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We develop an approach based on edge theories to calculate the entanglement entropy and related quantities in
(2+1)-dimensional topologically ordered phases. Our approach is complementary to, e.g., the existing methods
using replica trick and Witten’s method of surgery, and applies to a generic spatial manifold of genus g,
which can be bipartitioned in an arbitrary way. The effects of fusion and braiding of Wilson lines can be
also straightforwardly studied within our framework. By considering a generic superposition of states with
different Wilson line configurations, through an interference effect, we can detect, by the entanglement entropy,
the topological data of Chern-Simons theories, e.g., the R symbols, monodromy, and topological spins of
quasiparticles. Furthermore, by using our method, we calculate other entanglement/correlation measures such as
the mutual information and the entanglement negativity. In particular, it is found that the entanglement negativity
of two adjacent noncontractible regions on a torus provides a simple way to distinguish Abelian and non-Abelian
topological orders.
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I. INTRODUCTION

Quantum entanglement plays a central role in character-
izing and distinguishing various phases realized in quantum
many-body systems [1–4]. For example, quantum entangle-
ment as measured by the bipartite entanglement entropy
may be used to distinguish different topological phases, and
to characterize properties of critical points [1–6]. Quantum
entanglement has also been extensively studied in the context
of quantum gravity, in particular in the context of the AdS/CFT
correspondence [7,8].

In this work we will mainly focus on the quantum entan-
glement between spatial regions in topological quantum field
theory (TQFT) in (2+1) dimensions. TQFTs were extensively
studied after Witten’s seminal work on the Chern-Simons
gauge theory and its relation to the Jones polynomial [9,10].
In particular, in condensed matter physics, TQFTs are widely
used to describe emergent topological phases of matter in
many-body systems, such as the fractional quantum Hall
states [11–13], gapped quantum spin liquids [14], a px + ipy

superconductor [15,16], and quantum dimer models [17,18].
Quantum entanglement has been verified to be very useful in
characterizing and extracting the topological data of TQFTs.
For example, it was found that the quantum entanglement
can be used to extract the modular S and T matrices, which
encode the properties of quasiparticles in topological phases
[19].

There are different measures of quantum entanglement
or correlations, which have their own merits depending
on the case under study. Let us start by listing entangle-
ment/correlation measures of our interest in this work.

A. Different entanglement/correlation measures

First, when the total system is bipartitioned into two
subsystems (regions) A and B, the von Neumann entropy of

the region A is defined by

SvN
A = −TrρA ln ρA, (1.1)

where ρA = TrBρ is the reduced density matrix of the
subsystem A. Note that when ρ is a pure state, ρ = |�〉〈�|
where |�〉 is, e.g., the ground state of the total system
SvN

A = SvN
B .

An alternative measure of bipartite entanglement is the
Renyi entropy

S
(n)
A = 1

1 − n
ln Trρn

A, (1.2)

which also satisfies S
(n)
A = S

(n)
B when ρ is a pure state. The

Renyi entropy can provide more information than the von
Neumann entropy, in that, by knowing the Renyi entropy for
arbitrary n, we reconstruct the entanglement spectrum, i.e.,
all the eigenvalues of ρA. The von Neumann entropy and the
Renyi entropy are related by SvN

A = limn→1 S
(n)
A , or

SvN
A = − lim

n→1
∂nTrρn

A. (1.3)

For a mixed state, it is found that the quantum and
classical correlations cannot be explicitly separated in these
entanglement measures. As an example, let us consider two
subsystems A1 and A2 which are embedded in a larger system.
A1 and A2 are not necessarily complementary to each other,
and therefore ρA1∪A2 may correspond to a mixed state. In this
case, a useful quantity that can be constructed based on the
entanglement entropy is the (Renyi) mutual information

I
(n)
A1A2

= S
(n)
A1

+ S
(n)
A2

− S
(n)
A1∪A2

, (1.4)

which by definition is symmetric in A1 and A2. By taking
the n → 1 limit, we define the (von Neumann) mutual
information:

IA1A2 = lim
n→1

I
(n)
A1A2

. (1.5)
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However, it is found that the mutual information does not
have all the proper features to be a quantum entanglement
measure. (See, e.g., Ref. [20], where it is shown that the mutual
information is finite for most of the separable mixed states.) It
will mix the classical and quantum information together, and
can only be considered as a correlation measure.

Yet another quantity, entanglement negativity has been
recently calculated in different many-body systems, such as
conformal field theories and exactly solvable lattice models
[21–24]. The entanglement negativity turned out to be a
computable and useful entanglement measure [25,26]. To be
concrete, given a reduced density matrix ρA1A2 which describes
a mixed state in the Hilbert space HA1 ⊗ HA2 , we take a partial
transposition with respect to the degrees of freedom in region
A2 as follows:〈

e
(1)
i e

(2)
j

∣∣ρT2
A1∪A2

∣∣e(1)
k e

(2)
l

〉 = 〈
e

(1)
i e

(2)
l

∣∣ρA1∪A2

∣∣e(1)
k e

(2)
j

〉
, (1.6)

where T2 means the partial transposition on A2, and |e(1)
i 〉 and

|e(2)
j 〉 are arbitrary bases in HA1 and HA2 , respectively. Then

the entanglement negativity are defined as

EA1A2 = ln Tr
∣∣ρT2

A1∪A2

∣∣. (1.7)

The entanglement negativity in quantum field theories can be
computed by using the replica method as [21,22]

EA1A2 = lim
ne→1

ln Tr
(
ρ

T2
A1∪A2

)ne
. (1.8)

The trace of the partial transposition of the density matrix on
the replica space Tr(ρT2

A1∪A2
)
n

has different forms depending
on whether n is even or odd. Here we consider the analytic
continuation of the even sequence at ne → 1. The formula
above has been proved to be of great use in the study of the
entanglement negativity in quantum field theories for both
equilibrium cases [21,22] and nonequilibrium cases [27–30].

B. Different entanglement/correlation measures
for a topological quantum field theory

These different entanglement/correlation measures have
been calculated in TQFTs in (2+1) dimensions. The topo-
logical entanglement entropy (TEE) was first introduced by
Kitaev-Preskill and Levin-Wen [1,2]. First, for topologically
ordered systems in two spatial dimensions, it was shown
that the von Neumann entanglement entropy for a simply
connected region A behaves, in the limit of zero correlation,
as

SvN
A = αL − γ, (1.9)

where α is a nonuniversal coefficient, L is the length of the
smooth boundary of A, and −γ is a universal negative constant
which is named the “topological entanglement entropy.” For a
general TQFT, γ is given by

γ = lnD = ln

√∑
i

d2
i , (1.10)

where di is the quantum dimension of quasiparticle i, and D
is the total quantum dimension (see Appendix A).

Dong et al. extended the Kitaev-Preskill results to more
general manifolds like torus and a sphere with quasiparticles

by using the replica trick and surgery method [31]. They
found that the entanglement entropy depends on the universal
data of a TQFT, e.g., the quantum dimensions and the
fusion rules. In certain cases such as the torus geometry, the
entanglement entropy also depends on the choice of ground
state. Later, Zhang et al. studied the entanglement entropy
of topological phases on a torus [19]. By tuning the ground
state and introducing different entanglement cuts, they found
that the modular S and T matrices can be extracted from the
entanglement entropy.

Besides the entanglement entropy, other entangle-
ment/correlation measures such as the entanglement negativity
and mutual information which are powerful in the case of
mixed states, turn out to be very useful in characterizing the
properties of a TQFT. Recently, the entanglement negativity
was used to study the topological ordered systems such as
the toric code model [23,24]. It was found that there is
a universal topological entanglement between two adjacent
noncontractible regions on a torus. On the other hand, if
the two regions are disjoint, independent of whether they
are contractible or not, there is no universal topological
entanglement between them. It should be noted that the above
results are obtained based on an exactly solvable lattice model.
It is hence desirable to have more understanding of these
results by studying general TQFTs. The difficulty may be
that the operation of “partial transposition,” which is used in
the definition of the entanglement negativity [see Eq. (1.6)],
is difficult to realize in practice when one considers a general
three-dimensional manifold where a TQFT lives.

Most recently, Ref. [32] used mutual information to study
the topological ordered phases in (2+1) dimensions, as well as
higher dimensions where topological orders are identified as
condensates of membranes. Therein, the mutual information
can be utilized to define the topological uncertainty principle,
which reflects the noncommuting property of nonlocal order
parameters in topological ordered phases [32]. Compared to
the entanglement entropy of topological ordered phases, it
is noted that the mutual information has the merit of being
ultraviolet finite for two disjoint regions.

C. Our motivations

In this work our motivations to revisit the topological entan-
glement entropy and other entanglement/correlation measures
of a TQFT are mainly as follows.

(1) In the calculation of the topological entanglement
entropy of a Chern-Simons theory on a general manifold,
one needs to evaluate the Chern-Simons path integral on a
3-manifold. In particular, when using the replica trick, one
needs to consider a n-sheeted Riemann surface space-time and
glue them together, which may be very complicated. In this
work, we hope to develop an alternative edge theory approach,
which may simplify the calculation. It should be noted that the
edge theory approach to the topological entanglement entropy
of a TQFT on a simple manifold such as a sphere, or a cylinder
with definite topological flux, has been studied in several works
[1,33–36]. However, as far as we know, there are still many
open issues to be understood. For example, how do we use the
edge theory approach to study the topological entanglement
entropy of a TQFT on a general manifold of genus g? How is

245140-2



EDGE THEORY APPROACH TO TOPOLOGICAL . . . PHYSICAL REVIEW B 93, 245140 (2016)

the effect of fusion and braiding of Wilson lines/quasiparticles
reflected in the edge theory approach? How do we extract
topological data of the underlying theory from the edge theory
approach?

(2) Till now, some other entanglement measures such as
the entanglement negativity of a TQFT has not yet been
studied with the field theory approach. Although some results
have been obtained based on the lattice models [23,24], it
is still desirable to understand the general structure of the
entanglement negativity for a general TQFT. Can we use
the edge theory approach to fulfill this aim? Moreover, in
Refs. [23,24], the lattice model under study is in an Abelian
topological ordered phase. Then it is natural to ask what is the
result for a non-Abelian topological ordered phase? Is there
any qualitative difference between Abelian and non-Abelian
theories? We hope to answer these questions in this work.

D. Summary of main results

Using the edge theory approach, we found a systematic
way to study the topological entanglement entropy, mutual
information, and the entanglement negativity for a (2+1)-
dimensional Chern-Simons theory on a general manifold. The
effect of braiding and fusion of Wilson lines can be straight-
forwardly incorporated in the calculations. In particular, we
have obtained the following results.

(1) On topological entanglement entropy. By using the edge
theory approach, we calculated the entanglement entropy for
given spatial regions in Chern-Simons theories defined on
a general manifold. Our results agree with the path integral
calculations for all the cases considered in Ref. [31]. A
technical advantage of our approach, as compared with the
path integral (surgery) calculations, is that the edge theory
approach greatly simplify the calculation in that we do not
have to consider complicated 3-manifolds which may appear
in the surgery method. The effect of braiding Wilson lines can
be also considered, instead of using skein relation [9,31], by
simply introducing the braiding matrix or R symbols, which
makes the calculation more transparent. We also found that,
in the presence of multiple Wilson lines, by considering a
generic superposition of states, the R symbols, monodromy,
and topological spins of quasiparticles/anyons can be detected
in the entanglement entropy, through an interference effect.
Finally, we also applied our edge theory approach to more
general manifolds of g genus, which may be difficult to handle
in the replica trick due to the complicated 3-manifolds which
may arise as a result of surgery.

(2) On topological mutual information and entanglement
negativity. We gave explicit calculations of the topological
mutual information and the entanglement negativity in Chern-
Simons theories. In particular, to our knowledge, the results on
the entanglement negativity in a Chern-Simons field theory are
given for the first time. Moreover, compared with the previous
works on lattice models, we obtained some new results for
two adjacent noncontractible regions on a torus. In Ref. [23]
it was found that the entanglement negativity in this case is
independent of the choice of ground state. Based on our field
theory result, it was found that the entanglement negativity
is dependent (independent) on the choice of ground state if

the system is in a non-Abelian (Abelian) topological ordered
phase.

Along with these results, we will also point out that, when
using edge theories to calculate entanglement/correlation
measures, the boundary states must be regularized/normalized
properly. In the previous works [33,34], the proposed state,
which is a superposition of different Ishibshi states, is
regularized as a whole (see next section for details). We found
that this regularization scheme cannot recover the correct
topological entanglement entropy for a Chern-Simons theory
on a general manifold. In this work, we regularized each
Ishibashi state separately. Then a general quantum state can be
expressed as a superposition of different regularized Ishibashi
states. With this new regularized state, we can obtain the
correct topological entanglement entropy as well as other
entanglement/correlation measures for a Chern-Simons theory.

The rest of the paper is organized as follows. In Sec. II we
start by introducing a new regularized state, based on which
we can calculate the spatial topological entanglement entropy
in a Chern-Simons field theory. Subsequently in Sec. III, we
apply our method to the calculation of the Renyi and von
Neumann entanglement entropy for a Chern-Simons theory
defined on various kinds of manifolds. The effects of braiding
and monodromy of quasiparticles are also studied in this
section. In Sec. IV we study the spatial mutual information
in Chern-Simons theories. We consider different tripartitions
of a torus, and calculate the mutual information accordingly.
In Sec. V we show how to calculate the left-right entanglement
negativity for a general regularized state. Then we apply this
method to the calculation of the entanglement negativity on a
torus with different tripartitions. Finally, we conclude our work
in Sec. VI. We also include several Appendixes containing
a brief review of modular tensor categories (Appendix A),
the topological data of SU(2)k Chern-Simons theories, and an
alternative method of calculating the entanglement negativity
for several cases (Appendix B).

II. LEFT-RIGHT ENTANGLEMENT ENTROPY

A. Regularized state at the interface

In this section we introduce basics of boundary states in
(1+1)-dimensional conformal field theories. These boundary
states will be used later to describe the reduced density
matrices of (2+1)-dimensional topologically order phases,
but in this section we study boundary states and quantum
entanglement in isolation. In particular, we will discuss how
we need to regularize these boundary states properly.

In the study of quantum entanglement, the regularized
boundary state was first introduced in the quantum quench
problem [37,38]. Later, this concept was used to study the
spatial entanglement entropy of a topological ordered system
[33]. Most recently, the similar idea was used to study the
entanglement entropy between the left- and right-moving
modes of the regularized boundary state [34]. To be concrete, in
Refs. [33,34] the regularized boundary state has the expression

|B〉 = e−εH

√
NB

|B〉, (2.1)
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where e−εH is a regularization factor, H is the Hamiltonian,
NB is a normalization factor, and the conformal boundary
state |B〉 can be expressed as a linear combination of Ishibashi
states |ha〉〉, which are solutions to the conformal boundary
condition

Ln|b〉 = L−n|b〉, ∀n ∈ Z. (2.2)

a in |ha〉〉 is used to label the primary field in a CFT, or the
type of quasiparticles in the corresponding TQFT. Ln is the
generator of chiral conformal transformations which is defined
through a Laurent expansion of the stress-energy tensor T (z) =∑

n∈Z z−n−2Ln, and Ln is the generator of antichiral conformal
transformations which is defined in a similar way. Note that the
Hilbert space of a CFT can be written in terms of holomorphic
and antiholomorphic sectors, i.e.,

H =
⊕
h,h̄

nh,h̄Vh ⊗ V h̄, (2.3)

where the non-negative integer nh,h̄ denotes the number of
distinct primary fields with conformal weight (h,h̄). For
simplicity, here we only consider the diagonal CFTs with
nh,h̄ = δh,h̄. Then the Ishibashi state |ha〉〉 which satisfies
Eq. (2.2) can be expressed as a linear combination of states
in Vha

⊗ V h̄a
. By using dha

(N ) to label the dimension of
subspace for level N of the conformal family, we can denote an
orthonormal basis |ha,N ; j 〉 for Vha

, and similarly |ha,N ; j 〉
for V h̄a

, with 1 � j � dha
(N ). Then the concrete form of

Ishibashi state |ha〉〉 can be written as

|ha〉〉 ≡
∞∑

N=0

dha (N)∑
j=1

|ha,N ; j 〉 ⊗ |ha,N ; j 〉. (2.4)

For a rational CFT (RCFT), in which there are finite number of
primary fields, the conformal boundary state may be expressed
as

|Bi〉 =
∑

a

ψa
i |ha〉〉. (2.5)

The concrete form of ψa
i is related with the modular S matrix

as follows:

ψa
i = Sia√

S0a

. (2.6)

In Refs. [33,34] the regularized boundary state in Eq. (2.1)
was suggested to study the spatial entanglement entropy for
a topological ordered system in (2+1) dimensions. As will
be studied in detail later, it is found that this state cannot
recover the topological entanglement entropy for a Chern-
Simons theory on a general manifold. There are mainly two
reasons as follows:

(i) For a conformal boundary state defined in Eq. (2.5), the
amplitude ψa

i is fixed through the modular S matrix. However,
to study the topological entanglement entropy for a Chern-
Simons theory on a general manifold such as a torus, the
ground state can be chosen as an arbitrary superposition of the
minimum entangled states (MESs) [19]. There is no reason to
fix the coefficient ψa

i as in Eq. (2.5). This indicates that we
should choose a state that can be in an arbitrary superposition
of Ishibashi states |ha〉〉.

(ii) The regularization factor e−εH√
NB

in Eq. (2.1) acts on the
state in a “collective” way (i.e., the regularization factor is
not defined for each Ishibashi state independently, but for the
whole superposition thereof). This is, however, not the only
way to regularize the state. We may instead regularize each
Ishibashi state separately. This suggests that we may arrange a
regularization factor e−εH√

na
to each Ishibashi state |ha〉〉, with the

normalization factor na depending on the primary field a. As
will be shown later, this “individual” way of regularization
can correctly recover the spatial topological entanglement
entropy for Chern-Simons theories while the collective way
of regularization cannot.

Based on the above analysis, we consider an appropriate
regularized state as follows:

|ψ〉 =
∑

a

ψa|ha〉〉 where |ha〉〉 = e−εH

√
na

|ha〉〉, (2.7)

with na being a normalization factor so that

〈〈ha|hb〉〉 = δab. (2.8)

Note that na depends on the type of primary field (or
topological sector) a. The amplitude ψa in Eq. (2.7) is a
complex number which depends on the choice of ground state
of the Chern-Simons field theory on a general manifold. For
the form of the Hamiltonian H , following Refs. [33,34], we
consider

H = 2π

l

(
L0 + L0 − c

12

)
, (2.9)

where l is the length of the circle where the state |ψ〉 is defined,
e.g., the interface between the subsystems A and B in Fig. 1(a).
c is the central charge of the underlying CFT. The term
proportional to c arises from the conformal transformation
from the plane to the cylinder. It is also instructive to rewrite
the Hamiltonian in Eq. (2.9) as a sum of “chiral Hamiltonian”
(or left-moving Hamiltonian) and “antichiral Hamiltonian” (or
right-moving Hamiltonian) as H = HL + HR , where HL =
2π
l

(L0 − c
24 ) and HR = 2π

l
(L0 − c

24 ).
Now we are ready to calculate the normalization factor na

in |ha〉〉 as follows:

〈〈ha′ |ha〉〉 = 1√
na′

√
na

〈〈ha′ |e−2εH |ha〉〉

= 1√
na′

√
na

δa′a

∞∑
N=0

dha (N)∑
j=1

e− 8πε
l

(ha+N− c
24 )

=:
δa′a

na

χha

(
e− 8πε

l

)
, (2.10)

where we have used

L0|ha,N ; j 〉 = (ha + N )|ha,N ; j 〉 (2.11)

and ha = h̄ā . By requiring that 〈〈ha|hb〉〉 = δab, one can obtain
the normalization factor na as

na = χha

(
e− 8πε

l

)
. (2.12)

Note that for different primary fields or topological sectors a,
na are usually different.
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(a)  (b)  

A B

b

A B

b

aa

a

b

a1

a2

aN-1

aN

(c) (d)

A B A B
bb

...

a

b

a1

a2

aN-1

aN

FIG. 1. Various setups discussed in Sec. III A. (a) A S2 is
bipartited into two subsystems A and B, with the interface labeled
by b. (b) A S2 with a quasiparticle a and an antiquasiparticle ā. A
Wilson line connecting the two quasiparticles threads through the
interface b. The two quasiparticles correspond to two punctures, and
therefore the geometry in (b) is equivalent to a cylinder in topology.
(c) A S2 with two pairs of quasiparticles. (d) A S2 with N pairs of
quasiparticles.

For later use, let us introduce the modular transformation
property of the character χ in CFT, i.e.,

χha

(
e− 8πε

l

) =
∑
a′

Saa′χha′
(
e− πl

2ε

)
, (2.13)

which follows from applying the Poisson summation formula
to the explicit expressions of the character χ in Eq. (2.10), with
Saa′ being the matrix elements of the modular S matrix [39].
In RCFTs, S is a finite dimensional unitary matrix indexed
by primary fields (or the types of quasiparticles in TQFTs)
{I,a,b,c, . . . }, where I = 0 labels the identity operator. The
antiquasiparticle of a is denoted by ā, which is the unique
quasiparticle that can fuse with a into I (see Appendix A for
more details).

To avoid confusion, it is helpful to remind ourselves that we
will use primary fields, quasiparticles, anyons, and topological
sectors back and forth when referring to the label a in
|ha〉〉.

In addition, throughout this work, we are interested in
the spatial entanglement on different closed 2-manifold M.
Following Ref. [31], we consider each two-dimensional spatial
manifold as the boundary of a three-dimensional space-time
manifold B, i.e., M = ∂B, so that it is convenient to include
the effect of braiding Wilson lines, etc. (See Ref. [31] for more
details.)

B. Left-right entanglement entropy

We now study the reduced density matrix associated with
the (regularized) boundary states, when we take the partial
trace over the right-moving sector. In particular, we will
compute the “left-right” entanglement entropy associated with
the reduced density matrix. This calculation is a necessary
exercise for later sections where we calculate various entan-
glement/correlation measures in topological quantum liquid.

To see the connection between the left-right entanglement
entropy and the topological entanglement entropy in the
simplest setup, let us consider the geometry in Fig. 1(a) for
example. Following Ref. [33], one can use the “cut and glue”
strategy. By cutting the sphere into two semispheres A and
B, one has a left-moving chiral CFT (with Hamiltonian HL)
and a right-moving antichiral CFT (with Hamiltonian HR)
on the two physical edges of A and B, respectively. In this
case, the left- and right-moving CFTs are the low energy
excitations of the subsystems A and B, respectively. Next,
by turning on a relevant interedge coupling λHLR between
the two edges, the total Hamiltonian for the coupled edge
states is HL + HR + λHLR . For a small enough λ, the bulk
states in the subsystems A and B are almost not affected.
Therefore, the entanglement between the subsystem A and
subsystem B are reduced to the entanglement between the
left- and right-moving edge states.

Now let us calculate the left-right entanglement entropy
of the regularized state in Eq. (2.7) explicitly. We start by
evaluating the reduced density matrix for the left-moving
sector

ρL = TrR(|ψ〉〈ψ |)

= TrR

(∑
a′

∑
a

ψa′ (ψa)∗|ha′ 〉〉〈〈ha|
)

=:
∑

a

|ψa|2ρL,a, (2.14)

where we have defined

ρL,a = TrR(|ha〉〉〈〈ha|)

=
∑
N,j

1

na

e− 8πε
l

(ha+N− c
24 )|ha,N ; j 〉〈ha,N ; j |. (2.15)

(The reduced density matrix for the right-moving part will give
the same final result since SL = SR for a bipartite system in
a pure state.) To obtain the von Neumann entropy or Renyi
entropy, it is convenient to first calculate TrL(ρL)n as follows:

TrL(ρL)n =
∑
a,N,j

|ψa|2nTrL(ρL,a)n

=
∑

a

|ψa|2n

nn
a

χha

(
e− 8πnε

l

)

=
∑

a

|ψa|2n

nn
a

∑
a′

Saa′χha′
(
e− πl

2nε

)
, (2.16)

where in the last step we have used the modular transformation
of the character χha

. By using the explicit form of na in
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Eq. (2.12), TrL(ρL)n can be further written as

TrL(ρL)n =
∑

a

|ψa|2n

∑
a′ Saa′χha′

(
e− πl

2nε

)
[∑

a′ Saa′χha′
(
e− πl

2ε

)]n
→ e

πcl
48ε

( 1
n
−n)
∑

a

|ψa|2n(Sa0)1−n,

where in the second line we took the thermodynamic limit
l/ε → ∞, and noted

lim
l/ε→∞

∑
a′

Saa′χha′
(
e− πl

2nε

) = Sa0e
πcl

48nε , (2.17)

i.e., only the identity field I , labeled by “0” here, survives
the limit. Then based on the definition in Eqs. (1.2) and (1.3),
one can immediately obtain the Renyi entropy and the von
Neumann entropy as

S
(n)
L = 1

1 − n
ln

TrL(ρL)n

(TrLρL)n

= 1 + n

n

πc

48

l

ε
− lnD + 1

1 − n
ln
∑

a

|ψa|2nd1−n
a

− n

1 − n
ln
∑

a

|ψa|2,

SvN
L = πc

24

l

ε
− lnD +

∑
a |ψa|2 ln da∑

a |ψa|2 −
∑

a |ψa|2 ln |ψa|2∑
a |ψa|2

+ ln
∑

a

|ψa|2, (2.18)

where we have used Sa0 = da/D [see Eq. (A15)]. The first
terms in S

(n)
L and SvN

L in Eq. (2.18) are ultraviolet divergent and
nonuniversal, corresponding to the so-called “area law” term
in Eq. (1.9). The left terms in Eqs. (2.18) are independent of the
details of the system. They are determined by the topological
property of the system as well as the choice of states, and
therefore are universal.

As a comparison, if one follows the method in Refs. [33,34]
to regularize the state in a collective way [see Eq. (2.1)], then
one gets [34]

SvN
L = πc

24

l

ε
+ ln

∑
a

|ψa|2Sa0 −
∑

a Sa0|ψa|2 ln |ψa|2∑
a Sa0|ψa|2 ,

(2.19)

which will not recover the correct topological entanglement
entropy for a Chern-Simons field theory on a general manifold.
Nevertheless, it is noted that for the specific case |ψa′ |2 =
δaa′ , namely the state under consideration, is in a definite
topological sector a, there is no difference between the two
methods of regularization. In this case, both Eqs. (2.18) and
(2.19) will lead to SvN

L = πc
24

l
ε

− lnD + ln da.

In the rest of this work, for most cases we have
∑

a |ψa|2 =
1, and then the Renyi entropy and the von Neumann entropy
for the left-moving CFT (or the right-moving CFT) can be

further simplified as

S
(n)
L = 1 + n

n

πc

48

l

ε
− lnD + 1

1 − n
ln
∑

a

|ψa|2nd1−n
a ,

SvN
L = πc

24

l

ε
− lnD +

∑
a

|ψa|2 ln da −
∑

a

|ψa|2 ln |ψa|2.
(2.20)

Before ending this section, it is worth mentioning that we
will come across in a later section the state of the form

|ψ〉 =
⊕

a

ψa|ha〉〉 (2.21)

in the study of multi-Wilson lines. Then the reduced density
matrix ρL can be expressed as ρL = ⊕

a |ψa|2ρL,a , with the
same ρL,a defined in Eq. (2.15). It is straightforward to check
that TrL(ρL)n has the same expression as Eq. (2.16). This
indicates that our results in Eqs. (2.18) and (2.20) still hold
for this case.

III. TOPOLOGICAL ENTANGLEMENT ENTROPY

In this section, by using the edge theory approach, we study
the entanglement entropy associated with a given spatial region
in Chern-Simons theories defined on different kinds of two
spatial manifolds.

A. Sphere

1. Sphere

As shown in Fig. 1(a), let us consider a Chern-Simons
theory which lives on the simplest closed manifold in two
spatial dimensions, i.e., a sphere. We are interested in the
entanglement entropy for the subsystem A (B). For simplicity,
let us first assume that there is no quasiparticle on the sphere,
and therefore no Wilson lines thread through the interface b.
In this case, one has |ψa|2 = δa0 for the regularized state in
Eq. (2.7). Then by using the results in Eqs. (2.20), one can
immediately obtain

S
(n)
A = 1 + n

n

πc

48

l

ε
− lnD,

SvN
A = πc

24

l

ε
− lnD. (3.1)

Based on the equation above, one can find that the topological
entanglement entropy is independent of the Renyi index n, and
only depends on the total quantum dimension D.

The above calculation is based on a S2 with a single
interface between A and B. It is straightforward to generalize it
to a S2 with multiple (=M) interfaces between A and B. In this
case, the wave function under consideration can be expressed
as

|ψ〉 = ⊗M
i=1

∣∣hi
I

〉〉
, (3.2)

where i labels the ith component interface, and I refers to the
identity primary operator. By using the method in Sec. II, one
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obtains the Renyi and the von Neumann entropy as

S
(n)
A = 1 + n

n

πc

48

M∑
i=1

li

ε
− M lnD,

SvN
A = πc

24

M∑
i=1

li

ε
− M lnD, (3.3)

where li represents the length of the ith component of AB

interface. For the universal part of the entanglement entropy,
one can find that each interface contributes − lnD.

2. Sphere with two quasiparticles = cylinder

As shown in Fig. 1(b), let us now consider a sphere with two
quasiparticles, with ā in subsystem A and a in subsystem B.
This configuration corresponds to a S2 with two punctures,
which is equivalent to cylindrical topology. In this case,
there is a Wilson line corresponding to topological sector a

threading through the AB interface. Then one has |ψa′ |2 = δa′a
for the regularized state |ψ〉 = ∑

a′ ψa′ |ha′ 〉〉. Then, based
on Eq. (2.20), the Renyi and the von Neumann entropy for
subsystem A have the expressions as follows:

S
(n)
A = 1 + n

n

πc

48

l

ε
− lnD + ln da,

SvN
A = πc

24

l

ε
− lnD + ln da. (3.4)

Again, the universal part of entanglement entropy is inde-
pendent of the Renyi index n. Compared with the results on a
sphere with no quasiparticles, the entanglement entropy here is
increased by ln da . The physical picture is as follows: For da >

1, the underlying theory is non-Abelian. The quasiparticle a

and antiparticle ā can fuse into, apart from the identity I ,
other types of quasiparticles. This increases the uncertainty
that is shared by the two semispheres. If the underlying theory
is Abelian, then da = 1 and ln da = 0. This is because in the
Abelian case, a and ā can only fuse into I , and therefore cannot
increase the uncertainty shared by A and B.

3. A sphere with N Wilson lines

As a generalization of the previous part, it is natural to ask
what is the entanglement entropy of the subsystem A(B) if
there are more than one Wilson line (or more than one pair of
quasiparticles) on a sphere, as shown in Figs. 1(c) and 1(d). The
strategy we will use is to fuse the quasiparticles (or anyons)
based on the fusion rule:

a ⊗ b =
⊕

c

Nc
abc, (3.5)

where the fusion coefficients Nc
ab are non-negative integers,

and a,b,c represent the topological or anyon charges. In the
following discussions, for simplicity, we will consider the
multiplicity-free case, i.e., Nc

ab = 0 or 1. For the case with
Nc

ab > 1, one needs to include an orthonormal set of bases to
count the number of times that c appears by fusing a and b.

As a warm-up, let us first consider the case with two Wilson
lines. As shown in Fig. 1(c), the two Wilson lines are in
topological sectors a and b, respectively. After the fusion,

the state at the interface may be expressed as

|ψ〉 =
⊕

c

ψc
ab|hab→c〉〉. (3.6)

For the regularized Ishibashi state |hab→c〉〉, it has the same
expression as |hc〉〉, as defined in Eq. (2.7). However, we
use |hab→c〉〉 instead of |hc〉〉 to emphasize that now the
orthonormal property of |hab→c〉〉 also depends on the fusion
history, i.e.,

〈〈hab→c|ha′b′→c′ 〉〉 = δaa′δbb′δcc′ . (3.7)

In the surgery method [31], to obtain this result, one needs
to glue Wilson lines a and b with Wilson lines a′ and
b′, respectively, resulting in the factor δaa′δbb′ . From the
topological field theory, it can be shown that ψc

ab in Eq. (3.6)
satisfies [1] (see also Appendixes)∣∣ψc

ab

∣∣2 = Pab→c = Nc
ab

dc

dadb

, (3.8)

where di is the quantum dimension of the quasiparticle i, and
Pab→c is the probability of fusing a and b into c. It is required
that

∑
c Pab→c = 1, and therefore

dadb =
∑

c

Nc
abdc. (3.9)

The density matrix corresponding to the state (3.6) can be
written as

ρ =
⊕

c

∣∣ψc
ab

∣∣2ρc, (3.10)

with ρc = |hab→c〉〉〈〈hab→c|. Based on the discussion around
Eq. (2.21), one can directly use the results in Eq. (2.20). Then
the Renyi entropy for subsystem A is expressed as

S
(n)
A = 1 + n

n

πc

48

l

ε
− lnD + 1

1 − n
ln
∑

c

∣∣ψc
ab

∣∣2n
d1−n

c .

(3.11)

By using Eqs. (3.8) and (3.9), one can further obtain

S
(n)
A = 1 + n

n

πc

48

l

ε
− lnD + 1

1 − n
ln
∑

c

Nc
abdc

(dadb)n

= 1 + n

n

πc

48

l

ε
− lnD + ln da + ln db, (3.12)

SvN
A = πc

24

l

ε
− lnD + ln da + ln db.

Based on the above example, now we are ready to study the
more general case with N Wilson lines threading through the
interface, as shown in Fig. 1(d). Suppose that the N Wilson
lines are in topological sectors a1,a2, . . . ,aN , respectively, let
us fuse them in the following order. We first fuse a1 and a2

into b1, and then fuse b1 and a3 into b2. By repeating this
procedure, we finally fuse bN−2 and aN into c. The state we
need to consider can be expressed as

|ψ〉 =
⊕
{bi },c

ψc
a1,a2,...,aN

(b1,b2, . . . ,bN−2)
∣∣ha1···aN →c

〉〉
. (3.13)

Note that the direct sum is not only over c, but also over
{bi}, which means that the final fusion result also depends on
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the fusion channels {bi} in the middle. For a specific fusion
channel in {bi}, one has∣∣ψc

a1,a2,...,aN
(b1,b2, . . . ,bN−2)

∣∣2
= Nc

aN bN−2
dc

daN
dbN−2

· · · N
b2
a3b1

db2

da3db1

Nb1
a1a2

db1

da1da2

= Nc
aN bN−2

· · · Nb2
a3b1

Nb1
a2a1

dc

daN
· · · da2da1

. (3.14)

Based on the wave function (3.13), and relabeling
ψc

a1,a2,...,aN
(b1,b2, . . . ,bN−2) as ψc

a (b) to simplify notations,
the Renyi entropy of the subsystem A can be expressed as

S
(n)
A = 1 + n

n

πc

48

l

ε
− lnD

+ 1

1 − n
ln
∑

c

∑
b1

∑
b2

· · ·
∑
bN−2

∣∣ψc
a (b)

∣∣2n
d1−n

c . (3.15)

After some simple algebra, one obtains

S
(n)
A = 1 + n

n

πc

48

l

ε
− lnD +

∑
i

ln dai
,

SvN
A = πc

24

l

ε
− lnD +

∑
i

ln dai
. (3.16)

These results (3.16) can be easily understood by considering
the additivity property of entanglement entropy. Each Wilson
line in the topological sector ai increases the entanglement
entropy by ln dai

.

B. Torus

In this part we consider a torus with a two-component AB

interface. There are many ways to slice the spatial surface, and
here we mainly focus on the two slicing shown in Figs. 2(a)
and 2(b), respectively.

1. Connected B region

As shown in Figs. 2(a) and 2(b), for the torus geometry,
the Wilson loop can in general fluctuate among different
topological sectors a with probability |ψa|2. In this case, the
ground state may be written as

|�〉 =
∑

a

ψa|Wa〉, (3.17)

(a) (b) 

b1 b2A

BB

b1

b2
A B

FIG. 2. A T 2 with a two-component AB interface. The region
B is connected in (a) and disconnected in (b). b1 and b2 denote
the interface that separates A from B. The red solid line represents a
Wilson loop which may fluctuate among different topological sectors.

where |Wa〉 represents the state that the Wilson loop is in a
definite topological sector a. In Ref. [19], |Wa〉 are also called
minimal entangled states (MESs). It is noted that here we use
the bulk wave function |�〉 to distinguish it from |ψ〉 which
represents the state at the interface.

For the configuration in Fig. 2(a), the Wilson loop threads
through both b1 and b2. Then the wave function at the interface
may be written as

|ψ〉 =
∑

a

ψa

∣∣hb1
a

〉〉⊗ ∣∣hb2
a

〉〉
,

where
∣∣hbi

a

〉〉 = e−εHi√
n

bi
a

∣∣hbi

a

〉〉
, i = 1,2,

Hi = 2π

li

(
Li

0 + L
i

0 − c

12

)
,

nbi

a = χha

(
e
− 8πε

li

)
. (3.18)

li represents the length of the ith component of interface. Then
by following similar procedures in the case of single interface
on a cylinder, we can get the reduced density matrix for the
subsystem A as

ρA =
∑

a

|ψa|2ρb1
A,a ⊗ ρ

b2
A,a, (3.19)

with

ρ
b1
A,a = 1

n
b1
a

∑
N1,j1

e
− 8πε

l1

∣∣hb1
a ,N1; j1

〉〈
hb1

a ,N1; j1

∣∣,
ρ

b2
A,a = 1

n
b2
a

∑
N2,j2

e
− 8πε

l2

∣∣hb2
a ,N2; j2

〉〈
h

b2
a ,N2; j2

∣∣, (3.20)

where we have considered that the chirality of edge states at
b1 and b2 are opposite to each other, if there is a physical cut.
Then one can get

TrA
(
ρn

A

)= ∑
a

|ψa|2n
∏
i=1,2

[∑
ai
Saai

χhai

(
e− πli

2nε

)]
[∑

ai
Saai

χhai

(
e− πli

2ε

)]n , (3.21)

where we have used the modular transformation of characters
χhai

. In the thermodynamic limit l/ε → ∞, Eq. (3.21) can be
further simplified as

TrA
(
ρn

A

) = e
πc(l1+l2)

48ε
( 1

n
−n)
∑

a

|ψa|2n(Sa0)2−2n. (3.22)

Then by using the definition in Eq. (1.2), one obtains the Renyi
and von Neumann entropy for subsystem A as follows:

S
(n)
A = 1 + n

n

πc

48

l1 + l2

ε
− 2 lnD

+ 1

1 − n
ln
∑

a

|ψa|2nd2−2n
a ,

SvN
A = πc

24

l1 + l2

ε
− 2 lnD

+ 2
∑

a

|ψa|2 ln da −
∑

a

|ψa|2 ln |ψa|2. (3.23)
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The first term above is the area law term. The left terms, which
are universal, are exactly the same as the results obtained with
replica trick and surgery method in Ref. [31]. The topological
entanglement entropy in this case depends not only on quantum
dimensions but also on the choice of ground state. On the other
hand, it is noted that the formulas in Refs. [33,34] cannot
recover this result, because of the inappropriate regularization
scheme.

2. Disconnected B regions

As shown in Fig. 2(b), this case is trivial compared with
the configuration in Fig. 2(a), since there is no Wilson loop
threading through the interface b1 and b2. In this case, we
simply make |ψa|2 = δa0 in Eq. (3.23). Then one can obtain
the Renyi entropy and the von Neumann entropy for subsystem
A as follows:

S
(n)
A = 1 + n

n

πc

48

l1 + l2

ε
− 2 lnD,

SvN
A = πc

24

l1 + l2

ε
− 2 lnD. (3.24)

The universal parts of the entanglement entropy in Eq. (3.24)
agree with the results in Ref. [31], as expected. In addition,
by comparing with Eq. (3.3), it is found that the results here
are the same as the entanglement entropy for a S2 with a two-
component AB interface. This is reasonable by considering
that the Wilson loop in Fig. 2(b) does not thread through the
AB interface, and therefore has no effect on the entanglement
entropy of the subsystem A (B).

3. Effects of the modular S matrix

Now we consider the bipartition of a torus as shown in
Fig. 3. In this case it is convenient to consider the Wilson loop
that threads through the entanglement cut, i.e., the Wilson
loop threading through the exterior of the torus around the
meridional cycle. As shown in Fig. 3, by labeling the basis of
the degenerate ground state as |Wa〉l and |Wb〉m, respectively
(l represents “longitudinal” and m represents “meridional”),
where |Wa〉l (|Wb〉m) represents the state that the Wilson line
along the longitudinal (meridional) circle carries a definite
topological flux a (b), we can express the state in Eq. (3.17)
with either set of bases. In particular, the two sets of bases are

b1

B

b2

A
a

b

FIG. 3. A T 2 with a two-component AB interface labeled by
b1 and b2. Compared to Fig. 2, the bipartition is along the other
noncontractible cycle on T 2. The red (magenta) solid line represents
the Wilson loop threading through the interior (exterior) of the torus
along the longitudinal (meridional) circle.

related by the modular S matrix as follows [19,40]:

|Wa〉l =
∑

b

Sab|Wb〉m. (3.25)

Then the state in Eq. (3.17) may be rewritten as

|�〉 =
∑

a

ψa|Wa〉l

=
∑

b

(∑
a

ψaSab

)
|Wb〉m

=:
∑

b

φb|Wb〉m, (3.26)

where we have defined φa = ∑
i ψiSia . Then the state at the

interface can be expressed as

|ψ〉 =
∑

a

φa

∣∣hb1
a

〉〉⊗ ∣∣hb2
a

〉〉
. (3.27)

By using the formulas (3.23), one can immediately obtain the
Renyi and the von Neumann entropy of subsystem A as

S
(n)
A = 1 + n

n

πc

48

l1 + l2

ε
− 2 lnD

+ 1

1 − n
ln
∑

a

|φa|2nd2−2n
a ,

SvN
A = πc

24

l1 + l2

ε
− 2 lnD

+ 2
∑

a

|φa|2 ln da −
∑

a

|φa|2 ln |φa|2. (3.28)

As an example, let us consider the specific case ψa = δa0 in
Eq. (3.17), i.e., the Wilson loop a in the longitudinal circle
is in the identity topological sector I . For the entanglement
cut in Fig. 2(a), the universal parts of S

(n)
A and SvN

A are both
−2 lnD, which is in the minimal value. On the other hand,
for the entanglement cut in Fig. 3, we have φa = S0a = da/D,
and then it is straightforward to check that the universal parts
of S

(n)
A and SvN

A are both 0, which is in the maximal value. This
is as expected by considering that the Wilson loop operators
corresponding to the longitudinal and meridional circles do
not commute with each other.

C. Manifolds of genus g

In this part we consider general manifolds of genus g. As a
warm-up, we will first consider a simple case with g = 2, and
then move on to the general case with arbitrary g.

1. Double torus

Let us consider a double torus with three components of AB

interfaces as shown in Fig. 4. We consider two independent
Wilson loops that thread through the AB interface along the
longitudinal circles [41]. For the configuration in Fig. 4, where
the Wilson loops a and b fluctuate independently, the bulk wave
function may be written as

|�〉 =
(∑

a

ψa|Wa〉
)⊗(∑

b

ψb|Wb〉
)

. (3.29)
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b1 b2

B

A
b3

ba

FIG. 4. A manifold of genus g = 2. We have three components
of AB interfaces labeled by b1, b2, and b3, respectively. The red
solid lines a and b represent two independent Wilson loops threading
through the interior of the double torus along the longitudinal circles.

Focusing on the AB interface b1, b2, and b3, the wave function
may be expressed as

|ψ〉 =
∑
ab

ψaψb

∣∣hb1
a

〉〉⊗ (⊕cψ
c
ab

∣∣hb2
ab→c

〉〉)⊗ ∣∣hb3
b

〉〉
, (3.30)

where we have used bi with i = 1,2,3 to label the ith
component of AB interface. The fusion probability at in-
terface b2 has the form |ψc

ab|2 = Nc
abdc/dadb. Then the

reduced density matrix for the subsystem A may be written
as

ρA = TrB |ψ〉〈ψ |

=
∑
a,b

|ψa|2|ψb|2 1

nanb

×
∑
N1,j1

e
− 8πε

l1
(ha+N1− c

24 )∣∣hb1
a ,N1; j1

〉〈
hb1

a ,N1; j1

∣∣
⊗
∑
N3,j3

e
− 8πε

l3
(hb+N3− c

24 )∣∣hb3
b ,N3; j3

〉〈
h

b3
b ,N3; j3

∣∣

⊗
⎛
⎝⊕c

Nc
ab

nc

dc

dadb

∑
N2,j2

e
− 8πε(hc+N2− c

24 )

l2

× ∣∣hb2
c ,N2; j2

〉〈
hb2

c ,N2; j2

∣∣
⎞
⎠. (3.31)

Note that for the configuration in Fig. 4, imagining a physical
cut along b1, b2, and b3, then there may be an ambiguity in
defining the chirality of edge states for the subsystem A (B).
Here, for simplicity, we choose all the edge states to be left
moving. In fact, it can be checked that the freedom of choosing
the chirality of edge states has no effect on the entanglement
entropy. In the rest of this work, once there is an ambiguity
in defining the chirality of edge states, without affecting the
results, we may choose it to be left moving.

Based on ρA in Eq. (3.31), one can obtain

Tr
(
ρn

A

) =
∑
a,b,c

|ψa|2n|ψb|2n

(
1

nanbnc

)n(
dc

dadb

)n

Nc
ab

×χha

(
e
− 8πnε

l1
)
χhb

(
e
− 8πnε

l3
)
χhc

(
e
− 8πnε

l2
)
. (3.32)

In particular, for n = 1, this reduces to

Tr(ρA) =
∑
a,b,c

|ψa|2|ψb|2 dc

dadb

Nc
ab

=
∑
a,b

|ψa|2|ψb|2

=
(∑

a

|ψa|2
)(∑

b

|ψb|2
)

, (3.33)

as expected. Here we consider the normalization condition∑
a |ψa|2 = ∑

b |ψb|2 = 1, and therefore Tr(ρA) = 1. By us-
ing the modular transformation property of the character χhi

,
Tr(ρn

A) in Eq. (3.32) may be rewritten as

Tr
(
ρn

A

) =
∑
a,b,c

|ψa|2n|ψb|2n

(
dc

dadb

)n

Nc
ab

×
∏

i=a,b,c

∑
a′ Sia′χ

(
e− πli

2nε

)
[∑

a′ Sia′χ
(
e− πli

2ε

)]n . (3.34)

Taking the thermodynamic limit li/ε → ∞, we obtain

Tr
(
ρn

A

) =
∑
a,b,c

|ψa|2n|ψb|2n

(
dc

dadb

)n

Nc
ab ·

×
(

da

D
db

D
dc

D

)1−n

e
πc
48

l1+l2+l3
ε

( 1
n
−n), (3.35)

which, after some simple algebra, can be further simplified as

Tr
(
ρn

A

) =
(∑

a

|ψa|2nd2−2n
a

)(∑
b

|ψb|2nd2−2n
b

)

× 1

D3−3n
e

πc
48

l1+l2+l3
ε

( 1
n
−n). (3.36)

Then the Renyi and the von Neumann entropy of subsystem
A can be obtained as

S
(n)
A = 1 + n

n

πc

48

l1 + l2 + l3

ε
− 3 lnD

+ 1

1 − n
ln
∑

a

|ψa|2nd2−2n
a

+ 1

1 − n
ln
∑

b

|ψb|2nd2−2n
b ,

SvN
A = πc

24

l1 + l2 + l3

ε
− 3 lnD

+ 2
∑

a

|ψa|2 ln da −
∑

a

|ψa|2 ln |ψa|2

+ 2
∑

b

|ψb|2 ln db −
∑

b

|ψb|2 ln |ψb|2. (3.37)

Compared with Eq. (3.23) for a torus with g = 1, the above
result is easy to understand by considering the additivity prop-
erty of the entanglement entropy. Take the Renyi entropy for
example, each component of interface contributes to − lnD;
and each Wilson loop contributes to 1

1−n
ln
∑

i |ψi |2nd2−2n
i .
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b1 b2

B

A
b3

A

B

A
bN+1bN

B

a1 a2 aN

. . . .

FIG. 5. A manifold of genus g with g = N . We have a (N + 1)-component interface labeled by b1,b2, . . . ,bN+1, respectively. We consider
N independent Wilson loops that thread through the interior of the manifold along the longitudinal circles. Each Wilson loop (red solid lines)
can fluctuate among different topological sectors independently.

2. Manifolds of genus g

Now we study the case of a manifold of genus g with g = N .
As shown in Fig. 5, we consider N independent Wilson loops
labeled by a1,a2, . . . ,aN threading through the interior of the
manifold along the longitudinal circles. Each Wilson loop can
fluctuate among different topological sectors independently.
Then the bulk wave function may be written as

|�〉 =
N⊗

i=1

(∑
ai

ψai

∣∣Wai

〉)
. (3.38)

Now we choose the entanglement cut as shown in Fig. 5, so
that we have a (N + 1)-component interface. Then the state at
the interface can be expressed as

|ψ〉 =
∑

a1a2···aN

ψa1ψa2 · · ·ψaN

∣∣hb1
a1

〉〉
⊗ (⊕c2ψ

c2
a1a2

∣∣hb2
a1a2→c2

〉〉)⊗ · · ·
⊗ (⊕cN

ψcN

aN−1aN

∣∣hbN

aN−1aN →cN

〉〉)⊗ ∣∣hbN+1
aN

〉〉
, (3.39)

where the probability of fusing quasiparticles ai−1 and ai

into ci is |ψci+1
aiai+1 |2 = N

ci+1
aiai+1dci+1/dai

dai+1 . Following similar
procedures in the previous part, one can get

Tr
(
ρn

A

) =
∑

a1,2,...,N

∣∣ψa1

∣∣2n∣∣ψa2

∣∣2n · · · ∣∣ψaN

∣∣2n

(
1

n
b1
a1n

bN+1
aN

)n

×
∑

c2,3,...,N

∣∣ψc2
a1a2

∣∣2n(
n

b2
c2

)n
∣∣ψc3

a2a3

∣∣2n(
n

b3
c3

)n · · ·
∣∣ψcN

aN−1aN

∣∣2n(
n

bN
cN

)n
×χha1

(
e
− 8πnε

l1
)
χhaN

(
e
− 8πnε

lN+1
) N∏

i=2

χhci

(
e
− 8πnε

li

)
.

By using the modular transformation property of the character
χhi

, and taking the thermodynamic limit li/ε → ∞, Tr(ρn
A)

can be simplified as

Tr
(
ρn

A

) =
∑

a1,2,...,N

∣∣ψa1

∣∣2n∣∣ψa2

∣∣2n · · · ∣∣ψaN

∣∣2n

×
∑

c2,...,cN

(
dc2

da1da2

)n

Nc2
a1a2

· · ·
(

dcN

daN−1daN

)n

NcN

aN−1aN

×
(

da1

D
daN

D

N∏
i=2

dci

D

)1−n

e
πc
48

∑N+1
i=1 li

ε
( 1

n
−n). (3.40)

The sum
∑

c2,...,cN
can be easily done by considering that∑

ci
Nci

ai−1ai
dci

/dai−1ai
= 1. Then Eq. (3.40) can be further

simplified as

Tr
(
ρn

A

) =
∑

a1,2,...,N

∣∣ψa1

∣∣2n∣∣ψa2

∣∣2n · · · ∣∣ψaN

∣∣2n

×
(

N∏
i=1

dai

)2−2n(
1

D1+N

)1−n

e
πc
48

∑N+1
i=1 li

ε
( 1

n
−n)

=
N∏

i=1

(∑
ai

∣∣ψai

∣∣2n
d2−2n

ai

)(
1

D1+N

)1−n

e
πc
48

∑N+1
i=1 li

ε
( 1

n
−n),

based on which we can immediately obtain the Renyi entropy
and the von Neumann entropy of subsystem A as follows:

S
(n)
A = 1 + n

n

πc

48

l1 + · · · + lN+1

ε
− (N + 1) lnD

+ 1

1 − n

N∑
i=1

ln

[∑
ai

∣∣ψai

∣∣2n(
dai

)2−2n

]
,

SvN
A = πc

24

l1 + · · · + lN+1

ε
− (N + 1) lnD

+
N∑

i=1

(
2
∑
ai

∣∣ψai

∣∣2 ln dai
−
∑
ai

∣∣ψai

∣∣2 ln
∣∣ψai

∣∣2).

(3.41)

For N = 1 and 2 we recover the results (3.23) and (3.37),
respectively. It is found that the coefficient in front of − lnD
equals the number of components of the AB interface. For
each Wilson loop ai that threads through the entanglement cut
with probability |ψai

|2, it contributes to the Renyi and von
Neumann entropy as

�S
(n)
A,ai

= 1

1 − n

N∑
i=1

ln

[∑
ai

∣∣ψai

∣∣2n(
dai

)2−2n

]
,

�SvN
A,ai

=
∑
ai

∣∣ψai

∣∣2 ln
d2

ai∣∣ψai

∣∣2 . (3.42)

In fact, we also checked the Renyi entropy and the von
Neumann entropy for a g-genus manifold with replica and
surgery methods. The results we obtained are exactly the same
as the universal parts in Eq. (3.41).
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D. A sphere with four quasiparticles

Although we have studied the entanglement entropy for
several examples in the presence of quasiparticles, it is still
interesting to ask if we can extract more topological data
of Chern-Simons theories, such as the braiding property of
Wilson lines and so on. In this part we demonstrate that our
edge theory approach is powerful enough to study these more
complicated cases.

Following Ref. [31] we consider a S2 with four quasi-
particles, with two quasiparticles carrying anyon charge a,
and the other two carrying anyon charge ā. According to
different distributions of the four quasiparticles, we need to
study the entanglement entropy case by case, as discussed in
the following.

1. A with a and ā

Let us consider the case where there are two quasiparticles
a and ā in the subsystem A, with the other two quasiparticles
ā and a in subsystem B. As shown in Fig. 6 (top row) there are
two configurations which correspond to states |�1〉 and |�2〉,
respectively. We want to calculate the entanglement entropy
of the subsystem A for a general state

|�〉 = a|�1〉 + b|�2〉. (3.43)

For |�1〉, there is no Wilson line threading through the AB

interface, and therefore the corresponding state at the interface

|Ψ   

a

a

  

a

a

A B A B
bb

a

a

a

a

  

a

a

a

a

  

a

a

a

a

A BB A
b b

FIG. 6. Top row: A S2 with four quasiparticles, with the sub-
system A containing two quasiparticles a and ā. Each red solid
line represents a Wilson line connecting quasiparticles ā and a. The
two configurations represent two states |�1〉 and |�2〉, respectively.
Bottom row: A S2 with four quasiparticles, with two quasiparticles ā

and ā in the subsystem A, and the other two quasiparticles a and a

in the subsystem B. Each red solid line represent a Wilson line that
connects ā and a. The two configurations represent two states |� ′

1〉
and |� ′

2〉, respectively.

is |haā→I 〉〉, with I being the identity topological sector. For
|�2〉, among different fusion channels, there is a fusion channel
a ⊗ ā → I . Then the state at the interface may be expressed
as

|ψ〉 =
⊕

c

ψc
ab|haā→c〉〉, (3.44)

where

∣∣ψc
ab

∣∣2 =
{∣∣a + b 1√

dadā

∣∣2, c = I,

Nc
aā

dc

dadā
|b|2, c �= I.

(3.45)

Note that for a general TQFT, one always has dā = da . It is
also noted that for the state in Eq. (3.44),

∑
c |ψc

ab|2 �= 1, but
has the following expression:

∑
c

|ψc|2 =
∣∣∣∣a + b

da

∣∣∣∣
2

+ |b|2
(

1 − 1

d2
a

)
. (3.46)

In this case, to obtain the Renyi and the von Neumann entropy,
we can use the results (2.18) directly. Let us check the von
Neumann entropy first. For convenience, we rewrite SvN in
Eq. (2.18) in the following form:

SvN = πc

24

l

ε
− lnD +

∑
i |ψi |2 ln(di/|ψi |2)∑

i |ψi |2 + ln
∑

i

|ψi |2.

(3.47)

It is found that

di

|ψi |2 =
{ 1

|a+b/da |2 , i = I,

d2
a

|b|2 N
i
aā, i �= I

(3.48)

is independent of di . Then the von Neumann entropy for
the subsystem A, after some straightforward algebra, can be
obtained as follows:

SvN
A = πc

24

l

ε
− lnD − λ1 ln λ1 − (

d2
a − 1

)
λ2 ln λ2, (3.49)

where λ1 and λ2 are defined as

λ1 = |ada + b|2
|ada + b|2 + (

d2
a − 1

)|b|2 ,

λ2 = |b|2
|ada + b|2 + (

d2
a − 1

)|b|2 . (3.50)

One can find that the universal parts of the entanglement
entropy in Eq. (3.49) are exactly the same as the results
obtained with the method of replica trick and surgery in
Ref. [31].

Similarly, we can obtain the Renyi entropy as follows:

S
(n)
A = 1 + n

n

πc

48

l

ε
− lnD

+ 1

1 − n
ln

[∣∣∣∣a + b

dα

∣∣∣∣
2n

+
( |b|

dα

)2n(
d2

α − 1
)]

− n

1 − n
ln

[∣∣∣∣a + b

dα

∣∣∣∣
2

+ |b|2
d2

a

(
d2

a − 1
)]

. (3.51)
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2. Effect of braiding and R symbols

In this part we will study how the braiding of Wilson
lines can show up in the entanglement entropy. We consider a
generic superposition of two states

|� ′〉 = a|� ′
1〉 + b|� ′

2〉, (3.52)

where |� ′
1〉 and |� ′

2〉 are shown in Fig. 6 (bottom row). In
this case, the two quasiparticles in subsystem A are both in
topological sector ā. Compared to the configuration in |� ′

1〉,
one can find that there is braiding of Wilson lines in |� ′

2〉.
At the interface, the states corresponding to |� ′

1〉 and |� ′
2〉

may be expressed as

|ψ ′
1〉 = ⊕cψ

c
aa|haa→c〉〉,

|ψ ′
2〉 = ⊕cψ

c
aaR

aa
c |haa→c〉〉, (3.53)

where |ψc
aa|2 = Nc

aadc/d
2
a , and Raa

c are the so-called R sym-
bols, which describe the effects of braiding of anyons/Wilson
lines (see Appendix A for details). The R symbol is in general
a unitary matrix, but reduces to a collection of phases in a
fusion multiplicity-free theory. In particular, Rab

c represents
the phase picked up by exchanging anyons a and b which fuse
into channel c. Then the state at the interface may be written as

|ψ ′〉 = a|ψ ′
1〉 + b|ψ ′

2〉
= ⊕c

(
a + bRaa

c

)
ψc

aa|haa→c〉〉
=: ⊕cφc|haa→c〉〉. (3.54)

Based on the wave function above, we can obtain the Renyi
entropy as well as the von Neumann entropy of the subsystem
A(B) by using Eq. (2.18) directly.

In the following, we are mainly interested in the SU(2)k
theory, in which the R symbol has an explicit expression

R
j1,j2
j = (−1)j−j1−j2q

1
2 [j1(j1+1)+j2(j2+1)−j (j+1)], (3.55)

where q = e−2πi/(2+k), and j represents the anyonic charge of
SU(2)k theory, which is labeled by integers and half-integers
as C = {0, 1

2 ,1, . . . , k
2 }. (Here, for the definition of q, we follow

the convention in Ref. [31]. It is noted that in some literatures
q = e2πi/(2+k) is used, and therefore the expression of R

symbols are slightly modified accordingly.) In addition, the
fusion rule in the SU(2)k theory is

j1 × j2 =
min{j1+j2,k−j1−j2}∑

|j1−j2|
j

= |j1 − j2| + (|j1 − j2| + 1) + · · ·
+ min{j1 + j2,k − j1 − j2}. (3.56)

Relabeling a = ā = j and using Eq. (2.18), we can imme-
diately write down the Renyi entropy and the von Neumann
entropy for the subsystem A as follows:

S
(n)
A = 1 + n

n

πc

48

l

ε
− lnD

+ 1

1 − n
ln

min{2j,k−2j}∑
i=0

∣∣∣∣a + bR
jj

i

dj

∣∣∣∣
2n

di

− n

1 − n
ln

min{2j,k−2j}∑
i=0

∣∣∣∣a + bR
jj

i

dj

∣∣∣∣
2

di,

SvN
A = πc

24

l

ε
− lnD

+
∑min{2j,k−2j}

i=0

∣∣a + bR
jj

i

∣∣2di ln
∣∣ dj

a+bR
jj

i

∣∣2
∑min{2j,k−2j}

i=0

∣∣a + bR
jj

i

∣∣2di

+ ln
min{2j,k−2j}∑

i=0

∣∣∣∣a + bR
jj

i

dj

∣∣∣∣
2

di, (3.57)

where the quantum dimension dj is defined as

dj = sin
( (2j+1)π

k+2

)
sin
(

π
k+2

) . (3.58)

Before we end this part, it is emphasized that the R symbols
usually depend on the choice of bases in the topological Hilbert
space, which indicates that R symbols are usually gauge
dependent. An exception is Raa

b , which is gauge invariant (see
Appendix A 1). That is to say, our results on the entanglement
entropy in Eq. (3.57) are gauge invariant, as it should be.

Specific case a = ā = 1
2 . In Ref. [31], the specific case

of a = ā = 1
2 is studied based on the replica trick and surgery

method. In this part, based on our general formula in Eq. (3.57),
we make a comparison with the results in Ref. [31].

For a = ā = 1
2 in a SU(2)k theory, the fusion rule of two

anyons a is simply
1
2 ⊗ 1

2 = 0 ⊕ 1. (3.59)

For convenience we label the quasiparticles with j = 0, 1
2 ,1

as ω,α, and σ , respectively. Based on Eq. (3.58), it can be
checked that dω = 1, dα = 2 cos π

k+2 , and dσ = 2 cos 2π
2+k

+
1 = sin 3π

k+2

sin π
k+2

. From Eq. (3.57), the universal parts of the von

Neumann entropy may be expressed as follows:

SvN
A,top = − lnD +

∑min{2j,k−2j}
i=0

∣∣a + bR
jj

i

∣∣2di ln
∣∣ dj

a+bR
jj

i

∣∣2
∑min{2j,k−2j}

i=0

∣∣a + bR
jj

i

∣∣2di

+ ln
min{2j,k−2j}∑

i=0

∣∣∣∣a + bR
jj

i

dj

∣∣∣∣
2

di

=: − lnD − dωλ1 ln λ1 − dσλ2 ln λ2, (3.60)

where λ1 and λ2 are defined as

λ1 =
∣∣a + bRαα

ω

∣∣2
dω

∣∣a + bRαα
ω

∣∣2 + dσ

∣∣a + bRαα
σ

∣∣2 ,

λ2 =
∣∣a + bRαα

σ

∣∣2
dω

∣∣a + bRαα
ω

∣∣2 + dσ

∣∣a + bRαα
σ

∣∣2 . (3.61)

For a SU(2)k theory, one has

Rαα
ω = −q3/4, Rαα

σ = q−1/4. (3.62)

Therefore, λ1 and λ2 in Eq. (3.61) can be rewritten as

λ1 = |a − bq3/4|2
dω|a − bq3/4|2 + dσ |a + bq−1/4|2 ,

λ2 = |a + bq−1/4|2
dω|a − bq3/4|2 + dσ |a + bq−1/4|2 , (3.63)
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which agrees with the result in Ref. [31]. It is noted that if
we focus on either |� ′

1〉 or |� ′
2〉 separately, the universal parts

of the Renyi entropy or von Neumann entropy are simply
SvN

A,top = − lnD + 2 ln dα . Hence, the R symbols cannot be
detected. In other words, the effects of braiding or R symbols
can be detected only through the interference effect in the
entanglement entropy.

3. Effects of monodromy and topological spin

The effect of monodromy, or double braiding, of two
quasiparticles/Wilson lines a and b is governed by the
monodromy equation or ribbon equation as follows:

∑
λ

[
Rab

c

]
μλ

[
Rba

c

]
λν

= θc

θaθb

δμν, (3.64)

which is associated with the mutual statistics of a and b fused
into channel c. For the multiplicity-free case we are interested
in here, Eq. (3.64) reduces to

Rab
c Rba

c = θc

θaθb

=: Mab
c . (3.65)

The topological spin θa , also known as twist factor, is related
to the spin or conformal scaling dimension ha of a as

θa = ei2πha . (3.66)

Therefore, Mab
c in Eq. (3.65) can be rewritten as Mab

c =
ei2π(hc−ha−hb). To see the effect of the monodromy on the
entanglement entropy, we consider a general state |�〉 =
a|�1〉 + b|�2〉, where |�1〉 and |�2〉 are shown in Fig. 7
(top row). It is noted that for the configuration in |�2〉,
the two Wilson lines braid for two times. Compared to the
configuration in Fig. 6, this double braiding of two Wilson
lines allows us to study the case a �= b.

At the interface, the states corresponding to |�1〉 and |�2〉
may be written as

|ψ1〉 = ⊕cψ
c
ab|hab→c〉〉,

|ψ2〉 = ⊕cψ
c
abM

ab
c |hab→c〉〉, (3.67)

based on which one can write down the state corresponding to
|�〉 as

|ψ〉 = a|ψ1〉 + b|ψ2〉
= ⊕c

(
a + bMab

c

)
ψc

ab|hab→c〉〉

= ⊕c

(
a + b

θc

θaθb

)
ψc

ab|hc〉〉

=: ⊕cφc|hab→c〉〉, (3.68)

where |ψc
ab|2 = Nc

abdc/dadb. Then one can immediately obtain
the Renyi entropy and the von Neumann entropy of the
subsystem A(B) by using the results in Eq. (2.18).

Now we are interested in the SU(2)k theories, where the
topological spins are expressed as

θj = ei2π
j (j+1)
k+2 . (3.69)

|Ψ     

a

b

a

b

|Ψ     

a

b

a

b

A BB A
b b

    

a

a

    

a

a

BA
b

a

a

a

a

BA
b

FIG. 7. Top row: A S2 with four quasiparticles, with two quasipar-
ticles ā and b̄ in subsystem A, and the other two quasiparticles a and
b in subsystem B. The red solid lines are Wilson lines which connect
ā(b̄) and a(b). The two configurations represent two states |�1〉
and |�2〉, respectively. Bottom row: A S2 with four quasiparticles,
with two quasiparticles ā and ā in subsystem A, and the other
two quasiparticles a and a in subsystem B. The two configurations
correspond to the two states |� ′

1〉 and |� ′
2〉, respectively.

Relabeling the anyonic charges as a = j1 and b = j2, then we
have

S
(n)
A = 1 + n

n

πc

48

l

ε
− lnD

+ 1

1 − n
ln

min{j1+j2,k−j1−j2}∑
j=|j1−j2|

∣∣∣∣a + b
θj

θj1θj2

∣∣∣∣
2n

dj

dn
j1
dn

j2

− n

1 − n
ln

min{j1+j2,k−j1−j2}∑
j=|j1−j2|

∣∣∣a + b
θj

θj1θj2

∣∣∣2 dj

dj1dj2

(3.70)

and

SvN
A = πc

24

l

ε
− lnD

+
∑min{j1+j2,k−j1−j2}

j=|j1−j2|
∣∣a+b

θj

θj1 θj2

∣∣2dj ln
dj1 dj2

|a+bθj /θj1 θj2 |2∑min{j1+j2,k−j1−j2}
j=|j1−j2|

∣∣a + b
θj

θj1 θj2

∣∣2dj

+ ln
min{j1+j2,k−j1−j2}∑

j=|j1−j2|

∣∣∣∣a + b
θj

θj1θj2

∣∣∣∣
2

dj

dj1dj2

. (3.71)

Similar with the previous calculation involving the R

symbols, the effects of monodromy can be detected only
through the interference effect. One can check that for either
|�1〉 or |�2〉 separately, the universal parts of the Renyi entropy
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and the von Neumann entropy are simply S
(n)
A,top = SvN

A,top =
− lnD + ln dj1 + ln dj2 .

As a specific example, it is interesting to check the case with
anyonic charges j1 = j2 = 1

2 . As before, we label the anyons
with j = 0, 1

2 ,1 as ω,α, and σ , respectively. Then based on
Eq. (3.71), one can obtain

SvN
A,top = − lnD − dωλ1 ln λ1 − dσλ2 ln λ2, (3.72)

where λ1 and λ2 are defined as

λ1 =
∣∣a + b θω

θαθα

∣∣2
dω

∣∣a + b θω

θαθα

∣∣2 + dσ

∣∣a + b θσ

θαθα

∣∣2 ,

λ2 =
∣∣a + b θσ

θαθα

∣∣2
dω

∣∣a + b θω

θαθα

∣∣2 + dσ

∣∣a + b θσ

θαθα

∣∣2 , (3.73)

which may be further rewritten as

λ1 = |a + bq3/2|2
dω|a + bq3/2|2 + dσ |a + bq−1/2|2 ,

λ2 =
∣∣a + bq− 1

2

∣∣2
dω|a + bq3/2|2 + dσ |a + bq−1/2|2 , (3.74)

where q = e−2πi/(2+k). Before we end this part, it is noted that
Mab

c = Rab
c Rba

c in Eqs. (3.70) and (3.71) is a gauge invariant
quantity, although Rab

c for a �= b is not gauge invariant
itself (see Appendix A 1). This is expected since that the
entanglement entropy should be gauge independent.

4. Discussion: Relative phase in interference effect

From the discussions above, it is found that both the
R symbols and the monodromy can be detected through
the interference effect, in which the R symbols and the
monodromy appear as relative phases between two sets of
bases in |ψ1〉 and |ψ2〉. To understand this interference effect
better, let us consider another state

|� ′〉 = a|� ′
1〉 + b|� ′

2〉, (3.75)

where |� ′
1〉 and |� ′

2〉 are shown in Fig. 7 (bottom row). In
particular, the two Wilson lines are braided once in |� ′

1〉 and
twice in |� ′

2〉. Then the corresponding states at the interface
can be written as

|ψ ′
1〉 = ⊕cψ

c
aaR

aa
c |haa→c〉〉,

|ψ ′
2〉 = ⊕cψ

c
aaM

aa
c |haa→c〉〉, (3.76)

where |ψc
aa|2 = Nc

aadc/d
2
a , and Maa

c is defined through
Eq. (3.65), i.e., Maa

c = Raa
c Raa

c . Note that for the multiplicity-
free case we consider here, both Rab

c and Mab
c are simply

complex phases. Then the state at the interface can be written
as

|ψ ′〉 = a|ψ ′
1〉 + b|ψ ′

2〉
= ⊕cR

aa
c

(
a + bRaa

c

)
ψc

aa|haa→c〉〉
=: ⊕cφc|haa→c〉〉. (3.77)

By comparing the states in Eqs. (3.77) and (3.54), it is
straightforward to check that S

(n)
A and SvN

A corresponding to
the state in Eq. (3.77) have the same expressions as those in

(a) 

b1

b3

B

(b) 

b1 b2

A1

B

b3
A2

b2
A1

A2 b4 A2

b1

b4

BB

A1 A2

b2

b3

b1

b3
B B

b2
A1

A2

b4

(c) (d) 

FIG. 8. Four setups in calculating the mutual information and the
entanglement negativity. Two adjacent noncontractible regions A1

and A2 on a torus with noncontractible [(a) and (b)] and contractible
(c) B. (d) Two disjoint noncontractible regions A1 and A2 on a torus
with noncontractible region B. The red solid line represents a Wilson
loop threading through the interior of the torus.

Eq. (3.57). This is as expected because what we detect in the
interference is the relative phase.

IV. TOPOLOGICAL MUTUAL INFORMATION

As mentioned in the Introduction, the Renyi and the von
Neumann entropy are good measures for bipartite entangle-
ment. For a tripartite system, or more generally a mixed state,
it is convenient to introduce other entanglement/correlation
measures such as the mutual information and the entanglement
negativity. Since the mutual information is expressed in terms
of the entanglement entropy, one can directly use the results in
the previous section. In the following, we will give several
examples on the mutual information between two spatial
regions on a torus for Chern-Simons theories.

A. Two adjacent noncontractible regions on a torus
with noncontractible B

Let us consider two adjacent noncontractible regions A1

and A2 on a torus with their compliment B which is also
noncontractible. Here we mainly consider two nontrivial cases,
shown in Figs. 8(a) and 8(b). The two regions A1 and A2

share a one-component A1A2 interface in Fig. 8(a) and a two-
component A1A2 interface in Fig. 8(b). In the following we
will calculate the mutual information between A1 and A2 for
these two cases respectively.

1. One-component interface

As shown in Fig. 8(a), the two adjacent noncontractible
regions A1 and A2 share a one-component A1A2 interface.
This case can be easily studied based on our previous results
on the bipartite entanglement of a torus. To be concrete, let us
consider the Renyi mutual information defined in Eq. (1.4). For
the two adjacent regions A1 and A2 as shown in Fig. 8(a), the
subsystem A = A1 ∪ A2 has the same topology as A1 (A2),
which is simply a cylinder. Therefore, for a general state in
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Eq. (3.17), i.e.,

|�〉 =
∑

a

ψa|Wa〉, (4.1)

one can directly use the result in Eq. (3.23), and the Renyi
mutual information can be obtained as

I
(n)
A1A2

= 1 + n

n

2πc

48

l2

ε
− 2 lnD

+ 1

1 − n
ln
∑

a

|ψa|2nd2−2n
a , (4.2)

where l2 is the length of the interface b2. And the von Neumann
mutual information has the following expression:

IA1A2 = lim
n→1

I
(n)
A1A2

= 2πc

24

l2

ε
− 2 lnD + 2

∑
a

|ψa|2 ln da

−
∑

a

|ψa|2 ln |ψa|2. (4.3)

For a later comparison with the entanglement negativity, it
should be noted that I

(n)
A1A2

and IA1A2 depend on the choice of
ground state for both Abelian and non-Abelian Chern-Simons
theories.

2. Two-component interface

As shown in Fig. 8(b), let us consider the two adjacent
noncontractible regions A1 and A2 which share a two-
component A1A2 interface. In this case, the subsystem A2

itself is composed of two disjoint regions. To obtain the mutual
information between A1 and A2, we need to calculate the
entanglement entropy of the subsystem A2 first.

For the general ground state in Eq. (4.1), the state at the
interface (including the components b1, b2, b3, and b4) has the
following expression:

|ψ〉 =
∑

a

ψa

⊗
i=1,...,4

∣∣hbi

a

〉〉
. (4.4)

Following similar procedures in the previous sections, one can
obtain the reduced density matrix for the subsystem A2 as
follows:

ρA2 =
∑

a

|ψa|2 1∏
i=1,...,4 n

bi
a⊗

i=1,...,4

∑
Ni,ji

e
− 8πε

li

∣∣hbi

a ,Ni ; ji

〉〈
hbi

a ,Ni ; ji

∣∣, (4.5)

based on which one can get

Tr
(
ρn

A2

) =
∑

a

|ψa|2n
∏

i=1,...,4

∑
ai
Saai

χhai

(
e− πli

2nε

)
[∑

ai
Saai

χhai

(
e− πli

2ε

)]n , (4.6)

where we have used the modular transformation property of the
character χhi

. In the thermodynamic limit li/ε → ∞, Eq. (4.6)
can be further simplified as

Tr
(
ρn

A2

) = e
πc(l1+l2+l3+l4)

48ε
( 1

n
−n)
∑

a

|ψa|2n(Sa0)4−4n. (4.7)

Then one can obtain the Renyi and the von Neumann entropy
of A2 as

S
(n)
A2

= 1 + n

n

πc

48

l1 + l2 + l3 + l4

ε
− 4 lnD

+ 1

1 − n
ln
∑

a

|ψa|2nd4−4n
a ,

SvN
A2

= 2πc

48

l1 + l2 + l3 + l4

ε
− 4 lnD

+ 4
∑

a

|ψa|2 ln da −
∑

a

|ψa|2 ln |ψa|2. (4.8)

Based on the results in Eqs. (3.23) and (4.8), one can obtain
the mutual information between A1 and A2 as follows:

I
(n)
A1A2

=1 + n

n

2πc

48

l1 + l2

ε
− 4 lnD

+ 1

1 − n
ln
∑

a

|ψa|2nd4−4n
a ,

IA1A2 =2πc

24

l1 + l2

ε
− 4 lnD + 4

∑
a

|ψa|2 ln da

−
∑

a

|ψa|2 ln |ψa|2. (4.9)

Similar with the one-component A1A2 interface case, the
mutual information in Eq. (4.9) depends on the choice of
ground state for both Abelian and non-Abelian Chern-Simons
theories.

B. Two adjacent noncontractible regions on a torus
with contractible B

In this part, as shown in Fig. 8(c), we will calculate the
mutual information of two adjacent noncontractible regions
A1 and A2 with a contractible region B. In Sec. III, the
entanglement entropy of A = A1 ∪ A2 has already been
calculated [see Eq. (3.24)]. To calculate the mutual information
between A1 and A2, one only needs to further calculate SA1(A2)

as follows.
Given the ground state in Eq. (4.1), the state at the interface

(including the components b1, b2, and b3) can be written as

|ψ〉 = ∣∣hb3
I

〉〉⊗∑
a

ψa

∣∣hb1
a

〉〉⊗ ∣∣hb2
a

〉〉
. (4.10)

Then it is straightforward to check that the reduced density
matrix for A1 has the expression

ρA1 = trA2∪B |ψ〉〈ψ |
= ρ

b3
A1,I

⊗
∑

a

|ψa|2ρb1
A1,a

⊗ ρ
b2
A1,a

, (4.11)

where ρ
bi

Ai ,a
has the form

ρ
bi

A1,a =
∑
Ni,ji

1

n
bi
a

e
− 8πε

li
(ha+N− c

24 )∣∣hbi

a ,Ni ; ji

〉〈
hbi

a ,Ni ; ji

∣∣.
(4.12)
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Then one can obtain

Tr
(
ρn

A1

) = e
πc(l1+l2+l3)

48ε
( 1

n
−n)(S00)1−n

∑
a

|ψa|2n(Sa0)2−2n,

(4.13)
where we have used modular transformation of the character
χhi

and taken the thermodynamic limit li/ε → ∞. Based on
Tr(ρn

A1
) in Eq. (4.13), we can obtain the Renyi entropy and the

von Neumann entropy of subsystem A1 as follows:

S
(n)
A1

=1 + n

n

πc

48

l1 + l2 + l3

ε
− 3 lnD

+ 1

1 − n
ln
∑

a

|ψa|2nd2−2n
a ,

SvN
A1

=2πc

48

l1 + l2 + l3

ε
− 3 lnD

+ 2
∑

a

|ψa|2 ln da −
∑

a

|ψa|2 ln |ψa|2. (4.14)

The same results can be obtained for S
(n)
A2

and SvN
A2

by simply
replacing l3 with l4. Then based on Eqs. (3.24) and (4.14),
one can obtain the mutual information between A1 and A2 as
follows:

I
(n)
A1A2

= 1 + n

n

2πc

48

l1 + l2

ε
− 4 lnD

+ 2

1 − n
ln
∑

a

|ψa|2nd2−2n
a ,

IA1A2 = 4πc

48

l1 + l2

ε
− 4 lnD

+ 4
∑

a

|ψa|2 ln da − 2
∑

a

|ψa|2 ln |ψa|2. (4.15)

It is found that the mutual information in Eq. (4.15) does not
change if we take B → ∅, which corresponds to the bipartition
of a torus (see Fig. 2).

C. Two disjoint noncontractible regions on a torus

In this part we consider two disjoint noncontractible regions
A1 and A2 on a torus, as shown in Fig. 8(d). For this
case, the mutual information between A1 and A2 can be
easily calculated based on our previous results. First, it is
straightforward to check that S

(n)
A = S

(n)
B , with A = A1 ∪ A2.

This can be understood based on the fact that the torus is
bipartited into A = A1 ∪ A2 and B. Then, based on Eqs. (3.23)
and (4.8), one can immediately get the Renyi and von Neumann
mutual information between A1 and A2 as follows:

I
(n)
A1A2

= 2

1 − n
ln
∑

a

|ψa|2n

(
da

D

)2−2n

− 1

1 − n
ln
∑

a

|ψa|2n

(
da

D

)4−4n

= 1

1 − n
ln

(∑
a |ψa|2nd2−2n

a

)2∑
a |ψa|2nd4−4n

a

,

IA1A2 = −
∑

a

|ψa|2 ln |ψa|2. (4.16)

Some remarks on the results of mutual information in
Eq. (4.16) are in order.

(1) For both I
(n)
A1A2

and IA1A2 , the area law term disappears.
That is to say, short-scale degrees of freedom cancel in the
mutual information of two disjoint regions. This is very helpful
for numerical calculations, because one needs not to calculate
the entanglement entropy for different lengths of interface. It is
noted that for the mutual information of two adjacent regions
in Eqs. (4.2) and (4.3), the short-scale degrees of freedom does
not cancel.

(2) The universal parts of I
(n)
A1A2

and IA1A2 result from the
fluctuations of the Wilson loop. If we set ψa′ = δaa′ , i.e., the
Wilson loop stays in a definite topological sector a, then both
I

(n)
A1A2

and IA1A2 vanish.
(3) The result of mutual information IA1A2 in Eq. (4.16)

was also obtained in Ref. [32] by using the surgery method.
In that work, the mutual information IA1A2 was considered
as a unified quantity to describe both conventional orders
and topological orders. For conventional orders which are
characterized by the spontaneous symmetry breaking, it is
found that the mutual information has the same expression as
Eq. (4.16). Here we emphasize that this is not the case for
the Renyi mutual information I

(n)
A1A2

with n > 1. As shown in
Eq. (4.16), the Renyi mutual information depends on both the
choice of ground state and the quantum dimensions da which
are absent in conventional orders. In short, the Renyi mutual
information contains more information than the von Neumann
mutual information. On the other hand, if we focus on the
Abelian Chern-Simons theories, Eq. (4.16) can be further
simplified as

I
(n)
A1A2

= 1

1 − n
ln
∑

a

|ψa|2n, (4.17)

which can still be used as a unified quantity to describe both
conventional orders and Abelian topological orders.

V. TOPOLOGICAL ENTANGLEMENT NEGATIVITY

In this section we will study the entanglement negativity
defined for two spatial regions in Chern-Simons theories. Note
that both the mutual information and the entanglement nega-
tivity are useful for understanding the entanglement property
of a mixed state. As will be seen later, however, compared
to the mutual information, the entanglement negativity may
provide different information on the underlying theory. At the
technical level, the calculations of the entanglement negativity
require a new layer of complexity—taking partial transpose of
the reduced density matrix—as compared to the entanglement
entropy or mutual information.

A. Left-right entanglement negativity

In this part, for illustration purpose, we will calculate the
entanglement negativity between the left-moving modes and
the right-moving modes of the general state in Eq. (2.7), i.e.,

|ψ〉 =
∑

a

ψa|ha〉〉. (5.1)
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We start from the density matrix as follows:

ρ = |ψ〉〈ψ | =
∑
a,a′

ψaψ
∗
a′ |ha〉〉〈〈ha′ |

=
∑
a,a′

ψaψ
∗
a′

1√
na

√
na′

×
∑
N,j

∑
N ′,j ′

e− 4πε
l

(ha+N− c
24 )e− 4πε

l
(ha′+N ′− c

24 )

× |ha,N ; j 〉 ⊗ |ha,N ; j 〉〈ha′ ,N ′; j ′| ⊗ 〈ha′ ,N ′; j ′|.
(5.2)

Next, without loss of generality, let us take partial transposition
over the right-moving modes. Then one can obtain

ρTR =
∑
a,a′

ψaψ
∗
a′

1√
na

√
na′

×
∑
N,j

∑
N ′,j ′

e− 4πε
l

(ha+N− c
24 )e− 4πε

l
(ha′+N ′− c

24 )

× |ha,N ; j 〉 ⊗ |ha′,N ′; j ′〉〈ha′ ,N ′; j ′| ⊗ 〈ha,N ; j |,
(5.3)

where TR(L) represents the partial transposition over the
right(left)-moving modes. To calculate the entanglement neg-
ativity ELR , we can use the definitions either in Eq. (1.7) or
in Eq. (1.8). In the main text of this work, we will use the
definition in Eq. (1.8). For the readers who are interested in
the calculation of ELR based on Eq. (1.7), one can find the
explicit calculation in Appendix B.

Based on the expression of ρTR in Eq. (5.3), one can get

Tr(ρTR )ne =
[∑

a

|ψa|ne
1

(na)ne/2
χha

(
e− 4πneε

l

)]2

→
[
e

πcl
24ε

( 1
ne

− ne
4 )
∑

a

|ψa|ne (Sa0)1− ne
2

]2

, (5.4)

where we take the thermodynamic limit in the second line.
Therefore, by using the definition in Eq. (1.8), one can
immediately obtain the entanglement negativity between the
left-moving modes and the right-moving modes as follows:

ELR = lim
ne→1

ln Tr(ρTR )ne

= 3πc

48

l

ε
− lnD + 2 ln

(∑
a

|ψa|
√

da

)
.

(5.5)

By comparing with S
(n)
L in Eq. (2.20), it is found that ELR

equals to the 1/2 Renyi entropy, i.e.,

ELR = S
(1/2)
L = S

(1/2)
R . (5.6)

This is actually a property of the entanglement negativity for a
general pure state [22]. Here we demonstrate it for the left-right
entanglement negativity through an explicit calculation. It is
noted that for ψi = δia , the universal parts of the entanglement
negativity are

E top
LR = − lnD + ln da, (5.7)

which are the same as the universal parts of the Renyi/von
Neumann entropy.

Before we end this part, the readers may be curious to ask
what is the result of Tr(ρTR )

n
if we choose n to be odd in

Eq. (5.4). After some simple algebra, one has

Tr(ρTR )no =
∑

a

|ψa|2no
1

(na)no
χha

(
e− 8πεno

l

)
. (5.8)

By comparing with Eq. (2.16), it is found that Tr(ρTR )
no =

Trρn0
L , and therefore limn0→1 Tr(ρTR )

no = TrρL = 1, which is
trivial.

B. Bipartition of a torus

For the bipartition of a torus in Figs. 2(a) and 2(b), EAB can
be immediately obtained by considering the property of the
entanglement negativity for a pure state, i.e., EAB = S

(1/2)
A =

S
(1/2)
B . Then the entanglement negativity EAB corresponding to

Figs. 2(a) and 2(b) has the following form:

E (a)
AB = (

S
(a)
A

)(1/2)

= 3πc

48

l1 + l2

ε
− 2 lnD + 2 ln

(∑
a

|ψa|da

)
,

E (b)
AB = (

S
(b)
A

)(1/2) = 3πc

48

l1 + l2

ε
− 2 lnD. (5.9)

From the above analysis, one can find that for a pure state,
the entanglement negativity cannot provide more information
than the Renyi entropy. As mentioned in the Introduction,
the entanglement negativity becomes more useful for a mixed
state. In the following parts, we will mainly focus on the
entanglement negativity for different cases of mixed states.

C. Two adjacent noncontractible regions on a torus
with noncontractible B

For two adjacent noncontractible regions on a torus with
noncontractible B, similar with the discussion on the mutual
information, we mainly focus on the two cases in Figs. 8(a)
and 8(b). In Fig. 8(a) the two adjacent regions A1 and A2

share a one-component A1A2 interface, and in Fig. 8(b) the
two adjacent regions share a two-component A1A2 interface.
In the following, we will study the entanglement negativity
between A1 and A2 for these two cases separately.

1. One-component interface

Let us start with the entanglement negativity EA1A2 between
two adjacent noncontractible regions A1 and A2 on a torus, as
shown in Fig. 8(a). Given the general ground state in Eq. (4.1),
the state at the interface (including the components b1, b2, and
b3) can be written as

|ψ〉 =
∑

a

ψa

⊗
i=1,2,3

∣∣hbi

a

〉〉
. (5.10)

Then it is straightforward to check that the reduced density
matrix for A = A1 ∪ A2 has the expression

ρA1∪A2 = TrB |ψ〉〈ψ | =
∑

a

|ψa|2
⊗

i=1,2,3

ρ
bi

A,a, (5.11)
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where

ρ
b1
A,a = 1

n
b1
a

∑
N1,j1

e
− 8πε

l1
(ha+N1− c

24 )∣∣hb1
a ,N1; j1

〉〈
h

b1
a ,N1; j1

∣∣,
ρ

b3
A,a = 1

n
b3
a

∑
N3,j3

e
− 8πε

l3
(ha+N3− c

24 )∣∣hb3
a ,N3; j3

〉〈
hb3

a ,N3; j3

∣∣,
ρ

b2
A,a = 1

n
b2
a

∑
N2,j2

∑
N ′

2,j
′
2

e
− 4πε

l2
(ha+N2− c

24 )
e
− 4πε

l2
(ha+N ′

2− c
24 )

× ∣∣hb2
a ,N2,j2

〉∣∣hb2
a ,N2; j2

〉〈
hb2

a ,N ′
2; j ′

2

∣∣〈hb2
a ,N ′

2; j ′
2

∣∣.
(5.12)

By taking partial transposition over the subsystem A2, one
obtains

ρ
T2
A1∪A2

=
∑

a

|ψa|2ρb1
A,a ⊗ (

ρ
b2
A,a

)T2 ⊗ (
ρ

b3
A,a

)T
=
∑

a

|ψa|2ρb1
A,a ⊗ (

ρ
b2
A,a

)T2 ⊗ ρ
b3
A,a, (5.13)

where

(
ρ

b2
A,a

)T2 = 1

n
b2
a

∑
N2,j2

∑
N ′

2,j
′
2

e
− 4πε

l2
(ha+N2− c

24 )
e
− 4πε

l2
(ha+N ′

2− c
24 )

× ∣∣hb2
a ,N2,j2

〉∣∣hb2
a ,N ′

2; j ′
2

〉〈
hb2

a ,N ′
2; j ′

2

∣∣〈hb2
a ,N2; j2

∣∣,
with T2 representing the partial transposition over the sub-
system A2. After some algebra, one obtains, by taking the
thermodynamic limit,

Tr
(
ρ

T2
A1∪A2

)ne =
∑

a

|ψa|2ne
χha

(
e
− 8πneε

l1
)

(
n

b1
a

)ne

χha

(
e
− 8πneε

l3
)

(
n

b3
a

)ne

× χha

(
e
− 4πneε

l2
)
χha

(
e
− 4πneε

l2
)

(
n

b2
a

)ne

→
∑

a

|ψa|2ne (Sa0)2−2nee
πc(l1+l3)

48ε
( 1

ne
−ne)

× (Sa0)2−nee
πcl2
48ε

( 4
ne

−ne). (5.14)

Based on the definition (1.8), one can immediately obtain the
entanglement negativity as

EA1A2 = lim
ne→1

ln Tr
(
ρ

T2
A1∪A2

)ne

= 3πc

48

l2

ε
− lnD + ln

(∑
a

|ψa|2da

)
. (5.15)

It is noted that the first term, which is the area law term, is
proportional to the length of the interface between A1 and
A2, but has nothing to do with the interface between A1(A2)
and B, as expected. The second and third terms are related
only to the quantum dimensions and the choice of ground
state, and therefore are universal. We call the second and
third terms in Eq. (5.15) “topological entanglement negativity.”

In particular, the third term is very useful since it can
distinguish Abelian and non-Abelian theories. For an Abelian
Chern-Simons theory, we have da = 1 for each topological
sector a, and therefore ln (

∑
a |ψa|2da) = ln (

∑
a |ψa|2) = 0.

For a non-Abelian Chern-Simons theory, however, we have
da �= 1 for at least one topological sector, and therefore
ln (
∑

a |ψa|2da) �= 0 for a general ground state. In practice,
one can tune the ground state of a topological system, and
observe if the topological entanglement negativity changes
accordingly or not. This provides us a convenient way to
distinguish an Abelian theory from a non-Abelian theory.

In Ref. [23] the entanglement negativity for a toric code
model was studied. For the case of two adjacent noncon-
tractible regions as discussed in this part, they found that
the entanglement negativity is independent of the choice of
ground state. This may be easily understood based on our
result in Eq. (5.15) considering that the toric code model is in
an Abelian phase.

As a comparison, it is noted that the mutual information
IA1A2 for two adjacent noncontractible regions on a torus
depends on the choice of ground state for both Abelian and
non-Abelian phases [see Eqs. (4.2)–(4.3)]. In other words, the
mutual information of two adjacent noncontractible regions
on a torus cannot distinguish an Abelian theory from a
non-Abelian theory. From this point of view, the entanglement
negativity is more useful in distinguishing different topological
phases.

2. Two-component interface

Let us now consider the set up in Fig. 8(b), where now
the two adjacent noncontractible regions A1 and A2 share a
two-component A1A2 interface. For the general ground state
(4.1), the state at the interface (including the components b1,
b2, b3, and b4) has the expression

|ψ〉 =
∑

a

ψa

⊗
i=1,2,3,4

∣∣hbi

a

〉〉
. (5.16)

The reduced density matrix for A1 ∪ A2 can be expressed as

ρA1∪A2 = TrB |ψ〉〈ψ | =
∑

a

|ψa|2
⊗

i=1,2,3,4

ρ
bi

A,a, (5.17)

where

ρ
b1
A,a = 1

n
b1
a

∑
N1,j1

∑
N ′

1,j
′
1

e
− 4πε

l2
(ha+N1− c

24 )
e
− 4πε

l2
(ha+N ′

1− c
24 )

× ∣∣hb1
a ,N1,j1

〉∣∣hb1
a ,N1; j1

〉〈
h

b1
a ,N ′

1; j ′
1

∣∣〈hb1
a ,N ′

1; j ′
1

∣∣,
(5.18)

ρ
b2
A,a = 1

n
b2
a

∑
N2,j2

∑
N ′

2,j
′
2

e
− 4πε

l2
(ha+N2− c

24 )
e
− 4πε

l2
(ha+N ′

2− c
24 )

× ∣∣hb2
a ,N2,j2

〉∣∣hb2
a ,N2; j2

〉〈
hb2

a ,N ′
2; j ′

2

∣∣〈hb2
a ,N ′

2; j ′
2

∣∣,
(5.19)

ρ
b3
A,a = 1

n
b3
a

∑
N3,j3

e
− 8πε

l3
(ha+N3− c

24 )∣∣hb3
a ,N3; j3

〉〈
h

b3
a ,N3; j3

∣∣,
(5.20)
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and

ρ
b4
A,a = 1

n
b4
a

∑
N4,j4

e
− 8πε

l4
(ha+N4− c

24 )∣∣hb4
a ,N4; j4

〉〈
hb4

a ,N4; j4

∣∣.
(5.21)

Taking a partial transposition over region A2, one can get

ρ
T2
A1∪A2

=
∑

a

|ψa|2
(
ρ

b1
A,a

)T2 ⊗ (
ρ

b2
A,a

)T2 ⊗ ρ
b3
A,a ⊗ ρ

b4
A,a,

(5.22)
where(

ρ
b1
A,a

)T2 = 1

n
b1
a

∑
N1,j1

∑
N ′

1,j
′
1

e
− 4πε

l1
(ha+N1− c

24 )
e
− 4πε

l1
(ha+N ′

1− c
24 )

× ∣∣hb1
a ,N1,j1

〉∣∣hb1
a ,N ′

1; j ′
1

〉〈
h

b1
a ,N ′

1; j ′
1

∣∣〈hb1
a ,N1; j1

∣∣
(5.23)

and(
ρ

b2
A,a

)T2 = 1

n
b2
a

∑
N2,j2

∑
N ′

2,j
′
2

e
− 4πε

l2
(ha+N2− c

24 )
e
− 4πε

l2
(ha+N ′

2− c
24 )

× ∣∣hb2
a ,N2,j2

〉∣∣hb2
a ,N ′

2; j ′
2

〉〈
hb2

a ,N ′
2; j ′

2

∣∣〈hb2
a ,N2; j2

∣∣.
(5.24)

Then one can obtain, by taking the thermodynamic limit,

Tr
(
ρ

T2
A1∪A2

)ne =
∑

a

|ψa|2ne

∏
i=3,4

χha
(e− 8πneε

li )(
n

bi
a

)ne

×
∏

i=1,2

χha

(
e
− 4πneε

li

)
χha

(
e
− 4πneε

li

)
(
n

bi
a

)ne

→
∑

a

|ψa|2ne (Sa0)2−2nee
πc(l3+l4)

48ε
( 1

ne
−ne)

× (Sa0)4−2nee
πc(l1+l2)

48ε
( 4

ne
−ne). (5.25)

Therefore, one can obtain the entanglement negativity between
A1 and A2 as follows:

EA1A2 = lim
ne→1

ln Tr
(
ρ

T1
A1∪A2

)ne

= 3πc

48

l1 + l2

ε
− 2 lnD + ln

(∑
a

|ψa|2d2
a

)
. (5.26)

Similar with the result of one-component A1A2 interface in
Eq. (5.15), one can find that EA1A2 is dependent (independent)
of the choice of ground state for non-Abelian (Abelian)
theories.

Therefore, the entanglement negativity of two adjacent
noncontractible regions for both configurations in Figs. 8(a)
and 8(b) can serve as a quantity to distinguish an Abelian
theory from a non-Abelian theory.

D. Two adjacent noncontractible regions on a torus
with contractible B

In this part we study the entanglement negativity of two
adjacent noncontractible regions A1 and A2 with a contractible
region B, as shown in Fig. 8(c). For the general ground state in
Eq. (4.1), the state at the interface (including the components
b1, b2, b3, and b4) can be expressed as

|ψ〉 = ∣∣hb3
I

〉〉⊗ ∣∣hb4
I

〉〉⊗∑
a

ψa

∣∣hb1
a

〉〉⊗ ∣∣hb2
a

〉〉
. (5.27)

Then the reduced density matrix for A = A1 ∪ A2 can be
obtained as follows:

ρA1∪A2 = ρ
b3
A,I ⊗ ρ

b4
A,I

⊗
∑
aa′

ψaψ
∗
a′
∣∣hb1

a

〉〉〈〈
h

b1
a′
∣∣⊗ ∣∣hb2

a

〉〉〈〈
h

b2
a′
∣∣, (5.28)

where

ρ
b3
A,I =

∑
N,j

1

n
b3
I

e
− 8πε

l3
(hI +N− c

24 )∣∣hb3
I ,N ; j

〉〈
h

b3
I ,N ; j

∣∣,
ρ

b4
A,I =

∑
N,j

1

n
b4
I

e
− 8πε

l4
(hI +N− c

24 )∣∣hb4
I ,N ; j

〉〈
h

b4
I ,N ; j

∣∣. (5.29)

The explicit expression of ρA1∪A2 is as follows:

ρA1∪A2 = ρ
b3
A,I ⊗ ρ

b4
A,I ⊗

∑
a,a′

ψaψ
∗
a′

1√
n

b1
a

√
n

b1
a′

1√
n

b2
a

√
n

b2
a′

×
⎛
⎝∑

N1,j1

∑
N ′

1,j
′
1

e
− 4πε

l1
(ha+N1− c

24 )
e
− 4πε

l1
(ha′+N ′

1− c
24 )∣∣hb1

a ,N1; j1
〉∣∣hb1

a ,N1; j1
〉〈
h

b1
a′ ,N

′
1; j ′

1

∣∣〈hb1
a′ ,N

′
1; j ′

1

∣∣
⎞
⎠

⊗
⎛
⎝∑

N2,j2

∑
N ′

2,j
′
2

e
− 4πε

l2
(ha+N2− c

24 )
e
− 4πε

l2
(ha′+N ′

2− c
24 )∣∣hb2

a ,N2; j2
〉∣∣hb2

a ,N2; j2
〉〈
h

b2
a′ ,N

′
2; j ′

2

∣∣〈hb2
a′ ,N

′
2; j ′

2

∣∣
⎞
⎠. (5.30)
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Next, we take partial transposition over A2 on the reduced density matrix ρA1∪A2 . Then one can get

ρ
T2
A1∪A2

= ρ
b3
A,I ⊗ ρ

b4
A,I ⊗

∑
a,a′

ψaψ
∗
a′

1√
n

b1
a

√
n

b1
a′

1√
n

b2
a

√
n

b2
a′

×
⎛
⎝∑

N1,j1

∑
N ′

1,j
′
1

e
− 4πε

l1
(ha+N1− c

24 )
e
− 4πε

l1
(ha′+N ′

1− c
24 )∣∣hb1

a ,N1; j1
〉∣∣hb1

a′ ,N
′
1; j ′

1

〉〈
h

b1
a′ ,N

′
1; j ′

1

∣∣〈hb1
a ,N1; j1

∣∣
⎞
⎠

⊗
⎛
⎝∑

N2,j2

∑
N ′

2,j
′
2

e
− 4πε

l2
(ha+N2− c

24 )
e
− 4πε

l2
(ha′+N ′

2− c
24 )∣∣hb2

a ,N2; j2
〉∣∣hb2

a′ ,N
′
2; j ′

2

〉〈
h

b2
a′ ,N

′
2; j ′

2

∣∣〈hb2
a ,N2; j2

∣∣
⎞
⎠. (5.31)

After some tedious but straightforward algebra, one can get

Tr
(
ρ

T2
A1∪A2

)ne = 1(
n

b3
a

)ne
χhI

(
e
− 8πnε

l3
) 1(

n
b4
a

)ne
χhI

(
e
− 8πnε

l4
)⎡⎣∑

a

|ψa|ne
χha

(
e
− 4πneε

l1
)

(
n

b1
a

)ne/2

χha

(
e
− 4πneε

l2
)

(
n

b2
a

)ne/2

⎤
⎦

2

→ e
πc(l3+l4)

48ε
( 1

ne
−ne)S2−2ne

00

[
e

πc(l1+l2)
24ε

( 1
ne

− ne
4 )
∑

a

|ψa|ne (Sa0)2−ne

]2

. (5.32)

Then the entanglement negativity between A1 and A2 can be
expressed as

EA1A2 = lim
ne→1

ln Tr
(
ρ

T1
A1∪A2

)ne

= 3πc

48

l1 + l2

ε
− 2 lnD + 2 ln

(∑
a

|ψa|da

)
, (5.33)

which is the same as the result in Eq. (5.9) for a bipartited
torus. For this case, the entanglement negativity depends on
the choice of ground state for both Abelian and non-Abelian
Chern-Simons theories.

E. Two disjoint noncontractible regions on a torus

In this part we consider the entanglement negativity EA1A2

between two disjoint noncontractible regions A1 and A2 on a
torus, as shown in Fig. 8(d). For the general ground state in
Eq. (4.1), the state at the interface (including the components
b1, b2, b3, and b4) can be written as

|ψ〉 =
∑

a

ψa

⊗
i=1,...,4

∣∣hbi

a

〉〉
, (5.34)

where i = 1,2 correspond to the interface between A1 and B,
and i = 3,4 correspond to the interface between A2 and B. It
is straightforward to check that

ρA1∪A2 =
∑

a

|ψa|2ρA1,a ⊗ ρA2,a, (5.35)

where

ρA1,a = e−8πε/l1

n
b1
a

∑
N1,j1

∣∣hb1
a ,N1; j1

〉〈
h

b1
a ,N1; j1

∣∣

⊗ e−8πε/l2

n
b2
a

∑
N1,j1

∣∣hb2
a ,N1; j1

〉〈
hb2

a ,N1; j1

∣∣ (5.36)

and

ρA2,a = e−8πε/l3

n
b3
a

∑
N3,j3

∣∣hb3
a ,N3; j3

〉〈
hb3

a ,N3; j3

∣∣

⊗ e−8πε/l4

n
b4
a

∑
N4,j4

∣∣hb4
a ,N4; j4

〉〈
h

b4
a ,N4; j4

∣∣. (5.37)

In this case, the partial transposition of ρA1∪A2 over A2 can be
expressed as

ρ
T2
A1∪A2

=
∑

a

|ψa|2ρA1,a ⊗ (
ρA2,a

)T
=
∑

a

|ψa|2ρA1,a ⊗ ρA2,a

= ρA1∪A2 , (5.38)

based on which one obtains Tr(ρT2
A1∪A2

)ne = Tr(ρA1∪A2 )ne for
two disjoint regions. Then the entanglement negativity simply
reads

EA1A2 = lim
ne→1

ln Tr
(
ρ

T2
A1∪A2

)ne = 0. (5.39)

In Ref. [23] the same conclusion was obtained based on the
toric code model. Here we demonstrate it for a general Chern-
Simons field theory.

VI. CONCLUSIONS

In this work we develop an edge theory approach to study
the topological entanglement entropy, mutual information, and
entanglement negativity in Chern-Simons theories. Compared
to prior works, we propose a new regularized state to describe
the spatial quantum entanglement in Chern-Simons theories.
An advantage of our approach, as compared to, e.g., the
surgery method [31], is that there is no need to consider the
three-dimensional space-time manifold which may be quite
complicated. For all the cases studied by the replica and
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surgery method, our edge theory approach reproduces the same
results.

In addition, our edge theory approach is very flexible to
include various factors in the calculation of entanglement,
including the choice of ground state, the fusion and braiding of
Wilson lines, and so on. In particular, through an interference
effect, we can detect the R symbols and the monodromy of
two quasipartilces/anyons in the entanglement entropy. We
also generalize our edge theory approach to the calculation of
entanglement entropy for a manifold of genus g.

Furthermore, our edge theory approach is also applied
to the calculation of topological mutual information and
entanglement negativity in a mixed state. To our knowledge,
this is the first calculation of the entanglement negativity for a
general Chern-Simons theory. It is found that the entanglement
negativity between two adjacent noncontractible regions on a
torus provides a simple way to distinguish an Abelian Chern-
Simons theory from a non-Abelian Chern-Simons theory. To
be concrete, for two adjacent noncontractible regions on a
tripartited torus, the entanglement negativity is independent
of the choice of ground state for an Abelian Chern-Simons
theory. On the other hand, for a non-Abelian Chern-Simons
theory, the entanglement negativity depends on the choice of
ground state. In the previous works [42,43], to distinguish a
non-Abelian phase from an Abelian phase for a microscopic
model, one needs to tune the ground state to find out the MESs,
based on which one can further obtain the quantum dimension
corresponding to each anyon. With the method in our work,
we only need to check whether the topological entanglement
negativity is dependent on the choice of ground state or not,
which is much easier in practice.

There are also some future problems we are interested in.
For example, in this paper we mainly focus on the quantum
entanglement in Chern-Simons theories. It is interesting to
generalize our approach to nonchiral TQFTs. In addition, it
is also interesting to apply the concept of charged and shifted
topological entanglement entropy that was proposed recently
[44] to a general TQFT based on the edge theory approach
developed in this work.
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APPENDIX A: ON MODULAR TENSOR CATEGORIES

In this Appendix, for the completeness of this work, we
give a short review of the modular tensor category (MTC)
description of a (2+1)-dimensional topological quantum field
theory. We will mainly review the properties of MTCs that

are frequently used in this work. For more details and other
interesting properties of MTCs, the readers may refer to
Refs. [45–48].

The MTCs are also known as anyon models in physics. For
an anyon model, one has a finite set C of superselection sectors
which are called topological or anyonic charges. These anyons
are usually labeled by a,b,c, . . . , and they satisfy the so-called
fusion algebra

a ⊗ b =
⊕
c∈C

Nc
abc, (A1)

where the fusion coefficients Nc
ab are non-negative integers,

which denote different ways that the anyon charges a and b fuse
into c. Here we use the direct sum ⊕ to emphasize that different
anyons lie in different Hilbert spaces. For each anyon model,
there exists a trivial vacuum charge I ∈ C, or the identity. Each
charge a has its own conjugate charge ā ∈ C so that NI

aā = 1.
For each fusion product in Eq. (A1), we may assign a fusion
vector space V ab

c which is spanned by the orthonormal set
of basis vectors |a,b; c,μ〉, with μ = 1, . . . ,Nc

ab. If the fusion
coefficients Nc

ab are equal to 0 or 1, we call the fusion rules
multiplicity free.

The fusion rules in Eq. (A1) are commutative and associa-
tive. For commutative, it means a ⊗ b = b ⊗ a, and therefore
Nc

ab = Nc
ba . For associative, it means the results of (a ⊗ b) ⊗ c

and a ⊗ (b ⊗ c) should be equivalent to each other. Then it is
required that ∑

d,e

Nd
abN

e
dc =

∑
d,e

Ne
adN

d
bc. (A2)

Another quantity we frequently used in the main text is the
quantum dimension da , which reflects the nontrivial internal
Hilbert space of the anyon a. It may be found by considering
the dimension of the fusion space of n anyons a with large n,

dim

(∑
cn

V cn

a···a

)
=

∑
c2,...,cn

Nc2
aaN

c3
c2a

· · · Ncn

cn−1a
∼ dn

a . (A3)

For arbitrary anyon models, one has da � 1. If the quantum
dimensions of all the anyons in a TQFT are equal to 1, then
the theory is Abelian. On the other hand, if there exist anyons
with quantum dimensions >1, then the theory is non-Abelian.
The total quantum dimension of a TQFT is defined as

D =
√∑

a

d2
a . (A4)

With the quantum dimension introduced, the probability of
fusing two anyons a and b into anyon c can be expressed as

Pab→c = Nc
ab

dc

dadb

. (A5)

The constraint
∑

c Pab→c = 1 indicates that

dadb =
∑

c

Nc
abdc. (A6)

Another useful concept in a TQFT is braiding. The effect of
switching two anyons a and b adiabatically is described by
the braiding operator Rab. It acts on the Hilbert space V ab

c as
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follows:

Rab|a,b; c,μ〉 =
∑

ν

[
Rab

c

]
μν

|b,a; c,ν〉, (A7)

or diagrammatically

, (A8)

where Rab
c are the so-called R symbols, which are unitary

matrices satisfying[(
Rab

c

)−1]
μν

= [(
Rab

c

)†]
μν

= [
Rab

c

]∗
νμ

. (A9)

For a fusion multiplicity-free theory, the R symbol reduces to
a phase.

Based on R symbols, one can study the effect of double
braiding of two anyons a and b, which is governed by the
monodromy equation, or ribbon property∑

λ

[
Rab

c

]
μλ

[
Rba

c

]
λν

= θc

θaθb

δμν, (A10)

where θa is a root of unity called the topological spin of anyon
a. It is related to the spin, or the scaling dimension ha in CFT
as

θa = ei2πha . (A11)

Alternatively, the topological spin θa can be expressed in terms
of R symbols as follows:

θa = 1

da

∑
c

dcTrc
[
Raa

c

]
. (A12)

Furthermore, given the R symbols, one can also construct
the modular S and T matrices as follows:

Sab =
∑

c

Nc
abTr

[
Rab

c Rba
c

]
dc = 1

D
∑

c

Nc
ab

θc

θaθb

dc (A13)

and

Tab = θaδab. (A14)

In MTCs, the modular S and T matrices are unitary matrices
satisfying S†S = SS† = 1 and T †T = T T † = 1. In addition,
from Eq. (A13), it is straightforward to check that

da = Sa0

S00
= S0a

S00
and D = 1

S00
. (A15)

Other useful quantities such as the F symbols will not be
reviewed here, and one can refer to Refs. [45–47] for more
details.

1. Gauge freedom

For any anyon models, there is a gauge freedom coming
from the choice of bases in the fusion vector space V ab

c . We
can always apply a unitary transformation in the vector space
V ab

c without changing the theory. By using the notation where

[uab
c ]

μ,μ′ represents the unitary transformation of bases, i.e.,

|a,b; c,μ〉 =
∑
μ′

[
uab

c

]
μμ′ |a,b; c,μ′〉, (A16)

the R symbols transform as

[
Rab

c

]′
μ′ν ′ =

∑
μ,ν

[(
uab

c

)−1]
μ′μ

[
Rab

c

]
μν

[
uba

c

]
νν ′ . (A17)

For simplicity, let us consider the multiplicity-free case. Then
the unitary transformations uab

c are simply complex phases. In
this case, the R symbols transform as

[
Rab

c

]′ = uba
c

uab
c

Rab
c . (A18)

It is found that the R symbols are gauge dependent for a �=
b. For a = b, however, one always has [Raa

c ]′ = Raa
c , which

means Raa
c is a gauge invariant quantity.

The double braiding defined in Eq. (A10) transforms as

[
Mab

c

]′
:= [

Rab
c

]′[
Rba

c

]′ = uba
c

uab
c

Rab
c

uab
c

uba
c

Rba
c

= Rab
c Rba

c = Mab
c , (A19)

which indicates that Mab
c is gauge invariant for arbitrary a and

b. In a similar way, one can check that all the nontrivial F

symbols are gauge choice dependent [47].

2. Topological data for SU(2)k theories

In this part we give a brief review of the topological data
of SU(2)k anyon theories [47]. The SU(2)k anyon theories are
q-deformed versions of the usual SU(2) for q = e−2πi/(k+2).
In other words, the integers in SU(2) are replaced by the
q numbers [n]q ≡ qn/2−q−n/2

q1/2−q−1/2 . These anyon theories describe
SU(2)k Chern-Simons theories, WZW CFTs, and the Jones
polynomials of knot theory. The anyonic charges of a SU(2)k
anyon theory is given by C = {0, 1

2 , . . . , k
2 }.

The fusion rules are given by a general version of the
addition rules for a SU(2) spin:

j1 ⊗ j2 = ⊕min{j1+j2,k−j1−j2}
j=|j1−j2| j, (A20)

with j ∈ C. The fusion rules can be alternatively written as

j1 ⊗ j2 = ⊕jN
j

j1j2
j

= |j1 − j2| ⊕ |j1 − j2| + 1 ⊕ · · ·
⊕min{j1 + j2,k − j1 − j2}. (A21)

The R symbols are given by the general formula

R
j1,j2
j = (−1)j−j1−j2q

1
2 [j1(j1+1)+j2(j2+1)−j (j+1)], (A22)

based on which we can get the topological spins

θj = ei2π
j (j+1)
k+2 . (A23)
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In addition, based on the R symbols, one can also obtain the
modular S matrix and T matrix according to Eqs. (A13) and
(A14), respectively. The quantum dimension for anyon j has
the expression

dj = sin
( (2j+1)π

k+2

)
sin
(

π
k+2

) , (A24)

and the total quantum dimension is

D =
√∑

i

d2
i =

√
k+2

2

sin
(

π
k+2

) . (A25)

For other topological data such as the F moves (or F symbols),
one can refer to, e.g., Ref. [47].

APPENDIX B: ALTERNATIVE CALCULATIONS OF ENTANGLEMENT NEGATIVITY FOR DIFFERENT CASES

1. Left-right entanglement negativity

In the main text we calculate the left-right entanglement negativity ELR based on the definition in Eq. (1.8). In this Appendix
we give an explicit calculation of ELR based on the definition in Eq. (1.7), i.e.,

ELR = ln Tr|ρTR |. (B1)

For the state in Eq. (5.1), |ρTR | can be evaluated as follows:

|ρTR | =
√

(ρTR )†ρTR , (B2)

where

(ρTR )†ρTR =
∑
aa′

|ψa|2|ψa′ |2 1

nana′

∑
N,j

∑
N ′,j ′

e− 8πε
l

(ha+N− c
24 )e− 8πε

l
(ha′+N ′− c

24 )|ha′ ,N ′; j ′〉 ⊗ |ha,N ; j 〉〈ha′ ,N ′; j ′| ⊗ 〈ha,N ; j |,

(B3)

which is of the diagonal form. Then one can get

|ρTR | =
∑
aa′

∑
N,j

∑
N ′,j ′

|ψa||ψa′ | 1√
nana′

e− 4πε
l

(ha+N− c
24 )e− 4πε

l
(ha′+N ′− c

24 )|ha′,N ′; j ′〉 ⊗ |ha,N ; j 〉〈ha′ ,N ′; j ′| ⊗ 〈|ha,N ; j |.

(B4)

Then the left-right entanglement negativity may be expressed as

ELR = ln Tr|ρTR | = 2 ln

{∑
a

|ψa|
χha

(
e− 4πε

l

)
√

na

}
→ 2 ln

(∑
a

|ψa|S1/2
a0 e

3πl
4ε

c
24

)
= 3πc

48

l

ε
− lnD + 2 ln

(∑
a

|ψa|
√

da

)
, (B5)

where we recall that na is expressed in Eq. (2.12), and take the thermodynamic limit. This is exactly the same as the result in
Eq. (5.5).

2. Entanglement negativity of two noncontractible regions on a torus

In this part we calculate the entanglement negativity of two noncontractible regions on a torus (see Fig. 8) based on the
definition of entanglement negativity in Eq. (1.7). Following the structure in the main text, we study these cases one by one, as
follows.

a. Two adjacent noncontractible regions with noncontractible B

As shown in Fig. 8(a), we study the entanglement negativity between A1 and A2 on a torus with a one-component A1A2

interface. We may start from the partially transposed reduced density matrix ρ
T2
A1∪A2

in Eq. (5.13), i.e.,

ρ
T2
A1∪A2

=
∑

a

|ψa|2ρb1
A,a ⊗ (

ρ
b2
A,a

)T2 ⊗ ρ
b3
A,a, (B6)

where ρ
b1
A,a , (ρb2

A,a)T2 , and ρ
b3
A,a are defined in Eqs. (5.12)–(5.14). Next, let us calculate |ρT2

A1∪A2
| as follows:

∣∣ρT2
A1∪A2

∣∣ =
√(

ρ
T2
A1∪A2

)†
ρ

T2
A1∪A2

, (B7)

where (
ρ

T2
A1∪A2

)†
ρ

T2
A1∪A2

=
∑

a

|ψa|4
(
ρ

b1
A,a

)2 ⊗ [(
ρ

b2
A,a

)T2
]†(

ρ
b2
A,a

)T2 ⊗ (
ρ

b3
A,a

)2
. (B8)
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In particular

[(
ρ

b2
A,a

)T2
]†(

ρ
b2
A,a

)T2 = 1(
n

b2
a

)2

∑
N2,j2

∑
N ′

2,j
′
2

e
− 8π

l2
(ha+N2− c

24 )
e
− 8π

l2
(ha+N ′

2− c
24 )∣∣hb2

a ,N ′
2; j ′

2

〉∣∣hb2
a ,N2; j2

〉〈
hb2

a ,N ′
2; j ′

2

∣∣〈hb2
a ,N2; j2

∣∣. (B9)

Then one can get

∣∣ρT2
A1∪A2

∣∣ =
∑

a

|ψa|2ρb1
A,a ⊗ ρ

b3
A,a ⊗ 1

n
b2
a

∑
N2,j2

∑
N ′

2,j
′
2

e
− 4π

l2
(ha+N2− c

24 )
e
− 4π

l2
(ha+N ′

2− c
24 )∣∣hb2

a ,N ′
2; j ′

2

〉∣∣hb2
a ,N2; j2

〉〈
hb2

a ,N ′
2; j ′

2

∣∣〈hb2
a ,N2; j2

∣∣.
(B10)

Then, by using the definition in Eq. (1.7), one can obtain the entanglement negativity as follows:

EA1A2 = ln Tr
∣∣ρT2

A1∪A2

∣∣ = ln

{∑
a

|ψa|2
[
χha

(
e
− 4πε

l2
)]2

χha

(
e
− 8πε

l2
)
}

→ 3π

48

l2

ε
+ ln

(∑
a

|ψa|2Sa0

)
= 3π

48

l2

ε
− lnD + ln

(∑
a

|ψa|2da

)
,

(B11)

which is exactly the same as Eq. (5.15).

b. Two adjacent noncontractible regions with noncontractible B

As shown in Fig. 8(b), we study the entanglement negativity between A1 and A2 on a torus with a two-component A1A2

interface. We may start from the partially transposed reduced density matrix ρ
T2
A1∪A2

in Eq. (5.22) directly, i.e.,

ρ
T2
A1∪A2

=
∑

a

|ψa|2
(
ρ

b1
A,a

)T2 ⊗ (
ρ

b2
A,a

)T2 ⊗ ρ
b3
A,a ⊗ ρ

b4
A,a, (B12)

where the definition of (ρb1
A,a)T2 , (ρb2

A,a)T2 , ρ
b3
A,a , and ρ

b4
A,a can be found in Eqs. (5.18)–(5.24). Based on ρ

T2
A1∪A2

in Eq. (B12), one
can get (

ρ
T2
A1∪A2

)†
ρ

T2
A1∪A2

=
∑

a

|ψa|4
[(

ρ
b1
A,a

)T2
]†(

ρ
b1
A,a

)T2 ⊗ [(
ρ

b2
A,a

)T2
]†(

ρ
b2
A,a

)T2 ⊗ (
ρ

b3
A,a

)2 ⊗ (
ρ

b4
A,a

)2
. (B13)

In particular, one has

[(
ρ

b1
A,a

)T2
]†(

ρ
b1
A,a

)T2 = 1(
n

b1
a

)2

∑
N1,j1

∑
N ′

1,j
′
1

e
− 8π

l1
(ha+N1− c

24 )
e
− 8π

l1
(ha+N ′

1− c
24 )∣∣hb1

a ,N ′
1; j ′

1

〉∣∣hb1
a ,N1; j1

〉〈
hb1

a ,N ′
1; j ′

1

∣∣〈hb1
a ,N1; j1

∣∣ (B14)

and[(
ρ

b2
A,a

)T2
]†(

ρ
b2
A,a

)T2 = 1(
n

b2
a

)2

∑
N2,j2

∑
N ′

2,j
′
2

e
− 8π

l2
(ha+N2− c

24 )
e
− 8π

l2
(ha+N ′

2− c
24 )∣∣hb2

a ,N ′
2; j ′

2

〉∣∣hb2
a ,N2; j2

〉〈
hb2

a ,N ′
2; j ′

2

∣∣〈hb2
a ,N2; j2

∣∣. (B15)

It is noted that now (ρb3
A,a)2, (ρb4

A,a)2, [(ρb1
A,a)T2 ]†(ρb1

A,a)T2 , and [(ρb2
A,a)T2 ]†(ρb2

A,a)T2 , are all of the diagonal form. Then one can easily
check that ∣∣ρT2

A1∪A2

∣∣ =
√(

ρ
T2
A1∪A2

)†
ρ

T2
A1∪A2

=
∑

a

|ψa|2ρb3
A,a ⊗ ρ

b4
A,a

⊗ 1

n
b1
a

∑
N2,j2

∑
N ′

2,j
′
2

e
− 4π

l1
(ha+N1− c

24 )
e
− 4π

l1
(ha+N ′

1− c
24 )∣∣hb1

a ,N ′
1; j ′

1

〉∣∣hb1
a ,N1; j1

〉〈
h

b1
a ,N ′

1; j ′
1

∣∣〈hb1
a ,N1; j1

∣∣

⊗ 1

n
b2
a

∑
N2,j2

∑
N ′

2,j
′
2

e
− 4π

l2
(ha+N2− c

24 )
e
− 4π

l2
(ha+N ′

2− c
24 )∣∣hb2

a ,N ′
2; j ′

2

〉∣∣hb2
a ,N2; j2

〉〈
hb2

a ,N ′
2; j ′

2

∣∣〈hb2
a ,N2; j2

∣∣. (B16)

Then, one can obtain the entanglement negativity between A1 and A2 as follows:

EA1A2 = ln Tr
∣∣ρT2

A1∪A2

∣∣ = ln

{∑
a

|ψa|2
[
χha

(
e
− 4πε

l1
)]2[

χha

(
e
− 4πε

l2
)]2

χha

(
e
− 8πε

l1
)
χha

(
e
− 8πε

l2
)

}
← 3πc

48

l1 + l2

ε
− 2 lnD + ln

(∑
a

|ψa|2d2
a

)
, (B17)

which agrees with the result in Eq. (5.26).
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c. Two adjacent noncontractible regions on a torus with contractible B

As shown in Fig. 8(c), we study the entanglement negativity between two adjacent noncontractible regions A1 and A2 with a
contractible region B. We may start from the partially transposed reduced density matrix ρ

T2
A1∪A2

in Eq. (5.31), based on which
we can get(

ρ
T2
A1∪A2

)†
ρ

T2
A1∪A2

= (
ρ

b3
A,I

)2 ⊗ (
ρ

b4
A,I

)2 ⊗
∑
aa′

|ψa|2|ψa′ |2 1

n
b1
a n

b1
a′

1

n
b2
a n

b2
a′

×
∑
N1,j1

∑
N ′

1,j
′
1

e
− 8πε

l1
(ha+N1− c

24 )
e
− 8πε

l1
(ha′+N ′

1− c
24 ) × ∣∣hb1

a′ ,N
′
1; j ′

1

〉∣∣hb1
a ,N1,j1

〉〈
h

b1
a′ ,N

′
1; j ′

1

∣∣〈hb1
a ,N1,j1

∣∣
⊗
∑
N2,j2

∑
N ′

2,j
′
2

e
− 8πε

l2
(ha+N2− c

24 )
e
− 8πε

l2
(ha′+N ′

2− c
24 )∣∣hb2

a′ ,N
′
2; j ′

2

〉∣∣hb2
a ,N2,j2

〉〈
h

b2
a′ ,N

′
2; j ′

2

∣∣〈hb2
a ,N2,j2

∣∣, (B18)

which is of the diagonal form. Then one can get∣∣ρT2
A1∪A2

∣∣ =
√(

ρ
T2
A1∪A2

)†
ρ

T2
A1∪A2

= ρ
b3
A,I ⊗ ρ

b4
A,I ⊗

∑
aa′

|ψa||ψa′ | 1√
n

b1
a n

b1
a′

1√
n

b2
a n

b2
a′

×
∑
N1,j1

∑
N ′

1,j
′
1

e
− 4πε

l1
(ha+N1− c

24 )
e
− 4πε

l1
(ha′+N ′

1− c
24 )∣∣hb1

a′ ,N
′
1; j ′

1

〉∣∣hb1
a ,N1,j1

〉〈
h

b1
a′ ,N

′
1; j ′

1

∣∣〈hb1
a ,N1,j1

∣∣
⊗
∑
N2,j2

∑
N ′

2,j
′
2

e
− 4πε

l2
(ha+N2− c

24 )
e
− 4πε

l2
(ha′+N ′

2− c
24 )∣∣hb2

a′ ,N
′
2; j ′

2

〉∣∣hb2
a ,N2,j2

〉〈
h

b2
a′ ,N

′
2; j ′

2

∣∣〈hb2
a ,N2,j2

∣∣. (B19)

Then, the entanglement negativity between A1 and A2 can be obtained as follows:

EA1A2 = ln Tr
∣∣ρT2

A1∪A2

∣∣ (B20)

= 2 ln

{∑
a

|ψa|
χha

(
e
− 4πε

l1
)

√
n

b1
a

χha

(
e
− 4πε

l2
)

√
n

b2
a

}

← 2 ln

(∑
a

|ψa|Sa0e
3π(l1+l2)

4ε
c

24

)
, (B21)

which is the same as Eq. (5.33).

[1] A. Kitaev and J. Preskill, Topological Entanglement Entropy,
Phys. Rev. Lett. 96, 110404 (2006).

[2] M. Levin and X.-G. Wen, Detecting Topological Order in a
Ground State Wave Function, Phys. Rev. Lett. 96, 110405
(2006).

[3] P. Calabrese and J. Cardy, Entanglement entropy and conformal
field theory, J. Phys. A 42, 504005 (2009).

[4] J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area
laws for the entanglement entropy, Rev. Mod. Phys. 82, 277
(2010).

[5] P. Calabrese and J. Cardy, Entanglement entropy and quantum
field theory, J. Stat. Mech. (2004) P06002.

[6] B. Hsu, M. Mulligan, E. Fradkin, and E.-A. Kim, Universal
entanglement entropy in two-dimensional conformal quantum
critical points, Phys. Rev. B 79, 115421 (2009).

[7] S. Ryu and T. Takayanagi, Holographic Derivation of Entan-
glement Entropy from the anti–de Sitter Space/Conformal Field
Theory Correspondence, Phys. Rev. Lett. 96, 181602 (2006).

[8] S. Ryu and T. Takayanagi, Aspects of holographic entanglement
entropy, J. High Energy Phys. 08 (2006) 045.

[9] E. Witten, Quantum field theory and the jones polynomial,
Commun. Math. Phys. 121, 351 (1989).

[10] E. Witten, On holomorphic factorization of wzw and coset
models, Commun. Math. Phys. 144, 189 (1992).

[11] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-Dimensional
Magnetotransport in the Extreme Quantum Limit, Phys. Rev.
Lett. 48, 1559 (1982).

[12] R. B. Laughlin, Anomalous Quantum Hall Effect: An Incom-
pressible Quantum Fluid with Fractionally Charged Excitations,
Phys. Rev. Lett. 50, 1395 (1983).

[13] X.-G. Wen, Topological orders and edge excitations in fractional
quantum hall states, Adv. Phys. 44, 405 (1995).

[14] X.-G. Wen, Quantum orders and symmetric spin liquids,
Phys. Rev. B 65, 165113 (2002).

[15] N. Read and D. Green, Paired states of fermions in two di-
mensions with breaking of parity and time-reversal symmetries
and the fractional quantum hall effect, Phys. Rev. B 61, 10267
(2000).

[16] M. Stone and S.-B. Chung, Fusion rules and vortices in px + ipy

superconductors, Phys. Rev. B 73, 014505 (2006).
[17] X.-G. Wen, Quantum Field Theory of Many-Body Systems

(Oxford Graduate Texts, Oxford, 2004).
[18] E. Fradkin, Field Theories of Condensed Matter Physics

(Cambridge University Press, Cambridge, 2013).

245140-26

http://dx.doi.org/10.1103/PhysRevLett.96.110404
http://dx.doi.org/10.1103/PhysRevLett.96.110404
http://dx.doi.org/10.1103/PhysRevLett.96.110404
http://dx.doi.org/10.1103/PhysRevLett.96.110404
http://dx.doi.org/10.1103/PhysRevLett.96.110405
http://dx.doi.org/10.1103/PhysRevLett.96.110405
http://dx.doi.org/10.1103/PhysRevLett.96.110405
http://dx.doi.org/10.1103/PhysRevLett.96.110405
http://dx.doi.org/10.1088/1751-8113/42/50/504005
http://dx.doi.org/10.1088/1751-8113/42/50/504005
http://dx.doi.org/10.1088/1751-8113/42/50/504005
http://dx.doi.org/10.1088/1751-8113/42/50/504005
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1088/1742-5468/2004/06/P06002
http://dx.doi.org/10.1088/1742-5468/2004/06/P06002
http://dx.doi.org/10.1088/1742-5468/2004/06/P06002
http://dx.doi.org/10.1103/PhysRevB.79.115421
http://dx.doi.org/10.1103/PhysRevB.79.115421
http://dx.doi.org/10.1103/PhysRevB.79.115421
http://dx.doi.org/10.1103/PhysRevB.79.115421
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://dx.doi.org/10.1088/1126-6708/2006/08/045
http://dx.doi.org/10.1088/1126-6708/2006/08/045
http://dx.doi.org/10.1088/1126-6708/2006/08/045
http://dx.doi.org/10.1088/1126-6708/2006/08/045
http://dx.doi.org/10.1007/BF01217730
http://dx.doi.org/10.1007/BF01217730
http://dx.doi.org/10.1007/BF01217730
http://dx.doi.org/10.1007/BF01217730
http://dx.doi.org/10.1007/BF02099196
http://dx.doi.org/10.1007/BF02099196
http://dx.doi.org/10.1007/BF02099196
http://dx.doi.org/10.1007/BF02099196
http://dx.doi.org/10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1103/PhysRevLett.50.1395
http://dx.doi.org/10.1103/PhysRevLett.50.1395
http://dx.doi.org/10.1103/PhysRevLett.50.1395
http://dx.doi.org/10.1103/PhysRevLett.50.1395
http://dx.doi.org/10.1080/00018739500101566
http://dx.doi.org/10.1080/00018739500101566
http://dx.doi.org/10.1080/00018739500101566
http://dx.doi.org/10.1080/00018739500101566
http://dx.doi.org/10.1103/PhysRevB.65.165113
http://dx.doi.org/10.1103/PhysRevB.65.165113
http://dx.doi.org/10.1103/PhysRevB.65.165113
http://dx.doi.org/10.1103/PhysRevB.65.165113
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.73.014505
http://dx.doi.org/10.1103/PhysRevB.73.014505
http://dx.doi.org/10.1103/PhysRevB.73.014505
http://dx.doi.org/10.1103/PhysRevB.73.014505


EDGE THEORY APPROACH TO TOPOLOGICAL . . . PHYSICAL REVIEW B 93, 245140 (2016)

[19] Y. Zhang, T. Grover, A. Turner, M. Oshikawa, and A. Vish-
wanath, Quasiparticle statistics and braiding from ground-state
entanglement, Phys. Rev. B 85, 235151 (2012).

[20] M. B. Plenio and S. Virmani, An introduction to entanglement
measures, Quant. Inf. Comput. 7, 1 (2007).

[21] P. Calabrese, J. Cardy, and E. Tonni, Entanglement Negativity
in Quantum Field Theory, Phys. Rev. Lett. 109, 130502 (2012).

[22] P. Calabrese, J. Cardy, and E. Tonni, Entanglement negativity in
extended systems: A field theoretical approach, J. Stat. Mech.
(2013) P02008.

[23] Y. A. Lee and G. Vidal, Entanglement negativity and topological
order, Phys. Rev. A 88, 042318 (2013).

[24] C. Castelnovo, Negativity and topological order in the toric code,
Phys. Rev. A 88, 042319 (2013).

[25] G. Vidal and R. F. Werner, Computable measure of entangle-
ment, Phys. Rev. A 65, 032314 (2002).

[26] M. B. Plenio, Logarithmic Negativity: A Full Entanglement
Monotone that is not Convex, Phys. Rev. Lett. 95, 090503
(2005).

[27] A. Coser, E. Tonni, and P. Calabrese, Entanglement negativity
after a global quantum quench, J. Stat. Mech. (2014) P12017.

[28] V. Eisler and Z. Zimborás, Entanglement negativity in the
harmonic chain out of equilibrium, New J. Phys. 16, 123020
(2014).

[29] M. Hoogeveen and B. Doyon, Entanglement negativity and
entropy in non-equilibrium conformal field theory, Nucl. Phys.
B 898, 78 (2015).

[30] X. Wen, P.-Y. Chang, and S. Ryu, Entanglement negativity after
a local quantum quench in conformal field theories, Phys. Rev.
B 92, 075109 (2015).

[31] S. Dong, E. Fradkin, R. G. Leigh, and S. Nowling, Topological
entanglement entropy in Chern-Simons theories and quantum
hall fluids, J. High Energy Phys. 05 (2008) 016.

[32] C.-M. Jian, I. H Kim, and X.-L. Qi, Long-range mutual informa-
tion and topological uncertainty principle, arXiv:1508.07006.

[33] X.-L. Qi, H. Katsura, and A. W. W. Ludwig, General Relation-
ship between the Entanglement Spectrum and the Edge State
Spectrum of Topological Quantum States, Phys. Rev. Lett. 108,
196402 (2012).

[34] D. Das and S. Datta, Universal Features of Left-right Entangle-
ment Entropy, Phys. Rev. Lett. 115, 131602 (2015).

[35] R. Lundgren, Y. Fuji, S. Furukawa, and M. Oshikawa, Entangle-
ment spectra between coupled Tomonaga-Luttinger liquids: Ap-
plications to ladder systems and topological phases, Phys. Rev.
B 88, 245137 (2013).

[36] J. Cano, T. L. Hughes, and M. Mulligan, Interactions along
an entanglement cut in 2 + 1D Abelian topological phases,
Phys. Rev. B 92, 075104 (2015).

[37] P. Calabrese and J. Cardy, Time Dependence of Correlation
Functions Following a Quantum Quench, Phys. Rev. Lett. 96,
136801 (2006).

[38] P. Calabrese and J. Cardy, Quantum quenches in extended
systems, J. Stat. Mech. (2007) P06008.

[39] J. Cardy, Boundary conformal field theory, arXiv:hep-
th/0411189.

[40] M. Barkeshli, P. Bonderson, M. Cheng, and Z. Wang, Symmetry,
defects, and gauging of topological phases, arXiv:1410.4540.

[41] Generally we allow a third Wilson c to connect Wilson loops
a and b, where the topological sector c satisfies the constrain
that both Nc
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