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Motivated by recent experiments on the quantum-spin-liquid candidate material LiZn2Mo3O8, we study a
single-band extended Hubbard model on an anisotropic kagome lattice with the 1

6 electron filling. Due to the
partial filling of the lattice, the intersite repulsive interaction is necessary to generate Mott insulators, where
electrons are localized in clusters rather than at lattice sites. It is shown that these cluster Mott insulators are
generally U(1) quantum spin liquids with spinon Fermi surfaces. The nature of charge excitations in cluster
Mott insulators can be quite different from conventional Mott insulator and we show that there exists a cluster
Mott insulator where charge fluctuations around the hexagonal cluster induce a plaquette charge order (PCO).
The spinon excitation spectrum in this spin-liquid cluster Mott insulator is reconstructed due to the PCO so that
only 1

3 of the total spinon excitations are magnetically active. Based on these results, we propose that the two
Curie-Weiss regimes of the spin susceptibility in LiZn2Mo3O8 may be explained by finite-temperature properties
of the cluster Mott insulator with the PCO as well as fractionalized spinon excitations. Existing and possible
future experiments on LiZn2Mo3O8, and other Mo-based cluster magnets are discussed in light of these theoretical
predictions.

DOI: 10.1103/PhysRevB.93.245134

I. INTRODUCTION

If there is no spontaneous symmetry breaking, the ground
state of a Mott insulator with odd number of electrons per
unit cell may be a quantum spin liquid (QSL) [1]. QSL is an
exotic quantum phase of matter with a long-range quantum
entanglement [2] and is characterized by fractionalized spin
excitations and emergent gauge structures at low energies
[3–5]. It has been suggested that some frustrated Mott-
insulating systems which are proximate to Mott transitions
may provide physical realizations of QSLs [6–10]. These
QSLs are believed to arise from strong charge fluctuations in
the weak Mott regime, which can generate sizable long-range
spin exchanges or spin ring exchanges and suppress possible
magnetic orderings [7,8]. Several QSL candidate materials,
such as the two-dimensional (2D) triangular lattice organic
materials κ-(ET)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2, and
a three-dimensional (3D) hyperkagome system Na4Ir3O8

[11–13], are expected to be in this weak Mott regime. These
weak Mott-insulator U(1) QSLs are obtained as a deconfined
phase of an emergent U(1) lattice gauge theory [6,14], where
the electron is fractionalized into spin-carrying spinons and
charged bosons. The charge excitations are gapped and the
low-energy physics of the QSLs is described by a spinon Fermi
surface coupled to the emergent U(1) gauge field.

Recently, LiZn2Mo3O8 has been proposed as a new candi-
date material for QSL ground state [15–17]. Aside from the
usual QSL phenomenology [15–17], the experiments reveal
two Curie-Weiss regimes of the spin susceptibility at finite
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temperatures. The low-temperature Curie-Weiss regime is
governed by a much smaller Curie-Weiss temperature than
the high-temperature one and a reduced Curie constant which
is 1

3 of the high-temperature counterpart. In this work, to
understand how one can achieve the QSL phenomenology
and the puzzling two Curie-Weiss regimes in this material,
we consider a 1

6 -filled extended Hubbard model with nearest-
neighbor repulsions on an anisotropic kagome lattice. We first
propose the existence of plaquette charge order (PCO) for the
charge degree of freedom. We emphasize that the emergence
of the PCO reconstructs the spin state of the system. We
further propose a U(1) QSL with spinon Fermi surfaces for
the spin ground state and a PCO for the charge ground state
in this system. The Mott insulators in partially filled systems
arise due to the large nearest-neighbor repulsions [18,19] and
localization of the charge degrees of freedom in certain cluster
units. Hence, such Mott insulators are dubbed “cluster Mott
insulators” (CMIs) [19–21].

The single-band extended Hubbard model is defined on the
anisotropic kagome lattice of the Mo sites (see Fig. 1) and is
given by [21]

H =
∑
〈ij〉∈u

[−t1(c†iσ cjσ + H.c.) + V1ninj ]

+
∑
〈ij〉∈d

[−t2(c†iσ cjσ + H.c.) + V2ninj ]

+
∑

i

U

2

(
ni − 1

2

)2

, (1)

where the spin index σ (=↑,↓) is implicitly summed, c†iσ (ciσ )
creates (annihilates) an electron with spin σ at lattice site i,
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FIG. 1. (a) The electron configuration in the CMI without the
PCO when V2 � t1 and V1 � t2. (b) The electron configuration in the
CMI with the PCO. Three electrons hop resonantly in each hexagon
that is marked by a (red) circle. These marked hexagons form an
emergent triangular lattice (with lattice vectors a1,a2).

and t1,V1 and t2,V2 are the nearest-neighbor electron hopping
and interaction in the up-pointing triangles (denoted as “u”)
and the down-pointing triangles (denoted as “d”), respectively.
ni = ∑

σ c
†
iσ ciσ is the electron occupation number at site i.

Since there exists only one unpaired electron in each kagome
lattice unit cell [15], the electron filling for this Hubbard model
is 1

6 .
Although the down triangles are larger in size than the

up triangles in LiZn2Mo3O8, because of the large spatial
extension of the 4d Mo electron orbitals we think it is necessary
to include the intersite repulsion V2 for the down triangles. For
LiZn2Mo3O8 we expect t1 > t2 and U > V1 ∼ V2. Because of
the very dilute electron filling, although the Hubbard U is the
largest energy scale, it alone can only remove double electron
occupation on a single lattice site and cannot localize the
electron. If there are no V1 or V2 interactions, the electrons can
still transport on the lattice without encountering any electron
double occupancy on a single lattice site. So, we need V1 and
V2 to localize the electrons in the (elementary) triangles of the
kagome lattice instead of the lattice sites.

Let us first explain the electron localization in the absence
of V2. Clearly, as t2 is the hopping between the up triangles,
when V1 � t2, the electrons are localized on the up triangles
with one electron per up triangle [see Fig. 1(a)]. In this picture,
the localized electron can hop freely among the three lattice
sites within each up triangle and gain local kinetic energy
∼O(t1) while the electron number on the down triangle is
strongly fluctuating. After V2 is introduced, as V2 increases,
the configuration with more than one electron on the down
triangles [like the one in Fig. 1(a)] becomes less favorable
energetically. When the interaction energy cost [∼O(V2)] on
the down triangle overcomes the local kinetic energy gain
∼O(t1), the electron number on each down triangle is also
fixed to one, and the electrons can no longer move freely within
each up triangle. Instead, the electrons develop a collective
motion. For instance, in Fig. 1(b), the three electrons on the
hexagon at position R can tunnel between the configuration
occupying sites 1,3,5 and the other configuration occupying
sites 2,4,6. This collective electron tunneling process preserves
the electron number on each triangle and is the dominant
physical process below the Mott gap. We show this collective
electron tunneling gives rise to a long-range PCO that breaks

the lattice symmetry spontaneously. With the PCO, the
electrons are preferentially tunneling back and forth on the
hexagons that are marked with a (red) circle [see Fig. 1(b)].
We will refer these special hexagons as “resonating” hexagons.
On these resonating hexagons, the three electrons form a linear
superposition state of the two electron configurations with sites
1,3,5 or sites 2,4,6 occupied. We emphasize and will show in
Sec. II that the emergence of the PCO in the CMI is a quantum
effect and cannot be obtained from the classical treatment of
the electron interaction.

With the PCO, 1
3 of the elementary hexagons become

resonating. As shown in Fig. 1(b), these resonating hexagons
form an emergent triangular lattice (ETL). The PCO triples
the original unit cell of the kagome lattice, and the localized
electron number in the enlarged unit cell now becomes 3, which
is odd. According to Hastings’ theorem [1], the CMI with the
PCO is not connected to a trivial band insulator and the QSL is
expected. In the resulting U(1) QSL, we obtain nine mean-field
spinon subbands, compared to the three spinon bands in the
U(1) QSL for the CMI without the PCO. The nine mean-field
spinon subbands are obtained by splitting the three spinon
bands of the CMI without the PCO, and this is the reason
why we use the term “subbands.” A direct band gap separates
the lowest spinon subband from other spinon subbands in the
presence of the PCO. The lowest spinon subband is completely
filled by 2

3 of the spinons, leaving the remaining 1
3 of the

spinons to partially fill the second and third lowest spinon
subbands. Because of the band gap, the only active degrees of
freedom at low energies are the spinons in the partially filled
spinon subband, and the fully filled lowest spinon subband
is inert to external magnetic field at low temperatures as
long as the PCO persists. Therefore, only 1

3 of the magnetic
degrees of freedom are active at low temperatures. If one
then considers the local moment formation starting from
the band-filling picture of the spinons (just like electrons
occupying the same band structure) only the 1

3 of the spinons
from the partially filled upper bands would participate in the
local moment formation. This means the CMI with the PCO
would be continuously connected to the Curie-Weiss regime
with the 1

3 Curie constant at finite temperature (compared to
the case when all spinons can participate in the local moment
formation). This would explain the two Curie-Weiss regimes
in the spin susceptibility data of LiZn2Mo3O8. More precise
connection to the existing experiments is discussed later.

The rest of the paper is structured as follows. In Sec. II,
we show the CMI develops the PCO in the charge sector
when every triangle contains only one electron. We generalize
the Levin-Wen variational string wave-function approach [22]
to study the reconstruction of the spinon band structure by
the PCO in Sec. III. In Sec. IV, we explain the consequence
of this reconstructed spinon band structure and discuss the
low-temperature magnetic susceptibility. In Sec. V, we connect
our theory to the experiments on LiZn2Mo3O8, suggest
possible future experiments, and discuss other Mo-based
cluster magnets. Finally, we discuss the quantum chemistry
justification of the extended Hubbard model in Appendix A. A
complementary explanation of the double Curie regimes based
on the spin-state reconstruction for the strong PCO regime is
given in Appendix B. In Appendix C, we provide the detailed
formalism of the mean-field theory in the main text.
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II. EMERGENCE OF THE PLAQUETTE CHARGE ORDER

As a preparation step, we first employ the standard
slave-rotor representation and map the low-energy charge
sector Hamiltonian into a quantum dimer model on the dual
honeycomb lattice. With the quantum dimer model, we then
show the system should develop the PCO.

Using standard slave-rotor representation [6,14], we first
express the electron operator c

†
iσ = f

†
iσ eiθi , where the bosonic

rotor (eiθi ) carries the electron charge and the fermionic spinon
(f †

iσ ) carries the spin quantum number. As it is well known,
the slave-rotor representation enlarges the Hilbert space. To
constrain the enlarged Hilbert space, we introduce an angular
momentum variable Lz

i , Lz
i = [

∑
σ f

†
iσ fiσ ] − 1/2, where Lz

i

is conjugate to the rotor variable with [θi,L
z
j ] = iδij . In terms

of the slave-rotor variables, the extended Hubbard model is
now reformulated as

H =
∑
〈ij〉∈u

[
−t1(ei(θi−θj )f

†
iσ fjσ + H.c.)

+V1

(
Lz

i + 1

2

)(
Lz

j + 1

2

)]

+
∑
〈ij〉∈d

[
−t2(ei(θi−θj )f

†
iσ fjσ + H.c.)

+V2

(
Lz

i + 1

2

)(
Lz

j + 1

2

)]

+
∑

i

[
U

2

(
Lz

i

)2 + hi

(
Lz

i + 1

2
−

∑
σ

f
†
iσ fiσ

)]
, (2)

where we have introduced hi as a Lagrange multiplier to im-
pose the Hilbert space constraint. Since the onsite interaction
U is assumed to be the largest energy scale, in the large-U limit
the double electron occupation is always suppressed. Hence,
the angular momentum variable Lz

i primarily takes Lz
i = 1

2
(− 1

2 ) for a singly occupied (empty) site.
Via a decoupling of the electron hopping terms in H into the

spinon and rotor sectors, we obtain the following two coupled
Hamiltonians for the spin and charge sectors, respectively:

Hs = −
∑
〈ij〉

teff
ij (f †

iσ fjσ + H.c.) −
∑

i

hif
†
iσ fiσ , (3)

Hc =
∑
〈ij〉

[
−2J eff

ij cos(θi − θj ) + Vij

(
Lz

i + 1

2

)(
Lz

j + 1

2

)]

+
∑

i

[
U

2

(
Lz

i

)2 + hi

(
Lz

i + 1

2

)]
, (4)

where teff
ij = tij 〈eiθi−iθj 〉 ≡ |teff

ij |eiaij , J eff
ij = tij

∑
σ 〈f †

iσ fjσ 〉 ≡
|J eff

ij |e−iaij , and tij = t1 (t2), Vij = V1 (V2) for the bond ij on
the up triangles (down triangles). Here, we have chosen the
mean-field ansatz to respect the symmetries of the kagome
lattice. The Hamiltonians Hs and Hc are invariant under
an internal U(1) gauge transformation f

†
iσ → f

†
iσ e−iχi , θi →

θi + χi , and aij → aij + χi − χj .
We now focus on the charge sector and study the low-energy

physics of the charge sector. From the previous slave-rotor

formulation, the charge sector Hamiltonian is given by

Hc =
∑
〈ij〉

−2J eff
ij cos(θi − θj ) + Vij

(
Lz

i + 1

2

)(
Lz

j + 1

2

)

+
∑

i

hi

(
Lz

i + 1

2

)
, (5)

where we have dropped the U interaction term with the
understanding that Li = ± 1

2 in the large-U limit. This charge
sector Hamiltonian can be thought as a kagome lattice spin- 1

2
XXZ model in the presence of an external magnetic field
upon identifying the rotor operators as the effective spin-
ladder operators e±iθi = L±

i where L±
i |Lz

i = ∓ 1
2 〉 = |Lz

i =
± 1

2 〉. Thus, the corresponding effective spin-L model reads
as

Hc =
∑
〈ij〉

[−J eff
ij (L+

i L−
j + H.c.) + VijL

z
i L

z
j

] + h̃
∑

i

Lz
i ,

(6)

in which we have made a uniform mean-field approximation
such that hi + 3(V1 + V2) ≡ h̃. The 1

6 electron filling is
equivalent to Ns

−1 ∑
i L

z
i = − 1

6 , where Ns is the total number
of kagome lattice sites.

As we explained in Sec. I, when V1 (V2) is large enough
compared to t2 (t1), the electron number on each triangle, both
up triangle and down triangle, is fixed to be one. The electron
occupation configuration that satisfies this condition is highly
degenerate. The presence of the electron hopping, i.e., L+

i L−
j ,

lifts this classical degeneracy and the effective interaction can
be obtained from a third-order degenerate perturbation theory.
The resulting effective ring exchange Hamiltonian is given as

Hc,ring = −
∑
�

Jring(L+
1 L−

2 L+
3 L−

4 L+
5 L−

6 + H.c.), (7)

where “�” refers to the elementary hexagon of the kagome
lattice, Jring = 6(J eff

1 )3/V 2
2 + 6(J eff

2 )3/V 2
1 and “1, . . . , 6” are

the six vertices on the perimeter of the elementary hexagon
(see Fig. 2). This ring Hamiltonian in Eq. (7) describes the
collective tunneling of three electron charges between A and
B configurations in Fig. 2.

We now map Hc,ring into a quantum dimer model on the dual
honeycomb lattice that is formed by the centers of the triangles
on the kagome lattice (see Fig. 3). As depicted in Fig. 2, a dimer
is placed on the corresponding link if the center of the link (or
the kagome lattice site) is occupied by an electron charge. The
rotor operator L±

i simply adds or removes the charge dimer.
So, Hc,ring is mapped into the quantum dimer model with only
a resonant term

Hc,ring = −Jring

∑
�

(|�A〉〈�B| + |�B〉〈�A|), (8)

where |�A〉 and |�B〉 refer to the two charge dimer covering
configurations in the elementary hexagon “�” of the dual
honeycomb lattice as shown in Fig. 3.

In Ref. [23], Moessner, Sondhi, and Chandra studied the
phase diagram of the quantum dimer model on the honeycomb
lattice quite extensively. In the case with only the resonant
term of our model in Eq. (8), they found a translational
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FIG. 2. The two collective hopping processes that contribute to
the ring electron hopping or the ring exchange in Eq. (7). The (blue)
solid ball represents the electron or the charge rotor.

symmetry-breaking phase with a plaquette dimer order, in
which the system preferentially gains dimer resonating (or
kinetic) energy through the resonating hexagons on the dual
honeycomb lattice [see Fig. 4(a)]. The dimers on resonating
hexagons form a linear superposition of the dimer covering
configurations |�A〉 and |�B〉. This indicates that our model
is unstable to translational symmetry breaking. The plaquette
dimer order of the quantum dimer model is then mapped back
to the plaquette charge order (PCO) on the kagome lattice
[see Fig. 4(b)]. Just like the resonating dimers, the three
electron charges on the resonating hexagons also form a linear
superposition of two occupation configurations in Fig. 4(b).
This is a quantum mechanical effect and cannot be obtained
by treating the intersite electron interactions V1 and V2 in
a classical fashion. Moreover, this PCO can be regarded as
a local charge resonating valence bond (RVB) state which
contrasts with the spin singlet RVB of Anderson [24,25].

We note that similar type of PCO has already been obtained
for extended Hubbard models with fermions or hard-core

FIG. 3. The anisotropic kagome lattice and the dual honeycomb
lattice (in gray).

FIG. 4. (a) The plaquette charge dimer ordering pattern on the
dual honeycomb lattice. The charge dimers have a high probability
to occupy the bold bonds of the resonating hexagons (see the main
context). (b) The corresponding PCO on the kagome lattice. We mark
the resonating hexagons with both dark bonds and the red circles.

bosons on an isotropic kagome lattice with 1
3 and 2

3 fillings
in certain parameter regimes in previous works [26–29]. The
result was obtained either through perturbatively mapping to
the quantum dimer model or by a Hatree-Fock mean-field
calculation. In particular, Ref. [30] applied the quantum Monte
Carlo technique to simulate a hard-core boson Hubbard model
on an isotropic kagome lattice and discovered the PCO for
1
3 and 2

3 boson fillings. Because our model is defined on the
anisotropic kagome lattice, it is not exactly the same as the
previous works.

With the PCO, the electrons are preferentially hopping
around the perimeters of the resonating hexagons on the
kagome lattice. These resonating hexagons are periodically
arranged, forming an emergent triangular lattice [see Fig. 1(b)].
Due to the translational symmetry breaking, this emergent
triangular lattice (ETL) has an enlarged unit cell that includes
nine sublattices compared to three sublattices in a kagome
lattice (see Fig. 5).

III. SPINON BAND STRUCTURE

In Sec. II, using a slave-rotor approximation, we have shown
that the system is unstable to the development of the PCO in
the CMI where both up triangle and down triangle contain
only one electron. Although our result is obtained by first

FIG. 5. (a) The kagome lattice is partitioned into unit cells on
the ETL. The unit cell (marked by a gray triangle) contains nine
sublattices that are labeled by 1,2, . . . ,8,9. (b) The spinon hoppings
on the bonds that surround a resonating hexagon.
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starting from a translationally invariant mean-field ansatz, as
we argue below, the PCO breaks the translational symmetry
of the spinon mean-field state and the modified spinon band
structure makes the PCO even more stable.1

A. Spin charge coupling in the CMI with the PCO

To understand how the PCO in the charge sector influences
the spinon sector, we first consider the low-energy effective
ring hopping model in the CMI where both up triangle and
down triangle contain only one electron:

Hring = −
∑
�

∑
αβγ

[K1(c†1αc6αc
†
5βc4βc

†
3γ c2γ + H.c.)

+K2(c†1αc2αc
†
3βc4βc

†
5γ c6γ + H.c.)], (9)

where K1 = 6t3
1 /V 2

2 and K2 = 6t3
2 /V 2

1 are readily obtained
from the third-order degenerate perturbation theory. Here,
α,β,γ = ↑,↓, and 1, . . . ,6 are the six vertices in the elemen-
tary hexagon of the kagome lattice.

Using the slave-rotor representation in Sec. II for the
electron operator c

†
iα = f

†
iαeiθi ≡ f

†
iαL+

i , the ring hopping
model Hring can be decoupled as

H̄ring = −
∑
�

[K1(L+
1 L−

2 L+
3 L−

4 L+
5 L−

6 × M165432 + H.c.)

+K2(L+
1 L−

2 L+
3 L−

4 L+
5 L−

6 × M123456 + H.c.)] (10)

≡ −
∑
�

[K1(|�A〉〈�B|M165432 + |�B〉〈�A|M∗
165432)

+K2(|�A〉〈�B|M123456 + |�B〉〈�A|M∗
123456)],

(11)

where |�A〉 and |�B〉 are the two charge dimer coverings in
Fig. 2. Here, we are focusing on the charge sector and treating
the spinon sector in a mean-field fashion, i.e.,

Mijklmn =
∑
αβγ

〈f †
iαfjαf

†
kβflβf †

mγ fnγ 〉, (12)

where the lattice sites i,j,k,l,m,n are arranged either clock-
wise or anticlockwise and M∗

ijklmn is the complex conjugate
of Mijklmn. What we did in Eq. (11) is to directly couple the
charge sector quantum dimer model with the spinon sector. By
doing this, we can study how the charge sector is influenced
by the spinon sector.

The parameter Mijklmn is evaluated in the spinon mean-field
ground state, which we explain below. For a time-reversal-
invariant system, we expect Mijklmn = M∗

ijklmn. If we assume
the spinon sector respects the translational invariance of the
kagome lattice, the resulting charge sector model would be
equivalent to Hc,ring in Eq. (7) and also to the quantum dimer
model in Eq. (8) except for the renormalized couplings, and
this would immediately imply the system should develop the

1We do not consider the possibility of the ferromagnetic ordering in
the extreme limit V1 = V2 � t1 = t2 and U → ∞ that is considered
in Ref. [26] because this FM state is very unstable to the introduction
of the antiferromagnetic spin interaction between the electron spins.

PCO and spontaneously break the translational symmetry of
the kagome lattice. In turn, the breaking of lattice symmetry by
the PCO would then influence the spinon sector. To understand
how the spinon band structure is modified by the underlying
PCO in the charge sector and how the modified spinon band
structure feeds back to the charge sector, we take the enlarged
unit cell of the ETL and introduce the following spinon mean-
field (hopping) Hamiltonian [see Fig. 5(b)]:

H̄s =
∑

R

[−t̄1(f †
R1σ fR6σ + f

†
R2σ fR3σ + f

†
R4σ fR5σ )

− t̄2(f †
R1σ fR2σ + f

†
R3σ fR4σ + f

†
R5σ fR6σ )

− t̄ ′1(f †
R1σ fR7σ + f

†
R6σ fR7σ + f

†
R2σ fR8σ + f

†
R3σ fR8σ

+ f
†
R9σ fR4σ + f

†
R9σ fR5σ ) − t̄ ′2(f †

R9σ fR+a1,1σ

+ f
†
R9σ fR+a1,2σ + f

†
R7σ fR+a2,3σ + f

†
R7σ fR+a2,4σ

+ f
†
R8σ fR−a1−a2,5σ + f

†
R8σ fR−a1−a2,6σ ) + H.c.], (13)

where R labels the unit cell of the ETL and 1, 2, . . . , 8, 9 label
the nine sublattices of the ETL. This choice of spinon hopping
parameters respects the threefold rotation symmetry and the
reflection symmetry of the resonating hexagons [see Fig. 5(b)].
Moreover, in Eq. (13), the spinon hoppings are related to the
charge sector via

t̄1 = t1〈L+
1 (R)L−

6 (R)〉, (14)

t̄2 = t2〈L+
1 (R)L−

2 (R)〉, (15)

t̄ ′1 = t1〈L+
1 (R)L−

7 (R)〉, (16)

t̄ ′2 = t2〈L+
9 (R)L−

1 (R + a1)〉, (17)

such that the influence of the charge sector on the spinon sector
is captured.

In the presence of the PCO, we expect t̄1 > t̄ ′1 and t̄2 > t̄ ′2
due to the presence of the PCO. According to Eqs. (14)–(17),
the presence of the PCO would enhance the bonding of the
charge rotors and then the spinon hoppings in the resonating
hexagons and weakens the ones in the nonresonating hexagons.
The enhanced spinon hoppings in the resonating hexagons
further strengthen the couplings of the H̄ring in the resonating
hexagons through Mijklmn in Eq. (11). Thus, the PCO would
become more stable if the coupling between spinon and charge
excitations is switched on.

B. Generalized Levin-Wen’s variational dimer wave-function
approach and the spinon band structure

in the presence of the PCO

We now consider the combination of the spinon hopping
model H̄s in Eq. (13) with the ring hopping model H̄ring

in Eq. (11). It was pointed by Levin and Wen [22,31] that
quantum dimer model is an example of string-net models. In
Ref. [22], Levin and Wen developed a variational string wave-
function approach (or string mean-field theory) to describe
the properties of quantum dimer model. To make the nomen-
clature consistent, we refer Levin-Wen’s variational string
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wave-function approach as variational dimer wave-function
approach in the following. Since the charge sector is described
by a quantum dimer model, we can extend Levin-Wen’s
variational string wave-function approach [22] to solve the
coupled charge and spinon problem in Sec. III A. In Levin
and Wen’s original work, the variational dimer wave-function
approach was designed for pure quantum dimer model. The
new ingredients of our problem are the presence of the spinon
degrees of freedom and the coupling and the mutual feedback
between the spinons and charge dimers.

We describe below the variational dimer wave-function
approach that is used to optimize the Hamiltonian H̄ring in
Eq. (11) for the charge dimers. Following Levin and Wen,
the variational dimer wave function is parametrized by a set
of variational parameters {zi} where zi is defined on each
link of the dual honeycomb lattice. Here, the links on the
dual honeycomb lattice are also parametrized by the kagome
lattice sites that are located at the centers of the links. These
variational parameters zi are also termed as string (or dimer)
fugacity by Levin and Wen [22]. For each set of {zi}, the
variational dimer wave function is given by


({zi}) =
∏

i

|0〉i + zi |1〉i
(1 + |zi |2)

1
2

, (18)

where |0〉i and |1〉i define the absence and presence of the
electron charge at the kagome lattice site i or the dimer on the
corresponding link on the dual honeycomb lattice, respectively.
Moreover, we have the following relations by definition:

ni |0〉i = 0, ni |1〉i = |1〉i , (19)

L+
i |0〉i = |1〉i , L−

i |1〉i = |0〉i , (20)

where ni counts the electron number (or the number of dimers)
at site i.

We employ the symmetry of the PCO to reduce the number
of free variational parameters in the dimer wave function

({zi}). Using the symmetries of the ETL, we find that only
two variational parameters are needed

z1(R) = z2(R) = z3(R) = z4(R) = z5(R) = z6(R) ≡ z, (21)

z7(R) = z8(R) = z9(R) ≡ z̃, (22)

where zμ(R) (μ = 1,2, . . . ,9) refers to the variational parame-
ter of the μth sublattice at the unit cell R (see Fig. 5). We have
reduced the set of variational parameters in the variational
dimer wave function to z and z̃. Moreover, z and z̃ are not
independent from each other. This is because of the charge
localization constraint, i.e., every triangle contains only one
electron. In terms of the dimer language, this constraint is that
every dual honeycomb lattice site is connected by only one
dimer. To satisfy this constraint, we only need to require

〈n1(R)〉 + 〈n6(R)〉 + 〈n7(R)〉 = 1, (23)

where the expectation value is taken for the variational wave
function 
({zi}). This relation connects z̃ to z.

For the quantum dimer model Hc,ring in Eq. (8), varia-
tional (or mean-field) phase is obtained by evaluating the
Hamiltonian Hc,ring with respect to 
({zi}) and optimizing

the energy by varying z. This static variational approach,
however, cannot directly produce the plaquette ordered phase
of the quantum dimer model. What it gives is a translationally
invariant variational ground state. To obtain the right result,
Levin and Wen developed a dynamical variational approach.
Namely, for each static variational ground state, one checks the
stability of the variational phase by considering the quantum
fluctuation of this phase. In the model that Levin and Wen were
considering [22], they found some modes in a translationally
invariant variational ground state can become unstable and
drive a dimer crystal ordering. We expect similar physics
should happen to our quantum dimer model Hc,ring.

Unfortunately, the dynamical variational approach by Levin
and Wen is not a self-consistent variational approach and
cannot be extended to the combined spinon and charge dimer
problem that we are interested in here. Since we know our
quantum dimer model Hc,ring gives the ground state with the
PCO and we have argued that coupling the charge (dimer) with
the spinons makes the PCO even more stable in Sec. III A, we
now introduce the PCO into the system by explicitly breaking
the lattice symmetry. That is, we modify the ring hoppings K1

and K2 in H̄ring of Eq. (10). For the resonating hexagons, we
change

K1 → K1(1 + δ), K2 → K2(1 + δ), (24)

and for the nonresonating hexagons, we use

K1 → K1(1 − δ), K2 → K2(1 − δ), (25)

where δ (with δ > 0) is a phenomenological parameter
that breaks an appropriate lattice symmetry for the PCO.
This modification of the ring hoppings captures the spatial
modulation of the energy in the system when the PCO is
present. This phenomenological way of introducing the PCO is
very similar in spirit to Henley’s approach [32] to the order by
disorder, where a phenomenological interaction is introduced
into the energy or the free energy to model the ground-state
selection due to the quantum fluctuation.

We now solve the combined Hamiltonian of H̄s and H̄ring

with the modified ring hoppings self-consistently. This self-
consistent approach is expected to underestimate the PCO
for any fixed δ and thus underestimates the reconstruction
of the spinon band structure due to the PCO. Nevertheless, to
understand the generic features of the spinon band structure
reconstruction in the presence of the PCO, we can simply vary
the phenomenological parameter δ and study the spinon band
structure from this self-consistent approach.

The evolution of the mean-field spinon band structure is
depicted in Fig. 6. When δ = 0, there is no PCO and the
symmetry of the kagome lattice is preserved. The spinon band
structure contains three bands in the first Brillouin zone of
the kagome lattice [BZ1 in Fig. 6(d)]. The three spinon bands
are well separated in energy and have no direct nor indirect
overlap, and we can simply focus on the lowest band as the
spinons only fill half of the lowest band. So in Fig. 6, we
only need to plot the evolution of the lowest spinon band. In
Fig. 6(a), we have further folded the lowest spinon band onto
the first Brillouin zone of the ETL [BZ2 in Fig. 6(d)] and
obtain three spinon subbands. We use “spinon subbands” to
refer the spinon bands plotted in the BZ2 of the ETL.
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FIG. 6. (a)–(c) The evolution of the spinon subbands as δ is
varied. In the figure, we chooseK1 = 4, K2 = 1 and t1 = 1, t2 = 0.5.
The (red) dashed line is the Fermi energy of the spinons. The energy
unit is set to t1. The (red) arrow indicates a twofold degeneracy.
The details of the band structures are discussed in the text. (d) The
large and small hexagons define the Brillouin zones of the kagome
lattice (BZ1) and the ETL (BZ2), respectively. Setting the kagome
lattice constant to unity, we have K = ( 2π

3 , 2π

3
√

3
),K′ = ( 2π

3 ,− 2π

3
√

3
) and

q1 = ( 4π

3 ,0),q2 = (− 2π

3 , 2π√
3
),q3 = (− 2π

3 ,− 2π√
3
).

In the presence of the PCO for a finite δ, the system has
nine sublattices (see Fig. 5), the three spinon bands at δ = 0 are
further split into nine spinon subbands, and the lowest spinon
band at δ = 0 is split into three spinon subbands.

We now explain the evolution of the spinon bands as the
PCO is enhanced by increasing the variational parameter δ. At
δ = 0, there is no PCO, and the second and the third spinon
subbands touch at the zone boundary of the BZ2. A finite
δ creates the PCO and breaks the translational symmetry of
the kagome lattice. We have t̃1 > t̃ ′1 and t̃2 > t̃ ′2 as previously
expected. The band touching of the second and the third spinon
subbands at the zone boundary of the BZ2 is lifted by the level
repulsion [see Fig. 6(b)]. A direct band gap is created between
the lowest spinon subband and upper spinon subbands. We
emphasize this feature is generic and is not specific to the ring
hoppings and electron hoppings that are chosen in Fig. 6 and
we have also explicitly checked many other parameter choices.
As the parameter δ is further increased and the PCO becomes
even stronger, the direct band gap gets larger and larger, and
eventually the lowest spinon subband is fully separated from
the other subbands by a full band gap [see Fig. 6(c)]. Therefore,
the band gap of the spinons is set by the stiffness of the PCO.

Even though the PCO enlarges the unit cell from three sites
of the kagome lattice to nine sites of the ETL, the spinon
Fermi surface always exists. This is because the number of
electrons or spinons per unit cell is three with the PCO.
Because of the direct band gap, the lowest spinon subband
is completely filled by the spinons which comprise 2

3 of the
total spinon number, and the remaining 1

3 of spinons partially
fill the upper two subbands and give rise to the spinon Fermi
surfaces. Therefore, the internal U(1) gauge field is expected

to be in the deconfining phase [33,34], and we obtain U(1)
QSL for the ground state.

IV. THERMAL TRANSITION AND SPIN SUSCEPTIBILITY

Because the PCO breaks the lattice symmetry, this im-
plies that there exists a thermal phase transition at a finite
temperature which destroys the PCO and restores the lattice
symmetry. This thermal transition is expected to occur at
T ∗ ∼ O(K1) = O(t3

1 /V 2
2 ) (because K1 � K2) when the local

electron resonance in the elementary hexagons loses the
quantum phase coherence.

Based on the understanding of the spinon band structure
in Sec. III, we describe the behavior of the spin susceptibility
in the low-temperature regime with the PCO (T < T ∗) and
in the high-temperature regime without the PCO (T > T ∗).
Since the U(1) QSL ground state has spinon Fermi surfaces,
we expect a finite (Pauli-type) spin susceptibility in the
zero-temperature limit. At finite temperatures, one should
recover the Curie-Weiss law for the spin susceptibility. What
are the Curie constant and the Curie-Weiss temperature that
characterize the Curie-Weiss law for T < T ∗ and T > T ∗?
The Curie constant measures the number of the active local
moments. Let us now consider the local moment formation
regime for T < T ∗. As long as the PCO is not destroyed
by thermal fluctuations which is the case for T < T ∗, the
direct band gap between the lowest spinon subband and upper
subbands would be present, and the lowest spinon subband is
fully filled by 2

3 of the spinon numbers. A fully filled spinon
is inert to an external magnetic field and, thus, only the 1

3 of
the spinons from the partially filled upper subbands contribute
to the local moment, which comprise 1

3 of the total number of
electrons in the system. Therefore, the low-temperature Curie
constant in a dc susceptibility measurement for T < T ∗ is

CL = g2μ2
Bs(s + 1)

3kB

N�

3
, (26)

where g ≈ 2 is the Landé factor [15,16], s = 1
2 , and N� is the

total number of up triangles in the system. From the electron
filling fraction, we know N� equals the total electron number
Ne. Because only 1

3 of the total spins are responsible for the
low-temperature magnetic properties, the Curie constant is
only 1

3 of the one at very high temperatures where all the
electron spins are supposed to be active.

For T > T ∗, the PCO is destroyed by thermal fluctuation,
and the direct band gap between the lowest spinon subband
and the upper spinon subbands is closed. All the localized
electrons are active and contribute to the local moment, and
thus the Curie constant in this high-temperature regime is

CH = g2μ2
Bs(s + 1)

3kB
N�, (27)

which is three times the low-temperature one CL.
As for the Curie-Weiss temperature, it is hard to make a

quantitative prediction from the spinon Fermi surface. But,
it is noted that the Curie-Weiss temperature is roughly set
by the bandwidth of the active spinon bands in the QSL
phase. At low-temperature PCO phase, the active spinon bands
are the partially filled upper spinon subbands on the ETL
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[see Fig. 6(c)]. As one can see from Fig. 6(c), the bandwidth of
the active spinon bands is significantly reduced when the PCO
is present compared to Fig. 6(a) when the PCO is absent. As a
result, we expect a much reduced Curie-Weiss temperature in
the presence of the PCO at T < T ∗ compared to the case in the
absence of the PCO at T > T ∗. In the absence of the PCO at
T > T ∗, as all the spinon subbands are active, the Curie-Weiss
temperature is set by the total spinon bandwidth in Fig. 6(a).
Finally, we want to point out that the double Curie regimes
in the spin susceptibility is a finite-temperature property and
independent from whether the spin ground state is a spinon
Fermi surface U(1) QSL or not. It is the PCO that reconstructs
the spin states and leads to the double Curie regimes. In
Appendix B, we provide a complementary explanation of the
double Curie regimes from the spin-state reconstruction in the
strong PCO regime.

V. DISCUSSION

A. Applications to LiZn2Mo3O8

As we discuss in Sec. IV, the CMI with the PCO pro-
vides two Curie-Weiss regimes in spin susceptibility. Armed
with these results, we here propose that the Mo system
in LiZn2Mo3O8 may be in the CMI with the PCO at low
temperatures. Because the PCO triples the unit cell, the thermal
transition at T ∗ is found to be first order in a Landau theory
analysis for a clean system [21]. In reality, LiZn2Mo3O8

is influenced by various disorders or impurities (e.g., the
mixed Li/Zn sites and mobile Li ions) [15]. For example,
impurities would broaden the charge ordering transition [35].
This may explain why a sharp transition is not observed in the
experiments [15]. Nevertheless, the experiments do observe
a peak around 100 K in heat capacity [15] which might be
related to the smeared-out phase transition.

Based on the fact that there is no obvious ordering down
to ∼0.1 K for LiZn2Mo3O8 and the apparent gapless spin
excitation in neutron scattering [15–17], we further propose
that the system is in the U(1) QSL with spinon Fermi surfaces
(as well as the PCO) of the CMI that is obtained in Sec. III B.
With the spinon Fermi surfaces, we expect the usual behaviors
of a 2D U(1) QSL with spinon Fermi surfaces would show
up. That is, the specific heat Cv ∼ T 2/3, and a Pauli-type spin
susceptibility in the low-temperature limit [6]. The crossover
in the behavior of the spin susceptibility from the local
moment Curie-Weiss regime to the Pauli-type behavior is
expected to happen at the temperature set by the bandwidth
of active spinon bands (see Sec. III B) or, equivalently, by
the low-temperature Curie-Weiss temperature below T ∗. This
crossover temperature should be very low because of the
suppressed Curie-Weiss temperature at low temperatures. As
a result, the Pauli-type spin susceptibility may be smeared
out by various extrinsic factors like local magnetic impurities
at very low temperatures. Likewise, even though the Cv/T

experiences an upturn below 10 K in the absence of external
magnetic fields, it is likely that the nuclear Schottky anomalies
may complicate the specific-heat data.

On the other hand, the apparently gapless spectrum of the
spin excitations in the inelastic neutron scattering measure-
ment [17] is certainly consistent with the gapless spinon Fermi

surface of our U(1) QSL. Moreover, the measurements of
relaxation rate from both NMR [1/(T1T )] and μSR (λT −1)
also indicate gapless spin-spin correlations [16]. In our U(1)
QSL, the reduction of the spinon bandwidth due to the PCO
increases the density of the low-energy magnetic excitations.
This would lead to a low-temperature upturn of the spin-lattice
relaxation, which is in fact observed in NMR and μSR
experiments [16].

A direct measurement of the PCO at low temperatures
is crucial for our theory. To this end, a high-resolution
x-ray scattering measurement and NQR (nuclear quadrupole
resonance) can be helpful. Moreover, the presence of local
quantum entanglement within the resonant hexagon may be
probed optically by measuring the local exciton excitations.
Furthermore, if the system is in a U(1) QSL with a spinon
Fermi surface, the low-temperature thermal conductivity can
be an indirect probe of the low-energy spinon excitation, and
a direct measurement of the correlation of the emergent U(1)
gauge field might be possible because the strong spin-orbit
coupling of the Mo atoms can enhance the coupling between
the spin moment and the spin texture [36].

A previous work on LiZn2Mo3O8 has proposed a theory
based on varying spin-exchange interaction from the emergent
lattice that is caused by the lattice distortion [37]. In contrast,
our work here is based on the electron degrees of freedom and
their interactions. In Appendix A, we clarify the underlying
quantum chemistry of LiZn2Mo3O8 and justify the extended
Hubbard model of Eq. (1).

B. Other Mo-based cluster magnets

The compounds that incorporate the Mo3O13 cluster unit
represent a new class of magnetic materials called “cluster
magnets.” Several families of materials, such as M2Mo3O8

(M = Mg, Mn, Fe, Co, Ni, Zn, Cd), LiRMo3O8 (R = Sc, Y,
In, Sm, Gd, Tb, Dy, Ho, Er, Yb), and other related variants
[38–41], fall into this class. The magnetic properties of most
materials have not been carefully studied so far. In Table I,
we list three cluster magnets with odd number of electrons
in the Mo3O13 cluster unit. We introduce a phenomenological
parameter λ to characterize the anisotropy of the Mo kagome
lattice, which is defined as the ratio between intercluster (or
down triangle) and intracluster (or up triangle) Mo-Mo bond
lengths:

λ = [Mo-Mo]d

[Mo-Mo]u
. (28)

Large anisotropy tends to reduce the interaction V2 and
increase the hopping t1 so that the systems are more likely

TABLE I. Mo-Mo bond lengths, anisotropic parameters (λ), and
number of electrons per Mo3O13 cluster for three different cluster
magnets. The electron number is counted from stoichiometry.

[Mo-Mo]u [Mo-Mo]d λ e−/Mo3 Ref.

LiZn2Mo3O8 2.6 Å 3.2 Å 1.23 7 [15]
Li2InMo3O8 2.54 Å 3.25 Å 1.28 7 [38]
ScZnMo3O8 2.58 Å 3.28 Å 1.27 7 [39]
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to be in the regime where the electron is only localized on the
up triangle while the electron number on the down triangle is
strongly fluctuating [see Fig. 1(a)]. In such a regime, there is
no PCO, each localized electron on the up triangle forms a
local spin- 1

2 moment, and these local spin- 1
2 moments form a

triangular lattice. If the system is in the weak Mott regime like
the organics [11,12], the spin ground state is expected to be
the U(1) QSL with a spinon Fermi surface [21].

As shown in Table I, Li2InMo3O8 has a larger anisotropic
parameter than LiZn2Mo3O8. Unlike LiZn2Mo3O8 that
has two Curie-Weiss regimes, the spin susceptibility of
Li2InMo3O8 is instead characterized by one Curie-Weiss
temperature �CW = −207 K down to 25 K [38]. Moreover,
the Curie constant is consistent with one local spin- 1

2 moment
in each up triangle. Below 25 K, the spin susceptibility of
Li2InMo3O8 saturates to a constant, which is consistent with
the Pauli-type spin susceptibility for a spinon Fermi surface
U(1) QSL. Aside from the structural and spin susceptibility
data, very little is known about Li2InMo3O8. Thus, more
experiments are needed to confirm the absence of magnetic
ordering in Li2InMo3O8 and also to explore the magnetic
properties of ScZnMo3O8 and other cluster magnets.
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APPENDIX A: MOLECULAR ORBITALS
AND THE HUBBARD MODEL

As suggested by Refs. [15,42], the Mo electrons in an
isolated Mo3O13 cluster form molecular orbitals because of the
strong Mo-Mo bonding. Among the seven valence electrons in
the cluster, six of them fill the lowest three molecular orbitals
{A2, E(1)

2 , E(2)
2 } in pairs, and the seventh electron remains

unpaired in a totally symmetric A1 molecular orbital with
equal contributions from all three Mo atoms (see Fig. 7)

We first consider the molecular orbital states in the group
{A1, E(1)

1 , E(2)
1 }. This group can be described by a linear

combination of an atomic state |ψ1〉 at each Mo site (which is
in turn a linear combination of five 4d atomic orbitals):

|A1〉 = 1√
3

[|ψ1〉A + |ψ1〉B + |ψ1〉C], (A1)

∣∣E(1)
1

〉 = 1√
3

[|ψ1〉A + ei 2π
3 |ψ1〉B + e−i 2π

3 |ψ1〉C
]
, (A2)

∣∣E(2)
1

〉 = 1√
3

[|ψ1〉A + e−i 2π
3 |ψ1〉B + ei 2π

3 |ψ1〉C
]
, (A3)

FIG. 7. (a) The Mo3O13 cluster (adapted from Ref. [15]). (b) The
schematic energy level diagram of the molecular orbitals for a single
Mo3O13 cluster. The molecular orbitals are classified according to the
irreducible representations of the C3v point group of the cluster (see
footnote 1). The unfilled molecular orbitals at high energies are not
shown.

where μ(=A,B,C) labels the three Mo sites in the cluster and
the atomic state |ψ1〉μ is the contribution from the Mo atom at
μ. The atomic states |ψ1〉μ at different Mo sites are related by
the threefold rotation about the center of the cluster. Likewise,
the fully filled {A2, E(1)

2 , E(2)
2 } and other unfilled molecular

orbitals at higher energies are constructed from the atomic state
|ψ2〉 and other atomic states |ψj 〉 (j = 3,4,5), respectively.
Here, the atomic states {|ψj 〉μ} (j = 1,2,3,4,5) represent a
distinct orthonormal basis from the five 4d atomic orbitals
that are the eigenstates of the local Hamiltonian of the MoO6

octahedron.
We group the molecular orbitals based on the atomic state

from which they are constructed. In this classification, for
example, {A1, E(1)

1 , E(2)
1 } fall into one group while {A2, E(1)

2 ,
E(2)

2 } fall into another group as they are constructed from two
different atomic states.

In LiZn2Mo3O8, the different molecular orbitals of the
neighboring clusters Mo3O13 overlap and form molecular
bands. To understand how the molecular orbitals overlap with
each other, we consider the wave-function overlap of different
atomic states |ψj 〉. Since the down triangle has the same
point-group symmetry as the up triangle in LiZn2Mo3O8,
the wave-function overlap of the atomic states in the down
triangles should approximately resemble the one in the up
triangles. More precisely, the wave function of the atomic
state (e.g., |ψ1〉) has similar lobe orientations both inward into
and outward from the Mo3O13 cluster, with different spatial
extensions due to the asymmetry between up triangles and
down triangles. Consequently, the orbital overlap between
the molecular orbitals from the same group is much larger
than the one between the molecular orbitals from the different
groups. Therefore, each molecular band cannot be formed by
one single molecular orbital but is always a strong mixture of
the three molecular orbitals in the same group.

We now single out the three molecular bands that are
primarily formed by the group of {A1, E(1)

1 , E(2)
1 } molecular

orbitals. There are four energy scales associated with these
three molecular orbitals and bands: (1) the energy separation
�E between the {A1, E(1)

1 , E(2)
1 } group and other groups of

orbitals (both filled and unfilled); (2) the total bandwidth W
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of the three molecular bands formed by the {A1, E(1)
1 , E(2)

1 }
molecular orbitals; (3) the intragroup interaction between two
electrons on any one or two orbitals of the {A1, E(1)

1 , E(2)
1 }

group; (4) the intergroup interaction between the electron on
an orbital of the {A1, E(1)

1 , E(2)
1 } group and the other electron

on an orbital of a different group. It is expected, from the
previous wave-function overlap argument, that the intergroup
interaction is much weaker than the intragroup interaction and
thus can be neglected at the first level of approximation.

In this paper, we assume that the energy separation �E

is larger than the total bandwidth W and the intragroup
interaction. In this regime, the large �E separates these
three molecular bands from other molecular bands (both
filled and unfilled) so that the fully filled {A2, E(1)

2 , E(2)
2 }

orbitals remain fully filled and the unfilled molecular orbitals
remain unfilled even after they form bands. Moreover, the
large �E also prevents a band-filling reconstruction due to
the interaction (in principle, the system can gain interaction
energy by distributing the electrons evenly among different
groups of orbitals). Therefore, we can ignore both the fully
filled and unfilled molecular bands and just focus on the three
partially filled bands. It also means one will have to consider
three-band model with all of {A1, E(1)

1 , E(2)
1 } orbitals on the

triangular lattice formed by the Mo3O13 clusters. In this case,
alternatively one could simply consider atomic states as the
starting point. Then, the relevant model would be a single-band
Hubbard model based on the atomic state |ψ1〉 at each Mo site
of the anisotropic kagome lattice. We take the latter approach
in this paper. Finally, since only one atomic state |ψ1〉 is
involved at each Mo site, the orbital angular momentum of
the electrons is trivially quenched so that we can neglect the
atomic spin-orbit coupling at the leading order [43].

The corresponding single-band Hubbard model is given
by Eq. (1), where we include the onsite and nearest-neighbor
electron interactions. Now, it is clear that the physical meaning
of the electron operator c

†
iσ (ciσ ) in Eq. (1) is to create

(annihilate) an electron on the state |ψ1〉i with spin σ at the
kagome lattice site i.

APPENDIX B: LOCAL MOMENTS
IN THE STRONG PCO LIMIT

In Sec. IV, we show the PCO reconstructs the spinon band
structure and provide a possible explanation of the doule Curie
regimes and 1

3 spin susceptibility in LiZn2Mo3O8. As we point
out that the double Curie regimes and 1

3 spin susceptibility are
finite-temperature properties and independent from whether
the spin ground state has a spinon band or not, in this
section, we consider an alternative and complementary strong
coupling regime in which the PCO is strong such that the three
resonating electrons are almost fully localized in the resonating
hexagon and form the local moments which then interact with
each other. As far as the local moment physics is concerned,
the regime considered here is equivalent to the intermediate
PCO regime in Sec. IV [6–8].

To elucidate the nature of the local moments in each
resonating hexagon, it is sufficient to isolate a single resonating
hexagon and understand the local quantum entanglement
among the three resonating electrons. In this Appendix, we

consider two local interactions on the hexagon. The first
interaction is already given in Eq. (9) which is the electron
ring hopping model. The second interaction is the antiferro-
magnetic (AFM) exchange interaction between the electron
spins. Since the electrons are always separated from each
other by one lattice site, the AFM exchange is between the
next-nearest neighbors in the hexagon

H 0
ex = J

∑
〈〈ij〉〉

ninj

(
Si · Sj − 1

4

)
, (B1)

where i,j are the lattice sites that refer to the six vertices of the
resonating hexagon (see Fig. 1), ni is the electron occupation
number at the site i, and Si is the spin- 1

2 operator of the electron
spin at the site i. Because the electron position is not fixed in
the hexagon, the AFM interaction is active only when both
relevant sites are occupied by the electrons and we need to
include ni into the exchange interaction. The full Hamiltonian
for an individual resonating hexagon plaquette is composed of
the above two interactions

Hp = −
∑
αβγ

[K1(c†1αc6αc
†
5βc4βc

†
3γ c2γ + H.c.)

+K2(c†1αc2αc
†
3βc4βc

†
5γ c6γ + H.c.)] + H 0

ex. (B2)

Based on the perturbative values K1 = 6t3
1 /V 2

2 , K2 = 6t3
2 /V 2

1
and the fact that t1 > t2 and V1 > V2 in LiZn2Mo3O8, we think
the relevant regime should be K1 � K2.

Because a strong PCO causes a strong modulation in the
bond energy, the values of K1 and K2 for the resonating
hexagon would be modified from the effective Hamiltonian
that is obtained from the perturbative analysis. Likewise, the
spin exchange in the resonating hexagon is enhanced from
its perturbative value. So, we expect this treatment is a good
approximation to understand the local spin physics.

The Hilbert space of the Hamiltonian Hp is spanned by
the electron states that are labeled by the positions and the
spins of the three resonating electrons. Because the electrons
are separated from each other by one lattice site, the Hilbert
space for the positions is quite limited. There are a total
of 16 states labeled by {|αβγ 〉A ≡ |2α,4β,6γ 〉,|αβγ 〉B ≡
|1α,3β,5γ 〉} with α,β,γ = ↑,↓. Since the local Hamiltonian
Hp commutes with the total electron spin Stot and Sz

tot, we
can use {Stot,S

z
tot} to label the states. For both A and B

electron configurations, from the spin composition rule for
three spins ( 1

2 ⊗ 1
2 ⊗ 1

2 = 1
2 ⊕ 1

2 ⊕ 3
2 ), we have two pairs of

Stot = 1
2 states.

The states with Stot = 3
2 are not favored by the

AFM exchange. We find that when J > 2
3 (K1 + K2 −√

K2
1 − K1K2 + K2

2) = K2 − K2
2

4K1
+ O(K3

2), the local ground

states are four symmetric states with Stot = 1
2 . Here, symmetric

state refers to the symmetric linear superposition of spin states
in A and B configurations. This is because the three-electron
K1 andK2 hopping terms hybridize the A and B configurations
and favor symmetric superposition rather than antisymmetric
superposition. The local fourfold degeneracy can be effectively
characterized by two quantum numbers (sz,τ z) with sz = ± 1

2
and τ z = ± 1

2 . sz refers to the total spin sz ≡ Sz
tot = ± 1

2 . We
also introduce a pseudospin- 1

2 operator τ whose physical
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FIG. 8. Three singlet positions that are related by the threefold
rotation.

meaning is explained below. The wave functions of the four
|τ zsz〉 states are given by [to the order of O(K2/K1)]

|↑↑〉 = 1

2
[|↑↑↓〉A − |↑↓↑〉A + |↓↑↑〉B − |↑↑↓〉B], (B3)

|↓↑〉 =
√

3

6
[2|↓↑↑〉A − |↑↓↑〉A − |↑↑↓〉A

+ 2|↑↓↑〉B − |↑↑↓〉B − |↓↑↑〉B] (B4)

and |↑↓〉, |↓↓〉 are simply obtained by a time-reversal
operation.

What is the physical origin of this local fourfold degener-
acy? Clearly, the twofold degeneracy of sz = ± 1

2 arises from
the time-reversal symmetry and the Kramers’ theorem. The
remaining twofold degeneracy comes from the point-group
symmetry of the resonating hexagon. This is easy to see if we
freeze the positions of the three electrons. To be concrete, let
us fix the electrons to the sites 1,3,5 in Fig. 8. To optimize
the exchange interaction, two electrons must form a spin
singlet, which leaves the remaining electron as a dangling
spin- 1

2 moment. As shown in Fig. 8, this singlet can be formed
between any pair of the electrons and the different locations
of the spin singlet are related by the threefold rotation. Even
though there seem to be three possible singlet positions, only
two of them are linearly independent, which gives to the
twofold τ z degeneracy which survives even when the ring
electron hopping is turned on. As a result, the pseudospin τ is
even under time reversal and acts on the space of the singlet
position or equivalently the dangling spin position. In fact, the
two states in Eqs. (B3) and (B4) comprise the E irreducible
representation of the C3v point group.

Since the spin s (pseudospin τ ) is odd (even) under
time-reversal symmetry, when the external magnetic field is
applied to the system, only the spin s (s = 1

2 ) couples to the
magnetic field. Therefore, the three electrons in the resonating

hexagon behave like one spin s = 1
2 in the magnetic field. This

is how the Curie constant with the PCO becomes 1
3 of the Curie

constant without the PCO.

APPENDIX C: LEVIN-WEN’S VARIATIONAL
DIMER WAVE-FUNCTION APPROACH

Here, we explain the string mean-field theory in Sec. III B
in details. To solve the combined Hamiltonian of H̄s and H̄ring

self-consistently, we obtain the effective spinon hoppings by
evaluating the boson or rotor hopping amplitudes with respect
to the variational dimer ground state 
({zi}):

〈L+
μ (R)L−

ν (R)〉 = 〈L+
μ (R)〉〈L−

ν (R)〉, (C1)

where μ,ν label the sublattices. We also evaluate the parameter
Mijklmn against the spinon hopping Hamiltonian. Using the
Wick theorem, we have

Mijklmn =
∑
αβγ

〈f †
iαfjα〉〈f †

kβflβ〉〈f †
mγ fnγ 〉

+
∑

α

〈f †
iαfnα〉〈f †

kαfjα〉〈f †
mαflα〉

+
∑

α

〈f †
iαflα〉〈f †

mαfjα〉〈f †
kαfnα〉

−
∑
αβ

〈f †
iαfjα〉〈f †

kβfnβ〉〈f †
lβfmβ〉

−
∑
αβ

〈f †
iαflα〉〈f †

kβfjβ〉〈f †
mβfnβ〉

−
∑
αβ

〈f †
iαfnα〉〈f †

mβfjβ〉〈f †
kβflβ〉 (C2)

= χ3
ij + χ3

ik

4
+ χ3

il

4
− 3

2
χijχikχil, (C3)

where we have defined the χ variable as

χij =
∑

α

〈f †
iαfjα〉, (C4)

and we have also used the threefold rotational symmetry as
well as the reflection symmetry of the hexagon in Eq. (C3) so
that

χij = χkl = χmn, (C5)

χik = χkm = χmi = χjl = χln = χnj , (C6)

χik = χjm = χkn. (C7)
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