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Anomalous Hall effect (AHE) and spin Hall effect (SHE) are fundamental phenomena, and their potential for
application is great. However, we understand the interaction effects unsatisfactorily, and should have clarified
issues about the roles of the Fermi sea term and Fermi surface term of the conductivity of the intrinsic AHE or
SHE of an interacting multiorbital metal and about the effects of spin-Coulomb drag on the intrinsic SHE. Here,
we resolve the first issue and provide the first step about the second issue by developing a general formalism
in the linear response theory with appropriate approximations and using analytic arguments. The most striking
result is that even without impurities, the Fermi surface term, a non-Berry-curvature term, plays dominant roles
at high or slightly low temperatures. In particular, this Fermi surface term causes the temperature dependence
of the dc anomalous Hall or spin Hall conductivity due to the interaction-induced quasiparticle damping and the
correction of the dc spin Hall conductivity due to the spin-Coulomb drag. Those results revise our understanding
of the intrinsic AHE and SHE. We also find that the differences between the dc anomalous Hall and longitudinal
conductivities arise from the difference in the dominant multiband excitations. This not only explains why the
Fermi sea term such as the Berry-curvature term becomes important in clean and low-temperature case only for
interband transports, but also provides the useful principles on treating the electron-electron interaction in an
interacting multiorbital metal for general formalism of transport coefficients. Several correspondences between

our results and experiments are finally discussed.
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I. INTRODUCTION

Anomalous Hall effect (AHE) and spin Hall effect (SHE)
are fundamental phenomena and have great potential for appli-
cation. The AHE [1-5] causes a charge current perpendicular
to an external electric field even without an external magnetic
field, and its spin-current version is the SHE [6-13]. Since
the AHE and SHE are similar to usual Hall effect [14], an
understanding of their properties develops our fundamental
understanding of transport phenomena. Then, since we can
control the magnitude and direction of the charge current of
the AHE and spin current of the SHE in principle, the AHE
and SHE may be utilized as useful devices [15,16].

For the fundamental understanding and efficient utilization
of the AHE or SHE, we need to understand how its response
depends on the detail of the electronic structure. Since the
response may be affected by the differences in the band
structure, the structure of doped impurities, and the strength
of the electron-electron interaction, an understanding of their
dependence of the response is helpful to understand the fun-
damental properties and find a good material for application.

The previous studies partially revealed the dependence of
the response of the AHE or SHE on the detail of the electronic
structure, and showed the potential of the intrinsic mechanism
for a large response. First, the mechanisms of the AHE or
SHE are categorized as either an intrinsic mechanism to the
band structure [2,8,9,17-21] or an extrinsic mechanism due
to the scattering of doped impurities [3,6,7,22,23]. Then, we
can understand the intrinsic mechanisms for a lot of metals
as acquiring the Aharanov-Bohm-type phase factor [24]
by using the onsite spin-orbit coupling (SOC) and several
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hopping integrals [25] (for more details, see Appendix A).
On the other hand, we can understand several extrinsic
mechanisms [3,22,23] by considering a special scattering
of doped nonmagnetic impurities. However, if their onsite
scattering potential is small and the intrinsic term is non-
negligible, the extrinsic term is less important than the intrinsic
term. Actually, the extrinsic term completely vanishes in
even-parity systems for the weak onsite scattering potential
of dilute nonmagnetic impurities [17,19]. Furthermore, even
in the absence of the inversion symmetry at an ab plane, the
extrinsic term remains very small if orbital degrees of freedom
exist and the hopping induced by the inversion-symmetry
breaking is not large [26]. Since a lot of multiorbital metals
have finite intrinsic terms [17-19,21,25] and the typical
value of the scattering potential estimated in a first-principle
calculation [27] is of the order of magnitude 0.1 eV, we
may sufficiently analyze the AHE or SHE of a multiorbital
metal by considering only the intrinsic mechanism. Actually,
a systematic theoretical study [19] about the intrinsic SHE can
qualitatively reproduce a chemical trend of the experimental
responses [28] in several 4d or 5d transition metals. Since
a multiorbital metal is more suitable than a semiconductor
to obtain a large response [29], a theoretical research on the
intrinsic AHE or SHE of a multiorbital metal may develop our
fundamental understanding and the possibilities of application.

However, we have two issues about interaction effects, the
effects of the electron-electron interaction, in the intrinsic AHE
and SHE of a multiorbital metal. One is to clarify roles of
the Fermi surface term and Fermi sea term of oxcy or oxsy,
the intrinsic anomalous Hall or spin Hall conductivity, in the
presence of the electron-electron interaction. Let us begin with
noninteracting case with the weak onsite scattering potential of
dilute nonmagnetic impurities at zero temperature. In that case,

C S

o, or oy, consists of the Fermi surface term and Fermi sea
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term in general [17,19,30]. The Fermi surface term describes
the excitations near the Fermi level, and the Fermi sea term
describes the excitations in the Fermi sea. Then, those terms
are affected by the nonmagnetic impurity scattering through
changing the quasiparticle (QP) damping in 6§, or o, even if
the extrinsic term is negligible [17,19]. If that QP damping
goes to zero, ofy or o5 is given by the Berry-curvature
term [18,20,31], part of the Fermi sea term [17,19], because
of the cancellation between the other part of the Fermi sea
term and the Fermi surface term [17,19]. As the QP damping
increases due to an increase of the impurity concentration
Nimp, the dominant term of o, or o, becomes the Fermi
surface term because of the cancellation between the two
parts of the Fermi sea term [17,19]. This Fermi surface term
qualitatively differs from the Berry-curvature term because
only the former contains a retarded-advanced product of
two single-particle Green’s functions [17,19] [for the explicit
comparison, for example, see Egs. (54) and (76)]. Thus, only
the Berry-curvature term is insufficient, and the Fermi surface
term and Fermi sea term play important roles in discussing
the intrinsic AHE or SHE of a noninteracting multiorbital
metal. However, for discussions at finite temperatures, we
should consider the electron-electron interaction because that
may affect o, or o, through the inelastic scattering. Thus, it
remains a challenging issue to clarify the roles of the Fermi
surface term and Fermi sea term in an interacting multiorbital
metal. Although this issue was discussed by Haldane [32],
his proposal [32] did not resolve this because he assumed
that only the Berry-curvature term is always dominant and
did not analyze the roles of the non-Berry-curvature terms;
his proposal is that part of the partial-integral term of the
Berry-curvature term corresponds to the Fermi surface term
which plays important roles in the Fermi liquid. Thus, we
need to discuss this issue in a more elaborated method.

The other issue is to clarify effects of spin-Coulomb
drag (SCD) on the intrinsic SHE. If the electron-electron
interaction causes the scattering between spin-up and spin-
down electrons with finite momentum transfer, the spin-up and
-down components of the total momentum are not separately
conserved [33,34] (see Fig. 1). This indicates the existence
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FIG. 1. Schematic picture of the scattering between spin-up
and -down electrons due to the electron-electron interaction with
momentum transfer q. The wavy line represents the electron-
electron interaction, the black circles represent the electrons after
the scattering, and the yellow circle represents the Fermi sphere.
This scattering conserves the sum of the total momentums of the
spin-up and -down electrons (i.e., k + k' = k + q + k' — q), while
the conservation of each total momentum is violated for ¢ # 0 (i.e.,
k#k+gqandk #Kk' —q).
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of the friction between spin-up and -down electrons, the
SCD, even without the Umklapp scattering [33,34] because
the momentum conservation results in the absence of the
friction [35,36]. This is in contrast to case of the charge
current because in that case the Umklapp scattering is essential
to obtain the friction, which results in the finite resistivity
[35-37]. Thus, the existence of the SCD is an important
difference between spin transports and charge transports.
Then, the SCD causes a correction [33,34], which is different
from the mass enhancement and Fermi-liquid correction, and
that effect on the spin-diffusion constant is experimentally
observed in a two-dimensional electron gas [38]. In principle,
the SCD may affect the intrinsic SHE [34], and its effects
may lead to some differences between the SHE and AHE.
Furthermore, since in contrast to an electron gas a multiorbital
metal has a multiband structure, an interacting multiorbital
metal may be a good target to deduce multiband effects in the
SCD. However, the effects of the SCD on the intrinsic SHE
have not been studied and remain unclear [34].

To improve this situation, we develop a general formalism
of of, or o}, of an interacting multiorbital metal using the
linear response theory [39] with approximations appropriate
for such metal, clarify the roles of the Fermi surface term and
Fermi sea term and find a SCD-induced correction of o5,. The
former result resolves the first issue, and the latter provides
the first step towards the complete resolution of the second
issue. In particular, we find an interaction-driven mechanism
of the damping dependence of axcy or crxsy and crossover from
damping-dependent to damping-independent intrinsic AHE
or SHE. This highlights the emergence of the temperature
dependence in high-temperature region of the intrinsic AHE
or SHE even for clean systems. We also propose several exper-
iments related to those results. Then, we clarify the origin of

the differences between O’XCV and the longitudinal conductivity

oS and deduce the general principles in the formulations

XX
of transport coefficients including the interaction and the
multiband effects. This origin is helpful to understand why the
Fermi sea term such as the Berry-curvature term sometimes
becomes important only for the interband transports such as the
AHE, although only the Fermi surface term is always important
for the intraband transports such as the resistivity. In addition,
the obtained principles help guide further research of transports

including the interaction effects and the multiband effects.

II. METHOD

In this section, we explain the method to analyze the
intrinsic AHE and SHE of an interacting multiorbital metal.
First, we show the Hamiltonian of our model, and argue its
validity for their realistic analysis. Second, we explain how
to treat each term of the Hamiltonian, and deduce several
consequences of this treatment about the self-energy, the QP
damping, and the irreducible four-point vertex function. Third,
we show the exact expressions of o, and o7, within the
linear response of an external electric field. In addition, we
explain several advantages of the linear response theory and
an important remark about taking the limits such as lim,,_, o and
lim,_.¢. In part of the derivations of those exact expressions,
we use Appendix B. Hereafter, we set h = ¢ = kg = 1.
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A. Model

We consider a d-orbital Hubbard model [40] with the onsite
SOC [19] and the weak onsite scattering potential [19] of
dilute nonmagnetic impurities. Its Hamiltonian consists of four
terms:

H =I:Io+I:ILs+FIim+ﬁimp~ (1)

First, Hy represents the nonrelativistic noninteracting terms

ZZ 3 €ank)e) Cuvs, @)

ab s=1,]

where 6,1(” and ¢y, are a creation and an annihilation operator,
respectively, of an electron at momentum k, orbital a, and spin
s, and €, (k) is the noninteracting energy dispersion measuring
from the chemical potential. Second, Hy s represents the onsite
SOC [19]

I:ILs=§LsZij'§j, 3)
J

where j is site index, I jand § ; are an orbital and a spin angular
momentum operator, respectively [19], and & g is the coupling
constant. Third, Flim represents the onsite multiorbital Hubbard
interaction terms [40]

Hiy = Uzznja¢n1a¢ +U’ Zzzn]anjb

a b<a
_ JHZZZ <2s1a S+ ;n,an,b)
a b<a
+]/ZZZCJHT €jayCiniCibts )
j a b#a

where 7 jas 1S A jas = 4 Cass Aja 1S Aja = 3, Ajags §ja 8
Sja =4y ¢, 055¢ay with the Pauli matrices o, U
is the intraorbital Coulomb interaction, U’ is the interorbital
Coulomb interaction, Jy is the Hund’s rule coupling, and J’
is the pair hopping term. Fourth, I?,»mp represents the onsite
scattering potential of dilute nonmagnetic impurities [19]

Ay = lmpZZZ &l ayCiass (5)

where Iy, is the potential amphtude.

This model is sufficient for a realistic analysis of the
intrinsic AHE and SHE of an interacting metal because of
the following four reasons. First, we can choose any form
of €,,(k) if €,,(k) contains the interorbital hopping whose
mirror symmetries for a xz and a yz plane are odd [e.g.,
the next-nearest-neighbor hopping between the d,, and d;;
orbitals in Fig. 4(a) of Appendix A]; as we will see in
Sec. 1T A 2, such interorbital hopping is necessary to obtain
finite € ora [17,25]. Second, among several possibilities of
the SOCs only the onsite SOC is sufficient because its effect is
leading in a solid and because we can analyze the intrinsic AHE
or SHE of a metal even without the inversion symmetry at an ab
plane by not using the nonlocal SOC [21,26]; the effect of that
inversion-symmetry breaking can be included in €., (k) [41].
Third, we may sufficiently describe the screened short-ranged
electron-electron interaction in an interacting multiorbital
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metal by the onsite multiorbital Hubbard interactions because
those interactions have not only the intraorbital term but
also the interorbital terms; our formalism can be easily
extended if the interactions are short-ranged. Fourth, I:Iimp
may be sufficient to include effects of dilute nonmagnetic
impurities, which exist in a realistic situation, because the
effects can be roughly described by their weak onsite scattering
potential [42].

B. Treatment of each Hamiltonian

To analyze the intrinsic AHE or SHE of an interacting
multiorbital metal, we use Hy + Hirs as the nonperturbative

Hamiltonian
Ho+ His = Z YD a0 (©)

a,b s,s

and Hi + ﬁimp as the perturbative Hamiltonian. In partic-
ular, for a simple treatment of I:Iimp, we assume both that
nonmagnetic impurities are randomly distributed and that /;,,
is smaller than the bandwidth so as to satisfy kgl > 1 (i.e.,
case away from the Mott-loffe-Regel limit), where kg is of
the order of magnitude the Fermi momentum and [ is the
mean-free path. The first assumption is standard [17,19,42],
and the second is reasonable in several transition metals or
transition-metal oxides. Then, because of the first assumption,
we can use the averaging over each impurity position [42];
because of the second, we can neglect the combination terms
of Hi, and ﬁimp in the self-energy and sufficiently treat I-Alimp
in the Born approximation [43].

In this treatment, we can use simple treatments about several
quantities. First, the retarded self-energy is given by

’ o~ , ~ n; 112 ' .
=5 (F) = 2558 + —“‘;’V NG K en), (D)
—

where & is k = (k,i€,,),
from A,y in the perturbation theory, and the second term is
the self-energy arising from I?imp in the Born approxima-
tion [19,42] with N the number of lattice sites. Correspond-
ingly, we obtain the QP damping arising from Hi, and I—AIimp
because the QP damping is defined as

E‘éf_’el;ab(l;) is the self-energy arising

Vo (k) = =z, (()IME O (k, £ (), ®)

where o is the band index of a QP, £i(k) is the QP
energy determined by the solution of det|€d, ;05 s — Eji’(k) —
Re= ™ (k)| = 0, S®)(k) with k = (k,e) is the retarded self-
energy of the QP band «, and z, (k) is the QP weight

dReZ®(k,e -
Za(k)=|:l_¢ ] : C))
de e—=Ex(k)
In general, y;(k) depends on temperature because of

the temperature dependence of ¥ Fg;b(k €), e.g., the T?
dependence of y; (k) near k=kr in the Fermi lig-
uid [42]. Then, the irreducible four-point vertex func-
tion in Matsubara-frequency representation F(l){s‘ kK", q) =

(1)s1525354
U255 (k + qi€pegn Ko i€m k' + qLi€ny +n,k ,lem/), is given
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by

o 53 (F)
1"(1){51} k,k/; 5) — el//el,/c:b
) (kK5 G) = —8G° )

+ Rimp 1mp5a c8b d‘sy v”(s 8"y (10)

where the first term is the irreducible four-point vertex function
arising from I:Lnt, and the second term is the irreducible
four-point vertex function arising from I:Iimp in the Born
approximation [43]. Because of this decomposition, I-Alimp
causes no correction to the charge and the spin current
for even-parity systems, resulting in the disappearance of
the extrinsic terms of the dc anomalous Hall or spin Hall
conductivity in the similar way in noninteracting case [17,19]
[see the sentences below Eq. (37)].

C. Linear response theory

To formulate oS -, and oS as general as possible, we use the
linear response theory [39] This is because the hnear response
theory provides exact expressions of o, € and ny within the
linear response of an external electric field and because that
theory with appropriate approximations has several advantages
compared with the phenomenological theory.

We can derive an exact expression of axcy within the
linear response of an external electric field from the Kubo
formula [39] for the charge current perpendicular to it without

an external magnetic field:

KE®(q,0) — KE®(g.0)
ay—hm lim —= 1 N 1 , (11)
w—0g—0 Lw

where K C(R)(a)) =K C(R)(O ) is obtained by the analytic

continuation of K€ ,(i€2,) with bosonic Matsubara frequency
Q, =2xTn:

KJ(C:}('R)(CO) xy(lQ i, —>w+iot (12)
with
RE(i9Q,) = 1 y CTl*‘ (T JC( )7, ()
Xy 1dap) = N qli)l}) Te T T Zay
=N ZZZf df elQ”T( —e)dy v(vkx)ha
X (=€) (Vg y )y

X (T 8hp e (Dkas (DL Crrasn)
(- e) o
= Z Z Z Oy r(vkx)ba s”, v’”(vk’

Kjicd(k,k’; Q). (13)

(Note that we should carry out the integration about t before
carrying out i2, — w + i0+ [44].) In Eq. (13), T, is the

time-ordering operator [42], 3", 18 D"y = Dy pcas Dops) 1
> ) = ZM,’S,,’S,,,, the charge current operator is

_( e)zzzas s(vkv)ba k—1bs' Ck-t-quss (14)

ab s,s
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and the noninteracting group velocity is

a €ab (k )
Wiy = . 15
(Vi) ok, (15)
The noninteracting group velocity is not affected by the onsite
SOC because that is independent of momentum [19].
Also, we can exactly derive o w1th1n the linear response in

the similar way for a if we deﬁne the spin-current operator.
Let us use a standard deﬁmtlon [13,45]

== Z DD sen()8es (Wn)indy_gpelhrtass (16)

a,b s,s

with sgn(?) = +1 or sgn(}) = —1. In this definition, the
spin current is the difference between the spin-up and -down
components of the charge current [19]:

s 1 A
Jqsv = M[(‘]qcv)¢¢ (‘]qcv)¢¢] a7

where (JAqCv)” is defined by chv = Zs(chv)”. Even if we
use a different but single-body definition, we can carry out
the general formulation in the similar Way By adopting this
definition (16) to the Kubo formula for o> , its exact expression
is obtained:

Xy’

K S(R) — KS®)
KV (q.0) — KiY(g,0)

S _ . .
R L
with
KiP() = KYRP0.0) = K} (iQ)lig,—0sior  (19)
and
S 1 r 194 S
. _ : 12,7
ny(zon)_ﬁ;% Odte (TTJ (7) _qy(O))
= —ZZZ/ dte nT —sgn(s)(SY sk,
k.k' {a}

"l

X ( e)(sr’ r”’(vk v) d

X (T‘L' 6kbs’ (T)ékas (T)ék/m,, 6k'ds’”)

— Z Z Z sgn(S)Ss s(vkx)ba

kk fa} {s}
X 8y g (Vg SYKSS (kKiK. (20)

Then, the linear response theory [39] has several advantages
compared with the phenomenological theory such as the
Boltzmann theory in the relaxation-time approximation [14].
The most important advantage is about the treatment of the
dominant excitations. The linear response theory does not
assume whether the dominant excitations are either Fermi
surface or Fermi sea type; instead, the dominant excitations
are naturally determined as a result of the treatment of the
perturbation terms. On the other hand, the Boltzmann theory
assumes the dominant excitations as a result of assuming the
distribution function [e.g., fx = f,? - ﬁ in Eq. (7.7.1)
of Ref. [36]]. Thus, the linear response theory is suitable
to analyze the roles of the Fermi surface and the Fermi sea
terms. Then, in the linear response theory we can analyze
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the interaction effects with keeping momentum conservation
in combination with Baym-Kadanoff’s conserving approxi-
mation [43,46,47]; in the relaxation-time approximation [14],
momentum conservation is violated because of the introduc-
tion of the momentum- and frequency-independent relaxation
time [43]. This is one of the advantages because the appropriate
treatment of momentum conservation is vital to analyze
transport phenomena. Actually, only if we use the appropriate
treatment, we can obtain the disappearance of the resistivity
without the lattice and impurities [37]; in the relaxation-time
approximation, the resistivity remains finite. In addition, the
linear response theory is useful to study a variety of material
dependence because the material dependence arises from the
differences in the electronic structure and because we can
naturally include those differences in the linear response
theory; in the relaxation-time approximation, it is difficult to
include the differences in the interaction effects.

In the remaining part of this section, we explain the
derivation only for a . This is because the difference between

o€ y and a comes from the difference between J jC ~(7) and

X

(‘L’) and because we obtain as by replacing (— e)85 s (U,
in 0 by >sgn(s)dy, sV b, [compare Egs. (13) and (20)].

Before the details of the derivation, we remark on the
importance of the order of taking the limits. To obtain the
finite observable current, we should take ¢ — 0 before taking
w — 0 [46]. Then, for dc conductivities, only after taking
o — 0, we can take y(k) — 0 because we should hold
WTyrans <K 1 [46,48,49], where tyans 1S the transport relaxation
time which is of the order of magnitude the inverse of
the QP damping. Namely, to discuss the dc conductivities
in the clean and zero-temperature limit, we should take
limy, k)0 lim,, ¢ lim, . ¢ in this order. If we take y,; (k) — 0
before taking @ — 0, the results become unphysical. In
particular, the order of those limits is crucial for interacting
systems because the important difference between cases in
WOTyans < 1 and oTyans > 11s known as the difference between
the first and the zero sound in the Fermi liquid [50]. However, in
noninteracting systems only in the clean and zero-temperature
limit, the unphysical limit [31] leads to the same crxc), orol as
that in the physical limit [17,19]. Since we cannot expect such
accidental agreement in interacting systems, we should care
about the order of taking the limits.

The derivation for crxcV consists of three steps.

The first step is to express K;Zld(k,k’;iQn) in terms of
the single-particle Green’s functions and the reducible four-
point vertex function [51]; the latter describes the multiple
electron-hole scattering. We can carry out that procedure by
the perturbative expansion using the Bloch-De Dominicis
theorem [49]:

Kopealek'5iS0) = =S T ZG (k)G (k)

Z Z Z GGy ()

x G (KOG k) x TE (R.E'50,i2,),
21
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with k~+ = (k,ie,, +i2,), fermionic Matsubara frequency
€n =2nT(m + %), and the reducible four-point ver-
tex function in Matsubara-frequency representation F{{i‘}}
(kK5 q,i) = T3k + quicmin.kii€n .k + q.i€min,
k',ie,). In principle, we can calculate ij; (k) from Dyson’s
equation using the self-energy

Gk = G (B
+ 3N GO BT Gy k). (22)
c,d s",s"

with the noninteracting single-particle Green’s function
Gfg}” (kyand T {{Z'}}(l;,lg’; q,i$2,) from the Bethe-Salpeter equa-
tion using the irreducible four-point vertex function [51,52]

P (kK5 i)

=Tl kK q.i2) + —

ZZZ

kK m"

x S Tos K i Q)G (R + )G (R
o1

x rj; ;’;”(/Jf,/?;q,iszn). (23)

The second step is to carry out the analytic continuation of
(z 2,,). This procedure is the same for o [52] with Ho and

Hmt without Hy s and Hlmp because the relevant parameters in
this procedure are only frequencies [49] and spin indices are
irrelevant. In this procedure, we use the analytic properties [49]
of the single-particle Green’s function and reducible four-point
vertex function and rewrite the sum of the Matsubara frequency
by the corresponding contour integral; Gﬁf; (k,€) is singular on
the horizontal line Ime = 0; Fij‘}}(k,e,k',e’;O,w) is singular
on the horizontal lines Ime =0, Im(e + w) =0, Ime’ =
0, Im(¢’ + w) =0, Im(e + €' + w) =0, and Im(e — ') =0
where the horizontal line Imw = 0 is excluded because we
consider Imw > 0 [see Eq. (12)]. As derived in Appendix B,
we obtain

o C(R) _
RE®(w) =

N2
i 3D 3) D) BN
kK A{a} (s}

O D) I N
=1
(24)

where

1 * de
;Eﬁ;f_mg, (25)

€

T s —tanh —_—, 26

\(€,w) =tan 5T (26)

T>(¢,w) = tanh et tanh i, 27)
2T

T;(¢,w) = — tanh 62_;10), (28)
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and

KapeakK's € 0) = Sk 8racai (ks w>

f dmi Zzgfl‘féb(k;w)

{A} {s1}

3
X D Tk 0)g k')

=1
(29)

with

1" m

gl (kw) =GR (ke + 0)GR* " (k). (30)

g (k) = GR (ke + )G ko), (31)

"t

SY s"'s
'%acdb (k Cl))

and J§}, (k.K'; ), connected with 0! (k,k'; ) by the
Bethe-Salpeter equation

G (ke + )G " (ke),  (32)

Ty (e ks ) = T (e ks )

ZZZZ

v (A o =t
Ds1s2s3s, 1", 581908y oy,
X ju" aben (kK w)g e appk'; w)
31373334 k// k/, 33
X Tpvingeak k5 ). (33)

Here, jll,'} (k,k'; w) is connected with re b {u (K, k'; w), the
reducible four-pomt vertex function in real- frequency repre-
sentation, as shown in Eqs. (B3)— (Bl 1); for the connections

between jl(l){“ (k,k'; w) and 1"1(11,) ;'} (k,k'; w), we should add

the superscript (1) to jll/;[a}(k,k/,w) and Fl{f,‘;ga}(k,k’;w) in

those equations.

The third step is to rewrite K S;R) (w) in a more compact form
by using the vertex function of the charge current. The vertex
function of the charge current in Matsubara-frequency rep-

resentation ACZB (k;q) = AB Sk + qimin K, iwm) (v =
x,y) is defined as follows [53]

Y Gk + A k:)GyiR)
A,B.s's"
7! T-!
= /dr gl /dr e (T, ckﬂm(r)qu(r )ckm)
0 0
(34)
Thus, ASy (k:§) is connected with T35 (kK5 q,iS2,)
through the Bethe-Salpeter equation

Sils-} (k q) = 53’ 3”(Uku)
D) WAIIES
m' (A} {s1}
YC”f'\,(k’ + q)G;zgj‘),(k/)B“ RO ot
(35)

Then, to convert this relation into the relation in real-frequency
representation, we should carry out the analytic continuation
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of AS;; (k; §). Since this procedure is similar for the second
term of Eq. (21), we can carry out this procedure in the similar
way. As a result, we obtain that connection

C o §s"
v ;L;' (k a)) = 85” s’”(vky)

T D i kK 008 ()

k' A,B,s1,s;

(36)

b AT (e ) = ACES (g A d
with AT5. (kyw) = yised (k,e + w,k,e) an

Xj}jxm%mhﬂw>

C D,s3,54 I'=1

x 8 canp (k' @). (37)

S8 88 /.
lchll’i’z(k k' w) =

These equations with Eq. (33) show that the correction terms
to the noninteracting charge current come from the multiple
electron-hole scattering, described by the reducible four-point
vertex function [51]. Furthermore, we can show that the
correction term arising from ﬁimp disappears for even-parity
systems because we can rewrite Eq. (36) as

C " "om
v;cji (k (,()) - 8?” v’”(vky i

+5 ZZZZﬁ%WWW

} I'=1

gﬁéXﬁb(H;w>ASj§;<k%a», (38)

and because part of the above second term arising from I-Alimp
exactly vanishes in even-parity systems due to the combination
of the momentum-independent irreducible four-point vertex
function in the Born approximation [17,19] [see Eq. (10)], the
even-parity symmetry of the single-particle Green’s functions,
and the odd-parity symmetry of the noninteracting group
velocity, which results in the odd-parity symmetry of the vertex
function of the charge current. Namely, for even-parity systems
with the weak onsite scattering potential of the impurities,
the correction terms in A} (k;w) arise from only Hiy.
Rewriting part of Eq. (24) by using the relation

s"s"

Z Z Kl ubcd(k k/ €] 0))55” S/"(Uk/y)

K cds",s"

Z glvjzcgdl;(k CU)(SA// W(Uky)

"

s"s"

c,d,s",s
3

551528
+§, E:glaABb(kw) EE,E:
c,d,s",s" A,B,s1,s2 k' C,D,s3,s4 I'=1

§"s"

X‘7ll’ (kK w)gz'sscfdg (K's )85 57 (V' y e
= Z z‘LLZHL“(k “’)A\CIY;CZ (k; w), (39)
cd,s",s"
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We can rewrite IEXC&R)(a)) as follows:

_5)2 3
RE®(w) = —% Xk: ; ; 8y.s (Ve ), 12 T)(e,)
a N =1

x g (k) Ay (ks ). (40)

A set of Egs. (11), (26)—(32), (36), and (37) provides a
framework to obtain an exact expression of xC\ within the
linear response of an external electric field.

We also obtain an exact framework for o , by replacing
(—e)dy ,s(vkx)ba n O'xy by ngn(s)(ss ,s(vkx)ba
of Egs. (11) and (40), we use Eq. (18) and

3
D 3) B I ITCN DY
k  {a} {s}

.N amely, instead

R () =

x Ti(e.0)g e (ko)A (kiw). (A1)

III. RESULTS

Since it is difficult to solve the exact expressions of
ny and a in the linear response theory, we adopt the
approxmiation appropriate for an interacting metal to these

express10ns and analyze the interaction effects on o , and
. First, we derive the approximate expressions of va

and ox} in Eliashberg’s approximation [49]; in part of this
derivation, we use Appendix C. This approximation is usually
used to derive transport coefficients of an interacting metal
microscopically [43,48,49,52,54], and its result [49] can re-
produce the phenomenological transport equation in the Fermi
liquid [42,51,55]; thus, this approximation may be appropriate
if the terms included remain considerable. Comparing the de-
rived O’C or O’S with the corresponding noninteracting result,
we analyze the interaction effects on the derived o or os

Second, we address the applicability of this approx1mat10n
and show its limit in clean and low-T case. The correct
understanding of this applicability is important to understand
the difference between o vy and oC . Third, we introduce an

approximation beyond El1ashberg S appr0x1mat10n in order to
describe the outside of the applicable region of Eliashberg’s
approximation, and derive the approximate expressions of crxcy
and o5, We also analyze how the additional terms are affected
by the electron-electron interaction.

A. Eliashberg’s approximation

After reviewing the singular property of a retarded-
advanced product of two single-particle Green’s functions
in the presence of the Fermi surface with several long-lived
QPs, we derive the approximate expressions of axcy and afy by
utilizing this property. Then, let us argue the interaction effects
due to the modifications from the noninteracting result.

1. Formulation
We begin with the singular properties [42,51] of a retarded-
advanced product of two single-particle Green’s functions
suchas GR"% (k + £)GY)"*? (k — 4) in the limits g — 0 and
Va(kr)/ T — 0 in the presence of the Fermi surface. In the
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presence of the Fermi surface, we can well define QPs with the
long-lived lifetime for at least several Fermi momenta [56-58].
These QPs are well described by the coherent part of the
single-particle Green’s function [42,46,51], given by

Z(Uk) Za(k)

W)

—&3() +iyg ) R
where (Uy);,, is the unitary matrix used to obtain & (k). Then,
for analyses of the limiting properties of the products of two
single-particle Green’s functions, it is sufficient to consider
only the coherent parts [51]. This is because in the limits under

consideration, the incoherent part [i.e., G(R)” k)—G Rl)fflb(k)]
is well defined and only the product of the coherent parts can be
singular due to the merging of their poles [51]. Such singular
behavior is obtained only for a retarded-advanced product
because the poles of the coherent parts merge only if one
of the poles crosses over the Fermi surface and because such
crossing occurs only for a retarded-advanced product [51].
As a result, a retarded-advanced product gives the leading
dependence on external momentum and frequency and the
QP damping, and the dependence of a retarded-retarded or an
advanced-advanced product is approximately negligible [49].
This treatment remains reasonable even for finite y,. (kp)/ T
if y)(kg)/ T satisfies v (kr)/T < 1 because this treatment is
regarded as a lowest-order expansion in terms of v (kg)/T.
Utilizing the singular property of a retarded-advanced
product of two single-particle Green’s functions, we derive
approximate expressions of Ug, and O'XSV in Eliashberg’s
approximation. (Because of the same reason for the exact
formulation in the linear response theory, we explain the
derivation for 0 in detail.) To utilize the singular property,

we introduce two quantities «71( 1 (ke k'; w) and AS(,?;;; (k; w):

GR (k) = (42)

coh a

(0) ~\1 (k k/ )_ \7](])31 (k k/ CL))

(1)s152855, ”.
LD 3) B) D) B tve RIILIS
k{AY {s]} I'=13
548155 (0)s] 55535
X g (K ) TS (K K )
(43)
and

C(O)ss (k

v liab ) = (Ss.s’(vkv)z};

LMD

k' A,B,s1,s2

(0)ss’sys .
a[;ubABl Z(k’k/, )4y, ,sz(Uk’u),Yq;l ,

(44)

(0)ss'sy52 . :
where . ubAB (k,k'; w) is

(0).&.& 5152 /. (0)55 5354 /.
Yapap (kK5 w) = 1wabep (kK@)

7Y X

CD&3341—13

x g ik @), (43)
Equations (43) and (44) show that 7' (k.k'; ) and

AS;(,?‘)IZ (k; w) do not include a retarded-advanced product of

two single-particle Green’s functions. Thus, those quantities
can be used to exclude the terms including at least a
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retarded-advanced product from the terms of K C(R)(w) in
Eq. (40). Among those terms, we need to decompose the terms
for/!=1and 3 in K xc)fm(w) into the terms without and with
the retarded-advanced product. This is because ALy (k; )

is connected with Aclab(k w) through the Bethe-Salpeter
equation

Adas ks @) = Ay (k)
1 ,
57 20 20 2 T (kK )
k' {A} {s1}
X gyt (ks ) A (K s w). (46)

After the decomposition of the terms for / =1 and 3 in
KXC;R) (w) in Eq. (40), explained in Appendix C, we obtain

2
kay(R)(w) - _( 2f) Z Z Z 8s’,x(vkx)2i1 Z
ko Aa} (s}

=1,3

x sgn(2 — DTy(e,w)giy (k) ASTS " (k: w)
i S SN A ke e + )
2i x;2:ba [A ke
ko A{a} (s}

X Ta(€,0)g5mgs (k) Ay (ko). (47)

This equation shows that only the second term includes
a retarded-advanced product of two single-particle Green’s
functions. Since we assume in Eliashberg’s approximation [49]
that the leading terms of Iexcy(k)(a)) come from the most
divergent terms in ¢ — 0 and y;(kp)/T — 0, we obtain o
in this approximation &, = oC®

xy = Oxy >
af (€) 's
o= DT T (-4 astio
x GR (I)GH (k) ASS (k; 0), (48)
where f(¢) is the Fermi distribution function. We also obtain
sty in this approximation as st)(,l),
( 8) a (6) s's
US(I) Z Z Z ( f > i(g)ha (k;0)
k
x GRS (k)G(A)° A (ks 0), (49)

by adopting the same argument to Eqgs. (18) and (41) and
introducing the vertex function of the spin current,

S(O)_m
\1 l;ab (k )

= 8,y5g0(s) (V) )3, + Z Z

k' A,B,X] .52

X 85,,5,SEN(s (Vg )i g - (50)

(0)ss's152 /.
al;ahAB (k’k ’w)
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By using that vertex function, Igf;R)(a)) can be exactly
rewritten as follows:

( e) Z Z Z 85,552N0(8)(Vix )

k  {a} {s}

x Y sgn(2 — DTi(e.w)gfhsgs (ks )
1=1,3

x AT (k)
—¢ s's
B (22i) > Z Z A3 (ke ke + w)
k {a} {s}

7"

X Ty(€.0)g5megs (kK )AShoy (kiw).  (51)

K¥®(w) =

Because of the same reason for A‘szcgd (k; ), ASS) (k; w)

and A)Sc(g);; (k; w) include the corrections to the noninteracting
charge and spin currents, respectively, due to the multiple
electron-hole scattering arising from H,,, and such corrections
arising from I-AIimp completely vanish in even-parity systems
for the weak onsite scattering potential of dilute nonmagnetic
impurities. Note that in the similar way for AS;;, (k; w), we
can rewrite Egs. (44) and (50) using Eq. (43) as follows:

C 0
v(l;‘b‘ (k w) = 83 S’(Ukv ol
D33P INETIR
{A} {s1} I'=1,3
$3515284 (k/' )AC(O)Slsz(k/. ) (52)
X 8r.caBp\K s W) pp (K50
and

ASOS (s ) = 8, sgn(s)(vr )

1)ss's34
EODDIPIEEIIE
} =13
53515254 /. S0)s1852 /7.7
X gricappk s )AL A g (K ). (53)
2. Interaction effects

Since the comparison between the derived Fermi surface
term and the noninteracting Fermi surface term is useful to
deduce the interaction effects on the Fermi surface term, we
show the noninteracting Fermi surface terms [17,19] of the
intrinsic AHE and SHE, o[ and ¢ %)

oSOV = (—e)? Z Z Z ( 8f(6)>5y,s(vkx)ii,

X G(O R)ss” (k)G(O JA)s"'s (k)(ssn’sm(vk/y)i_;s” (54)

< 8f(6) ) 6&’,3 (vkx )i,i,

« G(OR)N (k)G(OA)v K (k)(Ss”,s’”(”k’y)i;S

and

S(O N _

. (55)

Comparing Eq. (48) or (49) with Eq. (54) or (55), respec-
tively, we see the electron-electron interaction causes three
modifications. First, the x component of the noninteracting
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charge or spin current becomes, respectively, (— e)Af(g),f :(k 0)

in JC(I) or IAS(S);;(k 0) in o}V, Second, the two single-
partlcle Green’s functions change from noninteracting to
interacting. Third, the y component of the noninteracting
charge current becomes (—e)A)C;j‘;:;inW (k; 0).

Let us begin with the interaction effect due to the re-
placement of the single-particle Green’s functions. Since the
interaction effects on the single-particle Green’s function
arise from the self-energy [Eq. (22)] and the self-energy
causes the QP damping [Eq. (8)], we analyze the damping
dependence of chy(l) or axSy(I). For that purpose, we need to

7"

analyze the damping dependence of g3%%;* (k;0) in oV or

oM because the others are O(y?), where y is of the order of
magmtude the QP damping [49]. As explained, gé‘a C‘dg (k; 0)
has the leading damping dependence among several products
of two single-particle Green’s functions because of the limiting
property of the product of the coherent parts of the retarded and
the advanced single-particle Green’s function. That leading
damping dependence is given by [46]

"ot

Gineas k:0) ~ 82 Y uy o (K)o (k)25 (k)

Sle — &5 (k)]
56
R+ ik + im0
with A&, (k) =&k — & (k) and  ull S, (k) =

U U Us(UDS,. In deriving Eq. (56), we
have used Eq. (42) and the identity

1 1
I - = 27i8(z — X). (57
ai%‘+[z—x+i5 z—X—i8:| 7idz = X). (37)

Equation (56) can be also rewritten as

"o 7" ot

g (k;0) ~ im Z Uy ()20 (K)z 5 (K)

x 3(e — £2(k) + 8(e — £5 ()]
AgS, (k) — iy (k) + v (k)]

X — " (58)
A&z, (2 + [yg (k) + v ()1
by using two equalities
Gy (k) = G (k" (59)
and
Wi ) = U} ()" (60)

To see the finite components of g%‘a gdbv (k;0) in O’C(I) or O’S(I)
we should detect the terms odd with respect to k and k

This is because Affg),j; (k;0) and A)Sc(g);]; (k;0) are odd with
respect to k, due to the k, derivative in (vk.);, [see Egs. (44)
and (50)] and A}C,;;;:f[;/(k; 0) is odd with respect to k, due to
the k, derivative in (vg,);, [see Eq. (36)], i.e., the terms
other than Aoy (k:0) [ASS) (k;0)] and A3/ (k;0) in
O’XCy(I) (axs}(,l)) should be odd with respect to k. and k, to
obtain finite terms after taking the k summation. Note that
an integrand of the k summation should be even about each
k, to obtain the finite value. Since such odd terms arise
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from the terms proportional to ”;;; d;}b(k)Agga(k) (x # B)
in Eq. (56), the dominant multiband excitations for O’C(I)
or sty(l) are interband; to obtain finite odd terms arising
from those terms, the hopping integral with the odd mirror
symmetry is necessary. For further argument, let us consider
a simple but sufficient situation: the finite terms of ofy or

o3 come from the interband excitations only at k = kg. In

thi}s situation, the leading terms of g5% %, (k;0) in o® or
o3® become O(y ~2)in | A}, (ko)| < [y (ko) + v, (ko)], and
0()/0) in | A&, (ko) >> [yg (ko) + y; (ko)]. As aresult, a or
oy, becomes O(y~?) in the former limit and O(y°) in the

latter limit. More precisely, the leading terms of o(" and o'
in |AZ, (ko)| < [y, (ko) + vz (ko)] are given by

—( e) A&z, (ko)
CO) ~
e Z§ (s (ko) + v (ko) P

x {Im[ AT, (ko.&3 ko)) AS 50 (ko.E5 (ko))]
+Im[ASS), (ko &5 (ko) AS 5 (ko £ (ko))]}  (61)

and
W~<”zz
X) 22 N

x {Im[A f(é”ﬂa(ko,é (k) AS 5,0 Ko £ (ko))
+Im[ A%, (ko,&5 ko) AS 05 (ko,E5 ko] ). (62)

A&g, (ko)
Vo (ko) + v (ko)

respectively; in |A$§a(ko)| > [
o) are given by

—( e)
o0 ~
20,:; Aé,ga(ko)
x {Im[A S, (ko8 (k) AS (Ko £ (Ko))]

+Im[ALS) (ko.&5 (ko) AS 5.0 (ko &} (Ko))] ) (63)

Ve (ko) + v; (ko)], 0" and

and
oy~ _2(2;ve)ZZ NG (k)
a pra PO
> {Tm[ A3, (ko &) RS o (Ko E2 (Ko))]

+Im[ATD) (ko.£5 (ko)) RS, p (ko &5 (Ko))] ). (64)

respectively. In those equations, we have introduced three
quantities:

A €) = \Jzp(k)z, (k)

X > (UD A ki O)(Uk)y.  (65)

a,b,s,s’

[\S;Z;aﬂ(k"?) =y za(k)zp(k)

> UDSAs e R 0)(Uk)y.  (66)

c,d,s",s"
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and

KD (k.€) = [z (k)zq (k)

XY (UD AN, ki 0)Uk)y.  (67)

a,b,s,s’

For more complex situations with the interband excitations at
k = ko, ky,. .., kx_1, weneed to apply the above argument for
the simple situation to each term of the interband excitations
at k; and combine each other’s damping dependence: if at
least one of the interband excitations satisfies |A&5, (k)| <
[ya (k) + v k], o5V or o3 becomes damping dependent;
on the other hand, 1f all the interband excitations satisfy
|AES, (k)| > [vatky) + vik), oS or 0P is damping
independent. Thus, the electron- electron 1nteract10n causes
the finite damping dependence of o, and o}, at high
temperatures even without impurities. Furthermore, since the
interaction-induced QP damping decreases with decreasing
temperature [42], the electron-electron interaction causes the
emergence of the temperature dependence of 0§ vy and a ~and
a crossover from damping dependent to damping 1ndependent
ny or oxs} even without impurities (see Fig. 2).

Then, we see the interaction effect due to the replacement
of the spin current for o>, This is related to the effects
of the SCD because the dlfference between o[ and o>V

comes from the difference between (—e)AS;(ZO;);aY(k,O) and

IA)Sf(g);; (k;0) [see Egs. (4§) and (49)]. Actually, rewriting
A5O3 (k; 0) by using ASCp (k1 0) as
A5 (k; 0)
= sgn(s)Agfx();EL;S(k; 0)
< SN T kK Oy (68)

— 2sgn(s)

and substituting Eq. (68) into (49), we can show that the second
term of Eq. (68) leads to a SCD-induced correction of S(I),

A Fermi-surface
term
0(7")

Fermi—séa """" X
term
0(»")

0 »Tlim
0 p

FIG. 2. Schematic diagram about the dominant term and damping
dependence of ¢, or 0. Our formalism is applicable outside the
gray triangle reglon becau%e that region satisfies v (kr)/T > 1 due
to the impurity-induced QP damping. The crossovers occur at the red
and the orange dotted lines. The form of the red dotted line depends
strongly on the temperature dependence of the QP damping.
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AUSCD):
Xsy(l) ( 5 Z sgn(s)(—e)? Z Z (
fj?if;(k o>g;f;:;;’;’<k;0>AS55TLf;’<k;0>
(=) Z sen(s >Z Z ( 8f(€))
x ) Z aé?Zii}“%k% 0) (w5

k' A,B

x gazzdz (k: 0) A3 (k:0)

3f(6)>

Feoll M

= 3. )ngn(s) @5P)™ T + AcSP, (69)

)S/SS’ §"

with spin-decomposed component of o X) , (o , defined

"o

as O'C(I) _ Z ( C(I))s ss”s

I beheve thls 1nterpretat10n is appropriate because of the
following arguments. Since the SCD [33,34] affects only
spin transports, it is reasonable to suppose that the difference
between o and oS is related to the effects of the SCD
on the Fermi surface term. In addition, it is consistent
with the general property of the SCD in metals to suppose
that the second term of Eq. (68) causes the correction due to
the SCD because the second term represents the correction
of the spin current due to the multiple scattering of the
electron-electron interaction between different spins (see the
second term for s’ = s). Here, the general property is that only
such multiple scattering causes the SCD in metals because
for the onsite bare electron-electron interactions such as the
Hubbard interactions, the multiple scattering is necessary to
obtain the finite momentum transfer. Note that this general
property of metals indicates the importance of the momentum
dependence of the self-energy due to the electron-electron
interaction in discussing the SCD in metals because that
momentum dependence is necessary to obtain finite second
term of Eq. (68).

Finally, let us see the interaction effects due to the other
modifications, i.e., the replacement of the x component of
the charge current in O’C(I) and the replacement of the y

component of the charge current in o[V or oV First, the

former replacement causes a magnitude decrease of o, from
a noninteracting value. This is because the correction term
in Affg;);:(k;O), the second term of Eq. (52) for w =0, is
related to the k, derivative of the real part of the self-energy
due to a Ward identity [51,59] and because its effect on the
charge current, the renormalization of the group velocity,
reduces a magnitude of the charge current [49]. Then, the
latter replacement maybe changes not only the magnitude
of O’C(I) or O’S(I) but also its sign in some cases near an
antlferromagnetlc quantum-critical point due to the similar
mechanism for the weak-field usual Hall effect [43]. For
the weak-field usual Hall effect without the onsite SOC,
the angle change of the charge current can be induced
near the antiferromagnetic quantum-critical point due to the
momentum dependence of the irreducible four-point vertex
function, and that angle change causes the sign change of the
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usual Hall conductivity [43]. To check this possibility for the
intrinsic AHE or SHE, we need a numerical calculation for
oSV or oV by applying an approximation appropriate near
the antiferromagnetic quantum-critical point to the particular
band structure. Since that is a next step, it remains an important

issue to clarify the interaction effects of that replacement on
o< or oS0,

B. Applicability of F]liashberg’s approximation

We turn to applicability of Eliashberg’s approxima-
tion [46,49,52] for ny or oxsy. First, we should restrict

arguments to cases for y (kr)/T < 1 because Eliashberg’s
approximation is reasonable only for y (kr)/T <1 (see
Sec. IIT A). Thus, the gray triangle region in Fig. 2 is the
outside of the applicable region. Then, there are two key factors
to argue whether ofy([) or 03 become finite or not, i.e., the
broadening of the QP spectra due to the QP damping and the
broadening of (_M) due to temperature. This is because of
the following three facts: 0" or 63" consists of the integral of

(— %) for interband excitations; such integral becomes finite
only for the finite overlap between the QP spectra of the two
bands; that overlap arises from the above two key factors. Thus,
intherange of ¥ (kg)/ T < 1, we have three distinct cases, i.e.,
high-T case, intermediate-T case, and low-T case: in the high-
T case, both of the two factors lead to a finite overlap between
the QP spectra of the two bands for at least an interband
excitation; in the intermediate-7 case, the finite overlap arises
only from the broadening of (— 3 (6)) in the low-T case, the
overlap becomes negligible. For example those three cases for
the interband excitation at k = k; are shown schematically
in Figs. 3(a) 3(b), and 3(c). As we see from Figs. 3(a)
and 3(b), Eliashberg’s approximation gives finite oS or 050
in the high-T case and the intermediate-7 case. However
in the low-T case, corresponding to Fig. 3(c), " or o{"

become very small; thus, Eliashberg’s approximation becomes
insufficient. Since the high-T case, the intermediate-7 case,
and the low-T case correspond to, respectively, the upper,
the middle, and the lower regions of the left triangle of Fig. 2,
Eliashberg’s approximation is sufficient to analyze the intrinsic
AHE and SHE in the upper and the middle regions; for the

(@) (b)
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analysis in the lower region, we need to take Eliashberg’s
approximation a step further.

C. Approximation beyond Eliashberg’s approximation

Starting to explain the points missing in Eliashberg’s
approximation and being important in the low-7" case, we
construct an approximation beyond Eliashberg’s approxima-
tion and derive the approximate expressions of ny and O'XSV in
this approximation. Then, we see the damping dependence and
the effects of the SCD in this approximation. Furthermore, by
comparison with the noninteracting Fermi sea term, we deduce
how the electron-electron interaction affects the Fermi sea term

C S
of o, oroy,.

1. Formulation

As we see in Sec. IIIB, in the low-T case, where
temperature is low and the QP damping is small, the term
of UXC\, or sty considered in Eliashberg’s approximation
becomes very small. For analyses in such case, we need
to use an appropriate approximation beyond Eliashberg’s
approximation. In particular, we should take account of the
terms of the interband excitations including f(e) because
those terms remain finite even in clean and low-T case.
Since Eliashberg’s approximation has succeeded in getting
reasonable descriptions of several transports of interacting
metals (e.g., the resistivity [37,49] and the weak-field usual
Hall effect [48,54]), I suppose that Eliashberg’s approximation
is not so bad even for the description of the intrinsic AHE or
SHE, and that an approximation appropriate for analyses in
the low-T case can be obtained by extending Eliashberg’s
approximation.

On the basis of those suppositions, we construct an
approximation beyond Eliashberg’s approximation by going
back to the exact expression of szcy(R)(a)) or Igf}(,R)(a)) [Eq. 47)
or (51)] and taking account of not only the terms considered
in Eliashberg’s approximation, but also the terms leading
among the terms of the Fermi sea integral. Such leading terms
come from the terms proportional to the w-linear term of

"Ml ot

gios (k) or ASOR" (ksw) (I =1,3) in the first term of
Eq. (47) or (51) because we need to take the leading w-linear

20 T T T T T 50
Of (e
(- ,(6)) 40 |
15 Oe E
Salki) 4 &5(kj) 30
20
10
0 =
-0.04 -0.02 0 0.02 0.04 -0.04 -0.02
€@V

0 0.02 0.04
€ (V) €V

-0.04 -0.02 0 0.02 0.04

FIG. 3. QP spectral function A, (k,e) and (—%) for the interband excitation at k = k; in (a) the high-T case, (b) the intermediate case,

and (c) the low-T case. In those panels, the QP spectral function is given by A,(k;,€) =

2o (k) Ve (k)
T le—g5 +V*(k)2’

the parameters are chosen

as zo(k;) = zg(k;) = 0.4, £ (k;) = —-’E;(kj) =0.02 eV, and y;(k;) = y;(kj) =40T?; T in panels (a), (b), and (c) are 0.004, 0.01, and

0.022 (eV), respectively.
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terms to obtain ofy or a [see Eq. (11) or (18)]. Thus, the
terms leading among the terms of the Fermi sea integral lead

to additional terms of crxy and o
Asaresult,oC vy and oS
ca car
oSV +0oi™ and of =
o i

oS0 — (— E)ZZZZf(e)& s (Ve Dy Z

{a} {s} =13

. in this approx1mation become o, =

= gXSy(I) + of)(,n), respectively, Where

e C0)s”s" 1.
[glyizcsdbs (k )Ay;l;cji ' (k’ w)]’

(70)

d
x sgn(l —2) hm T

Sa
and o) is

S(II)_(e)
) Z
k|

a ARy
x sgn(l —2) lim -~ ) — [ (ks a))A‘C(,Ozd (k;cu)].

£(€)sgn(s)8y s (Wealyy Y

a} {s} =13

(71)

For the direct comparison with the noninteracting Fermi sea
term, we rewrite part of the terms proportional to the w
derivative of g3 ;) (k; )l = 1,3) in Egs. (70) and (71) as
follows:

”onr ot

H ( 437)) o
Z sen(l — 2)1 g’“L() S(logédb (k;0)
=13
G(R)w k o
(k) (R)s 5 (k)Ac(ﬂ)Csds *:0)
de
AGM" (k v
+—*——G, Qo wass wo. @)

where we use the identity

OF OF
fim 2F€+ @) _ 3FE©) (73)
w—0 Jw de

Namely, Egs. (70) and (71) become

o =—(=el Y D> f(©)8y (i)
k Aa} (s}

AGR (k)
X —_—
de
AGD (k)

Gy " (DAL (k:0)

(A)s”s (k)AC(O)s”s”'(k; 0)

Je y;3ied
C(O)SUS "
, iy (k; w)
+ G(R)ss k G(R)s K ) lim y Lied
ac ( ) db ( )wﬁO 860
" IASD (ks w)
_ G(A)ss” k G(A)x s &) lim y;3ied
ac ( ) db ( )a)~>0 —aw
(74)
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and

oo = % Y33 Flersgn(s)dy s (vin )y
ko A{a} {s}

0GR (k g
« [ ac (k) (R)r s (k)AC(O)Y s (k;0)

de y;lsed
G(A)“ k -
( )G(A)v K (k)A(V:(;))erv (k,O)
d€
C(O)r”r”’
, o (k: @)
G(R)ss k G(R)s s o li \ 1;cd
+ G, (k) db ( )wll}%) YR
" "o 8 C(O)Y/S”(k )
_ Ggl/z)ss (k)GE[i;)S s (k) lim ¥;3;cd :|7
w—0 w
(75)

respectively.

2. Interaction effects

Before comparing the derived Fermi sea term with the
noninteracting Fermi sea term, we analyze the damping
dependence of 5™ or axs}(,n) and the effects of the SCD on

o> in order to clarify how the two important properties

obtained in Eliashberg’s approximation modify in the low-T
case. Those properties are the crossover from the damping
dependent to the damping independent o or oy, with

decreasing temperature and the correction term of o
shown in Sec. IIT A 2.

First, GXCV(ID and sty(n) become O(y%) in T — 0 and
va(kp)/T — 0 because we can neglect the damping depen-

dence of gi¥*%'(k; 0) or g5, (k;0) [49]. Since that result

remains qualitatively the same in the low-T case, axcy and

0 , become 0§, ~ oS = O(y°) and (TS ~ S(“) = 0@yY),
respectively In addition another crossover occurs at the
orange line in Fig. 2 because the dominant term changes from
the Fermi surface term to the Fermi sea term with decreasing
temperature. It should be noted that UC(H) or O’S(H) becomes

Xy, as

negligible compared with O‘C(I) or GS)(I) respectively, if the QP
damping is larger than the energy of the interband excitation
which gives the finite contribution to o S™ or o3, This is

because in oS or o5 we neglect the dependence on the
QP damping as a result of the leading-term expansion of the
products of the two single-particle Green’s functions in terms
of y¥(kg)/T — 0, while we consider the dependence on the
energy of the interband excitation. Thus, when the QP damping
is larger, (TC(H) or JS(ID becomes less dominant than O‘C(I) or

oS respectively, because only 05" or o3V has the leading
dependence on the QP damping.
Next, since the spin current in o,5{"" is the same as the nonin-

teracting one, S(H) is not affected by the SCD. Thus, the SCD

affects ny except at low temperatures. Then, to understand
how the electron-electron interaction affects the Fermi sea
term, we compare Eqs. (74) and (75) With the noninteracting
Fermi sea terms [17,19] of O’x and 0“, respectively, O’C(O 1D
and sty(o;n), and deduce the interaction effects on the Fermi sea
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terms. 0. *™ and o 51V are given [17,19] by
—(—e)? Z Z Z F(€)8y (v,

aG[(l(i‘;R)ss (k) (O;R)s”"s’
x e Gap

C(O m _

(k)

G OA" (k) s
—_ T ( )Y N (k)] 57, ’”(vk\ cd (76)
and
s (_e) 55
o = == 0 ) D Fesen()dy (v,
k A{a} (s}

AGORSS" (k) o
% |: acae ( )G(d(;],R)s K (k)

0:A)ss”
G (k) GOAs"S
B — A

9e (k):| s, Y/”(vk) Ld s (77)

respectively. After carrying out the € integral in Eqs. (76)
and (77), any(O;H) or axsy(O;H) is decomposed into the Berry-
curvature term and the other part of the Fermi sea term [17,19].
Comparing Egs. (74) and (75) with Eqgs. (76) and (77),
respectively, we find that each of o™ and o™ has
three modifications due to the electron-electron interaction.
Those modifications are the replacement of the single-particle
Green’s functions by the interacting ones, the replacement of
the y component of the charge current by its vertex function,
and the appearance of the w derivative term of the y component
of the vertex functions of the charge current.

Each of those modifications affects o™ and o3 as
follows. First, the replacement of the single-particle Green’s
functions will little affect o™ and 63" because the QP
damping of the retarded-retarded or advanced-advanced prod-
uct is negligible [49] and because the effects of z,(k) in the
numerator and the denominator of the coherent parts of that
product for finite € nearly cancel out each other when the
band dependence of z,(k) is not strong. Second, the effects
of the replacement of the y component of the charge current
on UC(H) or US(.H) may be also not large because, as described

in Sec. III A 2, the difference between A‘C(lozsds (k,e;0) and

85//,5/«/(vky)2d5 just causes the renormalization of the group
velocity. Third, the modification about the appearance of
the w derivative term of the charge current may lead to
the finite correction term if the dynamical effects of the
electron-electron interaction are considerable. If the effects
of the electron-electron interaction can be either neglected
or treated in a mean-field approximation, the » derivative
is exactly zero. Actual estimations of those three interaction
effects by numerical calculations are remaining issues for a
future study.

IV. DISCUSSION

In this section we discuss the origin of the differences
between oy, and of,, the differences between the present

formalism and Haldane’s formalism, and the correspondences
between our results and experiments.

PHYSICAL REVIEW B 93, 245128 (2016)

Before discussing the origin of the differences between

Cc e N . .
0” and ol, we show o in Eliashberg’s approximation

for H, and see its properties about the dominant multiband
excitations, the damping dependence, and applicability of
Eliashberg’s approximation. Since we obtain the exact ex-
pression of C in the linear response theory by replacing

qy(O) in K (zQ ) in Eq. (11) by 7qx(0) we can derive
ol in Ehashberg s approximation in the similar way for
of. Thus, ¢S in this approximation becomes o< = oSV
with

oS0 — (— 6)2222< 8f(€)>
k  A{a}

X GS)C;R)“ (k O)G(O A)s” y/(k’ O)AS:;;‘S;(](, O) (78)

AR (K 0)

The difference between 0" and of" is the difference

between A5, (k;0) and AT ") (k;0). In addition, from the

similar argument for O’C(I) we can deduce several properties

of o€ . First, because of the same reason for O'XCV(I), we can
determlne the dominant multiband excitations and damping

dependence of oC® by analyzing the leading terms of

ss”s"s! C(I)

&eai (k;0) Wthh give the finite terms of o<®. Since o
includes two k, derivatives arising from the k derlvatlves

of the noninteracting group velocity in Af(g),f;(k;O) and

f; fd (k;0) [see Eqgs. (44) and (36)], the terms in <™ other
than those should be even with respect to k, and k,. Due
to this property, the terms proportional to —i[y, (k) + y; (k)]
in the leading terms of gif;j;'g/(k;O) give the finite terms
of 0<® [see Eq. (58)]. In addition, since the denominator
of the leading terms of g5+ (k; 0) includes A}, (k)*(=> 0)
[see Eq. (58)], the dominant multiband excitations become
intraband (i.e., B = «). Furthermore, due to that prop-

erty, oS0 is always O(y~') because we can approximate
o0 as
XX

( e)

x Re[A f(é’lw(ks (kDAS ok EXK)]  (79)

with Egs. (65) and (66). Then, the dominance of the intraband
excitations for o indicates that Eliashberg’s approximation
is always applicable in the left triangle region of Fig. 2 because
for the intraband excitations the overlap between the QP
spectra is unimportant.

Combining the above properties of o with the correspond-
ing propertles of o€ , we can clarify the orl gin of the differences

x\ ’
between a and 0 Ty Namely, the origin is the difference in
the dormnant multiband excitations.

In addition, we can deduce the general principles in
formulating transport coefficients of an interacting multiorbital
metal. If the dominant multiband excitations are intraband,
we can sufficiently treat the electron-electron interaction in
Eliashberg’s approximation. If the interband excitations are
dominant, we need to use, instead of Eliashberg’s approxima-
tion, an approximation beyond it only in the low-T case.

Then, we argue the differences between the present formal-
ism and Haldane’s formalism [32]. Assuming that o 1s given
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only by the Berry-curvature term, Haldane proposed that the
term of the Berry-curvature term after partial integral about
€ could describe the excitations near the Fermi level [32].
However, the exact GXC‘, includes the Fermi surface term
which qualitatively differs from the Berry-curvature term [see
Eq. (11) with Eq. (47)]; the difference arises from the effects
of a retarded-advanced product of two single-particle Green’s
functions, which are important in the resistivity [37,49] and
the weak-field usual Hall conductivity [48,54] in the Fermi
liquid. Thus, if the Fermi surface term is dominant, Haldane’s
formalism is inapplicable. Since we find the dominance of
the Fermi surface term in the high-7 and the intermediate-
T regions of Fig. 2 even without impurities, the present
formalism reveals the remarkable interaction effects arising
from the non-Berry-curvature term outside the applicable
region of Haldane’s formalism [32].

Finally, we discuss the correspondences between our results
and experiments. First, we can check the interaction-driven
mechanism of the damping dependence of ny or afy and
crossover between damping dependent to damping indepen-
dent o or O’S by measuring its temperature dependence in a
clean system ThlS is because that temperature dependence is
induced by the temperature dependence of the interaction-
induced QP damping, as explained in Sec. IIIA2. Also,
we may observe the difference of the form of the red
dotted line in Fig. 2 between weakly interacting and strongly
interacting metals because the Fermi liquid and the nearly
antiferromagnetic or nearly ferromagnetic metal show the
different temperature dependence of the QP damping [42,60].
Moreover, although it is difficult to detect the crossover
between the damping-independent Fermi surface and Fermi
sea terms only by experiments, we can check its existence by
combination of experiments and first-principle calculations
if we find the material in which the sign of of, or oS
changes at the crossover line: to find such material, we
need to systematically analyze the intrinsic AHE or SHE
on the basis of a realistic band structure in the presence of
the electron-electron interaction by using the first-principle
calculation; after the ﬁnding, we need to experimentally
analyze the sign of o xy or os as a function of temperature
around the crossover temperature Then, the results about the
SCD indicate, first, that in a measurement of the SHE in the
low-T case, axs), behaves as if the nonconservation of the spin
current is not important; second, that we may observe the
effects of the SCD on the intrinsic SHE at high or slightly
low temperatures where the Fermi surface term is dominant.
However, it remains a challenging issue to clarify how large its
effects are among several transition metals and transition-metal
oxides.

V. SUMMARY

In summary, we have constructed the general formalism
for the intrinsic AHE and SHE of the interacting multiorbital
metal by using the linear response theory with the appropriate
approximations, and have clarified the roles of the Fermi
surface term and Fermi sea term of the dc conductivity and
the effects of the SCD on these terms. In the high-7 and the
intermediate-T regions of Fig. 2, we have used Eliashberg’s
approximation, and in the low-T region, we have constructed

PHYSICAL REVIEW B 93, 245128 (2016)

the approximation beyond Eliashberg’s approximation. Most
importantly, we highlight the important roles of the Fermi sur-
face term, a non-Berry-curvature term, even without impurities
in the high-7 and the intermediate-7" regions. Actually, this
Fermi surface term leads to the interaction-driven temperature
dependence of a . or cr in the high-T region and the SCD-
induced correctlon of ox) These results considerably develop
our understanding of the intrinsic AHE and SHE. In addition
to those achievements we have found that the differences
between ny and o C_arise from the difference in the dominant
multiband excrtatrons. Namely, due to the dominance of the
interband excitations in axcy, the Fermi sea term such as the
Berry-curvature term becomes dominant in clean and low-T
case while due to the dominance of the intraband excitations in

ol , the Fermi surface term is always dominant. This answers
how to construct the FL theory for the intrinsic AHE or SHE.
Moreover, we have shown the principles to construct general
formalism of transport coefficients including the interaction
effects and the multiband effects. This may be useful for further
research of charge, spin, and heat transports for an interacting
multiorbital metal.
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APPENDIX A: UNDERSTANDING OF THE INTRINSIC
AHE OR SHE AS ORBITAL AHARANOV-BOHM EFFECT

In this appendix, we see that the origin of finite terms of
axcv or O'XSV can be understood by analyzing the corresponding
motion of an electron or a QP in real space, and that the origin
of the intrinsic AHE or SHE in several metals is the orbital
Aharanov-Bohm (AB) effect [25].

First, we can obtain the intuitive insight of the origin of finite
Oc or a , Dy expressing its finite term as the corresponding
m0t10n of an electron or a QP in real space [21,25]. For
simplicity of arguments, let us argue noninteracting case of axcy
because that argument for an electron is similarly applicable

for o ~and because the similar argument holds even for a QP

in mteractmg case. In the linear response theory, ny has four
matrix elements, the x and the y components of the charge
current and two single-particle Green’s functions [17,30] [see
Egs. (54) and (76)]; each term is the matrix element of the
corresponding operator. Then, the charge current operator is
single-body [see Eq. (14)], and the operator of the retarded
or advanced noninteracting single-particle Green’s function
is given by the inverse matrix of (wl — Hy — Hys +i81) for
6 = +0or -0, respectrvely Since we can express it in terms of

H0+HLs

the series of , asingle-body operator, we can decompose
the terms of o€

P mto the corresponding motion of an electron in
real space [21,25]. That motion helps understand which terms
in the Hamiltonian are essential to obtain finite o0& vy Thus, the
analysis of that motion helps understand the origin of the finite

terms ofo [21 25].
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FIG. 4. Schematic pictures about the motion of an electron that gives a finite term of o,

Spin-orbit coupling

C

y or o3 for (a) STRuO; [17] or Sr,RuO4 [25], and (b)

Xy

an effective single-orbital metal [9] without the inversion symmetry at an ab plane, and (c) the schematic picture for the #,,-orbital metal [21]
whose single-orbital limit corresponds to case of (b). In those panels, 1 and | denote spin up and spin down, respectively, each black arrow
denotes each motion due to the single-body operator, and the color difference of an orbital denotes the sign difference of its wave function.
ISB-induced hopping in panel (c) denotes the hopping integral induced by the inversion-symmetry breaking at an ab plane [41]. Several

similarities in panels (c) and (a) should be noted: the two ISB-induced

hoppings in panel (c¢) play a similar role for the next-nearest-neighbor

hopping between the d,. and d,, orbitals in panel (a); a sequence of the SOCs between the spin-down d,, and the spin-up d,, orbital and

between the spin-up d,, and the spin-down d,, orbital in panel (c) play
orbital in panel (a).

Then, we consider three examples, and see the finite terms
of (rfy or afy arise from the acquisition of the AB-type phase
factor of an electron because of the onsite SOC and several
hopping integrals. The following arguments are applicable to
other cases of the intrinsic AHE or SHE of a metal.

The first example is case of a ,,-orbital metal on a square
lattice, corresponding to the AHE [17,18] in SrRuO3 and the
SHE [25] in Sr,RuQy4. By the analysis of the motions for the
finite terms of ofy or ofy, we find that one of the finite terms
in this case arises from the motion shown in Fig. 4(a) [25].
This figure shows that the SOC from the spin-up d,, orbital
to the spin-up d, orbital causes —7 rotation, resulting in
a com}plex phase factor of the wave function of an electron
exp % =i [25]. This phase factor is similar to the AB phase
factor [24] in the presence of an external magnetic field. Thus,
we can regard the acquisition of such phase factor using orbital
degrees of freedom as the orbital AB effect [25]. Namely, the
orbital AB effect causes the intrinsic AHE or SHE in this
case. In addition to the onsite SOC, the direct hopping integral
bectween the dy, and d,, orbitals is important to obtain finite
lo ol

ySecond, we can apply the similar mechanism to case of
the intrinsic SHE in Pt [19,20]. In this case, we can acquire
the AB-type phase factor by using several hopping integrals
and the onsite SOC; e.g., the onsite SOC from the spin-up
d,y orbital to the spin-up d,>_,> orbital leads to —7 rotation,
resulting in a complex phase factor exp % =1i[19].

Third, we can similarly understand the intrinsic AHE
or SHE in an effective single-orbital metal [9] without the
inversion symmetry at an ab plane. For the explicit argument,

J

—8ex T Y Go (K)G (k)

d
S
C

€ tanh ¢ G?
4 2T %

KDGLE) - —Sn f

a similar role for the SOC between the spin-up d,. and the spin-up d,,

let us consider the situation of the d,,-orbital system on a
square lattice. (The following argument is applicable even for
other single-orbital systems without the inversion symmetry.)
Since the electronic structure in this situation may be described
by the single-orbital Rashba model [61], we can determine the
motion which gives the finite term of axcy or o5, in the Rashba
model [9] [see Fig. 4(b)]. Although that motion seems to be
not categorized as the orbital AB effect, that motion can also
be understood as the orbital AB effect [21]. This is because
a ty,-orbital model with the onsite SOC without the inversion
symmetry at an ab plane becomes an effective single-orbital
Rashba model for a large difference of the single-body energy
level between the d,, and d,,,. orbitals [41]: the microscopic
origin of the Rashba-type SOC is the combination of the
transverse components of the onsite SOC and the hopping
integral induced by the inversion-symmetry breaking in the
presence of the large single-body energy difference between
the d,, and d..,,, orbitals [see Fig. 4(c)]. Note that except the
case for the large single-body energy difference the #,4-orbital
model qualitatively differs from the effective single-orbital
Rashba model [21,41], and that the differences play important
roles in obtaining the intrinsic term, which defeats the extrinsic
term in the Born approximation [26].

APPENDIX B: DERIVATION OF EQ. (24)

In this appendix, we derive Eq. (24) by carrying out the
analytic continuations of the first and the second terms of
Eq. (21). First, we can carry out the analytic continuation of
the first term of Eq. (21) as follows:

& €
—— tanh —
2T

dri G (ke € + )

245128-15



PHYSICAL REVIEW B 93, 245128 (2016)

NAOYA ARAKAWA
d "
€ GZ‘F_CU[GLIE)N (k,G +w) — G(A)YY (k € +w)]G(A)S S(k,é)

< [G (R)ss(k €)—G (A)ss(k 6)]_5”,/ Etanh
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de
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where the contour C consists of the three parts into which the circle is divided by inserting two horizontal lines Im(e 4+ i€2,,) = 0
and Ime = 0, — represents taking i€2, — w + i0+, Ti(e,w) are given by Egs. (26)—(28), and g;7 .y, (k;w) are given by

(BI)

Eqgs. (30)—(32).
Second, we can similarly carry out the analytic continuation of the second term of Eq. (21)
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€ ssiss 535"5"s. s
+ tanh ﬁgl;aAsz(k;w)gB?Cc-dﬁ(k/;w)[ (kK3 0.0) = T3 (kK30 “’)]}

_ * de /
B 4m
In Eq. (B2), the contour C is the same as that used for the first term of Eq. (21), the contour C’ consists of the five parts into which the
circle is divided by inserting four horizontal lines Im(¢’ — i¢,,) = 0, Ime’ = 0, Im(¢’ + i2,,) = 0, and Im(¢’ + i€, +i€2,) =0
without the terms corresponding to Ime’ = ¢, and Ime’ = —¢,, — Q,, P represents taking the Cauchy principal value of the

integral, and 7).\ o) j(k,k"; ) is connected with the reducible four-point vertex functions in real-frequency representation as
follows:

3
Z Ti(e,0) Z Z ghiny (ki ) Y Tl (k' @)y (ks ). (B2)

I'=1

T, (kK @) = tanh %r{-‘;_}m}(k,k’;o,w) + coth 6/2 [H kK5 0,0) — TEL L (K5 0,0)], (B3)

\712 a}(k k' w) = (tanh 612—;0) — tanh %)Fi‘;';}a}(k,k’;o,w), (B4)

T (K@) = — tanh < ;;“’ () ) (kK3 0,0) — coth %[ B kK3 0,0) — T8 (e K:0,0)],  (BS)
T (K ) = tanh ;—Trg'il;}a}(k,k’; 0,0), (B6)

Tty kK @) = cothe - [ S kK3 0,0) — TS (kK 0,0)] —tanh—F22 ) (kK5 0,00)

€tetor . .
+ coth—[ oy (kaK50,0) = T (kK3 0,0)] + tanh 220 (kK5 0,0), (BT)
T (ks ) = — tanh © Ol (K 0.0), (BS)
51} / s .. ete+or ‘.
Ty (kK ) = tanh ﬁl“zh 1(k,K';0,w) 4 coth T[ W kK 0,0) — DY (kK3 0,0)], (B9)
€to € \pbsh g 1.
Ty kK w) = (tanh 57— — tanh ﬁ>l"32;{a}(k,k :0,0), (B10)
and
Tty kK ) = —tanh ST (kK w) — coth S [T (kK w) — THL (KK o), (B11)

where the subscript X in F){‘g.' {}a} (k,k’; 0,w) represents the inequalities about €, €', and w of the reducible four-point vertex functions

in real-frequency representation: Fgg‘{}a}(k,k/; 0,w) for X = 11-1, 11-11, 21, 31-I1, 31-1, 32, 33-1, 33-11, 23, 13-I1, 13-I, 12, 22-I1I,
22-11, 22-1, and 22-1V satisfy, respectively,

Ime > 0, Ime + Imw > 0, Ime’ > 0, Ime’ 4+ Imw > 0, Ime + Ime’ 4+ Imw > 0, Ime — Ime’ > O, (B12)
Ime > 0, Ime + Imw > 0, Ime’ > 0, Ime’ + Imw > 0, Ime + Ime’ + Imw > 0, Ime — Ime’ < O, (B13)
Ime < 0, Ime + Imw > 0, Ime’ > 0, Ime’ 4+ Imw > 0, Ime + Ime’ 4+ Imw > 0, Ime — Ime’ < O, (B14)
Ime < 0, Ime + Imw < 0, Ime’ > 0, Ime’ + Imw > 0, Ime + Ime’ + Imw > 0, Ime — Ime’ < 0, (B15)
Ime < 0, Ime + Imw < 0, Ime’ > 0, Ime’ 4+ Imw > 0, Ime + Ime’ 4+ Imw < 0, Ime — Ime’ < O, (B16)
Ime < 0, Ime + Imw < 0, Ime’ < 0, Ime’ + Imw > 0, Ime + Ime’ + Imw < 0, Ime — Ime’ < 0, B17)
Ime < 0, Ime + Imw < 0, Ime’ < 0, Ime’ 4+ Imw < 0, Ime + Ime’ 4+ Imw < 0, Ime — Ime’ < O, (B18)
Ime < 0, Ime + Imw < 0, Ime’ < 0, Ime’ + Imw < 0, Ime + Ime’ + Imw < 0, Ime — Ime’ > 0, (B19)
Ime < 0, Ime + Imw > 0, Ime’ < 0, Ime’ + Imw < 0, Ime + Ime’ + Imw < 0, Ime — Ime’ > 0, (B20)
Ime > 0, Ime + Imw > 0, Ime’ < 0, Ime’ + Imw < 0, Ime + Ime’ + Imw < 0, Ime — Ime’ > 0, (B21)
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Ime > 0, Ime + Imw > 0, Ime’ < 0, Ime’ + Imw < 0, Ime + Ime’ + Imw > 0, Ime — Ime’ > 0,
Ime > 0, Ime + Imw > 0, Ime’ < 0, Ime’ + Imw > 0, Ime + Ime’ + Imw > 0, Ime — Ime’ > 0,
Ime < 0, Ime + Imw > 0, Ime’ < 0, Ime’ + Imw > 0, Ime + Ime’ + Imw > 0, Ime — Ime’ > 0,
Ime < 0, Ime + Imw > 0, Ime’ < 0, Ime’ + Imw > 0, Ime + Ime’ + Imw > 0, Ime — Ime’ < 0,

Ime < 0, Ime + Imw > 0, Ime’ < 0, Ime’ + Imw > 0, Ime + Ime’ + Imw < 0, Ime — Ime’ < 0,

and

Ime < 0, Ime + Imw > 0, Ime’ < 0, Ime’ + Imw > 0, Ime + Ime’ + Imw < 0, Ime — Ime’ > 0.

(B22)
(B23)
(B24)
(B25)

(B26)

(B27)

We also obtain the connections between j,m si) (k,k'; w) and F(l) si} (k k’;0,w), the irreducible four-point vertex functions in
real-frequency representation, by adding the superscript (1) in both J”,; {a}(k,k/, w)and I' ;;{}a}(k,k’, 0,w) in Egs. (B3)—(B11).

Combining Eqgs. (B1) and (B2) with Egs. (12) and (21), we obtain Eq. (24).

APPENDIX C: DERIVATION OF EQ. (47)

In this appendix, we derive Eq. (47). The derivation is in the following way: First, by using Eq. (46), we can rewrite the
for ! = 1 and 3 in Eq. (40) as

(—e)? o o
=5 2L 20 D by Y T gl (ks o)Ay (ko)
k a s

=13

(—e)? € . my -
= D3N 6 (k) tanh 7 8Vacd (ki ) Ay (k; )

terms

(_e)Z 55 € s 53 /. 5351528 ’ 1818 /
~@p 2 2 Lm0 330D Trien ™ (K Oy (WS N K )
k a 3

{s1}

2
—e o s
4 2i) Y3 bk} tanh 2 ggsagdg (k; ) ASSE) (k: )
k Ha

( e)’ 55 sss"s" 1.
+ G Z;Zab o, tanh 2T L (ko)
x 22222 Taen ™ (K 085 ip (K A K ),

Furthermore, the second and the fourth terms in Eq. (C1) can be rewritten as, respectively,

(—6)2 55 € ss”s"s" s"s"" s38. ’ 5351525, 18518
4 Z Z Z Z Z Z 8.5 (Vi Dy tanh 52 27 Stiacdp (k; “))jl(g)cdcz)z koK )85 g (K5 w)AS:,Z;IAZB(k/; )

( e) ss"s"'s’ 1.1 €etw
EER DD DR LR tanh 1275 50 e
x gy ik w)ASf;! L)
= ( e) Z Z Z Z Z Z 2(?);“32‘354(](’6’](’6 + a),k/,é,,k/,e/ + w)gi?é}zz;D(k/ € k/ 6 + 60)831 M(ka)s v

k' {a} {A} (s}
€
X (tanh

€ g
— tanh — T )g?a:dg (ks a))AS;;;;d (k; @)

245128-18

(ChH

€
—tanh ) T s (k' k; 0,0)

(e2))



FERMI SURFACE VERSUS FERMI SEA CONTRIBUTIONS ... PHYSICAL REVIEW B 93, 245128 (2016)

and
"Mt 0 C;‘ K .
() tanh 2 g5 s )T 5 (KoK s )i (K @) A3 (3 0)
kK {a} {A} {s} {s1}
"o e+w
= 1 s (U tanh &~ ggvafd; k"; w)(tanh — tanh ﬁ) Fgg)scdscf;“(k',k; 0,0)

kK ko {a} {A} (s} {s1}

X 8¢ s @ ATk )
( e) (O)s’ss3s4 A WA 535152854 / S185]
a3 Z DD 0 Tspacn keke ok € K€+ w)g ik € K€+ o) o)y

fa} {A} {s} {s1}
€+ w
X (tanh

In deriving Eq. (C2), we have used Eqgs. (B4) and (B6) and an identity [49,52]

7"t

~ tanh >g;; S (e ) ASS.S) (ks ). (C3)

Fig);flii;w(k’,e' + k'€ ke +wke) = ng)iz/:/s(k,e,k,e + k' €.k e+ w). (C4)
In addition, to derive Eq. (C3), we have used Eqs. (B8) and (B10) and another identity [49,52]

1M I "ot

F(O)Ajbz; k'€ +w,k' € ke +wk,e) = I’g?;,cz; ‘(k,e.k,e +w, k'€ k' + w). (C5)
Returning Egs. (C2) and (C3) to Eq. (C1), we obtain
(= e) yon g
ZZZ& sy Y Tie.w)ginay (ko) ASS S (K o)

=13

( e) S5S /s///sl v ’
Z Z Zag sy Y Tie.)ghhan (k) AT (K )

=1,3
2
—e
—(2-) 2225 ZZZZ TS5 ke ke + 0,k € K € + 0)gfitiinn (K€ K € + o)
: ,
k {a} {s} kK {A} {51} I'=1,3

518 s C;
X 8S1~Y2(Uklx).21?91 TZ(E’w)g;faidbs (k w)Av gcéd (k’ w)

(= e) ey o
Z Z Zag SRl Y Tie, )8l (s ) AT (K )

=1,3

(_e)z s's s ss”'s"s is”s"”
=S 2 D AT (e e + @) = 8 )i ] Tale g3y (ks )ASE (ki ). (C6)

Then, combining Eq. (C6) with Eq. (40), we obtain Eq. (47). This is another exact expression of K SR)(w).
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