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The strange correlator [Phys. Rev. Lett. 112, 247202 (2014)] has been proposed as a measure of symmetry
protected topological order in one- and two-dimensional systems. It takes the form of a spin-spin correlation
function, computed as a mixed overlap between the state of interest and a trivial local product state. We demonstrate
that it can be computed exactly (asymptotically, in the Monte Carlo sense) for various Affleck-Kennedy-Lieb-
Tasaki states by direct evaluation of the wave function within the valence bond loop gas framework. We present
results for lattices with chain, square, honeycomb, cube, diamond, and hyperhoneycomb geometries. In each case,
the spin quantum number S is varied such that 2S (the number of valence bonds emerging from each site) achieves
various integer multiples of the lattice coordination number. We introduce the concept of strange correlator loop
winding number and point to its utility in testing for the presence of symmetry protected topological order.
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I. INTRODUCTION

The classification of topological phases of matter is increas-
ingly well understood [1]. We now know that, in addition to
states with intrinsic topological order [2]—which cannot be
smoothly connected to any local product state [3]—there are
those that exhibit a weaker form of topological order. These
so-called symmetry protected topological (SPT) states [4,5]
are also incompatible with any local-product-state description,
but only insofar as a special protecting symmetry remains
unbroken.

SPT states are gapped and featureless in the bulk, and
they are short-range entangled. They share few of the exotic
features of their intrinsically ordered cousins. For instance,
they do not support fractional excitations [6], nor do they
possess topological ground-state degeneracy [7] (i.e., they
have unique ground states on closed manifolds). Nonetheless,
nontrivial SPT states do possess interesting boundary modes,
which in low-dimensional systems must either be gapless or
spontaneously break a symmetry. (Beginning in three spatial
dimensions, topologically degenerate boundary modes offer
a third possibility [8].) In general, the wave function at the
boundary admits projective representations of the protecting
symmetries. The Haldane chain is a well-known example of
an SPT state in one dimension, where the spin-1 degrees
of freedom in the bulk fractionalize into spin-1/2 at the
boundary [9]; there, the projective representations are SU(2)
in the case of SO(3) symmetry and T2 = −1 in the case of
time-reversal symmetry.

The concept of SPT phases was first developed in the
context of noninteracting fermions, and an exhaustive classifi-
cation [10,11] was soon worked out following the discovery of
topological insulators. In the presence of interactions, however,
the story is more complicated. For example, in the case of
spinless fermions in one dimension with time-reversal invari-
ance and particle-number conservation, interactions reduce
the group structure from Z down to Z8 [12,13]; for bosons,
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the group structure must enlarge, since noninteracting bosons
ultimately condense into a single phase. There is ongoing
work to classify SPT phases for general interacting quantum
systems. For fermions, there is a proposal to apply group super-
cohomology theory [14]. Classification of interacting bosonic
systems has been attempted using group cohomology [15] and
nonlinear σ models augmented by topological θ terms [16].

Much progress has been made already in the special
case of one spatial dimension, where gapped SPT phases
can be described by matrix product states [17,18] and their
characterization given by a generalization of string order. But
in two or more dimensions, string order is ill-defined, and
such a classification scheme is not possible. Some promising
approaches include universal signatures in the entanglement
spectrum [19] and the braiding statistics of topological
excitations in the corresponding “gauged” intrinsic topological
state [20]. Recent proposals extend to the geometric properties
of reduced density matrices [21] and the analysis of modular
matrices [22]. However, these approaches are computation-
ally costly and impractical outside of exact diagonalization,
density-matrix renormalization group, matrix product state,
and tensor network methods.

An intriguing alternative has been suggested by You et al.,
who introduced a “strange correlator” that effectively maps
spatiotemporal correlations at the physical boundary of an
SPT phase to spatial correlations at a temporal boundary with
a trivial symmetric product state [23]. Because the modes
at the physical boundary are either gapless or degenerate,
in one and two dimensions they must be either critical or
ordered (because of spontaneous symmetry breaking at the
boundary). Thus, the strange correlator will show exponential
decay for trivial symmetric states but long-range or power-law
behavior for nontrivial SPT states. This understanding has been
confirmed in studies of Affleck-Kennedy-Lieb-Tasaki (AKLT)
states in one and two dimensions [23], spin-1 Heisenberg
chains and ladders [24], quasi-one-dimensional arrays of
Haldane chains [25], and quantum spin Hall states in the
Kane-Mele-Hubbard model [26].

The basic idea of the strange correlator is to map the
imaginary-time Green’s function of a spatial boundary onto
the equal-time Green’s function of a space-time boundary [23].
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As long as there exists an emergent Lorentz symmetry in
the low-energy effective-field theory of the SPT phase (i.e.,
the dynamical critical exponent z = 1), then this mapping
is in principle exact. Since the boundary modes of an SPT
are either gapless or degenerate, in one and two dimensions
this implies that the Green’s function must show either
long-range order (LRO) or quasi-long-range order (QLRO).
In three dimensions, the possibility of a topologically ordered
boundary mode introduces the possibility of short-range order
(SRO). Thus, in one and two dimensions, LRO or QLRO
signal a nontrivial SPT phase, while SRO signals a symmetric
product state. In three dimensions, LRO and QLRO still signal
a nontrivial SPT phase, but SRO no longer implies a symmetric
product state unless it can be shown that the boundary is
topologically trivial.

In this work, we demonstrate how to measure the strange
correlator within a generalized spin-S valence bond formalism
and apply this method to study AKLT states in one, two, and
three dimensions. The AKLT states are exact valence bond
solid states with well-known properties, and we employ them
as a test bed for methods to characterize SPT states. In one
dimension our approach provides an intuitive and easy-to-
visualize picture of why the strange correlator yields long-
range correlations in spin-S AKLT chains for odd values of S.
It also makes clear a connection to the concept of valence bond
winding number sectors, as well as to the conventional string
order in one-dimensional (1D) systems. In two dimensions
the strange correlator becomes quasi-long-range, yet we show
that the corresponding winding number fraction remains finite.
This is reminiscent of the Kosterlitz-Thouless phase, where
slow twisting of the superfluid order parameter prevents Bose-
Einstein condensation at finite temperature, yet there still exists
a finite superfluid fraction due to vortex confinement. Finally,
in three dimensions we show the strange correlator is long-
range with a nonzero winding number fraction.

The remainder of the text proceeds as follows. In Sec. II we
introduce AKLT states as the exact ground states of a class of
projective Hamiltonians. We also present a generalized valence
bond formalism for spin-S degrees of freedom composed
of symmetrized combinations of 2S spin-1/2 particles and
show how to measure correlation functions, conventional
and strange, within this formalism. In Sec. III, we present
our results, which include a numerical evaluation of these
correlation functions (for various lattices and spin values) and
a comparison to some exact results in one dimension. In Sec. IV
we show that the energy excitation gap of AKLT states can be
estimated by promoting one valence bond singlet to a triplet
(in the spirit of Feynman’s single-mode approximation) and
give some estimates for states with S � 2. Finally, in Sec. V,
we summarize our main results and discuss the outlook for
future work.

II. MODEL AND METHODS

The AKLT [27,28] states are prototypical examples of SPT
states in low dimension. (They have recently gained new atten-
tion for their possible value in measurement-based quantum
computation schemes [29].) The best-known example in one
dimension is the Haldane chain, which is smoothly connected
to an exact valence bond solid state [27]. By expressing its

Hamiltonian as a sum of projection operators on nearest-
neighbor bonds, one can prove that there is a unique ground
state (on the periodic chain) with exponentially decaying
correlations and a gap to excitations [28]. Exact results for
the bilinear spin correlation function of the spin-S AKLT
chain have been derived on the basis of an exact mapping
from a D-dimensional AKLT state to a D-dimensional model
of interacting classical O(3) spins at finite temperature [30].
This mapping holds in any dimension and implies, via the
Mermin-Wagner theorem [31], that all AKLT states in one
and two dimensions are magnetically disordered. In three
dimensions, magnetic order is not forbidden and its presence
is specific to the choice of lattice and spin value. Ordering
typically occurs above some threshold in the multiplicity of the
state (viz., the integer M = 2S/z, where z is the coordination
number of the lattice). For instance, Monte Carlo simulations
have shown that AKLT states on the cubic lattice always
exhibit long-range antiferromagnetic order, whereas those on
the diamond lattice are ordered only if there is more than one
singlet bond per nearest-neighbor link [32].

The AKLT states are the ground states of Hamiltonians of
the form

Ĥ =
∑
〈i,j〉

2S∑
J=2S−M+1

AJ P 2S
J (i,j ). (1)

Here, the first sum is over nearest-neighbor pairs of sites, each
hosting a local spin-S degree of freedom. The second sum is
over spin sectors, with M being the multiplicity of the AKLT
state. The projector P 2S

J (i,j ) projects onto the total spin J

sector of the combined spin space 2S between sites i and j ,
and the AJ are interaction strengths of the projectors. The
AKLT state is the ground state as long as the interactions
satisfy AJ > 0, so in practice their precise values are arbitrary
(though they do set the energy scale for excitations). The
spin projectors P 2S

J (i,j ) can be given an explicit form by
recognizing that their effect is to eliminate all sectors in which
the angular momentum sum does not produce a net spin of
quantum number J ,

P 2S
J (i,j ) =

2S∏
J ′ = 0

(J ′ �= J )

(Si + Sj )2 − J ′(J ′ + 1)

J (J + 1) − J ′(J ′ + 1)
. (2)

The projectors can be recast in terms of Heisenberg spin
interactions via the identity (Si + Sj )2 = 2S(S + 1) + 2Si ·
Sj . Note that the particular terms in the denominator of
Eq. (2) ensure that the completeness relation

∑2S
J=0 P 2S

J (i,j ) =
1 is satisfied. (Projective constructions such as this are
commonplace; e.g., see Eq. (2) of Ref. [32] or Eq. (8) of
Ref. [33]. Table I gives the projectors as a power series in
the Heisenberg spin interactions for S � 3.) For the case of
multiplicity M = 1, the AKLT Hamiltonian takes a rather
simple form with P 2S

2S (i,j ) as the only contributing element.
For the S = 1 case, we obtain the celebrated AKLT point of
the bilinear-biquadratic chain, namely P 2

2 (i,j ) = 1
3 + 1

2 (Si ·
Sj ) + 1

6 (Si · Sj )2, while for S = 3/2, S = 2, and S = 3 we
recover the standard (M = 1) AKLT Hamiltonians on lattices
with coordination z = 3 (honeycomb, hyperhoneycomb), z =
4 (square, diamond), and z = 6 (cubic), respectively.

245141-2



DETECTION OF SYMMETRY-PROTECTED TOPOLOGICAL . . . PHYSICAL REVIEW B 93, 245141 (2016)

TABLE I. The projectors P 2S
J (i,j ) are expressed as a series ex-

pansion in the spin interactions (Si · Sj )m. The expansion coefficients
at order m are given for select values of 0 � J � S.

0 � m � 2S

P 2S
J 0 1 2 3 4 5 6

P 2
0 − 1

3 0 1
3

P 2
1 1 − 1

2 − 1
2

P 2
2

1
3

1
2

1
6

P 3
0

33
128

31
96 − 5

72 − 1
18

P 3
1 − 81

128 − 117
160

9
40

1
10

P 3
2

165
128

23
96 − 17

72 − 1
18

P 3
3

11
128

27
160

29
360

1
90

P 4
0 0 − 1

3 − 17
180

1
45

1
180

P 4
1 0 4

5
1
5 − 1

18 − 1
90

P 4
2 0 − 20

21 − 1
9

1
18

1
126

P 4
3 1 9

20 − 7
360 − 1

36 − 1
360

P 4
4 0 1

28
1
40

1
180

1
2520

P 6
6 − 1

175 − 7
1980

1
10395

821
2494800

487
7484400

37
7484400

1
7484400

The AKLT states are fixed-point representations of valence
bond solids. To see this, it is instructive to decompose
the spin operator Si on a lattice site into 2S spin-1/2
components [27,28]. In this picture, AKLT states are formed
by combining the spin-1/2 components on adjacent lattice
sites into a spin singlet in such a way that the number of
singlets across each nearest-neighbor link is a constant (the
multiplicity). Then the spin-1/2 components residing at each
site are projected onto the total spin-S sector.

For concreteness, we proceed by expressing each spin-S
operator (Si) as a sum

Si =
2S∑

α=1

si,α (3)

of spin-half “flavors” (si,1,si,2, . . . ,si,2S) and forcing all 2S

of them into ferromagnetic alignment. Since Q̂i,α;j,β = 1/4 +
si,α · sj,β functions as a bond swap operator when the spin
flavors reside on the same sublattice [see Refs. [34] and [35];
cf. Eqs. (4) and (13) in Ref. [36]], maximal ferromagnetic
alignment is equivalent to perfect symmetrization of the 2S

spin flavors:

|ψ{Si}〉 ∼ lim
g→∞ exp

⎛
⎝g

∑
i

∑
α<β

si,α · si,β

⎞
⎠

×|ψ{si,1,si,2, · · · ,si,2S}〉

∼ 1

(2S)!

∑
π

|ψ{si,π(1),si,π(2), · · · ,si,π(2S)}〉, (4)

where g represents a ferromagnetic coupling factor between
the constituent spin-half degrees of freedom, and π labels
the (2S)! possible permutations of the flavor indices (which is
what we sample in our Monte Carlo simulations). AKLT states
are obtained by applying the symmetrization above to a fixed

FIG. 1. (a) Each S = 1 object can be expressed as two spin-half
degrees of freedom, fully symmetrized. (b) The AKLT state on the
linear chain is the state with exactly one short bond connecting each
pair of nearest-neighbor spins. Here, all bonds represent singlet pairs
between sites in opposite sublattices (denoted by open and filled
circles). When the two spin-half flavors on each site are resolved, the
state takes the form of a superposition of 2N nonorthogonal valence
bond configurations. (c) The overlap of the AKLT state with itself
produces a gas of closed loops. This is the framework in which all
expectation values are computed, as per Ref. [37].

pattern of valence bonds; namely, M valence bonds between
spin flavors of nearest neighbors. As an example, in Fig. 1 we
illustrate the M = 1 AKLT state on a spin-1 chain.

Within this representation, the spin correlations of the
spin-S entities can be decomposed into the constituent spin
correlations of the spin-half flavors,

〈v|Si · Sj |v′〉 =
2S∑

α=1

2S∑
β=1

〈v|si,α · sj,β |v′〉. (5)

Here, v and v′ denote bipartite [37] spin-S valence bond
configurations, each with SN valence bonds connecting N/2
sites in the A sublattice to N/2 sites in the B sublattice. Thus,
we can evaluate the flavor correlations 〈v|si,α · sj,β |v′〉 using a
standard result for the valence bond basis [37],

〈v|si,α · sj,β |v′〉
〈v|v′〉 = 3

4
εi,j δi,α↔j,β . (6)

Here, εi,j takes the value +1 or −1, depending on whether
or not the sites i and j share a common sublattice label. The
quantity δi,α↔j,β = 0,1 is a δ function that triggers when spin
flavors i,α and j,β reside in the same loop. The possible
outcomes for Eq. (6), in the case of a spin-1 chain, are
illustrated in Figs. 3(a) and 3(b).

Another useful result is the overlap of two valence bond
configurations, given by 〈v|v′〉 = 2N
−SN . Here, N
 is the
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number of loops in the overlap graph, which is formed by
laying configuration v atop configuration v′. The maximum
possible number of loops in an overlap graph is SN , which only
occurs when two valence bond configurations are identical
(and hence the overlap is unity).

As we emphasized previously, symmetrization [27] be-
tween the 2S spin-half flavors on a given site is equivalent
to a swap of the end points of two valence bonds. With respect
to Monte Carlo evaluation, this symmetrization is the only
kind of dynamical fluctuation one needs to account for, since
the AKLT states are realizations of otherwise static valence
bond patterns.

Accordingly, we have implemented the following Monte
Carlo update scheme. We sweep through the lattice, choosing
each spin-S degree of freedom in turn. For each spin, we
select at random a pair of spin-half flavors and propose a new
configuration with the end points of these two flavors swapped
(see Fig. 17 in the Appendix for an illustration). The new
configuration is accepted according to the ratio of the Monte
Carlo sampling weight,

W (v,v′)new

W (v,v′)old
= 2Nnew


 −SN

2Nold

 −SN

= 2�N
, (7)

which depends only on the change in the loop count, �N
 =
Nnew


 − Nold

 . Although it is sometimes advantageous to

perform a “walk” through the new configuration to determine
the change in the number of loops in the overlap graph [33,38],
this procedure can be slow, especially if a significant fraction
of the loops are large. A fast update scheme exists whereby the
change in the number of loops can be effectively sampled by
considering the combined bond-spin space, as first discussed
by Sandvik and Evertz [39]. We discuss our own implementa-
tion of this protocol in the Appendix.

Let us define “normal” and “strange” versions of the
bilinear spin correlation function, where we use an overbar to
denote mixed estimators such as the strange correlator:

C(r) = 〈ψ |S0 · Sr|ψ〉
〈ψ |ψ〉 , C̄(r) = 〈R|S0 · Sr|ψ〉

〈R|ψ〉 . (8)

Here, |ψ〉 is the AKLT state and |R〉 is a reference state used in
defining the strange correlator. The reference state |R〉 should
be a local product state with all the symmetries of |ψ〉. One
choice for |R〉 is thus a dimer product state with S valence
bonds making up each dimer. Such a state falls within the
singlet sector and mixed estimator C̄(r) can be sampled in
the usual valence bond basis. However, while this choice
clearly has all the spin symmetries, it breaks translational
symmetry. Instead, we follow You et al. [23] in choosing an
on-site product state with zero spin projection along one axis,
|�〉= ∏

i |Sy

i =0〉 (we use the y axis in place of the z axis for
reasons to be explained in the Appendix). This state can be
represented in the valence bond basis by pairing up the 2S

spin flavors on a site into S spin-zero triplets (see Fig. 2 for
an illustration of |�〉 and 〈�|ψ〉 for the S = 1 chain). We
have given an explicit formula for the spin correlations of two
valence bond configurations in Eq. (5). This formula is valid
for any bipartite valence bond configurations in the total singlet
sector. To compute the strange correlator using |�〉, however,
we must make use of on-site “internal triplet” states that require
new rules. As before, we can decompose the spin correlations

FIG. 2. (a) Our convention is that a solid line connecting spins
in opposite sublattices represents a singlet bond; a line connecting
spins in the same sublattice represents a triplet. For our purposes, we
have selected |t〉 = (|S = 1; Sz = +1〉 + |S = 1; Sz = −1〉)/√2, the
symmetric triplet of aligned spin pairs. (b) The reference state is a
tensor product of such triplets on each site, |�〉 = ⊗i |t〉i . (c) The
overlap of the reference state with the AKLT state from Fig. 1(b) is
depicted. A special property of the 1D system is that every term in
this mixed overlap involves a single, system-spanning loop whenever
|ψ〉 is a nontrivial SPT state.

Si · Sj into the flavor correlations si,α · sj,β . However, we must
now evaluate these correlations in a mixed estimator between
a valence bond configuration in the singlet sector |v〉 and one
in the triplet sector |t〉. This leads to the following formula:

〈v|si,α · sj,β |t〉
〈v|t〉 =

(
1

2
εi,j + 1

4
λi,α↔j,β

)
δi,α↔j,β, (9)

where λi,α↔j,β is the “loop spacing” between i,α and
j,β, defined as +1 or −1 for even and odd distances
between flavors in the same loop (and zero otherwise). Note
that the usual valence bond formula is recovered by setting
λi,α↔j,β = εi,j . The modified rules that lead to this formula are
derived in the Appendix and illustrated in Figs. 3(c) and 3(d).

Note that a similar mixed correlator has been developed
to determine unambiguously the valence bond occupation
number in bipartite valence bond states [40,41]. In that
application, however, the Néel state is used as the reference
state. In this work, the Néel state is inappropriate, since it
breaks all the protecting symmetries of the the AKLT states—
viz., time-reversal invariance and the SO(3) and dihedral
Z2 × Z2 symmetries.

In addition to the spin correlation functions described
above, we can also define a winding fraction, analogous to the
spin stiffness or superfluid fraction. Here, instead of using the
winding number of a conserved charge, we utilize the valence
bond winding number, defined as

〈
W 2

α

〉 =
〈∑




(
W (
)

α

)2

〉
, (10)

where the sum is over all loops 
 of the overlap graph and W (
)
α

is the winding number of loop 
 in the α direction. The normal
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(a)

(b)

(c)

(d)

FIG. 3. Spin correlations between the constituent spin halfs obey
the usual rules of the valence bond basis: (a) +3/4 for spin halfs in the
same sublattice and (b) −3/4 for spin halfs in opposite sublattices,
provided they reside in the same loop of the overlap graph; zero
otherwise. For mixed estimators involving the triplet product state,
the same rules apply so long as the loop spacing obeys the expected
ABAB pattern; otherwise the value is a factor of 3 lower: (c) for spin
halfs in the same sublattice, +1/4 for odd loop spacing and +3/4 for
the usual even loop spacing, and (d) in opposite sublattices, −3/4 for
the usual odd loop spacing and −1/4 for even loop spacing.

and strange winding fractions are then

ρ =
∑d

α=1

〈
W 2

α

〉
dSN

, ρ̄ =
∑d

α=1

〈
W̄ 2

α

〉
dSN

. (11)

If ρ remains constant as N → ∞, this is a sign of long-range
or quasi-long-range bulk correlations. Similarly, if ρ̄ remains
constant as N → ∞, then by the mapping of the strange
correlator onto the boundary modes, this indicates long-range
or quasi-long-range boundary correlations, a sign of nontrivial
SPT order.

Another useful estimator is the total staggered magneti-
zation, defined as M2 = ∑

i,j εi,j Si · Sj . In the valence bond
framework, it can be shown [37] that M2 is related to the
average squared length of loops in the loop gas picture. The

exact relations are

M2 = 3

4

∑



〈
L2




〉
, M̄2 = 1

2

∑



〈
L2




〉
, (12)

where L
 is the length of loop 
 and the different prefactors
stem from the difference between Eqs. (6) and (9).

III. RESULTS

A. Linear chains

Historically, the AKLT chain was the first robust example
of an integer spin-S antiferromagnet with short-range correla-
tions and a gap to all excited states [27], in confirmation with
Haldane’s conjecture [42,43].

The bilinear spin correlations in spin-S AKLT chains have
been calculated exactly by Arovas et al. [30]:

C(r) = (−1)r (S + 1)2

(
S

S + 2

)r

. (13)

We find this equation also to be valid for the strange correlator
when S is even. When S is odd, however, the strange correlator
appears to obey

C̄(r) = (−1)r
(S + 1)2

2

[
1 +

(
S − 1

S + 3

)r]
. (14)

These scaling forms are compared in Fig. 4 to results from
our MC sampling scheme for spin-S AKLT chains with spin
ranging from S = 1 to S = 9. For S = 1, we replicate the result
of You et al. [23], C̄(∞) = 2, while for generic odd integral
S we find C̄(∞) = (S + 1)2/2. For S an even integer, we find
C̄(∞) = 0. Thus, the strange correlator correctly captures the
even-odd effect in this system: for S even, the edge spins are
integral and the bulk state is smoothly connected to a product
state, while for S odd, the edge spins are fractional and the
bulk cannot be smoothly connected to a product state as long
as the symmetry is preserved.

0 6 12 18 24
r

0.001

0.01

0.1

1

⎪C
(r

)⎪
 / 
S(
S+

1)

S=1
S=2
S=3
S=4
S=5
S=6
S=7
S=8
S=9

0 6 12 18 24
r

0.001

0.01

0.1

1

⎪C
(r

)⎪
 / 
S(
S+

1)

S=1
S=2
S=3
S=4
S=5
S=6
S=7
S=8
S=9

C(r)=(S+1)2/(1+2/S)r C(∞)=(S+1)2/2

FIG. 4. Normal (left) and strange (right) spin-correlation func-
tions for spin-S AKLT chains. Lines are exact forms, while data
points are sampled according to the Monte Carlo scheme described
in the main text. The normal spin-correlation functions are given by
Eq. (13), which is also the correct form for strange correlations when
S is even. For odd S, the empirical form is given by Eq. (14).
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0 2 4 6 8 10
r

0.001

0.01

0.1

1

⎪I
2(r

)⎪

S = 2
S = 3
S = 4
S = 5
S = 6
S = 7
S = 8
S = 9

FIG. 5. Reduced biquadratic spin correlations for spin-S AKLT
chains. Lines are exact forms taken from Ref. [44] and given by
Eq. (16), while data points are sampled according to the Monte Carlo
scheme described in the main text.

We can also measure higher-order moments of the two-spin
correlation function,

Cn(r) = 〈(S0 · Sr )n〉. (15)

We introduce the notation Cn and C̄n to represent the normal
and strange forms of the nth order moment of the correlation
function obtained using pure and mixed expectation values,
respectively. Using a transfer-matrix method, Freitag and
Müller-Hartmann [44] were able to construct polynomials
In(r) for 1 � n � S such that In(r) depends on all Cm(r)
with m � n, and with the following remarkable property (for
r �= 0):

In(r) = 2n + 1

4π
(−1)nr

(
S!(S + 1)!

(S − n)!(S + n + 1)!

)r

. (16)

In Fig. 5 we compare the above analytic expression for
n = 2 to results from our Monte Carlo sampling scheme,
where we make use of the relation 4π (S + 1)2(S + 3)2I2(r) =
30C2(r) + 15C1(r) − 10S2(S + 1)2 taken from the recursion
relations given in Ref. [44].

In Fig. 6 we show biquadratic (n = 2) spin correlations.
For the normal estimator, we observe exponential decay to a
constant value of S2(S + 1)2/3, while for the strange estimator
we observe exponential decay to a constant value of S2(S +
1)2/2, but also see anomalous oscillations about this value
(with no sign of decay in the envelope) for odd values of S.

We can also consider four-spin correlations of the form

F (r) = 〈(S0 · S1)(Sr · Sr+1)〉, (17)

where as before we will use F (r) and F̄ (r) to refer to normal
and strange correlations, respectively. However, we find both
F (r) and F̄ (r) to quickly decay to the value 〈(S0 · S1)〉2 for all
S, reflecting the fact that AKLT states are by definition fixed
point valence bond solids with M singlets per bond.

Winding numbers

Bonesteel has shown that short-ranged valence bond config-
urations can be classified by a topological invariant that counts
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FIG. 6. Normal (left) and strange (right) biquadratic spin corre-
lations for spin-S AKLT chains. For odd S, the strange biquadratic
correlations exhibit oscillations with no decay in the oscillatory
envelope.

the number of valence bonds cut by a vertical bond [45]. For
odd-width strips, vertical lines must cut through an even or
odd number of valence bonds, and shifting the vertical line
horizontally by one lattice spacing changes this number by
±1. Thus, short-ranged valence bond states can be divided
into two topologically distinct classes: one with an even-odd
pattern and another with an odd-even pattern. Similarly, on
even width strips the states break down into the sectors of all
even or all odd cuts.

The spin-S AKLT chains considered in this paper can
be thought of as short-ranged valence bond states in a strip
geometry, with each position along the x axis representing
a single spin-S site, and the constituent spin-1/2 flavors
distributed along the y axis. Since 2S is even for integral S,
this corresponds to the even-width geometry discussed above,
and valence bond states can be split into even and odd sectors.
As illustrated in Fig. 7, the spin-S AKLT states on a chain with
odd S all fall into the odd sector, while even S AKLT states
and internal triplet states belong to the even sector.

It can be shown that the valence bond overlap graphs
between states in different topological sectors must have a
nonzero winding number [45]. Additionally, since the winding
number may only change by ±2, a topological winding number
can be defined as the winding modulo 2. At large S, we
have observed a small contribution to the strange winding for
even S, which we interpret as a finite-size effect that should
disappear in the thermodynamic limit. More to the point, we
find that the topological winding is exactly zero for even S

AKLT states and exactly unity for odd S AKLT states. Thus,
the strange winding number modulo 2 is a topological invariant
for AKLT states in one dimension.

(a) (b)

FIG. 7. Topological sectors of short-ranged valence bond states
on even-width strips: (a) S = 1 AKLT state in the odd sector and (b)
S = 1 internal triplet state in the even sector.
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As pointed out by Kim et al., the winding number
characterization of short-ranged valence bond configurations
is intimately related to string order in one dimension [46]. The
presence of string order implies a nonzero winding number,
and vice versa. In fact, for any short-ranged valence bond
configuration in one dimension, a string order parameter can
be constructed in such a way as to be nonzero. Similarly,
nonzero winding can be achieved with the choice of an
appropriate reference state: for states in the odd sector an even
reference state will yield nonzero winding, while for states in
the even sector an odd reference state yields nonzero winding.
Nonzero winding is also what gives rise to long-range strange
correlations, since the estimator 〈�|Si · Sj |ψ〉 can only have
nonzero values when i and j belong to the same loop in the
transition graph overlap. Thus, we see that the topological
winding numbers fully characterize the topological sectors of
the AKLT states in one dimension, and also give rise to the
strange correlator and the string order parameter.

B. Honeycombs and squares

There is an exact mapping of multiplicity M AKLT states
onto classical O(3) models at temperature 1/M in the same
number of dimensions. In two dimensions, this mapping
implies (via the Mermin-Wagner theorem) that AKLT states
remain disordered for finite M . However, the correlation length
is expected to grow exponentially with M . Additionally, an
Orstein-Zernicke form is expected for the spin-spin correlation
function, i.e., C(r) ∼ e−r/ξ /rη. As we shall see, this makes
it difficult to distinguish between algebraic and exponential
asymptotic forms of the correlation function when L < ξ . As
an alternative, we consider the winding fractions defined in
Eq. (11), which extrapolate to zero as L → ∞ whenever C(r)
decays exponentially and to a nonzero value whenever C(r)
decays algebraically.

In two dimensions, the boundary modes of SPT states are
1+1 dimensional gapless critical theories. Thus, they can be
expected to be conformally invariant, and by extension the
strange correlator should also be conformally invariant. Using
this as our justification, we analyze the strange correlator
using an algebraic function of the conformal length 
; namely,
C̄(
) ∼ 
−η, where 
 = (L/π ) sin(πr/L).

1. Honeycombs

The S = 3/2 AKLT state on the honeycomb lattice is the
first extension of AKLT states to dimension higher than 1.
Early on, Affleck et al. [28] and Kennedy et al. [47] were able
to establish upper bounds on the correlation length (ξ � 3.54
and ξ � 2.5, respectively), which strongly implied a gapped
disordered state. Later, Lou et al. calculated the entanglement
spectrum, concluding that the boundary modes are related to
a spin-1/2 Heisenberg ferromagnet with gapless quadratic
dispersion [48]. More recently, Huang et al. have studied
the S = 3/2 AKLT state on the honeycomb lattice using the
symmetry protected quantum renormalization group [49]. The
S = 3/2 AKLT state is a so-called weak SPT state that cannot
be protected by on-site symmetry alone. Rather, it is protected
by translational symmetry.

In Fig. 8 we show the normal and strange correlator for
spin-S AKLT states on the honeycomb lattice. The normal
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FIG. 8. Normal (left) and strange (right) spin-correlation func-
tions for spin-S AKLT states on a honeycomb lattice with dimensions
384 × 256. The strange correlator is calculated using the mixed
overlap with an internal triplet product state, which is only defined for
integer values of S. Lines are fits to a functional form C(r) = f (r) +
f (L − r), with f (r) ∼ exp(−r/ξ )/rη. Correlations are shown along
the zigzag direction and are nearly isotropic. All distances are given
in units of the honeycomb primitive cell.

correlator decays exponentially with a very small correlation
length, even for S = 3 (the correlation length is expected
to grow as ξ ∼ eπM in 2D spin-S AKLT states [30], with
M = 2S/z the multiplicity and z = 3 the lattice coordination).
The strange correlator is calculated using the internal triplet
product state, which can only be defined for S an integer (in
general, no on-site symmetric product state can be formed for
fractional S). For S = 3, we see that the strange correlator also
displays exponential decay with a correlation length similar
to that of the normal correlator. Because the S = 3 AKLT
state can be thought of as two coupled copies of the S = 3/2
AKLT state, we expect it to be a trivial state (similar to the
even-odd effect in spin-S AKLT chains). We are not able
to see the expected exponential decay for the S = 6 strange
correlator, which we believe is due to finite-size effects (in
other words, the correlation length is larger than the maximum
system size studied, L = 1024). This is complicated by the
Ornstein-Zernike form of the correlations, exp(−r/ξ )/rη,
which for r � ξ is indistinguishable from power-law decay.

Although we cannot form an on-site symmetric product
state for half-odd-integer S, there are many possible dimer
product states that retain the full spin rotational symmetry.
However, a complication arises if we wish to use a dimer
product state as the reference state for calculating the strange
correlator. This is because dimer product states on a bipartite
lattice can be classified by dimer winding numbers that lead to
nonzero winding (and thus long-range correlations) between
states in different dimer winding sectors [50,51]. Thus, in order
to obtain an unambiguous signal from the strange correlator,
we must choose a dimer product state that is in the same
dimer winding sector as the AKLT state we wish to probe.
Following Ref. [51], we define dimer winding numbers along
the three zigzag axes of the honeycomb lattice wx , wy , and
wz as the number of valence bonds that are crossed in these
three directions. It turns out the only dimer pattern that fits
this description is the kekule pattern, but as shown in Fig. 9,
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FIG. 9. Strange correlator for spin-S AKLT states on a honey-
comb lattice with dimensions 384 × 256, as obtained using a pure
dimer product state in the kekule pattern. Solid symbols denote
distances along the zigzag direction, while empty symbols stand
for the armchair direction. Lines are fits to a functional form
C(r) = f (r) + f (L − r), with f (r) ∼ exp(−r/ξ )/rη. All distances
are given in units of the honeycomb primitive cell.

the strange correlator is short-ranged using such a reference
state. This is due to the fact that the kekule dimerization breaks
translational symmetry, which is a protecting symmetry of the
AKLT states in two dimensions (i.e., they are “weak” SPTs).

As in one dimension, winding number fractions are an
alternative way to search for (quasi-)long-range correlations
in two dimensions. In Fig. 10, we show these quantities for
even multiplicity AKLT states on the honeycomb lattice. As
expected, ρ approaches zero with increasing system size.
For small S, ρ̄ either approaches zero (S = 3) or shows
signs of decreasing at larger system sizes (S = 6). This
allows us to confirm that even multiplicity states are trivial
for S = 3 and S = 6. For S = 9, we also expect ρ̄ to
ultimately decay to zero, but at system sizes beyond our
present computational capabilities (our largest system has a
total of N × 2S = 2 × 20482 × 18 = 150 994 944 flavor-site
combinations).
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FIG. 10. Normal (left) and strange (right) winding fractions of
spin-S AKLT states on the honeycomb lattice.
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FIG. 11. Normal and strange correlators for the spin-S AKLT
state on the square lattice with S � 8. Both correlators are very
nearly isotropic (data shown along the x direction). Solid lines for the
normal correlator and the strange correlator with even M are from
fits to the form C(r) = f (r) + f (L − r) with f (r) ∼ exp(−r/ξ )/rη,
taking into account the periodic boundaries of the L = 512 simulation
cell. For the odd M strange correlator, fits are obtained using an
algebraic function of the conformal length, C(
) ∼ 
−η.

2. Squares

We now move on to the AKLT state on a square lattice,
which has been considered by several past studies. Early on,
Kennedy et al. were able to provide a rigorous upper bound to
the correlation length ξ < 160 [47]. Later, Lou et al. calculated
the entanglement spectrum, concluding that the boundary
modes are related to a spin-1/2 Heisenberg antiferromagnet
with gapless linear dispersion and central charge c = 1 [48].
You et al. calculated the strange correlator for this state
using a combination of transfer matrix and DMRG, finding
an algebraic decay with exponent η 
 0.32 [23]. The spin-2
AKLT state on the square lattice has also been proposed
as a universal resource for measurement-based quantum
computation [52]. Finally, a recent proposal for classifying
SPT phases with mirror reflection and on-site Z2 symmetry
includes the AKLT states within its classification scheme [53].

In Fig. 11 we show the normal and strange correlations
for spin-S AKLT states on the square lattice. By fitting the
correlations to an exponential form that takes into account
the periodicity of the lattice, C(r) = f (r) + f (L − r), with
f (r) ∼ exp(−r/ξ )/rη, we see that normal correlations decay
exponentially, but with a correlation length ξ that quickly
grows with the spin quantum number [we note that ξ ∼
exp(πM) is expected from theoretical considerations [30],
with M = 2S/z the multiplicity of the AKLT state with
lattice coordination z]. For the strange correlator with even
M , an exponential fit also works, but the correlation lengths
(with the exception of the S = 4 data) exceed the size of
our simulation cell (L = 512). Thus, we cannot distinguish
between exponential and algebraic decay without resorting to
larger system sizes. For odd M , we fit the strange correlator
using an algebraic function of the conformal length, C̄(
) ∼

−η. Importantly, this functional form does not work well for
the S = 4 (even M) state. This is related to the fact that the
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FIG. 12. Strange correlators for the S = 2 and S = 4 AKLT states
on a square lattice with L = 1024. Both correlators are very nearly
isotropic, and data are shown along the x direction. Solid lines for
the S = 2 and S = 4 data are fits to the conformal and periodic forms
mentioned in the main text. Inset: data for S = 2 shown on a log-log
scale demonstrates size-independent algebraic decay when plotted as
a function of the conformal length 
.

strange correlator decreases more rapidly for the S = 4 AKLT
state than for the S = 2 AKLT state, which is an indication
that the S = 4 AKLT state has a finite correlation length.

To investigate the difference between the S = 2 and S = 4
AKLT states on the square lattice in greater detail, we look at
the strange correlator for system sizes L = 1024 (with N = L2

nearly one million, close to the maximum system size we
can simulate). As shown in Fig. 12, fitting to the S = 2 data
yields a decay exponent that is identical to the L = 512 result.
However, the S = 4 data are now best fit by a correlation length
ξ ∼ 468 < L, indicating a short-ranged strange correlator and
trivial SPT character. This in turn implies an even-odd effect
for AKLT states with multiplicity M = 2S/z (for S = 2 the
multiplicity is 1 while S = 4 has multiplicity 2), in agreement
with a recent classification scheme for bosonic SPT states in
two dimensions protected by reflection symmetry [53].

In principle, the power-law exponent of the strange corre-
lator should match that of the boundary theory. For the case
of the square lattice AKLT state with odd multiplicity, the
edge theory should be given by a conformal field theory with
central charge c = 1 and Luttinger parameter K = 1. In our
present work, we have found η ≈ 0.33, which does not match
the expected 1/r decay predicted from the Luttinger theory of
a half-odd-integral Heisenberg spin chain. Note, however, that
the internal triplet state reduces the O(3) spin symmetry down
to O(2) × Z2. Thus, we should not expect a direct relation to
the Luttinger theory of the isotropic Heisenberg chain unless
we instead choose an O(3) symmetric product state.

As before, we can also define winding numbers for the
AKLT on the square lattice. In contrast to the AKLT chain,
the topological component of the winding numbers for mixed
overlaps is now strictly zero—that is, the square lattice AKLT
state and the internal triplet state are in the same topological
sector as defined by the topological winding. However, the
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FIG. 13. Normal (left) and strange (right) winding fractions of
spin-S AKLT states on the square lattice.

nontopological component of the winding numbers is nonzero
for the mixed overlap state. In particular, we find a finite strange
winding fraction ρ̄ 
 0.95, whereas the normal winding
fraction ρ = 0 in keeping with the lack of Néel order and
hence zero spin stiffness in the square lattice AKLT state.
These results are summarized in Fig. 13, where we also show
data for larger values of S. The even-odd effect is clearly
seen in the downward turn of the strange winding fraction
for S = 4, whereas for S = 8 we are not able to reach large
enough system sizes to see this trend.

C. Cubes, diamonds, and hyperhoneycombs

To investigate AKLT states on 3D lattices, we use the
winding fractions as defined in Eq. (11). Results for the cubic
and diamond lattices are shown in Fig. 14. On the cubic lattice,
ρ indicates that magnetic order is present beginning with the
multiplicity one AKLT state at S = 3. In contrast, ρ is zero
for the multiplicity one S = 2 AKLT state on the diamond
lattice, with magnetic order setting in for S � 4 (or, M � 2).
These results are in agreement with Monte Carlo investigations
of the equivalent classical model at inverse temperature M ,
which found magnetic order on the cubic and diamond lattices
for M � 0.60 and M � 1.18, respectively [32]. Our present
study goes one step further to show that, in addition to
being magnetically disordered, the M = 1 AKLT state on the
diamond lattice is also a nontrivial SPT state.

We also consider the hyperhoneycomb lattice, a tricoordi-
nated lattice with elementary loops of ten lattice sites and four
sites per primitive cell. We are not aware of any study of AKLT
states on this lattice, but due to its lower connectivity (as com-
pared with the cubic and diamond lattices) we can expect that at
least the M = 1 state is disordered. As shown in Fig. 15, we ac-
tually find zero winding in the normal overlap for both the M =
1 and M = 2 states, which indicates a nonmagnetic (quantum
paramagnetic) ground state. For M � 3, the winding fraction is
stable with respect to system size as the ground state develops
long-range magnetic order. For even multiplicity, we can also
measure winding in the mixed overlap between the AKLT state
and the internal triplet product state. For M = 2 we find zero
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FIG. 14. Normal squared magnetization M2 (top), normal wind-
ing fraction ρ (middle), and strange winding fraction ρ̄ (bottom) of
spin-S AKLT states on the cubic (left) and diamond (right) lattices.
In all panels, values are extrapolated to the L → ∞ limit by fits to
the form a + b/Lc (solid lines).
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FIG. 15. Normal (left) and strange (right) values for the squared
magnetization (top) and winding fractions (bottom) of spin-S AKLT
states on the hyperhoneycomb lattice. In all panels, values are
extrapolated to the L → ∞ limit by fits to the form a + b/Lc (solid
lines).

winding, indicating a trivial quantum paramagnet and confirm-
ing the even-odd effect in 3D AKLT states, while for M � 4
we find a nonzero winding fraction, which in this case reflects
the broken symmetry of the magnetically ordered ground
state.

IV. ENERGY GAPS

In one dimension, AKLT states possess a finite gap to exci-
tations [28]. In two dimensions, AKLT states are also believed
to be gapped; this has not been proved rigorously, although for
the honeycomb and square lattice AKLT states, all correlation
functions have been shown to decay exponentially [47].

Much progress has been made on the numerical front. Early
on, Arovas et al. used the single-mode approximation to obtain
an upper bound of the excitation gap � � 10

27 
 0.370 for the
S = 1 AKLT chain [30]. More recently, Garcia-Saez et al.
used tensor network methods to obtain an estimate � ≈ 0.350
for the S = 1 AKLT chain, as well as values of � ≈ 0.10 and
� ≈ 0.015 (in our units) for the S = 3/2 AKLT honeycomb
and S = 2 AKLT square lattices, respectively [54].

Ganesh et al. have also estimated the excitation gap for
the S = 3/2 AKLT honeycomb using exact diagonalization,
finding a value ≈0.1 consistent with the literature [55], while
Poilblanc et al. have found a critical field 
0.113 for the
S = 3/2 AKLT honeycomb, in agreement with the expecta-
tion that the field must close the gap [56]. More recently,
Vanderstraeten et al. have used a variational ansatz based on
the PEPS formalism to find an upper bound �SMA = 0.0199
and variational estimate �var = 0.0147 for the excitation gap
of the S = 2 AKLT state on the square lattice, as well as a rather
precise value for the correlation length ξ = 2.064 91 [57].

Excitation gaps can also be estimated using the valence
bond formalism discussed in this paper. In this formalism, the
most natural excitation is to convert a singlet bond into a triplet.
In particular, a superposition of AKLT states with the triplet
in all possible locations, |ψt 〉 = ∑

〈i,j〉(S
z
i − Sz

j )|ψ〉, is a very
good approximation for obtaining the smallest energy gap [at
π for a chain, (π,π ) for a square, etc.].

In Table II we show energy gap estimates obtained from
�est = 〈R|Ĥ |ψt 〉/〈R|ψt 〉, where in this case the reference
state |R〉 is chosen to be the Néel state that has equal overlap
with all valence bond configurations. Note that since �est is
obtained from a projection instead of an expectation value, it
is not a variational estimate.

We also attempted to access the excitation gap asymptot-
ically using the projected state Ĥm|ψt 〉. However, due to the
presence of a quantum Monte Carlo sign problem we were
unable to obtain sufficiently converged results to present here.
Since the sign problem for AKLT Hamiltonians is not expected
to be severe (there are no explicitly frustrated interactions), the
failure of our projected triplet states to converge is probably
due to limitations in our sampling scheme. To overcome these
limitations, it would be interesting to develop a generalization
of the loop algorithm in Ref. [39] to the case of spin-S
representations of valence bond states. However, such a study
is outside the scope of the present paper and we leave it for
future consideration.
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TABLE II. Energy gaps for various lattices. �est are the energy gap estimates obtained in this work, while � are energy gap measurements
obtained from the indicated references. The Hamiltonian parameters in Eq. (1) are chosen as AJ = 1.

Lattice Dimension Multiplicity Spin �est �

Chain d = 1 M = 1 S = 1 0.333 333 0.350a

Chain d = 1 M = 2 S = 2 0.1
Honeycomb d = 2 M = 1 S = 3/2 0.1 0.113b

Square d = 2 M = 1 S = 2 0.028 571 4 0.0147 c

Hyperhoneycomb d = 3 M = 1 S = 3/2 0.1
Diamond d = 3 M = 1 S = 2 0.028 571 4

aFrom Ref. [54].
bFrom Ref. [56].
cFrom Ref. [57].

V. CONCLUSIONS

We have developed a numerical framework for computing
the strange correlator in the valence bond basis, which
allows us to characterize the symmetry protected topological
properties of AKLT states in one, two, and three dimensions.
In one dimension, our method gives a clear picture of the origin
of long-range correlations in the strange correlator (viz., the
persistence of a single system-spanning valence bond loop).
It also allows us to make connections between the strange
correlator and the topological winding number sectors [45].
In two and three dimensions, the topological winding number
characterization disappears, but we were able to show that a
winding number fraction (in analogy to the superfluid fraction
or spin stiffness) survives and can be used as an alternative
way to characterize SPT states.

In one dimension, comparison to exact results confirms
the accuracy of our numerical method. Notably, our results
reproduce the well-known even-odd effect in 1D AKLT chains:
states with even integer spin (S even) are trivial states, whereas
odd integer spin states (S odd) are nontrivial SPT states. In two
dimensions, we demonstrate that the same even-odd effect
exists on the honeycomb and square lattices, where even and
odd now refer to the multiplicity M of the AKLT state (M
even is trivial, M odd is nontrivial). In three dimensions,
we observe the signatures of magnetic order for large spin,
confirming past Monte Carlo studies of the equivalent classical
O(3) model [32]. We were also able to provide direct evidence
of nontrivial SPT character for the S = 2 diamond AKLT state
and to show that the S = 3/2 and S = 3 hyperhoneycomb
AKLT states do not magnetically order.

We have also applied the valence bond formalism to
calculate energy gap estimates. By sequentially operating the
full Hamiltonian on a trial state in the one-triplet sector, we
were able to estimate the triplet gap. Our values compare well
with results from other methods. In principle a sign-sampled
quantum Monte Carlo method should be able to asymptotically
approach the exact energy gap; however, we were unable to
obtain sufficiently converged results using a naive sampling
method for the Hamiltonian projection Ĥm|ψt 〉.

The methods employed in this paper can also be applied to
a wide variety of SPT states away from the exact AKLT points.
This includes weakly coupled Haldane chains [58], which have
drawn renewed interest in light of the new SPT classification
scheme, as well as “disordered” versions of the AKLT states
where defects such as domain walls are allowed to proliferate,

which may be a way to study the topological phase transition
from weak to strong SPT phases [59].
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APPENDIX A: RULES FOR LOOP UPDATES

During the Monte Carlo sampling of valence bond overlaps,
it is necessary to evaluate the relative weights of various
loop structures. Fortunately, these are easily calculated in
the valence bond basis and are determined solely by N
,
the number of loops formed by a particular valence bond
overlap. Thus, calculation of the relative weight of valence
bond overlaps amounts to counting the relative difference in N


before and after a proposed update, i.e., �N
 = Nnew

 − Nold


 .
In this Appendix, we construct a set of rules for counting

�N
 for a generic bipartite loop under two types of updates:
on-site symmetrization of the flavor components and operation
of the singlet projector operator.

We introduce a singlet projection operator P̂μ,ν = 1
4 − sμ ·

sν and a parity operator as Q̂μ,ν = 1
4 + sμ · sν , where μ and ν

are spin- 1
2 flavors residing at sites iμ and jν , respectively. These

will allow us to keep track of rearrangements of our bipartite
valence bond states through the following useful formulas:

P̂μ,ν |[μ,ν]〉 = +|[μ,ν]〉,
P̂νσ |[μ,ν][σ,τ ]〉 = + 1

2 |[μ,τ ][σ,ν]〉,
2Q̂μ,ν |[μ,ν]〉 = −|[μ,ν]〉,

Q̂ντ |[μ,ν][σ,τ ]〉 = + 1
2 |[μ,τ ][σ,ν]〉,

(A1)

where each singlet |[μ,ν]〉 ≡ (|↑〉μ ⊗ |↓〉ν − |↓〉μ ⊗
|↑〉ν)/

√
2 is directed from sublattice A to sublattice B (that is,

iμ ∈ A and jν ∈ B).
When calculating the strange correlator, we use an on-site

product state consisting of the symmetric superposition of
triplets, with |{μ,ν}〉 ≡ (|↑〉μ ⊗ |↑〉ν + |↓〉μ ⊗ |↓〉ν)/

√
2. On

bipartite lattices, the resulting loops in the transition graph
must contain an even number of triplet links, which allows us
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to perform the usual operations without having to worry about
potential singlet-triplet annihilation (in general, two valence
bond states are orthogonal if any of the loops in their overlap
graph contain an odd number of triplets). It is useful to list the
modified formulas for P̂ and Q̂ in this sector:

P̂μ,ν |{μ,ν}〉 = 0,

P̂ν,σ |{μ,ν}{σ,τ }〉 = − 1
2 |[μ,τ ][σ,ν]〉,

2Q̂μ,ν |{μ,ν}〉 = +|{μ,ν}〉,
Q̂ν,τ |{μ,ν}{σ,τ }〉 = + 1

2 |{μ,τ }{σ,ν}〉.

(A2)

Let us note that the minus sign in the above equation does not
lead to an overall sign problem in the Monte Carlo simulation
scheme employed in this paper. This is due to the fact that the
overlap between a singlet valence bond configuration |v〉 and
a triplet configuration |t〉 is always in the same sign sector,
which is given by (−1)SN/2. On a bipartite lattice, N is always
even, while the triplet state |t〉 is only defined for integer S.

1. Singlet projection operator updates

In a singlet projector update, we wish to act upon a pair
of flavor components with a singlet projector. In this case the
pair of flavors μ, ν belong to different sites. If μ and ν belong
to the same sublattice, we instead use the parity operator Q̂.
When this occurs, one of three possible rearrangements will
occur (see Fig. 16).

(a) 

(b) 

(c) 

FIG. 16. Possible rearrangements for singlet updates. (a) μ and
ν belong to the same loop with an even number of valence bonds
connecting them. After the update, they remain in the same loop with
no change in the loop ordering structure. (b) μ and ν belong to the
same loop with an odd number of valence bonds connecting them.
After the update, the loop is split so that μ and ν no longer belong to
the same loop. (c) μ and ν belong to separate loops that merge into a
single loop, after which μ and ν have an odd loop spacing.

First, if μ and ν belong to separate loops, these loops
will merge, and �N
 = −1. Next, if μ and ν belong to the
same loop, this loop will either remain intact or split in two,
depending on the “loop distance” (call this �
) between μ and
ν. If �
 is even, the loop remains intact and �N
 = 0. If �


is odd, the loop splits in two as long as μ and ν do not belong
to the same singlet, and �N
 = 1. In the case where μ and
ν already form a singlet with one another, the loop obviously
remains intact, even though �
 = 1 by definition.

Combining the prefactors of the singlet projection operator
(1/2 or 1 depending on whether or not μ and ν belong to
different singlets) with the above determined loop weights, we
obtain the total weights for singlet projection operator updates
as follows:

(i) If μ and ν belong to different loops, then combine loops
with probability 1/4.

(ii) If μ and ν belong to the same loop with even loop
spacing, then keep the reordered loop with probability 1/2.

(iii) If μ and ν belong to the same loop with odd loop
spacing and are not connected as a singlet, then split the loops
with probability 1.

(iv) If μ and ν belong to the same loop and are connected
as a singlet, then keep the current loop with probability 1.

2. Parity operator updates

When the flavors μ and ν belong to the same sublattice, we
instead use the parity operator Q̂. In this case, one of three
possible rearrangements will occur (see Fig. 17).

As before, if μ and ν belong to separate loops, these loops
will merge, and �N
 = −1. Next, if μ and ν belong to the
same loop, this loop will either remain intact or split in two,
depending on the “loop distance” (call this �
) between μ and
ν. If �
 is even, the loop splits in two, and �N
 = 1. If �
 is
odd, the loop remains intact and �N
 = 0. Note that the loop

(a) 

(b) 

FIG. 17. Possible rearrangements for parity updates. (a) μ and
ν belong to the same loop with an odd number of valence bonds
connecting them. After the update, they remain in the same loop
while the two untouched segments (red dashed lines) retain their
internal structure, but pick up an odd factor in their relative ordering.
(b) μ and ν belong to the same loop with an even number of valence
bonds connecting them. After the update, the loop is split so that μ

and ν no longer belong to the same loop. In the reverse update, μ and
ν belong to separate loops that merge into a single loop, after which
μ and ν have an even loop spacing.

245141-12



DETECTION OF SYMMETRY-PROTECTED TOPOLOGICAL . . . PHYSICAL REVIEW B 93, 245141 (2016)

update rules are the opposite of the singlet projection operator
for the case where μ and ν belong to the same loop.

Combining the prefactors of the singlet projection operator
(1/2 or 1 depending on whether or not μ and ν belong to
different singlets) with the above determined loop weights, we
obtain the total weights for singlet projection operator updates
as follows:

(i) If μ and ν belong to different loops, then combine the
loops with probability 1/4.

(ii) If μ and ν belong to the same loop with even loop
spacing, then split the loops with probability 1.

(iii) If μ and ν belong to the same loop with odd loop
spacing, then keep the reordered loop with probability 1/2.

3. Symmetrization updates

In a symmetrization update, we wish to symmetrize over
all possible relabelings of the on-site flavor components. This
entails randomly picking a pair of flavors on a given site (call
them μ and ν), then exchanging their labels. This update is
related to the parity operator update, but in this case the factor
of 1

2 that comes from acting on a state with Q̂ will drop out in
the detailed balance equation; only the weight associated with
loop rearrangements survives. (Equivalently, we can consider
symmetrization updates as acting upon the current state with
an operator 2Q̂.) As discussed above, one of three possible
rearrangements will occur. This time, their total probabilities
are as follows:

(i) If μ and ν belong to different loops, then combine the
loops with probability 1/2.

(ii) If μ and ν belong to the same loop with even loop
spacing, then split the loops with probability 1 (relative weight
is 2).

(iii) If μ and ν belong to the same loop with odd loop
spacing, then keep the reordered loop with probability 1.

Thus, to construct the symmetrization updates appears to
be quite simple. Just choose some μ and ν, then use 2Q̂μν

to reorder the valence bond pattern with probability p given
by the above list. Since p depends on whether or not μ and
ν belong to the same loop, at first glance it appears that we
have to keep a record of all loops. Actually, this is not the case,
and we can in fact form a “fast” update that does not need
to keep track of loop memberships during the course of the
update. The trick is to take advantage of the bipartite nature of
valence bonds and construct a pseudospin degree of freedom
that is attached to each sublattice (say, “up” on A and “down”
on B), but within a given loop these pseudospins are flipped
with probability 1/2. Then we accept an update if and only if
the pseudospin of μ matches the pseudospin of ν. If μ and ν

belong to the same loop, then since they belong to the same
sublattice their pseudospins must match and we always accept
this update (in agreement with the probability list given above).
However, if μ and ν belong to different loops, then their relative
pseudospins are randomized and will only match 1/2 the time,
and we end up accepting this type of move with probability
1/2 (again in agreement with the probability list given above).

4. Updates in combined bond-spin space

The fast updates described above can alternatively be
formulated in the combined space of the valence bond basis

and Sz component spin basis. As discussed by Sandvik
and Evertz [39], this basis can be formed by considering
the possible Sz configurations on top of the valence bond
configurations. Since all overlap graphs in the valence bond
basis considered in this work form systems of closed loops,
the only allowed Sz configurations consist of alternating up
and down spins within a loop. In general, the pattern of up and
down spins between separate loops do not need to agree, and
it is easy to see that this combined picture provides a physical
motivation for the pseudospin degree of freedom introduced
in the fast updates described above. Sandvik and Evertz only
considered pure valence bond overlap graphs (i.e., they did
not consider the type of internal triplet states we consider in
this work for the calculation of the strange correlator), so here
we show that overlaps between the internal triplet state and an
arbitrary valence bond state produce the pseudospin pattern
described above.

To derive the appropriate pseudospin pattern used in the
fast updates, it is convenient to write the internal triplet state
as a product state in the Sy basis:

|�〉 =
∏

i

∣∣Sy

i = 0
〉
. (A3)

For spin S = 1, the on-site state |Sy

i = 0〉 can be written in
terms of the spin-1/2 degrees of freedom projected along the
z axis as √

2
∣∣Sy

i = 0
〉 = |↑↑〉 + |↓↓〉 (A4)

so that the AABB pattern within each closed loop will contain
a pseudospin pattern of either ↑↑↓↓ or ↓↓↑↑. For higher spin,
we simply form the symmetric combination of S pairs in the
S

y

i = 0 state listed above. Thus, our internal triplet state can
only be formed for integral S. In general, the loops formed
in the overlap graph state between these internal triplet states
and an arbitrary valence bond configuration will always obey
an AABB pattern, and the form of the internal triplet state
described above allows for two possible spin arrangements in
the Sz basis: ↑↑↓↓ and ↓↓↑↑. Hence, the pseudospin update
can also be applied to calculations of the strange correlator and
represents a generalization of the fast updates in the combined
bond-spin space described by Sandvik and Evertz [39].

APPENDIX B: RULES FOR MEASURING
SPIN-CORRELATION FUNCTIONS

The above rules for loop updates may also be used to
construct rules for measuring spin correlation functions. They
can be summarized by the following formula for spin flavors
μ and ν:

sμ · sν = δμ↔ν

(
1
2εiμ,jν

+ 1
4λμ↔ν

)
, (B1)

where δμ↔ν is a δ function that triggers when μ and ν are in
the same loop, while iμ and jν are the sites hosting the spin
flavors μ and ν, respectively. As in the main text, εiμ,jν

= ±1
for iμ and jν on the same (+1) or opposite (−1) sublattices,
and λμ↔ν = ±1 for μ and ν with even (+1) or odd (−1) loop
distance.

For valence bond overlaps in the singlet sector, the ABAB

pattern within each loop guarantees that when iμ and jν belong
to the same (opposite) sublattice, their loop spacing is even
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(odd). Thus, the above formula reduces to

sμ · sν = 3
4δμ↔νεiμ,jν

. (B2)

This is the standard formula for spin correlations in the valence
bond basis. Beach and Sandvik have extended this to the case
of four-spin correlations [37].

(sμ · sν)(sσ · sτ )

= εiμ,jν
εkσ ,lτ

[
3

16

(
δ′
μ↔ν − δμ↔ν

) + 9
16δ′

μ↔νδσ↔τ

]
. (B3)

Here, δ′
μ↔ν triggers only if μ and ν belong to the same

loop after acting on the overlap graph with sσ · sτ . Since the
operation of sσ · sτ may merge, rearrange, or split existing
loops, this δ function is distinct from the unprimed one. For
mixed overlap states, a more general relation can be derived:

(sμ · sν)(sσ · sτ )

= 1
16εkσ ,lτ

[(
2εiμ,jν

+ λ′
μ↔ν

)
δ′
μ↔ν − (

2εiμ,jν
+ λμ↔ν

)
δμ↔ν

]
+ 1

16

(
2εiμ,jν

+ λ′
μ↔ν

)(
2εkσ ,lτ + λσ↔τ

)
δ′
μ↔νδσ↔τ . (B4)

Again, the prime indicates the values in the updated config-
uration obtained by acting sσ · sτ on the overlap graph. This
simplifies to the normal relation whenever λμ↔ν = εiμ,jν

.

In the next two subsections, we derive each component of
the above expressions.

1. Using singlet projection operator updates

When the flavors μ and ν belong to opposite sublattices, we
can decompose the spin correlations as sμ · sν = 1/4 − P̂μ,ν .
Since we already know the weights of P̂μ,ν , we can easily
determine the weights of sμ · sν :

(i) If μ and ν belong to different loops, then sμ · sν = 1/4 −
(1/4) = 0.

(ii) If μ and ν belong to the same loop with even loop
spacing, then sμ · sν = 1/4 − (1/2) = −1/4.

(iii) If μ and ν belong to the same loop with odd loop
spacing, then sμ · sν = 1/4 − (1) = −3/4.

2. Using parity operator updates

When the flavors μ and ν belong to the same sublattice, we
instead decompose the spin correlations as sμ · sν = Q̂μ,ν −
1/4. Since we already know the weights of Q̂μ,ν , we can easily
determine the weights of sμ · sν :

(i) If μ and ν belong to different loops, then sμ · sν = 1/4 −
1/4 = 0.

(ii) If μ and ν belong to the same loop with even loop
spacing, then sμ · sν = 1 − 1/4 = 3/4.

(iii) If μ and ν belong to the same loop with odd loop
spacing, then sμ · sν = 1/2 − 1/4 = 1/4.
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