presented above, we can find simultaneous
eigenstates of H1 and fermion parity P ≡ ∏N

i=1 iψiψi . The
operator ψ̄1 commutes with H1 but anticommutes with P .
Hence, each energy eigenvalue E of H is associated with at
least two states |E,+〉,|E,−〉 = ψ̄1|E,+〉 with fermion parity
±1, respectively. H0, the trivial state, has no such protected
degeneracies.

Another way to distinguish the ground states of the
trivial/topological phases is through the use of string order
parameters. That is, if we define (see Fig. 1)

�
(c)
l,r =

{∏
l<s<r iψsψs, c = 0

iψl

[∏
l<s<r iψsψs

]
ψr, c = 1

(1)

then 〈�(0)
l,r 〉gs is long ranged/exponentially decaying in

the trivial/topological phases, respectively, and 〈�(1)
l,r 〉gs is

long ranged/exponentially decaying in the topological/trivial
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FIG. 1. (a) Each onsite spinless fermion is equivalent to two
independent Majorana degrees of freedom. (b) The string order
operator for the nontopological phase involves a product of onsite

fermion parity operators (−1)̂c
†
s ĉs = iψsψs , while the string order

operator for the topological phase (c) involves a product of bond
fermion parity operators iψsψs+1.

phases, respectively (see Ref. [33] for an illuminating account
of string order in 1D SPTs). We will thus refer to the
trivial/topological states as having type 0,1 string orders,
respectively. If we choose hi,Ji strongly disordered all of the
eigenstates of H0,H1 necessarily have string order of types
0,1, respectively, and this statement is at least perturbatively
stable to the inclusion of interactions [13].

B. Quadratic Floquet phases

There are four known phases of the class D Floquet
problem. Following Ref. [3], we can exhibit them in a simple
model of a binary Floquet drive (see also Ref. [20]) using the
reference Hamiltonians H0,H1:

U (t) =
{
e−iH0t , 0 � t < t0

e−iH1(t−t0)e−iH0t0 , t0 � t < t0 + t1

where we pick hi,Ji = 1 to be uniform. Eventually, we will
disorder these couplings, but we assume uniformity for now
for ease of exposition. The final Floquet unitary is simply

Uf ≡ U (T ) = e−iH1t1e−iH0t0 . (2)

The phase diagram of our binary drive as a function of
t0,t1 has some manifest periodicities. Note that eπψiψ̄i = −1
wherein the replacement t0 → t0 + nπ shifts all quasienergies
by Nπ but otherwise the Floquet eigenstate properties remain
unchanged. The same holds true for shifts like t1 → t1 + nπ .
Hence, the eigenstate properties of Uf are invariant under
ti → ti + niπ . Another thing to note is that for systems with
an even number of sites, the unitary iN/2 ∏

i ψi effectively
flips ti → −ti while

∏
i even iψiψ̄i flips t1 → −t1. Therefore,

the eigenstate properties of Uf are also invariant under such
inversions and reflections in t0,t1. From this combination of
shift and reflection symmetries in t0,1, it suffices to consider
a unit cell of the phase diagram t0,1 ∈ [0,π/2] as shown in
Fig. 2. The phase transition lines drawn in the diagram are
straightforwardly obtained by diagonalizing U (T ) for closed
chains where each individual momentum sector only presents

t1

t0 π/2

π/2

0
0

Binary phase diagram for Class D and Ising spin chain

(u, p), (u,−p) (u, p), (−u,−p)

(u, p), (−u, p), (u,−p), (−u,−p)

(u, p)

0&π triv.

triv.

top. π top.

FIG. 2. This shows the phase diagram for the binary drive in
Eq. (2). The red and blue lines separate distinct Floquet phases.
The lists involving (u,p) summarize the protected multiplets in the
spectrum for an open chain, e.g., in the 0 and π trivial phase, if there
is a state with Uf ,P eigenvalues (u,p) then there are guaranteed to
be states at (−u,p), (u,−p), (−u,−p) up to exponential corrections.

a two-dimensional problem. Of these, the boundary at small
t0,t1, can be obtained by using the BCH formula to show
that Uf ≈ e−iH0t0−iH1t1 . In this regime, the eigenstates are
determined by the effective Hamiltonian H0t0 + H1t1, which
is expected to be fully trivial/topological for |t0| > |t1| and
|t0| < |t1|, respectively.

We will now develop an analytical, spatially local, picture
of this phase diagram, which in turn will guide our attempt
to classify 1D Floquet phases; we do this by focusing on
the boundaries of the fundamental region where the Floquet
unitaries will exhibit localization even absent disorder. In the
regions labeled “triv,” representative unitaries are obtained
by setting t1 = 0, i.e., Uf = e−iH0t0 . It is clear that the
eigenstate properties of these unitaries are simply those of
the trivial Hamiltonian H0 and all of the eigenstates have
c = 0 string order. This is clearly a consequence of the (trivial)
localization of H0. In the region labeled “top,” representative
unitaries are obtained by setting t0 = 0, i.e., Uf = e−iH1t1 ,
so the eigenstate properties of these are simply those of the
topological Hamiltonian H1. All of the eigenstates have c = 1
string order and on an open system, this drive will have a
protected Majorana at its edges commuting with Uf , and a
spectral pairing associated with this Majorana.

The π topological phase is new to the driven setting. As an
example, set t0 = π/2 and t1 = ε < π

2 :

Uf = e−it1H1
∏

s

i(iψsψs) ∝ e−it1H1P .

This is simply the unitary associated with a topological drive
(discussed above) multiplied by the global fermion parity
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operator which is itself a good quantum number of H1. There
is a complete basis of eigenstates with c = 1 topological string
order, which follows from the fact they have local integrals of
the motion of form iψsψs+1. Now, rewrite Uf in terms of said
local integrals of the motion to obtain

Uf ∝ e−i(t1+π/2)H1 iψ1ψN .

This unitary looks like the topological drive above (with t1
shifted), multiplied by a term iψ1ψN which commutes with
the bulk local integrals of motion. Thus, we can diagonalize
the bulk unitary e−i(t1+π/2)H1 and the edge unitary Uf,edge =
iψ1ψN simultaneously, writing eigenvalues of Uf as u = ubue

where ub ∈ U(1), ue = ±1 are the eigenvalues of the bulk and
edge unitaries, respectively. Note that ψ1 anticommutes with
Uf,edge and commutes with the bulk unitary. Hence, if u = ubue

is an eigenvalue of Uf then so is −u = ub × (−ue). In other
words, if Uf |u〉 = u|u〉 then ψ1|u〉 has eigenvalue −u. This
π shift symmetry in the argument of u associated with the
boundary Majoranas is the reason we call this state the π

topological state.
In summary, we identified the eigenstate order of the drive,

and wrote the unitary in terms of the corresponding local
integrals of motion. The resulting unitary looked like a simple
topological drive e−i(t1+π/2)H1 multiplied by a term iψ1ψN

which hops Majoranas between the distant edges. This implied
a spectral pairing at quasienergy π .

We can treat the 0 and π phases analogously. On the
boundary of that region, the eigenstates have type 0 (trivial)
string order Eq. (1) and at a given edge, there is a 0 and a π

quasienergy Majorana mode. To see this, set t0 = ε < π
2 and

t1 = π/2. The resulting unitary simplifies to

Uf =
N−1∏
s=1

i(iψsψs+1)e−it0H0

∝ Pψ1e
−it0iψ1ψ1ψNe−it0iψN ψN × e−it0

∑N−1
s=2 iψsψs

→ Pψ1ψN × e−it0
∑N−1

s=2 iψsψs . (3)

In the last line we used a local symmetric unitary change of

basis (implemented by W = e
it0
2 (iψ1ψ1+iψNψN )). Note that the

onsite fermion parities iψsψs are local integrals of motion in
the bulk (s = 2, . . . ,N − 1). As in the previous example, we
use these local integrals of motion to reexpress the unitary as

Uf ∝ iψ1ψNe−i(t0+π/2)
∑N−1

s=2 iψsψs . (4)

This looks like a bulk nontopological drive multiplied by a Ma-
jorana tunneling operator iψ1ψN . Note that the edge degrees
of freedom are completely decoupled from the bulk so we
can simultaneously diagonalize the bulk e−i(t0+π/2)

∑N−1
s=2 iψsψs

unitary and the two-site edge unitary

Uf,edge = iψ1ψN = ie−i π
2 iψ1ψN .

Note that the two boundary sites 1,N involve the four
Majoranas ψ1,ψ1,ψN,ψN . This two-site unitary has two
useful independent integrals of motion Uf,edge = iψ1ψN and
Pedge = iψ1ψ1iψNψN ; note these are also integrals of motion
of the original unitary Uf as well. Picking a reference
eigenstate |1,1〉 of Uf,edge,Pedge for the two-site problem, we

TABLE I. Eigenstates of the unitary Uf,edge involving sites 1,N .

Uf,edge Pedge

|1,1〉 1 1
ψ1|1,1〉 1 −1
ψ1|1,1〉 −1 −1
ψ1ψ1|1,1〉 −1 1

can toggle between the four eigenstates of Uf,edge as shown in
Table I.

Note that the edge degrees of freedom have two eigenstates
at each of Uf,edge = ±1. It is straightforward to use the edge
properties listed in Table I to show that the eigenstates of
the full Floquet unitary come in quadruplets with Uf ,P

eigenvalues (u,p),(u,−p),(−u,−p),(−u,p). From Table I we
see that ψ1 is associated with a flip (u,p) → (u,−p) while
ψ1 is associated with (u,p) → (−u,−p). Hence, we think of
ψ1,ψ1 as being a zero/π quasienergy Majorana, respectively.

Finally, we can offer some intuition regarding the somewhat
physically opaque constructions. The nontrivial drives (i.e.,
the π and 0 and π drives) are associated with a tunneling
operator of the form ψ1ψN . We can think of these operators
as pumping fermion parity charge from one edge to the other,
across the entire system. So, nontrivial Floquet drives differ
from trivial Floquet drives insofar as a charge of the symmetry
group G = Z2 has been pumped across the system.

C. Generalizing to the MBL regime

We were able to understand the specific class D drives above
by reducing the Floquet unitary to the form

Uf = vLvRe−if , (5)

where f is some functional of local bulk l-bits �s , and vL,vR

are operators localized at the left and right edges of the
system, respectively, which commute with all bulk �s . For
the nontrivial Floquet drives (i.e., the π and 0 and π drives),
vL,vR were both fermion parity odd unitary operators.

This begs the following question: Can we always reduce
Uf to this simple form, and does the fermion parity of vL,vR

always indicate whether or not the Floquet drive is trivial? We
claim yes. In full, we will argue that fermion parity symmetric
Floquet unitaries with a complete set of bulk local integrals of
motion and an associated trivial/topological eigenstate order:
(i) can be written as Eq. (5); (ii) vL,vR have definite (and
identical) fermion parity as operators; and (iii) the parity of
vL,vR is uniquely determined by Uf and robust to arbitrarily
large parity symmetric modifications to the unitary near the
edges, and sufficiently small bulk perturbations.

For (i) it is essential to assume the existence of local
conserved quantities; this is presumably necessary at the outset
if we wish for our system to not heat up in the sense of Refs.
[4–7]. In Appendix A we argue that f can be chosen to be a
local function of these local conserved quantities because Uf

arises from a time-dependent local Hamiltonian. Before diving
into the fuller discussion of the more general case in Sec. III,
and assuming (i), let us give some flavor of the arguments for
(ii) and (iii). Using Eq. (5), and the fact that P commutes with
both Uf and the bulk l-bits, it follows that [P : vLvR] = 1
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where we define

[A : B] ≡ ABA−1B−1

for invertible operators A,B. Now, as P is a local unitary
circuit (of depth 1), it is straightforward to see that [P : vL/R]
is a unitary localized near the left/right end of the system,
respectively. Indeed, we can write [P : vL] = vLθL and [P :
vR] = θRvR where θL/R is some unitary operator localized
near the left/right end of the system. [P : vLvR] = 1 implies

vLvR = vLθLθRvR ⇒ θLθR = I . (6)

But, θL,R are local to L,R, respectively, distant from one
another, and yet inverse to one another. The only possibility
is that θL = θ−1

R = eiθ I is a pure phase. Using the fact that
P 2 = 1, it moreover follows that eiθ = ±1. Thus, vL,vR have
definite and equal fermion parities.

For (iii) we need to show that the parities remain unchanged
if we augment our drive Uf → Uf wL,R where wL,R are
parity symmetric unitaries localized near the left/right edges
of the system, respectively. Heuristically speaking, we are
just modifying vL,R → vL,RwL,R , which will not change the
fermion parities of vL,R because wL,R are parity symmetric; of
course, this is a little misleading because the modified vL,R do
not necessarily commute with all of the bulk l-bits as required
in Eq. (5). A fuller argument is provided in Sec. III C. See
also Appendixes C and D for a distinct and potentially tighter
argument using string order parameters.

Last, we wish to argue that the parity of vL,R is robust
to sufficiently small bulk perturbations. This statement is
supported by the observation that in the noninteracting Floquet
setting with a random disorder configuration, the 0 and π

Majoranas eventually decay into the bulk with probability 1.
The decay length is determined by the average behavior of
the random couplings (see Ref. [34] for an example of such
a calculation, using transfer matrices). Upon modifying the
bulk couplings smoothly, the decay length changes smoothly,
and for sufficiently small changes the Majorana edge mode is
robust with probability 1. Thus, in the noninteracting setting,
the edge structure is at least statistically robust to small
adjustments to the bulk. In our formalism when the vL,vR are
parity odd, they are the many-body analogs of the π Majoranas
in the noninteracting setting. In this case, we expect a similar
statistical statement to hold. Namely, upon modifying the bulk
couplings slightly, the vL,vR operators remain fermion parity
odd, and localized to the edges with probability 1.

III. GENERAL FRAMEWORK

The discussion in the previous sections focused on a
fermion parity symmetric system G = Zfp

2 . Here, we consider
more general Floquet drives with an onsite finite global
Abelian symmetry group G with global generators V (g). Start
with some spatially local G symmetric and time-periodic
family of Hamiltonians H (t) = H (t + T ), giving rise to an
instantaneous unitary U (t) = T e− ∫ t

0 dt ′H (t ′). Our aim is to
characterize the eigenstates of Uf ≡ U (T ) on a system with
edges.

We assume that Uf has full eigenstate order, i.e., assume
that the disorder in the drive is sufficiently strong such that
there is a complete set of local integrals of the motion (l-bits)

{�r}, which encode a known unique SPT order. As discussed
in the Introduction, only certain SPT eigenstate orders are
expected to exist stably as the eigenstate orders of Floquet
unitaries. For this reason, we restrict our attention to such
“many-body localizable” SPT orders from the outset. In 1D,
Ref. [13] suggests all SPTs with finite onsite symmetry group
are many-body localizable. It is for this reason we consider
finite discrete G, and for simplicity we focus on Abelian G.

We make a technical assumption about the l-bits: we
assume they can be chosen to commute with the global
symmetry generators. This latter requirement is certainly true
for 1D fixed-point MBL Abelian SPT phases [13]. Perturbing
symmetrically away from the fixed-point models, we expect
the l-bits to be smeared out �r → �′

r , in such a way that �′
r

also commutes with the global symmetries. While the l-bits at
the fixed points are exactly local, the �′

r are only exponentially
local [35].

The more general arguments in this section will follow the
same format as before in the class D case. We argue that finite
Abelian G symmetric Floquet unitaries with a complete set
of bulk l-bits and an associated trivial/topological eigenstate
order (i) can be written as Eq. (5) [with vL,R,f obeying the
conditions stated below Eq. (5)]; (ii) vL,vR can be associated
with a certain (twisted) 1D representation κ of G to be defined;
(iii) this 1D representation is uniquely determined by Uf and
robust to arbitrarily large G symmetric modifications to the
unitary near the edges, and sufficiently small bulk perturba-
tions. (i)–(iii) together suggest that the symmetry-protected
features of Floquet drives with the mentioned properties are
captured by the bulk order and the (twisted) 1D representation
κ . Therefore, labeling the possible bulk orders by ClG and the
possible (twisted) 1D representations by AG, we conjecture
that the interacting Floquet classification is ClG × AG for the
G considered here.

This section is organized as follows. We supply the
arguments for (i) in Appendix B. In the next two sections
we show (ii), i.e., how to associate vL,R with a certain 1D
(twisted) representation of G. This will involve demonstrating
that the quantity

κL,R(g) ≡ (V (g) : vL,R), (7)

which we call the “pumped charge,” defines a (twisted)
1D representation of G. Our discussion is split between
the unitary and antiunitary cases in Secs. III A and III B,
respectively. Equation (7) involves a generalization of the
group commutator defined by

(V (g) : W ) ≡ V (g)WV −1(g)W−α(g), (8)

where W is any unitary, and α : G → Z2 is a homomorphism
with α(g) = ±1 for g unitary/antiunitary, respectively. Note
that for unitary g, (V (g) : W ) = [V (g) : W ].

In Sec. III C we argue (iii), i.e., κ is well defined and
robust to arbitrarily large symmetric adjustments to the unitary
local to L,R, and sufficiently small bulk perturbations. Finally,
in Sec. III D we summarize our proposed classification, and
provide some examples.
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A. Unitary onsite symmetry groups

Recall that Uf is generated by a symmetric family of
Hamiltonians H (t ′). This implies that Uf commutes with
the global symmetry generators, i.e., (V (g) : Uf ) = 1 for all
g ∈ G. We use this fact to constrain the symmetry properties
of the vL,vR appearing in Eq. (5).

Lemma 1. Consider system S = [L,R], and finite Abelian
unitary symmetry group G. Then, κL,R(g) ≡ (V (g) : vL,R)
are U(1) scalar operators, where V (g) is a global symmetry
transformation.

Proof. From assumption (i) we argued that the Floquet
unitary takes the form (5) where vL,vR are localized at the
L,R edges, and commute with f . The unitary is G symmetric
so (V (g) : Uf ) = 1 for all g ∈ G. In addition, f commutes
with the global symmetry generators because it is a function
only of l-bits, which are all assumed to commute with the
global symmetries. Therefore,

1 = (V (g) : vLvRe−if ) = (V (g) : vLvR) . (9)

The right-hand side of this equation can be expressed as
[abbreviating V (g) to V and κL,R(g) to κL,R]

(V : vLvR) = κLvLκRvR(vLvR)−1

= κLκRvLvR(vLvR)−1

= κLκR . (10)

The second equality follows because vL and κR commute. To
show this, it suffices to note (a) both terms are localized at
the L,R edges, respectively, and (b) in a fermionic system
at least one of these terms is fermion parity even. (a) follows
from the fact V (g) is a low-depth unitary, so κL,R(g) ≡ (V (g) :
vL,R) are local to the L,R part of the system, respectively. (b)
follows from the earlier argument around Eq. (6) that vL,R

have definite parity p = ±1, so that κR has parity p2 = 1 as
required. Equations (9) and (10) together imply that κLκR = I .
But then κL,R are unitaries with support far away from one
another, yet have κL = κ−1

R . The only possibility is that κL,R

are of the forms e±iθ 1, respectively. �
We define the pumped charge of Uf to be the quantity

κ ≡ κL : G → U(1) in Eq. (7). Using the fact that κ is a phase
from Lemma 1, it follows from the definition that

κ(gh) = κ(g)κ(h) (11)

with κ(1) = 1, so that κ forms a 1D representation for unitary
symmetry groups.

B. Time-reversal (T ) symmetry

We can apply most of the arguments in the above section
to drives with symmetry group G = G′ × ZT

2 where G′ is
unitary and ZT

2 is T 2 = 1 time reversal, but there are a few
complications. First, in Lemma 1 we used the fact that (V (g) :
Uf ) = 1. This follows for unitary symmetries because each
of the instantaneous Hamiltonians H (t ′) are symmetric from
which it readily follows that Uf is symmetric. In contrast, if
H (t ′) is time-reversal symmetric, then Uf will not necessarily
obey (V (T ) : Uf ) = 1. However, if we insist in addition that
H (t ′) = H (T − t ′) [24] where T is the period of the drive,
then (V (g) : Uf ) = 1 is guaranteed for all g ∈ G including
g = T .

The next stumbling point in attempting to formulate an
analog of Lemma 1 is in showing that

(V (g) : e−if ) = 1, (12)

where Ubulk = e−if is the bulk part of the unitary Eq. (5).
While Eq. (12) is clear in the unitary case, it is less clear in the
nonunitary case, and in fact we will only prove it for a subset
of the time-reversal-invariant SPTs. To see where the problem
arises, express

Ubulk =
∑

J

δ({�} = J ) e−if (J )︸ ︷︷ ︸
β(J )

,

where
∑

J is a sum over all the possible values for all l-bits,
and β(J ) are necessarily U(1) numbers. By assumption, the
global time-reversal generator V (T ) commutes with all the
l-bits �. Then, Eq. (12) holds provided β(J ) = β(J ∗). One
way to guarantee this is to consider only those SPT orders for
which the eigenvalues are real, e.g., J = ±1. We will assume
this condition, as it is automatically true in the cases we wish
to consider in this text (Sec. VI).

Assuming then that Eq. (12) is true, Eq. (9) must hold. We
now revisit the argument in Lemma 1 to find [abbreviating
α(g) to α, V (g) to V , and κL,R(g) to κL,R]

(V : vLvR) = κLvα
LκRvα

R(vLvR)−α

= (V : vL)(V : vR)vα
Lvα

R(vLvR)−α

= (V : vL)(V : vR)p
1−α

2 . (13)

The second equality follows from the fact that κR is fermion
even and localized to the right-hand edge as before. The third
equality follows from the fact vL,R have definite and identical
fermion parity p as before. Hence, using Eq. (9) we find that
κLκR = p

1−α
2 I . But, as κL,R have support far away from one

another we must have

κ(g) ≡ κL(g) = κ−1
R (g)p

1−α(g)
2 (14)

is a pure phase as before. It again follows readily that κ(1) = 1.
One slight difference, however, is that

κ(gh) = V (g)κ(h)vα(h)
L V (g)−1v

−α(gh)
L

= κα(h)(g)κα(g)(h) .

Therefore, the analog of pumped charge in this nonunitary case
obeys

κ(gh) = κ(g)α(h)κ(h)α(g) , (15)

so that κ is a “twisted” analog of a 1D representation of the
group G.

C. Robustness of pumped charge

Having associated vL,vR with (twisted) 1D representation
κ , we now show (iii), namely, that κ is (a) well defined, i.e.,
independent of the precise manner in which we decompose
Eq. (5); (b) robust to symmetric modifications of the unitary at
the edges; and (c) robust to sufficiently small symmetric bulk
perturbations.

To show (a), suppose we have two decompositions Uf =
vLvRe−if = v′

Lv′
Re−if ′

obeying the conditions below Eq. (5).
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Are the pumped charges the same? We argue yes. First, we
restrict attention to those terms in f involving only conserved
quantities in some extensive connected subregion of the bulk
S ′ which is nevertheless far away from both L,R, forming
functional fS ′ . From the locality of f it follows that eifS′ e−if

acts like the identity over almost all of S ′. Indeed,

eifS′ e−if = e−ifLe−ifR , (16)

where fL,fR are functions of bulk l-bits on left/right parts
of the system, respectively, which are widely separated from
one another. Now, vL commutes with f by assumption, and
commutes with fS ′ because it is supported far away from S ′. It
follows readily from Eq. (16) that vL commutes with e−ifL , a
fact we will use shortly. Now, as e−if ,e−if ′

act identically deep
in the bulk it is also true that eifS′ e−if ′

acts like the identity
over most of S ′, and it has a similar decomposition e−if ′

Le−if ′
R

into unitaries based at the left and right sides of the system,
and as before v′

L commutes with e−if ′
L . Now, multiplying Uf

by eifS′ we obtain

eifS′ Uf = vLe−ifLvRe−ifR = v′
Le−if ′

Lv′
Re−if ′

R .

As vLe−ifL ,v′
Le−if ′

L have support far away from vRe−ifR ,

v′
Re−if ′

R , it follows that

vLe−ifL = v′
Le−if ′

Leiφ,

where eiφ is some U(1) phase, using the same reasoning
deployed below Eq. (6) and in Lemma 1. Applying (V (g) :
. . . ) to this equation shows vL,v′

L have the same pumped
charge because bulk l-bits commute with the global symmetry
generators, and vL,v′

L commute with e−ifL ,e−if ′
L , respectively.

Thus, we have argued that the pumped charge is well defined.
For (b) we need to show that the pumped charge is

robust to local symmetric changes at the edge. Under such
modifications, the resulting unitary will still have a complete
set of conserved quantities deep in the bulk so Uf still has
bulk eigenstate order. We just need to show that the pumped
charge is robust under modifications of form Uf → Uf wL for
some symmetric wL localized near (say) the left edge such that
(V (g) : Uf ) = 1 continues to hold. Under such a modification
vL will change, as will some of the l-bits near the left end
of the chain. However, for large system size, vR should not
change under such a modification, and so neither does κR .
Hence, from the constraints (14) between κL,R , the pumped
charge cannot change. For an alternative and perhaps more
rigorous characterization of the pumped charge for systems
with unitary symmetry group G, which does not require the
knowledge that we can decompose US = vLvRe−if ({�}) (see
Appendix C). Unfortunately, in the antiunitary case, some of
the methods of Appendix C are inapplicable because of the
well-known [36] difficulties in defining a “local time-reversal”
string operator.

Last, we come to the slippery issue of whether the pumped
charge is robust to sufficiently small bulk perturbations, and
we give a similar argument as for the class D subclass in
Sec. II C. Our expectation is that for a random disorder
configuration, vL,R are with probability 1 localized to the edges
with a localization length determined in part by the spatially
averaged values of the local couplings comprising H (t).
Under sufficiently small changes to these local couplings, we

TABLE II. This table gives examples of our proposed ClG ×
AG classification scheme for MBL Floquet drives in 1D with finite
Abelian onsite symmetry group G, and full SPT eigenstate order.
Here, ClG is the undriven SPT classification, and AG are the set of 1D
or twisted 1D representations of G defined in Eq. (15). Only certain
many-body localizable [13] SPT eigenstate orders are expected to
persist in the Floquet setting [3]. For this reason, we restrict attention
to SPT orders with finite G, which Ref. [13] suggests are many-body
localizable. We further restrict to Abelian G for simplicity. Zfp

2 ,ZT
2

are the fermion parity and T 2 = 1 time-reversal symmetry groups,
respectively.

Onsite Undriven Twisted 1D Floq. MBL
symm. (G) classif. (ClG) reps. (AG) PM classif. (ClG × AG)

Zfp
2 Z2 Z2 Z2 × Z2

Z2 × Z2 Z2 Z2 × Z2 Z2 × Z2 × Z2

ZT
2 Z2 Z2 Z2 × Z2

Zfp
2 × ZT

2 Z8 Z2 × Z2 Z8 × Z2 × Z2

therefore expect the localization length and vL,R to change
smoothly. For truly small changes in vL and vR , the pumped
charge (V (g) : vL) being discrete (a twisted 1D representation)
cannot change and remains fixed.

D. Summary and examples

Thus, for 1D Floquet drives with finite onsite Abelian
symmetry group G and paramagnetic bulk order, our proposed
Floquet classification looks like ClG × AG where ClG is the
undriven paramagnetic classification, and AG consists of all
of the 1D (twisted) representations of group G. Table II gives
examples.

The undriven classification ClG can be read off from
existing results [9,29]. For a unitary Abelian G, the 1D repre-
sentations are in bijective correspondence with G itself. So, the
Floquet classification takes the form ClG × G for finite unitary
Abelian groups. For class D, we see that AZfp

2
= Z2, so our

scheme (which applies to interacting systems) reproduces the
Z2 × Z2 Floquet classification result seen in the noninteracting
band theory context [24]. There are numerous examples of
groups where AG = ClG, so that our prediction breaks the
ClG × ClG pattern seen in the noninteracting classification up
until now [24]. For example, for G = Z2 × Z2 one obtains
ClG = Z2 and AG = Z2 × Z2 (see Sec. V for a description of
the model, and examples of drives).

On the other hand, for symmetry groups with time reversal
of the form G = G′ × ZT

2 where G′ is finite onsite unitary, we
show in Appendix F that the possible twisted 1D representa-
tions κ are precisely AG = H 1(G′,U(1)) × Z2, i.e., specified
by a 1D unitary representation of G′ and a choice of ±1.
For Abelian G′ this implies a Floquet classification of form
ClG × G′ × Z2. For example, for G = ZT

2 we get Floquet
classificationZ2 × Z2. On the other hand, for a “BDI” fermion
system with G = ZT

2 × Zfp
2 , we obtain Floquet classification

Z8 × Z2 × Z2, although, see Sec. VI B 1 where we argue that
in certain regards the classification can be regarded asZ8 × Z4.
The free-fermion Floquet classification of the BDI system
gives Z × Z, so we observe an interaction-induced breaking
of results similar to that seen in the nondriven context [29].
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We direct the reader to Sec. VI for a further discussion of
this point, and examples of the different drives. As an aside,
we note that, while our formalism includes the possibility
of antiunitary symmetries, the notion of eigenstate order and
MBL in these scenarios has not yet been established in detail
(see discussion in Ref. [13]). For this reason, our results with
nonunitary groups should be considered with caution.

IV. AN ALGEBRAIC CHARACTERIZATION

Having argued that the pumped charge is a robust property
of symmetric Floquet unitaries with eigenstate order, we now
show how the presence of the pumped charge affects the
spectra of Floquet unitaries. In the process, we condense our
results into a concise algebraic formalism. We do this by
extending the formalism of Ref. [29], which was developed
to deal with equilibrium SPT states. In this undriven setting,
Ref. [29] starts by considering the nearly degenerated ground
states of an SPT on an open 1D chain S = [L,R]. These ground
states are indistinguishable in the bulk, and differ only near
L,R. The global symmetry group acts on the this low-energy
space. By locality, for an extensively large system, the global
symmetry must act like V (g) → ĝLĝR within this space, where
ĝL,R localized near the L,R end of the system, respectively.
Note that ĝL,R are only defined up to phases, and indeed
need only obey ĝLĥL = c(g,h)ĝhL where c is a 2-cocycle
defining a projective representation of G (similar for the right
edge). To consider antiunitary symmetry groups, it is helpful
to define a homomorphism α : G → Z2 where α(g) = ±1
for g unitary/antiunitary, respectively. With this in mind, the
associativity of the G action on say the left edge leads to a
relation

c(g,h)α(f )c(fg,h)−1c(f,gh)c(f,g)−1 = 1, (17)

which is the defining relation for a 2-cocycle. Reference [29]
then argues that this 2-cocycle is the relevant data identifying
the SPT in question. Within the low-energy subspace, in the
thermodynamic limit, H must act like a scalar, and it can be
argued that ĝL,ĝR individually commute with the Hamiltonian.
Hence, the low-energy subspace is some representation of the
algebra generated by the operators {ĝL,ĝR}. The form of this
algebra is determined entirely by the choice of cocycle c.4 This
is the classification of 1D SPTs in brief. For systems whose
entire spectrum is MBL with SPT eigenstate order, the above
statements hold not only for the ground-state subspace, but for
a complete set of degenerate multiplets of excited eigenstates.

Consider now a Floquet SPT drive on an open chain with
full eigenstate order. We can play a similar game. Again we
can fix the bulk eigenstate (i.e., bulk conserved quantities)
and consider the symmetry action in this restricted subspace.
Again, when we consider the symmetry acting on a particular
edge, we find that it is characterized by some 2-cocyle ĝĥ =
c(g,h)ĝh. However, in the Floquet case there are potentially
other data determining the edge structure. In particular, while
previously ĝL commuted individually with the Hamiltonian, in
the Floquet case we see that ĝL,R need not necessarily commute

4As well as the fermion parity of the ĝ in fermionic systems.

with Uf . To see this, let us treat unitary and antiunitary G

separately.
In the previous section, we saw that the Floquet unitary

takes the form Uf = vLvRe−if . Fixing the bulk state, i.e., the
conserved quantities in the bulk, the Floquet unitary acts like
Uf ∝ vLvR . We argued in Lemma 1 that the global symmetry
commutes with vL,vR individually up to a phase characterized
by κL(g) = [V (g) : vL]. This quantity, in turn, determines
the commutation between ĝL,̂gR and Uf . So, the algebra
of symmetry operators in the edge space is characterized by
a 2-cocycle c and κL(g) = [V (g) : vL], which defines a 1D
representation of the gauge group. For fermionic systems, one
should bear in mind the possibility that operators on distant
edges may anticommute if they are fermion parity odd.

Recall that in the antiunitary symmetry group case we
call the Floquet unitary symmetric if i ln Uf can be cho-
sen to be a G symmetric Hamiltonian. This means that
V (g)Uf V −1(g) = U

α(g)
f . As before, consider the action of

Uf into the edge subspace, which again by locality takes
form vLvR . The global symmetry in this case should obey
(V (g) : vLvR) = 1 [see Eq. (8)], although we were unable
to prove this in the antiunitary case. Assuming we can, we
have (V (g) : vL,R) = eiθL,R 1; this information is captured by
just one quantity κL(g) = (V (g) : vL). This κL quantity in
turn determines the Uf commutation relations with the edge
symmetry operators ĝL,̂gR . So, the symmetry algebra at the
edge is again characterized by a 2-cocycle and a U(1) phase
κL(g) = V (g)vLV (g)−1v

−α(g)
L . When the symmetry group is

antiunitary, this phase does not quite form a 1D representation
as in the unitary case. Instead, it obeys Eq. (15), hence, the data
determining the drive are c(g,h),κ(g) where κ(g) is a kind of
twisted 1D representation, the set of which we denote AG.

Having proposed a classification for 1D Floquet SPT drives,
in the next two sections we describe some instructive examples.
First, in Sec. V we look at an interacting bosonic Floquet SPT
drive with G = Z2 × Z2. Then, in Sec. VI we look at two
examples of drives with antiunitary symmetry groups of form
G = ZT

2 ,ZT
2 × Zfp

2 ; the latter is of particular interest, as it
corresponds to an interacting version of the fermionic BDI
symmetry class. In all cases, we will provide explicit examples
of drives within each of the proposed Floquet phases.

V. EDGE STRUCTURE FOR G = Z2 × Z2

FLOQUET DRIVES

In this section, we focus on bosonic paramagnets with
unbroken global G = Z2 × Z2 symmetry. This example is
interesting because it involves an intrinsically interacting
bosonic system, and it breaks the Cl × Cl classification pattern
seen in the classification of noninteracting fermionic Floquet
drives [24]. To wit, G = Z2 × Z2 has an undriven SPT clas-
sification of Cl = Z2, corresponding to a trivial paramagnet
and nontrivial SPT state, while we predict in Sec. III a
Z2 × Z2 × Z2( =Cl × Cl) classification. After describing the
SPT order in the undriven setting, we provided examples of
drives in each of the eight putative phases in the conjectured
classification. We describe the edge theory for some of these
drives using the formalism of Sec. IV.
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TABLE III. This table summarizes the form of the global sym-
metry Z2 × Z2 generators projected onto a subspace with fixed bulk
conserved quantities V (g) → ĝLĝR . In the SPT case, the generators
at a particular edge (L,R) furnish a projective representation.
The group Z2 × Z2 is presented as a multiplicative group on set
{(±1, ± 1),(±1, ∓ 1)}.

Generators\bulk order Triv. PM SPT

L R L R

(̂−1,1) X1
1 X1

N X1
1Z

2
1 Z2

N

(̂1,−1) X2
1 X2

N Z1
1 X2

NZ1
N

Consider a chain with onsite local Hilbert space |g1,g2〉
where g1,g2 ∈ Z2. Let Z1,Z2 be the operators measuring
g1,g2, and let X1,X2 act as X1|g1,g2〉 = | − g1,g2〉 and
X2

r |g1,g2〉 = |g1,−g2〉, respectively. It is clear that X1,2,Z1,2

behave like σx,σ z Pauli matrices. States with global Z2 ×
Z2 symmetry generators

∏
r X1,2

r have a H 2(G,U(1)) = Z2

classification from group cohomology, hence, there are two
SPT fixed points, corresponding to the trivial paramagnet and
SPT:

H0 = −
N∑

r=1

(
h1

rX
1
r + h2

rX
2
r

)
, (18)

H1 = −
N∑

r=2

h1
rX

1
r Z

2
r−1Z

2
r −

N−1∑
r=1

h2
rX

2
r Z

1
r Z

1
r+1, (19)

respectively. Both model Hamiltonians are sums of commuting
operators. The l-bits for the trivial paramagnet are {X1

r ,X
2
r }

while those for the SPT are {X1
r Z

2
r−1Z

2
r ,X

2
r Z

1
r Z

1
r+1}. As

alluded to in Sec. IV, we can fix the “bulk” conserved l-bits
appearing in Eq. (19), and ask how the global symmetry
transformations act on the residual edge degrees of freedom
V (g) → ĝLĝR; the forms of the generators projected onto this
subspace with fixed l-bits are summarized in Table III.

A. MBL Binary drives realizing the Floquet phases

Here we construct examples of drives for the eight putative
Floquet phases. See Table V for a summary. We use a three-part
drive of the form

Uf = e−it2K2e−it1K1e−it0K0 , (20)

where K0 is one of H0,H1, while K1,K2 are chosen from

HFM1 = −
N∑

r=1

Z1
r Z

1
r+1,

HFM2 = −
N∑

r=1

Z2
r Z

2
r+1 .

In H0,1, we choose h1,2
r disordered with mean 1. In all of

the eight examples, we always set t1,2 = 0 or π/2. For these
choices of t1,t2, we can use the identity e−i π

2 HFM1,2 ∝ Z
1,2
1 Z

1,2
N

to show that

Uf = vLvRe−it0K0 ,

where (for instance) vL looks like one of

1,Z1
1,Z

2
1,Z

1
1Z

2
1 .

The two possible choices of K0 (trivial PM or SPT), along
with the four choices of vL above, give the eight elements of
the classification Z2 × Z2 × Z2. By construction, the drive in
question has a complete set of exactly local bulk conserved
quantities (from K0), and with some minor local symmetric
changes of basis at the edge [similar to those below Eq. (3)]
vL,R can be chosen to commute with K0. Hence, the drive
constructed gives a “fixed-point” realization of the different
Floquet classes predicted by our framework in Sec. III. In
the remainder of the section, we examine a selection of the
eight constructed drives, and explain the structure of their
eigenspectra. A detailed discussion of the edge states for all
eight cases can be found in Appendix E.

1. Undriven example: t1,2 = 0

In these cases the unitary is just

Uf = e−it0K0 ,

so the spectrum of Uf is just the spectrum of K0. Fixing the
bulk l-bits we know that the symmetry action factorizes as
V (g) → ĝLĝR , and the exponentially degenerate eigenspaces
form representations of the algebra generated by ĝL,̂gR .

For K0 trivial paramagnetic, for instance, the states need
only form a representation of the algebra generated by
{X1

1,X
2
1,X

1
N,X2

N }. As all of the elements of this algebra com-
mute, representations of this algebra can be one dimensional.
In physical terms, there are no protected degeneracies at the
edge of this system [29].

On the other hand, for K0 = H1, ĝL furnish a projective
representation of the symmetry group, i.e., those listed in
Table III. Fixing the bulk integrals of motion, the residual edge
degrees of freedom form some representation of the algebra
generated by {ĝL,̂gR} for all g ∈ G. In the present case, the
symmetry generators at a particular edge do not generally
commute. This noncommutation of the symmetry generators
implies that there is at least a protected twofold degeneracy
associated with each edge; indeed, in the present example,
there is exactly a twofold degeneracy associated with each
edge. So, the spectrum of the Floquet unitary Uf has a spectral
pairing, with every eigenstate being a part of a pair at the same
quasienergy.

2. Nontrivial Floquet example

In this example, we set t1,2 = π/2 and K1,2 = HFM1,2 ,
respectively, and K0 = H0. The resulting Floquet unitary is
of the form

Uf = vLvRe−it0H0 .

Using a local symmetric change of basis we can rewrite this
as

Uf = vLvRe−it0
∑N−1

s=2 h1
s X

1
s +h2

s X
2
s

with vL = Z1
1Z

2
1 and vR = Z1

NZ2
N , which commute with the

bulk l-bits X1,2
s for s = 2, . . . ,N − 1. Fixing the bulk l-bits,

the Floquet unitary acts like

∝ vLvR
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TABLE IV. This table shows the eigenspectrum structure at the
edge of the Z2 × Z2 SPT for a trivial bulk paramagnetic order, and
vL = Z1

1Z
2
1 , i.e., κ(g1,g2) = g1g2.

Uf ∝ vLvR X1
1X

1
N

|ψ〉 u u′

vL|ψ〉 u −u′

X1
1 |ψ〉 −u u′

X1
1vL|ψ〉 −u −u′

on the edge degrees of freedom. Looking at the commutation
relations between the global symmetry generators and vL

gives pumped charge κ(g) = g1g2. As the bulk order is
trivial paramagnetic, the symmetry operators at the edge look
like {X1

1,X
2
1,X

1
N,X2

N } from Table III. Having fixed all the
bulk l-bits, the remaining edge degrees of freedom form a
representation of an algebra

a = gen
{
X1

1,X
2
1,X

1
N,X2

N,vL,vR

}
.

As a result, we can show that the possible edge states come in
quadruplets (two protected degrees of freedom at each edge).
These quadruplets do not all lie at the same quasienergy as
was the case in the undriven case, but the quasienergy spacings
are protected. To see this, first note that a has a center Z(a)
generated by {X1

1X
2
1,X

1
NX2

N }. As these operators commute
with all of a, their eigenvalues can be fixed. This amounts to
modding out the center and considering the representations of
the algebra a′ = a/Z(a) ∼ gen{vL,vR,X1

1,X
1
N }.

To establish the representations of a′ it is helpful to
(following Ref. [37]) identify a maximal commuting sub-
algebra b = gen{vLvR,X1

1X
1
N }. We proceed by picking a

simultaneous eigenvector |ψ〉 of the generators of b: denote the
corresponding eigenvalues u,u′, respectively. Consider acting
on this state with the remaining elements of the algebra. We
get at least four states with different eigenvalues in b. Table IV
shows the distinct states arising from this procedure. We also
record the eigenvalues of Uf which simply act like vLvR in this
eigenspace. In summary, fixing the bulk l-bits, we find there
are four edge states (two at each edge) spread evenly between
two Uf eigenvalues u,−u. Within each Uf eigenspace, there
are two eigenstates distinguished by the X1

1X
1
N eigenvalue, for

instance.

VI. ANTIUNITARY EXAMPLES

In this section, we grapple with SPT drives with time-
reversal symmetry. As such, SPTs are not as well understood
in the context of MBL and eigenstate order [13], and our

results in this section are more tentative, and based on the
heuristic arguments in Secs. III B and IV. In this section, we
will deal with two examples of SPTs with Abelian symmetry
groups with time reversal, namely, G = ZT

2 ,ZT
2 × Zfp

2 . We
check that the arguments of Sec. III B certainly apply to these
two cases, so that the classifications are of the form Z2,Z8 ×
Z2 × Z2, respectively, as predicted, and give examples of
drives which should fall into each putative Floquet phase.
We highlight in particular the G = ZT

2 × Zfp
2 case, which

is a fermionic system with time-reversal symmetry (called
BDI in the free-fermion context). Our results show that the
free-fermion classification of the BDI Floquet classes breaks
down from Z × Z (see Refs. [24,25]) to Z8 × Z2 × Z2 in the
presence of interaction in a manner similar to that seen in the
undriven setting [29].

A. G = ZT
2 , bosonic system

First consider a bulk SPT phase with just ZT
2 symmetry

and T 2 = 1. We have not found an explicit discussion of
such phases in the literature, although the relevant cohomology
calculation is found in Ref. [9]. First construct the undriven
SPT states. Consider a system with an Ising Zr = ±1 degree
of freedom on each site, and a symmetry

∏
r XrK where K is

complex conjugation. An example of such a Hamiltonian

H0 = −
∑

r

hrXr (21)

has paramagnetic order and no symmetry-protected edge state.
On the other hand,

H1 = −
∑

r

hrXrZr−1Zr+1 (22)

has edge states which transform according to a projective
representation T̂ 2

L = −1.5 Note that H0,H1 are commuting
stabilizer Hamiltonians, and the local integrals of motion
Xr,XrZr−1Zr+1 commute with T while taking values ±1,
so that the arguments of Sec. III B apply. According to
that discussion, and to the discussion in Sec. IV, there
will be just two possible Floquet phases for a given bulk
order, distinguished by the pumped charges κ(T ) = ±1. This
pumped charge in turn determines the commutation relations
between T̂L and the Floquet unitary restricted to the edge
subspace (T̂L : vL) = ±1.

5Note that a clean variant of Eq. (22) emerges in the high-frequency
expansion of the interacting drives considered in Ref. [43].

TABLE V. This table shows how to construct a drive Eq. (20) with symmetry group Z2 × Z2, corresponding to a prescribed Floquet phase.
The Floquet phases are labeled by bulk eigenstate order [trivial paramagnet (PM) or SPT], and a pumped charge κ which is uniquely determined
by pair (κ(−1,1),κ(1,−1)).

Params.\Class. PM,(1,1) PM,(−1,1) PM,(1,−1) PM,(−1,−1) SPT,(1,1) SPT,(−1,1) SPT,(1,−1) SPT,(−1,−1)
vL = 1 vL = Z1 vL = Z2 vL = Z1Z2 vL = 1 vL = Z1 vL = Z2 vL = Z1Z2

(K0,t0) (H0,1) (H0,1) (H0,1) (H0,1) (H1,1) (H1,1) (H1,1) (H1,1)
(K1,t1) (HFM1 ,

π

2 ) (HFM2 ,
π

2 ) (HFM1 ,
π

2 ) (HFM1 ,
π

2 ) (HFM2 ,
π

2 ) (HFM1 ,
π

2 )
(K2,t2) (HFM2 ,

π

2 ) (HFM2 ,
π

2 )
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TABLE VI. This table summarizes the drive parameters for
Eq. (24) and their corresponding Floquet order. The Floquet order
is summarized by (T̂ 2,η): the first argument characterizes the bulk
order by specifying the projective representation of time reversal at
the edge, while η captures how T̂ fails to commute with Uf .

Drive\(T̂ 2,η) (1,1) (−1,1) (1,−1) (−1,−1)

(K0,t0) (H0,1) (H1,1) (HFM,1) (HFM,1)
(K1,t1) (H0,1) (H1,1)

Here, we claim to construct examples of the four Floquet
pumps using trinary drives. It is useful to define an auxiliary
ferromagnetic drive

HFM = −
∑

r

ZrZr+1. (23)

Consider Floquet pumps of the form

Uf = e−i
t0
2 K0e−it1K1e−i

t0
2 K0 . (24)

All we need to do is specify that t0, t1, and K0,1 are either
Eq. (21) or (22), where we choose hr to be say log-normal
distributed with mean 1. The possible classes of drives will
be labeled by (T̂ 2,η) where T̂ 2 = ±1 determine the SPT
cocycle and hence the bulk order, while η = κ(T ) = (T : vL)
as discussed above. Table VI summarizes which Hamiltonians
need to be chosen for a given Floquet phase (T̂ 2,η).

B. Interacting BDI drives, i.e., G = Zfp
2 ×ZT

2

Here, we put forward a tentative classification of interacting
1D “class BDI” MBL Floquet drives. The symmetry group
is G = Zfp

2 × ZT
2 where time reversal obeys T 2 = 1 on

the fundamental fermions. The undriven problem has a Z8

classification [29]. From Sec. IV, we expect the Floquet
drives to have a Z8 × Z2 × Z2 classification, in contrast to the
Z × Z classification found in the noninteraction band theory
picture [24,34]. We now attempt to explain this collapse in
classification using some example drives. First, in Sec. VI B 1
we consider stacking a number of the (clean) class D drives
considered in Sec. II. Then, in Sec. VI B 2 we use another
realization of the same SPT order and Floquet phase involving
a single Majorana chain coupled to additional Ising degrees of
freedom.

1. Stacking argument

In this section, we get a more concrete feel for how the
A = Z2 × Z2 part of the Floquet classification comes about by
stacking many class D time-reversal symmetric drives. While
the stacked models we consider will have many extraneous
bulk degrees of freedom, it allows us to extract useful intuition.
Consider a drive with k Kitaev Majorana chains, and with net
Floquet unitary

Uf = e−i
tα0
2 H

(α)
0 e−itα1 H

(α)
1 e−i

tα0
2 H

(α)
0 , (25)

α = 1, . . . ,k label chains and

H
(α)
0 = −

N∑
r=1

iψ̄α
r ψα

r , H
(α)
1 = −

N−1∑
r=1

iψα
r ψ̄α

r+1.

Note that the local conserved quantities in each of these
Hamiltonians take values in ±1 and commute with time-
reversal symmetry as per the requirements of Sec. III B. The
Majoranas are such that T ψα

r T = ψα
r and T ψ

α

r T = −ψ
α

r .
To obtain a drive with n0

L zero quasienergy Majoranas
and nπ

L π quasienergy Majoranas at (say) the left edge, set

k = n0
L + nπ

L and set t
α=1,...,nπ

L

1 = π
2 + ε, t

α=1,...,nπ
L

0 = π
2 , and

t
α=nπ

L+1,...,k

1 = ε and t
α=nπ

L+1,...,k

0 = 0 where say 0 < ε < 1 (the
specific value is unimportant). The resulting Floquet unitary is

Uf = e−i
tα1
2 H

(α)
1 e−itα0 H

(α)
0 e−i

tα1
2 H

(α)
1

= e−i
tα1
2 H

(α)
1

∏
α>nπ

L

Pαe−i
tα1
2 H

(α)
1

=
∏

α>nπ
L

Pαe−itα1 H
(α)
1 ∝

∏
α<nπ

L

ψ̄α
1

∏
α<nπ

L

ψα
Ne−iε

∑
α H

(α)
1 .

Note that Uf ψ̄α
1 U−1

f = (−1)(α<nπ
L)ψ̄α

1 so that ψ̄
α=1,...,nπ

L

1 are π

Majoranas and ψ̄
α=nπ

L+1,...,k

1 are zero Majoranas.
Consider a drive with bulk classification m ∈ Z8 =

{0,1,2, . . . ,7}. By the eightfold Kitaev-Fidkowski classifi-
cation, we may as well choose the above drive with any
k = m + 8n; it is convenient for our purposes to choose
k = m + 8 so that there are at least eight chains present. We
will find that the properties of vL as a function of Majoranas
comprising vL, namely l ≡ nπ

L, depend only on l modulo 4.
First note that if l = 4, vL = ψ̄1

1 ψ̄2
1 ψ̄3

1 ψ̄4
1 =: ψ̄

(1234)
1 . Note

this term can be removed from Uf by extending the old Floquet
drive by a local term

Uf → U ′
f = e− iπ

4 tψ̄
(1234)
1 Uf e− iπ

4 tψ̄
(1234)
1 . (26)

The resulting drive U ′ is still time-reversal invariant, and in
particular (V (T ) : U ′

f ) = 1. The modification also respects
local parity symmetry. The same thing can be done at the
right-hand edge. Hence, we have locally and symmetrically
modified the Floquet drive to obtain

U ′
f = e−iε

∑m+8
α=1 H

(α)
1 .

This Floquet unitary can clearly be engineered using a time-
independent Hamiltonian drive with bulk m + 8 eigenstate
order, on a system with boundary. Hence, when it comes
to robust eigenstate properties, the l = 4 drive should be
considered the same as the l = 0 drive with the same bulk
order. Using this style of argument, it readily follows that the
robust physical properties of a drive of form (25) with any m

should depend only on l mod 4.
Let us now show that l = 0,1,2,3 have distinct physical

properties. Note first that vL ∝ ψ̄ (12) cannot be removed in the
above manner. This follows from (V (T ) : ψ̄

(12)
1 ) = (V (T ) :

ψ
(12)
N ) = −1. If we modify Uf using some unitary wL acting

on the left edge Majoranas, then the new Floquet unitary U ′
f

must have the time-reversal property

1 = (V (T ) : U ′
f )

= V (T )vLvRwLV (T )−1vLvRwL

= −V (T )vLwLV (T )−1vLwL, (27)
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where the last equality follows from the fact that vR has the
same time-reversal property as vL, namely (V (T ) : vL,R) =
−1. Were it possible to completely remove vL with such a wL,
then V (T )vLwLV (T )−1vLwL = 1. But, this is inconsistent
with Eq. (27).

The drives with vL = ψ̄ (1) are clearly nontrivial (from
the class D part of the paper) because vL is fermion parity
odd. What remains, however, is to show that vL = ψ̄ (1) is
distinct from vL = ψ̄ (123). In fact, this follows readily using the
above method: Note that (V (T ) : ψ̄ (1)) = −1 while (V (T ) :
ψ̄ (123)) = 1. The different time-reversal properties of these
potential vL mean they cannot be locally tuned to one another
while preserving time-reversal invariance. In summary, fixing
bulk class m, there appear to be four distinct drives l =
0,1,2,3 labeled by the four combinations of Z2 numbers
(V (P ) : vL),(V (T ) : vL) = ±1. Thus, the different Floquet
drives appear to be labeled by elements of Z8 × Z2 × Z2.
Note that as sets (though not as groups) Z2 × Z2 is equivalent
to Z4, so we could also say that the Floquet phases lie in the set
Z8 × Z4. This latter presentation is preferable if one wishes
the classification group to reflect the fourfold [see Eq. (26)]
manner in which the pumped charge changes as we stack
multiple Floquet systems atop one another. In other words,
one can view different Floquet phases as forming an Abelian
group Z8 ⊕ Z4, with addition corresponding to taking a tensor
product of systems.

2. Alternative setup

Consider a chain with an onsite Hilbert space consisting of
ψ,ψ Majoranas, as well as a Z2 degree of freedom Zr = ±1
where Zr is a Pauli matrix. Let time reversal act like T =∏

r XrK where K is complex conjugation. Then, the Majorana
fermions have the usual time-reversal transformations, and
T 2 = 1. It can be verified (although we have not found an
appropriate reference) that the following Hamiltonians capture
the eight possible MBL phases of Fidkowski and Kitaev [29]
with G = Zfp

2 × ZT
2 symmetry:

H0 =
∑

r

h(0)
r iψrψr + h(1)

r Xr,

H1 =
∑

r

h(0)
r iψrψr+1 + h(1)

r Xr,

H2 =
∑

r

h(0)
r iψrψr+1Xr + h(1)

r iψrψr+1XrZr−1Zr+1,

H3 =
∑

r

h(0)
r iψrψr+1 + h(1)

r XrZr−1Zr+1,

(28)
H4 =

∑
r

h(0)
r iψrψr + h(1)

r XrZr−1Zr+1,

H5 =
∑

r

h(0)
r iψrψr+1 + h(1)

r XrZr−1Zr+1,

H6 =
∑

r

h(0)
r iψrψr+1Xr + h(1)

r iψrψr+1XrZr−1Zr+1,

H7 =
∑

r

h(0)
r iψrψr+1 + h(1)

r Xr .

TABLE VII. BDI drives are conjectured to be classified by
(x,y,z) ∈ Z8 × Z2 × Z2. For a fixed bulk order x, the table gives
drive parameters corresponding to any of the four choices of (y,z),
where y = κ(P ),z = κ(T ) (see Sec. VI B 2). The form of the
corresponding edge unitaries vL is also shown.

Drive/(x,y,z) (x,1,1) (x,−1,1) (x,1,−1) (x,−1,−1)
vL = 1 vL = ψ̄1 vL = Z1 vL = Z1ψ̄1

(K0,t0) (HB,π/2) (HA,π/2) (HA,π/2)
(K1,t1) (HC,π/2) (HB,π/2)
(K2,t2) (HC,π/2)
(K3,t3) (Hx,π/4) (Hx,π/4) (Hx,π/4) (Hx,π/4)

These are all commuting stabilizer Hamiltonians, each l bit
taking values ±1, and the stabilizers commute with both
fermion parity symmetry and time reversal, so they obey
the conditions discussed in Sec. III B. To get any of the
Z8 × Z2 × Z2 worth of Floquet phases, it pays to consider
three auxiliary Hamiltonians

HA =
∑

r

ZrZr+1,

HB =
∑

r

iψrψr, (29)

HC =
∑

r

iψrψr+1,

and drives of the form

Uf = e−it0K0/2e−it1K1/2e−it2K2/2e−it3K3

× e−it2K2/2e−it1K1/2e−it0K0/2. (30)

To obtain a drive (x,y,z) ∈ Z8 × Z2 × Z2 first pick K3 = Hx ,
the Hamiltonian with bulk order “x.” For such a fixed choice
of x, the various choices of Ki for the four possible (y,z)
are summarized in Table VII, as are the corresponding forms
of the vL. In the language of Sec. III B, the four possible
(y,z) correspond to the four possible twisted representations,
with (y,z) = (κ(P ),κ(T )). As before, for all the Hamiltonians
involved in the above drives, we will ensure hr is say log-
normal distributed with mean 1. All of the drives so constructed
are fixed point in the sense that they have a complete set of
exactly local integrals of the motion in the bulk.

VII. CONCLUDING REMARKS

We have put forward a classification scheme for many-body
localized Floquet SPT states in one spatial dimension with
finite unitary onsite symmetries. In our scheme, Floquet drives
are classified by ClG × AG where ClG is the nondriven SPT
classification, and AG is a set of 1D representations of G

[i.e., H 1(G,U(1))]. We have also tentatively extended these
methods to cases with T 2 = 1 time reversal for which G =
G′ × ZT

2 where G′ is unitary. In these cases, the classification
is again of the form ClG × AG, but AG = H 1(G′,U(1)) × Z2.
In addition, we have given examples of idealized drives which
realize the predicted putative Floquet phases.

This work can be extended in several directions. There is
the possibility of investigating driven analogs of disordered
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anyon chains [38]. In a sequel to this work [39], we use
a similar toolkit to classify the possible symmetry-broken
Floquet phases in 1D; due to localization such order can indeed
be observed in apparent violation of the standard theorems on
broken symmetry and dimensionality. The extension of these
results to higher dimensions is a fit subject for study, especially
given recent questions over the existence of MBL phases in
d > 1. Also left to future work is the detailed connection
between the edge-based classification used in this paper and the
bulk diagnostics used in Ref. [3]. Finally, there is the challenge
of understanding the dynamical stability of these new phases
for realistic drives en route to proposals for realizing and
detecting them in experiments.

Note added. Recently, three closely related independent
works appeared [30–32]. The first two of these references
phrase the classification in terms of the second cohomology
H 2(G � Z,U(1)) where G is the global onsite symmetry group
and Z is to be identified with time translation by one Floquet
period. This interpretation is similar to that in our discussion
in Sec. IV; indeed, the operators vL,R can be thought of
as time translations local to the L,R edges, respectively.
With this interpretation in mind, Sec. IV establishes how
time-translation acts together with the other symmetries at
the edge of the system. This is in fact the same thing as
calculating the projective representations of the total symmetry
group G � Z, that is, calculating H 2(G � Z,U(1)).
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APPENDIX A: LOCALITY OF f

Consider a Floquet unitary Uf = e−if on a system without
boundary, with a complete set of local integrals of motion.
Then, f may be written as a function of these local conserved
quantities f = f ({�r}). We now give a sketch of an argument
that f may be chosen to be a local function of these conserved
quantities. We use the fact that Uf is a priori the result
of a local unitary evolution. Local unitary evolutions may
be well approximated by finite depth quantum circuits [40];
for simplicity let us assume that Uf is a binary quantum
circuit of depth d (e.g., Fig. 3), where d remains finite in
the thermodynamic limit.

As a warmup, we argue that for local conserved quantities
�x,�y separated in excess of distance d, and well in excess
of the size of the local conserved quantities ∼ξ , the Floquet
unitary can be written as Uf = AB where A depends on �x

but not �y , and B depends on �y but not �x .
Consider a set of local conserved quantities associated with

site x. These quantities commute with one another, so we

W1
W2W2

SL R

t

T

0

FIG. 3. Shows a circuit diagram for local unitary U (T ). We
identify parts of the circuit W1 (blue) and W2 (purple and red).

can find a simultaneous eigenbasis for the local Hilbert space.
Label the distinct possible lists of simultaneous eigenvalues
by integers λ ∈ {1,2, . . . ,l}. There may be degeneracies, so
the eigenvectors corresponding to λ are of the form Eλ =
{vλ,α1 , . . . ,vλ, degλ

}. Let Sσ
x be a unitary which permutes all of

the eigenvectors ∪λEλ according to some permutation cycle
σ . As σ permutes eigenvectors, it may also permute local
eigenvalues through an action we denote λ → σ (λ).

Sσ
x is a local operator because it only permutes some

eigenvectors in the local Hilbert space. As Sσ
x is local to x

and Uf is low depth, the commutator [Uf : Sσ
x ] is local to x

(this is a Lieb-Robinson–type bound, except in the quantum
circuit formalism there is no exponentially decaying tail). If Sσ

x

was ξ exponentially localized before, then the commutator is
safely localized around x certainly when considering distances
much larger than ξ and at least d! We call this the “smearing”
length scale ζ .

If |x − y| > ζ , then operators localized around y should
commute with [Uf : Sσ

x ], i.e.,
[[

Uf : Sσ
x

]
: Sτ

y

] ∼ 1, (A1)

where τ is any permutation. Consider components of this
equation in the eigenbasis of local conserved quantities. Uf

depends on all the local conserved quantities in general, but we
concentrate on the dependence of those conserved quantities
near x,y, writing Uf = Uf (λx,λy) where λx,y ∈ {1, . . . ,l},
and suppressing the other labels for now. Equation (A1) reads
as

Uf (λx,λy)Uf (σ (λx),τ (λy))
Uf (σ (λx),λy)Uf (λx,τ (λy))

= 1.

Pick σ,τ such that σ (λx) = 1 and τ (λy) = 1, and rearrange to
find

Uf (λx,λy) = Uf (λx,1)
Uf (1,λy)

Uf (1,1)
. (A2)

The first factor on the right-hand side depends on λx but not
λy while the second depends on λy but not λx as required.

To argue that f can be chosen to be local, concentrate
on the factor Uf (λx,1). Now, this implicitly depends on the
values of other conserved quantities. Using the same reasoning
as above and our previous result (A2), we can factorize out
the dependence of any λz for |z − x| > ζ , namely (again
suppressing dependence on other conserved quantities),

Uf (λx,λy,λz) = Uf (λx,1,1)
Uf (1,λy,λz)

Uf (1,1,1)
,

where the first term does not depend on λy,z, while the last
two terms do not depend on λx . We can proceed inductively to
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show that

Uf = U (λx,λfar = 1)︸ ︷︷ ︸
Ax

U (λx = 1,λfar)

U (λx = 1,λfar = 1)︸ ︷︷ ︸
B

,

where λfar are those labels at sites further than ζ from x, other
labels are kept implicit, Ax depends on λx and only conserved
quantities within ζ of x, while B does not depend on λx .
In particular, Uf A−1

x (= B) is a local unitary which does not
depend on λx . Moreover, one can verify for any site x ′ that
[B : Sσ

x ′ ] is localized to within the same length scale ζ of x ′;
with some thought, this follows from the fact that Uf has
smearing scale ζ , and that B is a product of Uf factors with
different combinations of conserved quantities set to 1. With
this new site x ′ = x, repeat the procedure above (but using
Uf A−1

x instead of Uf ) to get

Uf A−1
x = Ax ′B ′,

where Ax ′ depends only on conserved quantities near to x ′,
and B ′ is a local unitary which does not depend on λx,λx ′

and which also has smearing scale bounded by ζ . One can
repeat this process inductively, cycling through all sites until
eventually we find

Uf ∝
∏
x

Ax,

where Ax is a U(1) function of conserved quantities within
ζ of x, so can be written e−ifx where fx is a real function
of conserved quantities within ζ of x. As all the conserved
quantities commute, we have

Uf = e−i
∑

x fx

up to a global U(1) phase. We see that f so defined here is
at most a “k-local” Hamiltonian where k = ζ . The argument
above is clearly nonrigorous. We require a more careful
analysis of the importance of exponentially small corrections
in the iterative procedure outlined above.

APPENDIX B: FORM OF U f

In this appendix, we first provide supporting arguments for
(i) in the main text in Sec. B 1; our arguments will rely heavily
on the results of Appendix A. Then, in Sec. B 2 we consider
starting with a Floquet drive on a closed system, and show that
upon restricting the Floquet drive to a subsystem, the resulting
unitary also takes the canonical form (5).

1. Floquet MBL unitaries on systems with boundary

The main goal of this section is to support the claim (i) in
the main text that Floquet unitaries with a complete bulk MBL
order can be put into the form (5). We assume that Uf is a
local unitary on a system [L,R], with a complete set of l-bits
in the bulk. Deep in the bulk, we know that Uf depends only
on the bulk l-bits. Moreover, using the results of Appendix A,

Uf = OL,Re−ih,

where h is a local functional of the bulk l-bits, and OL,R is
some unitary acting near the boundary L,R of the system.
However, as Uf is a local unitary circuit, and L,R are very

distant from one another, it follows that OL,R must factorize
as OLOR:

Uf = OLORe−ih,

where OL,R are local to the left/right parts of the system,
respectively. Consider a region S ′ = [L + a,R − a] where a

is much larger than the support of OL,R as well as the typical
size ξ of the conserved quantities. We can write

h = hS ′ + gL + gR, (B1)

where hS ′ are all those terms in h which involve only
conserved quantities in S ′. While by locality gL,R involve
only conserved quantities on the left- (right-) hand side of the
system, respectively (up to the exponentially small corrections
mentioned in Appendix A). Note that all three terms on the
right-hand side of Eq. (B1) commute with one another because
they only involve the conserved quantities. Note too that
OL,OR commute with hS ′ because as operators they have
disjoint support (and h always fermion parity even). From the
discussion of gL,gR above, vL,R ≡ OL,Re−igL,R will commute
with f ≡ hS ′ , therefore,

Uf = vLvRe−if (�),

where vL,vR commute with f , and indeed all conserved
quantities with support in the “bulk” S ′, as required. Having
provided arguments supporting (i), we now give a method for
deciding whether or not a Floquet drive defined on a system
without boundary is in a trivial or nontrivial class.

2. Characterizing Floquet MBL unitaries on systems
without boundary

We start with a definition.
Definition 1. Given a many-body unitary evolution U (t) =

T (e−i
∫ t

0 dt ′H (t ′)) with H (t ′) a family of local bounded Hamil-
tonians on a closed system, we define the restricted unitary
US(t) ≡ T (e−i

∫ t

0 dt ′HS (t ′)) where HS(t ′) are those terms in the
Hamiltonian acting exclusively on subsystem S.

We will show that if one takes a unitary circuit with full
bulk MBL order on a manifold without boundary, and restrict
to a system with boundary, the resulting unitary US can be put
into the desired form (5). We will make use of the arguments
in the previous section which showed that on a closed system,
Uf = e−if where f is a local functional of bulk conserved
quantities. First, a useful technical lemma.

Lemma 2. Consider a local unitary circuit W (t) of depth d.
If W (T ) = 1 on a closed system, then restricting to subsystem
S = [L,R] we find WS(T ) = vLvR where vL,vR are unitaries
localized within d of L,R.

Proof. Consider those circuit elements in the future Cauchy
development of [L,R] (the blue region in Fig. 3). Denote
the unitary formed by multiplying out these circuit elements
by W1.6 Denote the rest of the unitary circuit by W2 (red

6In the continuous time language, this is approximately the same
as T e−i

∫ T
0 dtHS(t) where S(t) = [L + ct,R − ct], the notation HS(t)

denotes those terms in the Hamiltonian involving only sites in region
S(t), and c is the Lieb-Robinson velocity.

245145-14



PHASE STRUCTURE OF . . . . I. ABELIAN SYMMETRY- . . . PHYSICAL REVIEW B 93, 245145 (2016)

and purple in Fig. 3). Then, W (T ) = W2W1 = 1, and notably
W1 = W−1

2 . However, W1 has support in S = [L,R] while
W±1

2 has support on a different set, namely, the complement
of [L + d,R − d]. The only possible resolution is that both
W1 and W2 have support only in the intersection of these two
sets, namely, [L,L + d) ∪ (R − d,R]. By Definition 1 we have
WS(T ) = W3W1 where W3 is formed of those circuit elements
with support on [L,R] but not in W1 (purple circuit elements
in Fig. 3). Thus, W3 has spatial support in [L,R] within d

of L or R. The same statement is true of W1 and hence also
true for WS(T ) = W3W1. Hence, WS(T ) = vLvR where vL has
support in [L,L + d] and vr has support in [R,R − d]. �

Lemma 3. A local Floquet unitary U (T ) with eigenstate or-
der restricted to subsystem S takes form US(T ) = vLvRe−if ′(�)

where vL,vR are unitaries localized near the boundary, and
[vL/R : f ] = 1.

Proof. As U (T ) has eigenstate order, and is low depth, we
assume we can write it as a local functional of local conserved
quantities e−if (�). Let S be an extensive subregion of the
system. The unitary circuit W (t) formed by concatenating
U (t) and a circuit corresponding to U ′(t) = eitf . Now, the
unitary circuit W (T ) = 1, and is local by construction. Hence,
by Lemma 2 it has the property WS(T ) = vLvR . On the other
hand, from Definition 1 we have WS(T ) = US(T )eifS , where
fS is just f restricted to those terms involving only conserved
quantities in S. Hence, we find US(T ) = vLvRe−ifS . At this
stage it is not clear that vL,vR commute with fS . To make
this clear, consider a region S ′ = [L + a,R − a] where a is
much larger than the depth of the circuit, and the size ξ of the
conserved quantities. We can write

fS = fS ′ + gL + gR,

where gL involves only conserved quantities on the left-hand
side of the system, while gR involves those on the right and all
three terms on the right-hand side commute with one another
because they only involve the conserved quantities. Note too
that vL,vR commute with fS ′ because as operators they have
disjoint support (and f always fermion parity even). From the
discussion of gL,gR above, vL,vR continue to commute with
fS ′ if we redefine vL → vLe−igL and vR → vRe−igR , in which
case

US = vLvRe−ifS′ (�),

where vL,vR commute with fS ′ as required. �

APPENDIX C: ALTERNATIVE CHARACTERIZATION OF
PUMPED CHARGE FOR UNITARY SYMMETRY

GROUPS G

Here, we give a slightly different definition of pumped
charge which does not require the assumption that we can
decompose US = vLvRe−if . In the following, we merely
assume that US is a local unitary with exact eigenstate
order, and that the SPT order is many-body localizable and
characterized by a string order parameter.

Definition 2. A string order operator is a unitary function
of G of form �

(c)
l,r (g) = O(c)

l O(c)
r

∏
s∈(l,r) Vs(g) where O(c)

l,r are
unitary operators localized (with some correlation length ξ )
near l,r , respectively, and Vs(g) is the onsite unitary symmetry
operator.

Definition 3. We say unitary U has (exact) eigenstate order
c ∈ ClG if it has a complete set of local conserved quantities
taking the form �

(c)
l,r (g) with g ∈ G, and l,r arbitrary sites in the

system. Equivalently, U = e−if ({�(c)}) where f is a functional
of a complete subset of all the local conserved quantities.

Definition 4. Given subsystem S = [L,R] we define spe-
cial string order operator �

(c)
L (g) = O(c)

M

∏
r∈[L,M) V (g) where

M is some point extensively far in the bulk (e.g., halfway along
S). Similarly �

(c)
R (g) = O(c)

M

∏
r∈(M,R] V (g).

Lemma 4. �
(c)
L (g) commutes with all local conserved quan-

tities � entirely in S ′.
Proof. �

(c)
L (g) is defined by writing a conserved quantity

on the original uncut system �
(c)
x,M (g) where x is many ξ to

the left of S, and restricting this unitary to [L,R]. Indeed,
�

(c)
L (g) = O�

(c)
x,M (g) where O is completely outside of S. On

the original uncut system, �
(c)
x,L(g) will a priori commute with

all the conserved quantities � in S ′. Note then that [�(c)
L (g) :

�] = [O�
(c)
[x,M](g) : �] = [O : �]. As the complement of S is

many correlation lengths away from S ′ (and � necessarily
fermion parity even), we must have [O : �] = 1. Hence,
[�(c)

L (g) : �] = 1. �
Lemma 5. �

(c)
L (g) commutes with US up to a phase.

Moreover, using (A), this phase is equal to the older definition
of pumped charge κ(g) = [�(c)

L : US] = [�(c)
R : US]−1 if we

assume US = vLvRe−if

Proof. �(c)
L (g) is supported almost entirely on some interval

[L,M]. Pick a point x in this interval but many ξ from L,M .
Then, to good approximation �

(c)
L (g) = VL,x(g)qx�

(c)
x,M (g)

where �
(c)
x,M (g) commutes with US and qx local to x. As a result,

[�(c)
L : US] = [VL,x(g)qx : US] = g(x). It follows from the fact

US is low depth and symmetric that g(x) is some operator
with support near x. Therefore, [�(c)

L : US] = g(x) for any x ∈
[L,M] but many ξ away from the end points. As the left-hand
side does not depend on x, this implies g(x) is a pure phase.
Now, as �

(c)
L commutes with all of the conserved quantities well

in the bulk we have [�(c)
L : US] = [�(c)

L : vLvR] = η[�(c)
L : vL]

where η = 1 unless both �
(c)
L ,vR are fermion parity odd in

which case η = −1. Now, from the form of the string operator
we know that [�(c)

L : vL] = η[V (g)S : vL] = ηκL(g) where η

is the same as above because vL,vR have the same fermion
parity. Hence, [�(c)

L : US] = κ(g). �
Lemma 6. The pumped charge κ(g) defined above is robust

under US → USwLwR where wL,R are local (compared to the
system size) symmetric unitaries which act only near the L,R

end of the system, respectively.
Proof. This follows from the previous lemma. On sites s in

the support of wL, �
(c)
L acts like Vs(g). But, wL is symmetric

(and assumed parity even in a system with fermions7). Hence,
�

(c)
L commutes with wL. Therefore, [�(c)

L : US] = κ(g) remains
unchanged. �

Lemma 7. Time-independent Hamiltonian (TIH) drives
have trivial pumped charge.

7In fermionic SPTs, fermion parity is always a symmetry, so as
WL,R are symmetric they must also be fermion parity even [44].
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Proof. For a time-independent Hamiltonian drive US(T ) =
e−iHST where HS is a symmetric local Hamiltonian. This
Hamiltonian is assumed to have an eigenstate order c. It
follows that from the existence of such a string order that
[�(c)

L (g) : HS] = 0. As a result, US has the same eigenstate
order, and [�(c)

L (g) : US] = 1. Hence, κ(g) = 1. �

APPENDIX D: EDGE STRUCTURE FOR CLASS D

In this appendix, we use a different method to show how
the Floquet phases in Sec. II arise. Suppose we are given a
fermion parity symmetric, local unitary Floquet circuit U on a
large closed system. Suppose further that the Floquet unitary
U (T ) has eigenstate order, that is to say, there is a complete
set of conserved quantities of the (approximate) form

�
(c)
l,r (g = −1) =

{∏
l<s<r iψsψs, c = 1

iψl

[∏
l<s<r iψsψs

]
ψr, c = −1

where c = ±1 corresponds to trivial/topological eigenstate
order, respectively. On a system with boundary, we can arrange
things so that

A = gen

⎧⎨⎩vLvRe−if︸ ︷︷ ︸
US

,vL,vR,�(c)(g)L,�(c)(g)R,�
(c)
b (g)

⎫⎬⎭
(D1)

are a complete set of operators. The notation �(c)(g)L,R is
explained in Appendix C. Our goal is to find the dimension
and US eigenvalues of a minimal representation of this algebra.
Formally, we are looking for A/Z(A) where Z is the center of
the algebra. But, in the present case, due to the bulk eigenstate
order, Z(A) contains all the bulk string operators, so we are
indeed concerned only with a/Z(a) where

a = gen
{
vL,vR,�(c)(g)L,�(c)(g)R

}
. (D2)

The commutation relations of this algebra are

[�(c)(−1)L : US] = κ(g),

[�(c)(−1)L : �(c)(−1)R] = c, (D3)

where η ∈ AG = Z2 and c ∈ Z2. One now asks the fol-
lowing: What are the minimal dimension representations of
this algebra? The answer is d = 1

4 (9 + c − 3p − 3cp) where
p = κ(−1).

1. Class D edges

Here, we work out the representation theory of a. The
commutation relations for this algebra are[

�
(c)
L : �

(c)
R

] = c,
[
�

(c)
L : vLvR

] = p,

[vL : vR] = p,
[
�

(c)
L : vL

] = (−1)δc=p=−1p.

c = 1, p = 1. In this case, all the generators of a commute.
Therefore, a/Z(a) = {1} is trivial, and there are no protected
degeneracies in the Floquet spectrum.

c = 1, p = −1. In this case, none of the generators of a

commute. To elucidate the edge structure, we find a maximal
commuting subalgebra of a. It is a convenient to choose b =

〈vLvR,�L�R〉 because the eigenvalues of vLvR are up to a
phase (from the bulk) just the eigenvalues of US . Starting
with a simultaneous eigenstate |ψ〉 for b, we get a minimal
representation of size 4 summarized here:

vLvR �L�R

|ψ〉 u u′

�L|ψ〉 −u u′

VL|ψ〉 u −u′

�LVL|ψ〉 −u −u′

c = −1,p = 1.In this case, Z(a) = 〈vL,vR〉, so the re-
maining subalgebra is a/Z(a) = 〈�L,�R〉. To elucidate the
edge structure, we find a maximal commuting subalgebra of
a/Z(a). It is a convenient to choose b = 〈�L�R〉. Starting
with a simultaneous eigenstate |ψ〉 for b, we get a minimal
representation of size 2:

vLvR �L�R

|ψ〉 u u′

�L|ψ〉 u −u′

c = −1,p = −1. In this case, Z(a) = 〈�LvL,�RvR〉, so the
remaining subalgebra is a/Z(a) = 〈VL,VR〉. A maximal com-
muting subalgebra is b = 〈vLvR〉. Starting with a simultaneous
eigenstate |ψ〉 for b, we again get a minimal representation of
size 2:

vLvR

|ψ〉 u

vL|ψ〉 −u

2. MBL binary drives realizing the Floquet phases

The four possible Floquet phases here described can be
realized using binary drives, as demonstrated in [3]. A binary
drive involving Hamiltonians H1,H2 and times t1,t2 is a unitary
matrix function of time U (t):

U (t) ≡
{
e−iH1t , 0 � t < t1
e−iH2(t−t1)e−iH1t1 , t1 � t < t1 + t2.

In the context of class D, we set

H1 = −
∑

ihiψiψ̄i, H2 = −
∑

iJiψiψ̄i+i .

Setting Ji = hi = 1, we can get the full Z2 × Z2

classification by using (t1,t2) = (π
4 ,0),(0, π

4 ),(π
4 , π

2 ),(π
2 , π

4 )
which correspond, respectively, to obtain (c,p) =
(1,1),(−1,1),(1,−1),(−1,−1).

APPENDIX E: REPRESENTATION THEORY OF Z2 × Z2

EDGE IN GENERAL, USING STRING ORDER METHOD

Continuing from Sec. V, let us discuss the string order in
Z2 × Z2 PM and SPT states. The different forms of l-bits
lead to a different kinds of string order in the two resulting
SPT phases. Multiplying the l-bits together, notice that the
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eigenstates of the paramagnet can be chosen to be eigenstates
of the string operators

r∏
s=l

X1
s ,

r∏
s=l

X2
s . (E1)

The two operators can be thought of as local generators
of the Z2 × Z2 symmetry, corresponding to group elements
(−1,1),(1,−1), respectively. On the other hand, the eigenstates
of the SPT can be chosen to be eigenstates of

Z2
l−1

r∏
s=l

X1
s Z

2
r+1, Z1

l

r∏
s=l

X2
s Z

1
r−1 . (E2)

These operators (away from l,r) also look like (−1,1),(1,−1)
symmetry generators. Now, move away from the fixed point
and consider a disordered scenario with the same symmetry
group, and a complete set of l-bits. Away from the fixed points,
we still expect there to be string operators which commute
with the Hamiltonian, which are unitary functions of G of
form �l,r (g) = Ol

∏
s∈(l,r) Vs(g)Or , where Ol ,Or are unitary

operators localized (with some characteristic length scale ξ )
near l,r , respectively, and Vs(g) is the onsite unitary symme-
try operator, corresponding to X1,2

s for g = (−1,1),(1,−1),
respectively. We will say that the Hamiltonian is in the trivial
MBL PM phase if it commutes with a family of string operators
which at large distances take a form approaching Eq. (E1)
while it is said to be in the SPT phase if they take the form
Eq. (E2). With these string operators in mind, we remind the
reader how to define an action of the symmetry group at each
edge (see Appendix C).

Definition 5. Given subsystem S = [L,R] we mod-
ify the above string order operators to form �L(g) =
OM

∏
r∈[L,M) V (g) where M is some point extensively far

in the bulk (e.g., halfway along S). Similarly, �R(g) =
OM

∏
r∈(M,R] V (g).

In the MBL phase, these operators �L(g),�R(g) act like
symmetry generators at each edge, and can be argued to
commute with the bulk conserved quantities (see Lemma 4).
For this reason, it is natural to identify them with ĝL,̂gR from
the previous section.

1. Edge structure

Now, suppose we are given a unitary US with prescribed
bulk eigenstate order “c” and corresponding string order
operators �

(c)
l,r (g). By Lemma 5, �

(c)
R (g) commutes with US

up to phases characterized by a 1D representation κ(g). The
set of operators which commute with US up to phases are
simply

A = gen
{
US,�

(c)(g)L,�(c)(g)R,�(c)(g)bulk
}
. (E3)

Our goal is to find the dimension and US eigenvalues of
a minimal representation of this algebra. Formally, we are
looking for A/Z(A). Due to the bulk eigenstate order, Z(A) is
simply generated by the bulk string operators. Hence, we are
interested only in the algebra

a = gen
{
US,�

(c)(g)L,�(c)(g)R
}
. (E4)

TABLE VIII. This table shows the eigenspectrum structure at the
edge of theZ2 × Z2 SPT for trivial bulk order and non-trivial pumped
charge c = 1,κ = Id .

vLvR �L(ḡκ )�R(ḡκ )

|ψ〉 u u′

vL|ψ〉 u −u′

�L(ḡκ )|ψ〉 −u u′

�L(ḡκ )vL|ψ〉 −u −u′

The commutation relations of this algebra are

[�(c)(g)L : US] = κ(g),

[�(c)(g)R : US] = κ−1(g),
(E5)

[�(c)(g)L : �(c)(h)L] = μc(g,h),

[�(c)(g)R : �(c)(h)R] = μ−1
c (g,h),

where κ ∈ AG ∼ Z2 × Z2 and c ∈ Z2. This suggests a
Floquet classification Z⊗3

2 . Here, μc(g,h) = eiπ(g2h1−g1h2) =
[ihω(g)]−1 if we take ω(g,h) = eiπ(g1h2−g2h1) (reverting to
additive notation). One now asks what are the minimal
dimension representations of this algebra? The answer is d = 4
if either c = −1 or κ = Id.

Now, we work out the representation theory of a. The
commutation relations for this algebra are as follows:

c = 1, κ = Id. In this case, all the generators of a

commute. Therefore, a/Z(a) = {1} is trivial, and there are
no protected degeneracies in the Floquet spectrum. Indeed,
a/Z(a) = {1} is trivial.

c = 1, κ = Id. For a nontrivial character κ of Z2 × Z2,
there is a unique 1 = gκ ∈ G such that κ(gκ ) = 1. Let another
independent generator by ḡκ . With this information, we can
show that Z(a) = 〈�L(gκ ),�R(gκ )〉. Forming a/Z(a), we ex-
amine maximal commuting subalgebra b < a/Z(a) generated
by representatives b = 〈�L(ḡκ )�R(ḡκ ),vLvR〉 (see Table VIII).

c = −1, κ = Id. For a nontrivial character κ of Z2 × Z2,
there is again a unique 1 = gκ ∈ G such that κ(gκ ) = 1, and
again denote another independent generator by ḡκ . With this
information, we can show that there is no nontrivial center. We
examine a maximal commuting subalgebra b < a generated
by representatives b = 〈vL,vR,�L(gκ ),�R(gκ )〉. The result is
a minimal representation of size 4 (see Table IX).

APPENDIX F: TWISTED 1D REPRESENTATIONS

Given a symmetry group of the form G = G′ × ZT
2 where

ZT
2 = {1,T } is the time-reversal symmetry group with T 2 =

1, and G′ is some unitary symmetry group, we wish to find all

TABLE IX. This table shows the eigenspectrum structure at the
edge of the Z2 × Z2 SPT for both non-trivial bulk order and non-
trivial pumped charge c = −1,κ = Id .

vLvR vL vR �L�R(ḡκ ) �L(ḡκ ) �R(ḡκ )

|ψ〉 u u′ uu′ w w′ ww′

�L(ḡκ )|ψ〉 −u −u′ uu′ −w −w′ ww′

�R(ḡκ )|ψ〉 −u u′ −uu′ −w w′ −ww′

�L�R(ḡκ )|ψ〉 u −u′ −uu′ w −w′ −ww′
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κ(g) ∈ U(1) obeying

κ(gh) = κ(g)α(h)κ(h)α(g) (F1)

with κ(1) = 1. In particular, note that 1 = κ(T 2) = κ(T )−2

so that η ≡ κ(T ) = ±1. Note that for any g′,h′ ∈ G′,

κ(g′h′) = κ(g′)κ(h′).

Hence, restricted to G′, κ is just some 1D representation
χ of G′. Hence, each solution κ determines an element
χ ∈ H 1(G′,U(1)) and an η ∈ Z2. These two data determine κ

entirely: For general g = (g′,T σ ) with σ = 0,1, the defining
relation (F1) gives

κ(g) = χ (g′)(−1)σ ησ . (F2)

Let us now ensure that for any choice of χ,η there is a
corresponding κ solving Eq. (F1). Define κ through Eq. (F2).
For any g = (g′,T σ ),h = (h′,T τ ) we have

κ(gh) = χ (g′h′)(−1)σ+τ

ησ+τ

= χ (g′)(−1)σ+τ

ησχ (h′)(−1)σ+τ

ητ

= χ (g′)(−1)σ α(h)ησα(h)χ (h′)(−1)τ α(g)ητα(g)

= κ(g)α(h)κ(h)α(g).

Hence, the distinct solutions to Eq. (F1) correspond bijectively
with the 1D representations of G′, and a certain Z2 index
(η = ±1). Hence, we say there is a AG = H 1(G′,U (1)) × Z2

classification.

[1] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Ann. Phys. (NY)
321, 1126 (2006).

[2] J. Z. Imbrie, J. Stat. Phys. 163, 998 (2016).
[3] V. Khemani, A. Lazarides, R. Moessner, and S. L. Sondhi,

arXiv:1508.03344.
[4] A. Lazarides, A. Das, and R. Moessner, Phys. Rev. E 90, 012110

(2014).
[5] L. D’Alessio and M. Rigol, Phys. Rev. X 4, 041048 (2014).
[6] D. Abanin, W. De Roeck, and F. Huveneers, arXiv:1412.4752.
[7] P. Ponte, Z. Papić, F. Huveneers, and D. A. Abanin, Phys. Rev.

Lett. 114, 140401 (2015).
[8] A. Lazarides, A. Das, and R. Moessner, Phys. Rev. Lett. 115,

030402 (2015).
[9] X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 84, 235128

(2011).
[10] A. M. Turner, F. Pollmann, and E. Berg, Phys. Rev. B 83, 075102

(2011).
[11] A. Chandran, V. Khemani, C. R. Laumann, and S. L. Sondhi,

Phys. Rev. B 89, 144201 (2014).
[12] Y. Bahri, R. Vosk, E. Altman, and A. Vishwanath, Nat. Commun.

6, 7341 (2015).
[13] A. C. Potter and A. Vishwanath, arXiv:1506.00592.
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[22] J. K. Asbóth, B. Tarasinski, and P. Delplace, Phys. Rev. B 90,
125143 (2014).

[23] D. Carpentier, P. Delplace, M. Fruchart, and K. Gawedzki, Phys.
Rev. Lett. 114, 106806 (2015).

[24] F. Nathan and M. S. Rudner, New J. Phys. 17, 125014
(2015).

[25] R. Roy and F. Harper, arXiv:1603.06944.
[26] P. Titum, N. H. Lindner, M. C. Rechtsman, and G. Refael, Phys.

Rev. Lett. 114, 056801 (2015).
[27] P. Titum, E. Berg, M. S. Rudner, G. Refael, and N. H. Lindner,

Phys. Rev. X 6, 021013 (2015).
[28] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,

Phys. Rev. B 78, 195125 (2008).
[29] L. Fidkowski and A. Kitaev, Phys. Rev. B 83, 075103

(2011).
[30] D. V. Else and C. Nayak, Phys. Rev. B 93, 201103(R) (2016).
[31] A. C. Potter, T. Morimoto, and A. Vishwanath,

arXiv:1602.05194.
[32] R. Roy and F. Harper, arXiv:1602.08089.
[33] D. V. Else, S. D. Bartlett, and A. C. Doherty, Phys. Rev. B 88,

085114 (2013).
[34] Y. Gannot, arXiv:1512.04190.
[35] E. H. Lieb and D. W. Robinson, Commun. Math. Phys. 28, 251

(1972).
[36] X. Chen and A. Vishwanath, Phys. Rev. X 5, 041034 (2015).
[37] A. Y. Kitaev, Ann. Phys. (NY) 303, 2 (2003).
[38] R. Vasseur, A. C. Potter, and S. A. Parameswaran, Phys. Rev.

Lett. 114, 217201 (2015).
[39] C. W. von Keyserlingk and S. L. Sondhi, following paper, Phys.

Rev. B 93, 245146 (2016).
[40] X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 82, 155138

(2010).
[41] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, Phys.

Rev. B 81, 064439 (2010).
[42] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Science 338,

1604 (2012).
[43] T. Iadecola, L. H. Santos, and C. Chamon, Phys. Rev. B 92,

125107 (2015).
[44] Z.-C. Gu and X.-G. Wen, Phys. Rev. B 90, 115141 (2014).

245145-18

http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1007/s10955-016-1508-x
http://dx.doi.org/10.1007/s10955-016-1508-x
http://dx.doi.org/10.1007/s10955-016-1508-x
http://dx.doi.org/10.1007/s10955-016-1508-x
http://arxiv.org/abs/arXiv:1508.03344
http://dx.doi.org/10.1103/PhysRevE.90.012110
http://dx.doi.org/10.1103/PhysRevE.90.012110
http://dx.doi.org/10.1103/PhysRevE.90.012110
http://dx.doi.org/10.1103/PhysRevE.90.012110
http://dx.doi.org/10.1103/PhysRevX.4.041048
http://dx.doi.org/10.1103/PhysRevX.4.041048
http://dx.doi.org/10.1103/PhysRevX.4.041048
http://dx.doi.org/10.1103/PhysRevX.4.041048
http://arxiv.org/abs/arXiv:1412.4752
http://dx.doi.org/10.1103/PhysRevLett.114.140401
http://dx.doi.org/10.1103/PhysRevLett.114.140401
http://dx.doi.org/10.1103/PhysRevLett.114.140401
http://dx.doi.org/10.1103/PhysRevLett.114.140401
http://dx.doi.org/10.1103/PhysRevLett.115.030402
http://dx.doi.org/10.1103/PhysRevLett.115.030402
http://dx.doi.org/10.1103/PhysRevLett.115.030402
http://dx.doi.org/10.1103/PhysRevLett.115.030402
http://dx.doi.org/10.1103/PhysRevB.84.235128
http://dx.doi.org/10.1103/PhysRevB.84.235128
http://dx.doi.org/10.1103/PhysRevB.84.235128
http://dx.doi.org/10.1103/PhysRevB.84.235128
http://dx.doi.org/10.1103/PhysRevB.83.075102
http://dx.doi.org/10.1103/PhysRevB.83.075102
http://dx.doi.org/10.1103/PhysRevB.83.075102
http://dx.doi.org/10.1103/PhysRevB.83.075102
http://dx.doi.org/10.1103/PhysRevB.89.144201
http://dx.doi.org/10.1103/PhysRevB.89.144201
http://dx.doi.org/10.1103/PhysRevB.89.144201
http://dx.doi.org/10.1103/PhysRevB.89.144201
http://dx.doi.org/10.1038/ncomms8341
http://dx.doi.org/10.1038/ncomms8341
http://dx.doi.org/10.1038/ncomms8341
http://dx.doi.org/10.1038/ncomms8341
http://arxiv.org/abs/arXiv:1506.00592
http://dx.doi.org/10.1103/PhysRevLett.110.260601
http://dx.doi.org/10.1103/PhysRevLett.110.260601
http://dx.doi.org/10.1103/PhysRevLett.110.260601
http://dx.doi.org/10.1103/PhysRevLett.110.260601
http://dx.doi.org/10.1103/PhysRevLett.111.127201
http://dx.doi.org/10.1103/PhysRevLett.111.127201
http://dx.doi.org/10.1103/PhysRevLett.111.127201
http://dx.doi.org/10.1103/PhysRevLett.111.127201
http://dx.doi.org/10.1103/PhysRevB.90.174202
http://dx.doi.org/10.1103/PhysRevB.90.174202
http://dx.doi.org/10.1103/PhysRevB.90.174202
http://dx.doi.org/10.1103/PhysRevB.90.174202
http://dx.doi.org/10.1103/PhysRevB.82.235114
http://dx.doi.org/10.1103/PhysRevB.82.235114
http://dx.doi.org/10.1103/PhysRevB.82.235114
http://dx.doi.org/10.1103/PhysRevB.82.235114
http://dx.doi.org/10.1103/PhysRevLett.106.220402
http://dx.doi.org/10.1103/PhysRevLett.106.220402
http://dx.doi.org/10.1103/PhysRevLett.106.220402
http://dx.doi.org/10.1103/PhysRevLett.106.220402
http://dx.doi.org/10.1038/nphys1926
http://dx.doi.org/10.1038/nphys1926
http://dx.doi.org/10.1038/nphys1926
http://dx.doi.org/10.1038/nphys1926
http://dx.doi.org/10.1103/PhysRevB.88.155133
http://dx.doi.org/10.1103/PhysRevB.88.155133
http://dx.doi.org/10.1103/PhysRevB.88.155133
http://dx.doi.org/10.1103/PhysRevB.88.155133
http://dx.doi.org/10.1103/PhysRevX.3.031005
http://dx.doi.org/10.1103/PhysRevX.3.031005
http://dx.doi.org/10.1103/PhysRevX.3.031005
http://dx.doi.org/10.1103/PhysRevX.3.031005
http://dx.doi.org/10.1103/PhysRevB.90.125143
http://dx.doi.org/10.1103/PhysRevB.90.125143
http://dx.doi.org/10.1103/PhysRevB.90.125143
http://dx.doi.org/10.1103/PhysRevB.90.125143
http://dx.doi.org/10.1103/PhysRevLett.114.106806
http://dx.doi.org/10.1103/PhysRevLett.114.106806
http://dx.doi.org/10.1103/PhysRevLett.114.106806
http://dx.doi.org/10.1103/PhysRevLett.114.106806
http://dx.doi.org/10.1088/1367-2630/17/12/125014
http://dx.doi.org/10.1088/1367-2630/17/12/125014
http://dx.doi.org/10.1088/1367-2630/17/12/125014
http://dx.doi.org/10.1088/1367-2630/17/12/125014
http://arxiv.org/abs/arXiv:1603.06944
http://dx.doi.org/10.1103/PhysRevLett.114.056801
http://dx.doi.org/10.1103/PhysRevLett.114.056801
http://dx.doi.org/10.1103/PhysRevLett.114.056801
http://dx.doi.org/10.1103/PhysRevLett.114.056801
http://dx.doi.org/10.1103/PhysRevX.6.021013
http://dx.doi.org/10.1103/PhysRevX.6.021013
http://dx.doi.org/10.1103/PhysRevX.6.021013
http://dx.doi.org/10.1103/PhysRevX.6.021013
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.83.075103
http://dx.doi.org/10.1103/PhysRevB.83.075103
http://dx.doi.org/10.1103/PhysRevB.83.075103
http://dx.doi.org/10.1103/PhysRevB.83.075103
http://dx.doi.org/10.1103/PhysRevB.93.201103
http://dx.doi.org/10.1103/PhysRevB.93.201103
http://dx.doi.org/10.1103/PhysRevB.93.201103
http://dx.doi.org/10.1103/PhysRevB.93.201103
http://arxiv.org/abs/arXiv:1602.05194
http://arxiv.org/abs/arXiv:1602.08089
http://dx.doi.org/10.1103/PhysRevB.88.085114
http://dx.doi.org/10.1103/PhysRevB.88.085114
http://dx.doi.org/10.1103/PhysRevB.88.085114
http://dx.doi.org/10.1103/PhysRevB.88.085114
http://arxiv.org/abs/arXiv:1512.04190
http://dx.doi.org/10.1007/BF01645779
http://dx.doi.org/10.1007/BF01645779
http://dx.doi.org/10.1007/BF01645779
http://dx.doi.org/10.1007/BF01645779
http://dx.doi.org/10.1103/PhysRevX.5.041034
http://dx.doi.org/10.1103/PhysRevX.5.041034
http://dx.doi.org/10.1103/PhysRevX.5.041034
http://dx.doi.org/10.1103/PhysRevX.5.041034
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1103/PhysRevLett.114.217201
http://dx.doi.org/10.1103/PhysRevLett.114.217201
http://dx.doi.org/10.1103/PhysRevLett.114.217201
http://dx.doi.org/10.1103/PhysRevLett.114.217201
http://dx.doi.org/10.1103/PhysRevB.93.245146
http://dx.doi.org/10.1103/PhysRevB.93.245146
http://dx.doi.org/10.1103/PhysRevB.93.245146
http://dx.doi.org/10.1103/PhysRevB.93.245146
http://dx.doi.org/10.1103/PhysRevB.82.155138
http://dx.doi.org/10.1103/PhysRevB.82.155138
http://dx.doi.org/10.1103/PhysRevB.82.155138
http://dx.doi.org/10.1103/PhysRevB.82.155138
http://dx.doi.org/10.1103/PhysRevB.81.064439
http://dx.doi.org/10.1103/PhysRevB.81.064439
http://dx.doi.org/10.1103/PhysRevB.81.064439
http://dx.doi.org/10.1103/PhysRevB.81.064439
http://dx.doi.org/10.1126/science.1227224
http://dx.doi.org/10.1126/science.1227224
http://dx.doi.org/10.1126/science.1227224
http://dx.doi.org/10.1126/science.1227224
http://dx.doi.org/10.1103/PhysRevB.92.125107
http://dx.doi.org/10.1103/PhysRevB.92.125107
http://dx.doi.org/10.1103/PhysRevB.92.125107
http://dx.doi.org/10.1103/PhysRevB.92.125107
http://dx.doi.org/10.1103/PhysRevB.90.115141
http://dx.doi.org/10.1103/PhysRevB.90.115141
http://dx.doi.org/10.1103/PhysRevB.90.115141
http://dx.doi.org/10.1103/PhysRevB.90.115141



