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Anomalous Hall effect (AHE) and spin Hall effect (SHE) are fundamental phenomena, and their potential for
application is great. However, we understand the interaction effects unsatisfactorily, and should have clarified
issues about the roles of the Fermi sea term and Fermi surface term of the conductivity of the intrinsic AHE or
SHE of an interacting multiorbital metal and about the effects of spin-Coulomb drag on the intrinsic SHE. Here,
we resolve the first issue and provide the first step about the second issue by developing a general formalism
in the linear response theory with appropriate approximations and using analytic arguments. The most striking
result is that even without impurities, the Fermi surface term, a non-Berry-curvature term, plays dominant roles
at high or slightly low temperatures. In particular, this Fermi surface term causes the temperature dependence
of the dc anomalous Hall or spin Hall conductivity due to the interaction-induced quasiparticle damping and the
correction of the dc spin Hall conductivity due to the spin-Coulomb drag. Those results revise our understanding
of the intrinsic AHE and SHE. We also find that the differences between the dc anomalous Hall and longitudinal
conductivities arise from the difference in the dominant multiband excitations. This not only explains why the
Fermi sea term such as the Berry-curvature term becomes important in clean and low-temperature case only for
interband transports, but also provides the useful principles on treating the electron-electron interaction in an
interacting multiorbital metal for general formalism of transport coefficients. Several correspondences between
our results and experiments are finally discussed.
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I. INTRODUCTION

Anomalous Hall effect (AHE) and spin Hall effect (SHE)
are fundamental phenomena and have great potential for appli-
cation. The AHE [1–5] causes a charge current perpendicular
to an external electric field even without an external magnetic
field, and its spin-current version is the SHE [6–13]. Since
the AHE and SHE are similar to usual Hall effect [14], an
understanding of their properties develops our fundamental
understanding of transport phenomena. Then, since we can
control the magnitude and direction of the charge current of
the AHE and spin current of the SHE in principle, the AHE
and SHE may be utilized as useful devices [15,16].

For the fundamental understanding and efficient utilization
of the AHE or SHE, we need to understand how its response
depends on the detail of the electronic structure. Since the
response may be affected by the differences in the band
structure, the structure of doped impurities, and the strength
of the electron-electron interaction, an understanding of their
dependence of the response is helpful to understand the fun-
damental properties and find a good material for application.

The previous studies partially revealed the dependence of
the response of the AHE or SHE on the detail of the electronic
structure, and showed the potential of the intrinsic mechanism
for a large response. First, the mechanisms of the AHE or
SHE are categorized as either an intrinsic mechanism to the
band structure [2,8,9,17–21] or an extrinsic mechanism due
to the scattering of doped impurities [3,6,7,22,23]. Then, we
can understand the intrinsic mechanisms for a lot of metals
as acquiring the Aharanov-Bohm–type phase factor [24]
by using the onsite spin-orbit coupling (SOC) and several
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hopping integrals [25] (for more details, see Appendix A).
On the other hand, we can understand several extrinsic
mechanisms [3,22,23] by considering a special scattering
of doped nonmagnetic impurities. However, if their onsite
scattering potential is small and the intrinsic term is non-
negligible, the extrinsic term is less important than the intrinsic
term. Actually, the extrinsic term completely vanishes in
even-parity systems for the weak onsite scattering potential
of dilute nonmagnetic impurities [17,19]. Furthermore, even
in the absence of the inversion symmetry at an ab plane, the
extrinsic term remains very small if orbital degrees of freedom
exist and the hopping induced by the inversion-symmetry
breaking is not large [26]. Since a lot of multiorbital metals
have finite intrinsic terms [17–19,21,25] and the typical
value of the scattering potential estimated in a first-principle
calculation [27] is of the order of magnitude 0.1 eV, we
may sufficiently analyze the AHE or SHE of a multiorbital
metal by considering only the intrinsic mechanism. Actually,
a systematic theoretical study [19] about the intrinsic SHE can
qualitatively reproduce a chemical trend of the experimental
responses [28] in several 4d or 5d transition metals. Since
a multiorbital metal is more suitable than a semiconductor
to obtain a large response [29], a theoretical research on the
intrinsic AHE or SHE of a multiorbital metal may develop our
fundamental understanding and the possibilities of application.

However, we have two issues about interaction effects, the
effects of the electron-electron interaction, in the intrinsic AHE
and SHE of a multiorbital metal. One is to clarify roles of
the Fermi surface term and Fermi sea term of σ C

xy or σ S
xy ,

the intrinsic anomalous Hall or spin Hall conductivity, in the
presence of the electron-electron interaction. Let us begin with
noninteracting case with the weak onsite scattering potential of
dilute nonmagnetic impurities at zero temperature. In that case,
σ C

xy or σ S
xy consists of the Fermi surface term and Fermi sea
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term in general [17,19,30]. The Fermi surface term describes
the excitations near the Fermi level, and the Fermi sea term
describes the excitations in the Fermi sea. Then, those terms
are affected by the nonmagnetic impurity scattering through
changing the quasiparticle (QP) damping in σ C

xy or σ S
xy even if

the extrinsic term is negligible [17,19]. If that QP damping
goes to zero, σ C

xy or σ S
xy is given by the Berry-curvature

term [18,20,31], part of the Fermi sea term [17,19], because
of the cancellation between the other part of the Fermi sea
term and the Fermi surface term [17,19]. As the QP damping
increases due to an increase of the impurity concentration
nimp, the dominant term of σ C

xy or σ S
xy becomes the Fermi

surface term because of the cancellation between the two
parts of the Fermi sea term [17,19]. This Fermi surface term
qualitatively differs from the Berry-curvature term because
only the former contains a retarded-advanced product of
two single-particle Green’s functions [17,19] [for the explicit
comparison, for example, see Eqs. (54) and (76)]. Thus, only
the Berry-curvature term is insufficient, and the Fermi surface
term and Fermi sea term play important roles in discussing
the intrinsic AHE or SHE of a noninteracting multiorbital
metal. However, for discussions at finite temperatures, we
should consider the electron-electron interaction because that
may affect σ C

xy or σ S
xy through the inelastic scattering. Thus, it

remains a challenging issue to clarify the roles of the Fermi
surface term and Fermi sea term in an interacting multiorbital
metal. Although this issue was discussed by Haldane [32],
his proposal [32] did not resolve this because he assumed
that only the Berry-curvature term is always dominant and
did not analyze the roles of the non-Berry-curvature terms;
his proposal is that part of the partial-integral term of the
Berry-curvature term corresponds to the Fermi surface term
which plays important roles in the Fermi liquid. Thus, we
need to discuss this issue in a more elaborated method.

The other issue is to clarify effects of spin-Coulomb
drag (SCD) on the intrinsic SHE. If the electron-electron
interaction causes the scattering between spin-up and spin-
down electrons with finite momentum transfer, the spin-up and
-down components of the total momentum are not separately
conserved [33,34] (see Fig. 1). This indicates the existence

FIG. 1. Schematic picture of the scattering between spin-up
and -down electrons due to the electron-electron interaction with
momentum transfer q. The wavy line represents the electron-
electron interaction, the black circles represent the electrons after
the scattering, and the yellow circle represents the Fermi sphere.
This scattering conserves the sum of the total momentums of the
spin-up and -down electrons (i.e., k + k′ = k + q + k′ − q), while
the conservation of each total momentum is violated for q �= 0 (i.e.,
k �= k + q and k′ �= k′ − q).

of the friction between spin-up and -down electrons, the
SCD, even without the Umklapp scattering [33,34] because
the momentum conservation results in the absence of the
friction [35,36]. This is in contrast to case of the charge
current because in that case the Umklapp scattering is essential
to obtain the friction, which results in the finite resistivity
[35–37]. Thus, the existence of the SCD is an important
difference between spin transports and charge transports.
Then, the SCD causes a correction [33,34], which is different
from the mass enhancement and Fermi-liquid correction, and
that effect on the spin-diffusion constant is experimentally
observed in a two-dimensional electron gas [38]. In principle,
the SCD may affect the intrinsic SHE [34], and its effects
may lead to some differences between the SHE and AHE.
Furthermore, since in contrast to an electron gas a multiorbital
metal has a multiband structure, an interacting multiorbital
metal may be a good target to deduce multiband effects in the
SCD. However, the effects of the SCD on the intrinsic SHE
have not been studied and remain unclear [34].

To improve this situation, we develop a general formalism
of σ C

xy or σ S
xy of an interacting multiorbital metal using the

linear response theory [39] with approximations appropriate
for such metal, clarify the roles of the Fermi surface term and
Fermi sea term and find a SCD-induced correction of σ S

xy . The
former result resolves the first issue, and the latter provides
the first step towards the complete resolution of the second
issue. In particular, we find an interaction-driven mechanism
of the damping dependence of σ C

xy or σ S
xy and crossover from

damping-dependent to damping-independent intrinsic AHE
or SHE. This highlights the emergence of the temperature
dependence in high-temperature region of the intrinsic AHE
or SHE even for clean systems. We also propose several exper-
iments related to those results. Then, we clarify the origin of
the differences between σ C

xy and the longitudinal conductivity
σ C

xx and deduce the general principles in the formulations
of transport coefficients including the interaction and the
multiband effects. This origin is helpful to understand why the
Fermi sea term such as the Berry-curvature term sometimes
becomes important only for the interband transports such as the
AHE, although only the Fermi surface term is always important
for the intraband transports such as the resistivity. In addition,
the obtained principles help guide further research of transports
including the interaction effects and the multiband effects.

II. METHOD

In this section, we explain the method to analyze the
intrinsic AHE and SHE of an interacting multiorbital metal.
First, we show the Hamiltonian of our model, and argue its
validity for their realistic analysis. Second, we explain how
to treat each term of the Hamiltonian, and deduce several
consequences of this treatment about the self-energy, the QP
damping, and the irreducible four-point vertex function. Third,
we show the exact expressions of σ C

xy and σ S
xy within the

linear response of an external electric field. In addition, we
explain several advantages of the linear response theory and
an important remark about taking the limits such as limω→0 and
limq→0. In part of the derivations of those exact expressions,
we use Appendix B. Hereafter, we set � = c = kB = 1.
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A. Model

We consider a d-orbital Hubbard model [40] with the onsite
SOC [19] and the weak onsite scattering potential [19] of
dilute nonmagnetic impurities. Its Hamiltonian consists of four
terms:

Ĥ = Ĥ0 + ĤLS + Ĥint + Ĥimp. (1)

First, Ĥ0 represents the nonrelativistic noninteracting terms

Ĥ0 =
∑

k

∑
a,b

∑
s=↑,↓

εab(k)ĉ†kas ĉkbs, (2)

where ĉ
†
kas and ĉkas are a creation and an annihilation operator,

respectively, of an electron at momentum k, orbital a, and spin
s, and εab(k) is the noninteracting energy dispersion measuring
from the chemical potential. Second, ĤLS represents the onsite
SOC [19]

ĤLS = ξLS

∑
j

l̂ j · ŝ j , (3)

where j is site index, l̂ j and ŝ j are an orbital and a spin angular
momentum operator, respectively [19], and ξLS is the coupling
constant. Third, Ĥint represents the onsite multiorbital Hubbard
interaction terms [40]

Ĥint = U
∑

j

∑
a

n̂ ja↑n̂ ja↓ + U ′ ∑
j

∑
a

∑
b<a

n̂ jan̂ jb

− JH

∑
j

∑
a

∑
b<a

(
2ŝ ja · ŝ jb + 1

2
n̂ jan̂ jb

)

+ J ′ ∑
j

∑
a

∑
b �=a

ĉ
†
ja↑ĉ

†
ja↓ĉ jb↓ĉ jb↑, (4)

where n̂ jas is n̂ jas = ĉ
†
jas ĉ jas , n̂ ja is n̂ ja = ∑

s n̂ jas , ŝ ja is

ŝ ja = 1
2

∑
s,s ′ ĉ

†
jasσ s,s ′ ĉ jas ′ with the Pauli matrices σ s,s ′ , U

is the intraorbital Coulomb interaction, U ′ is the interorbital
Coulomb interaction, JH is the Hund’s rule coupling, and J ′
is the pair hopping term. Fourth, Ĥimp represents the onsite
scattering potential of dilute nonmagnetic impurities [19]

Ĥimp = Iimp

∑
j

∑
a

∑
s

ĉ
†
jas ĉ jas, (5)

where Iimp is the potential amplitude.
This model is sufficient for a realistic analysis of the

intrinsic AHE and SHE of an interacting metal because of
the following four reasons. First, we can choose any form
of εab(k) if εab(k) contains the interorbital hopping whose
mirror symmetries for a xz and a yz plane are odd [e.g.,
the next-nearest-neighbor hopping between the dyz and dxz

orbitals in Fig. 4(a) of Appendix A]; as we will see in
Sec. III A 2, such interorbital hopping is necessary to obtain
finite σ C

xy or σ S
xy [17,25]. Second, among several possibilities of

the SOCs, only the onsite SOC is sufficient because its effect is
leading in a solid and because we can analyze the intrinsic AHE
or SHE of a metal even without the inversion symmetry at an ab

plane by not using the nonlocal SOC [21,26]; the effect of that
inversion-symmetry breaking can be included in εab(k) [41].
Third, we may sufficiently describe the screened short-ranged
electron-electron interaction in an interacting multiorbital

metal by the onsite multiorbital Hubbard interactions because
those interactions have not only the intraorbital term but
also the interorbital terms; our formalism can be easily
extended if the interactions are short-ranged. Fourth, Ĥimp

may be sufficient to include effects of dilute nonmagnetic
impurities, which exist in a realistic situation, because the
effects can be roughly described by their weak onsite scattering
potential [42].

B. Treatment of each Hamiltonian

To analyze the intrinsic AHE or SHE of an interacting
multiorbital metal, we use Ĥ0 + ĤLS as the nonperturbative
Hamiltonian

Ĥ0 + ĤLS =
∑

k

∑
a,b

∑
s,s ′

ε̄ss ′
ab (k)ĉ†kas ĉkbs ′ , (6)

and Ĥint + Ĥimp as the perturbative Hamiltonian. In partic-
ular, for a simple treatment of Ĥimp, we assume both that
nonmagnetic impurities are randomly distributed and that Iimp

is smaller than the bandwidth so as to satisfy kFl � 1 (i.e.,
case away from the Mott-Ioffe-Regel limit), where kF is of
the order of magnitude the Fermi momentum and l is the
mean-free path. The first assumption is standard [17,19,42],
and the second is reasonable in several transition metals or
transition-metal oxides. Then, because of the first assumption,
we can use the averaging over each impurity position [42];
because of the second, we can neglect the combination terms
of Ĥint and Ĥimp in the self-energy and sufficiently treat Ĥimp

in the Born approximation [43].
In this treatment, we can use simple treatments about several

quantities. First, the retarded self-energy is given by

�ss ′
ab (k̃) = �ss ′

el-el;ab(k̃) + nimpI
2
imp

N

∑
k′

Gss ′
ab (k′,iεm), (7)

where k̃ is k̃ ≡ (k,iεm), �ss ′
el-el;ab(k̃) is the self-energy arising

from Ĥint in the perturbation theory, and the second term is
the self-energy arising from Ĥimp in the Born approxima-
tion [19,42] with N the number of lattice sites. Correspond-
ingly, we obtain the QP damping arising from Ĥint and Ĥimp

because the QP damping is defined as

γ ∗
α (k) = −zα(k)Im�(R)

α (k,ξ ∗
α (k)), (8)

where α is the band index of a QP, ξ ∗
α (k) is the QP

energy determined by the solution of det|εδa,bδs,s ′ − ε̄ss ′
ab (k) −

Re�(R)ss ′
ab (k)| = 0, �(R)

α (k) with k ≡ (k,ε) is the retarded self-
energy of the QP band α, and zα(k) is the QP weight

zα(k) =
[

1 − ∂ Re�(R)
α (k,ε)

∂ε

∣∣∣∣
ε→ξ∗

α (k)

]−1

. (9)

In general, γ ∗
α (k) depends on temperature because of

the temperature dependence of �
(R)ss ′
el-el;ab(k,ε), e.g., the T 2

dependence of γ ∗
α (k) near k = kF in the Fermi liq-

uid [42]. Then, the irreducible four-point vertex func-
tion in Matsubara-frequency representation �

(1){s1}
{a} (k̃,k̃′; q̃) ≡

�
(1)s1s2s3s4
abcd (k + q,iεm+n,k,iεm,k′ + q,iεm′+n,k

′,iεm′ ), is given
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by

�
(1){s1}
{a} (k̃,k̃′; q̃) = δ�ss ′

el-el;ab(k̃)

δGs ′′s ′′′
cd (k̃′)

+ nimpI
2
impδa,cδb,dδs,s ′′δs ′,s ′′′ , (10)

where the first term is the irreducible four-point vertex function
arising from Ĥint, and the second term is the irreducible
four-point vertex function arising from Ĥimp in the Born
approximation [43]. Because of this decomposition, Ĥimp

causes no correction to the charge and the spin current
for even-parity systems, resulting in the disappearance of
the extrinsic terms of the dc anomalous Hall or spin Hall
conductivity in the similar way in noninteracting case [17,19]
[see the sentences below Eq. (37)].

C. Linear response theory

To formulate σ C
xy and σ S

xy as general as possible, we use the
linear response theory [39]. This is because the linear response
theory provides exact expressions of σ C

xy and σ S
xy within the

linear response of an external electric field and because that
theory with appropriate approximations has several advantages
compared with the phenomenological theory.

We can derive an exact expression of σ C
xy within the

linear response of an external electric field from the Kubo
formula [39] for the charge current perpendicular to it without
an external magnetic field:

σ C
xy = lim

ω→0
lim
q→0

K̃C(R)
xy (q,ω) − K̃C(R)

xy (q,0)

iω
, (11)

where K̃C(R)
xy (ω) ≡ K̃C(R)

xy (0,ω) is obtained by the analytic
continuation of K̃C

xy(i�n) with bosonic Matsubara frequency
�n = 2πT n:

K̃C(R)
xy (ω) = K̃C

xy(i�n)|i�n→ω+i0+, (12)

with

K̃C
xy(i�n) = 1

N
lim
q→0

∫ T −1

0
dτ ei�nτ

〈
Tτ Ĵ

C
qx(τ )Ĵ C

−qy(0)
〉

= 1

N

∑
k,k′

∑
{a}

∑
{s}

∫ T −1

0
dτ ei�nτ (−e)δs ′,s(vkx)ssba

× (−e)δs ′′,s ′′′ (vk′y)s
′′s ′′

cd

×〈Tτ ĉ
†
kbs ′ (τ )ĉkas(τ )ĉ†k′cs ′′ ĉk′ds ′′′ 〉

= (−e)2

N

∑
k,k′

∑
{a}

∑
{s}

δs ′,s(vkx)ssbaδs ′′,s ′′′ (vk′y)s
′′s ′′

cd

×Kss ′′
abcd (k,k′; i�n). (13)

(Note that we should carry out the integration about τ before
carrying out i�n → ω + i0+ [44].) In Eq. (13), Tτ is the
time-ordering operator [42],

∑
{a} is

∑
{a} ≡ ∑

a,b,c,d ,
∑

{s} is∑
{s} ≡ ∑

s,s ′,s ′′,s ′′′ , the charge current operator is

Ĵ C
qν = (−e)

∑
k

∑
a,b

∑
s,s ′

δs ′,s(vkν)ssbaĉ
†
k− q

2 bs ′ ĉk+ q
2 as, (14)

and the noninteracting group velocity is

(vkν)ssab = ∂εab(k)

∂kν

. (15)

The noninteracting group velocity is not affected by the onsite
SOC because that is independent of momentum [19].

Also, we can exactly derive σ S
xy within the linear response in

the similar way for σ C
xy if we define the spin-current operator.

Let us use a standard definition [13,45]

Ĵ S
qν = 1

2

∑
k

∑
a,b

∑
s,s ′

sgn(s)δs ′,s(vkν)ssbaĉ
†
k− q

2 bs ′ ĉk+ q
2 as, (16)

with sgn(↑) = +1 or sgn(↓) = −1. In this definition, the
spin current is the difference between the spin-up and -down
components of the charge current [19]:

Ĵ S
qν = 1

2(−e)

[(
Ĵ C

qν

)
↑↑ − (

Ĵ C
qν

)
↓↓

]
, (17)

where (Ĵ C
qν)ss is defined by Ĵ C

qν = ∑
s(Ĵ

C
qν)ss . Even if we

use a different but single-body definition, we can carry out
the general formulation in the similar way. By adopting this
definition (16) to the Kubo formula for σ S

xy , its exact expression
is obtained:

σ S
xy = lim

ω→0
lim
q→0

K̃S(R)
xy (q,ω) − K̃S(R)

xy (q,0)

iω
, (18)

with

K̃S(R)
xy (ω) ≡ K̃S(R)

xy (0,ω) = K̃S
xy(i�n)|i�n→ω+i0+ (19)

and

K̃S
xy(i�n) = 1

N
lim
q→0

∫ T −1

0
dτ ei�nτ

〈
Tτ Ĵ

S
qx(τ )Ĵ C

−qy(0)
〉

= 1

N

∑
k,k′

∑
{a}

∑
{s}

∫ T −1

0
dτ ei�nτ

1

2
sgn(s)δs ′,s(vkx)ssba

× (−e)δs ′′,s ′′′ (vk′y)s
′′s ′′

cd

×〈Tτ ĉ
†
kbs ′ (τ )ĉkas(τ )ĉ†k′cs ′′ ĉk′ds ′′′ 〉

= −e

2N

∑
k,k′

∑
{a}

∑
{s}

sgn(s)δs ′,s(vkx)ssba

× δs ′′,s ′′′ (vk′y)s
′′s ′′

cd Kss ′′
abcd (k,k′; i�n). (20)

Then, the linear response theory [39] has several advantages
compared with the phenomenological theory such as the
Boltzmann theory in the relaxation-time approximation [14].
The most important advantage is about the treatment of the
dominant excitations. The linear response theory does not
assume whether the dominant excitations are either Fermi
surface or Fermi sea type; instead, the dominant excitations
are naturally determined as a result of the treatment of the
perturbation terms. On the other hand, the Boltzmann theory
assumes the dominant excitations as a result of assuming the

distribution function [e.g., fk = f 0
k − �k

∂f 0
k

∂εk
in Eq. (7.7.1)

of Ref. [36]]. Thus, the linear response theory is suitable
to analyze the roles of the Fermi surface and the Fermi sea
terms. Then, in the linear response theory we can analyze
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the interaction effects with keeping momentum conservation
in combination with Baym-Kadanoff’s conserving approxi-
mation [43,46,47]; in the relaxation-time approximation [14],
momentum conservation is violated because of the introduc-
tion of the momentum- and frequency-independent relaxation
time [43]. This is one of the advantages because the appropriate
treatment of momentum conservation is vital to analyze
transport phenomena. Actually, only if we use the appropriate
treatment, we can obtain the disappearance of the resistivity
without the lattice and impurities [37]; in the relaxation-time
approximation, the resistivity remains finite. In addition, the
linear response theory is useful to study a variety of material
dependence because the material dependence arises from the
differences in the electronic structure and because we can
naturally include those differences in the linear response
theory; in the relaxation-time approximation, it is difficult to
include the differences in the interaction effects.

In the remaining part of this section, we explain the
derivation only for σ C

xy . This is because the difference between

σ C
xy and σ S

xy comes from the difference between Ĵ C
qx(τ ) and

Ĵ S
qx(τ ) and because we obtain σ S

xy by replacing (−e)δs ′,s(vkx)ssba

in σ C
xy by 1

2 sgn(s)δs ′,s(vkx)ssba [compare Eqs. (13) and (20)].
Before the details of the derivation, we remark on the

importance of the order of taking the limits. To obtain the
finite observable current, we should take q → 0 before taking
ω → 0 [46]. Then, for dc conductivities, only after taking
ω → 0, we can take γ ∗

α (k) → 0 because we should hold
ωτtrans � 1 [46,48,49], where τtrans is the transport relaxation
time which is of the order of magnitude the inverse of
the QP damping. Namely, to discuss the dc conductivities
in the clean and zero-temperature limit, we should take
limγ ∗

α (k)→0 limω→0 limq→0 in this order. If we take γ ∗
α (k) → 0

before taking ω → 0, the results become unphysical. In
particular, the order of those limits is crucial for interacting
systems because the important difference between cases in
ωτtrans � 1 and ωτtrans � 1 is known as the difference between
the first and the zero sound in the Fermi liquid [50]. However, in
noninteracting systems only in the clean and zero-temperature
limit, the unphysical limit [31] leads to the same σ C

xy or σ S
xy as

that in the physical limit [17,19]. Since we cannot expect such
accidental agreement in interacting systems, we should care
about the order of taking the limits.

The derivation for σ C
xy consists of three steps.

The first step is to express Kss ′′
abcd (k,k′; i�n) in terms of

the single-particle Green’s functions and the reducible four-
point vertex function [51]; the latter describes the multiple
electron-hole scattering. We can carry out that procedure by
the perturbative expansion using the Bloch–De Dominicis
theorem [49]:

Kss ′′
abcd (k,k′; i�n) = −δk,k′T

∑
m

Gss ′′
ac (k̃+)Gs ′′s

db (k̃)

− T 2

N

∑
m,m′

∑
{A}

∑
{s1}

G
ss1
aA(k̃+)Gs ′′s4

dD (k̃′)

×G
s3s

′′
Cc (k̃′+)Gs2s

Bb(k̃) × �
{s1}
{A} (k̃,k̃′; 0,i�n),

(21)

with k̃+ ≡ (k,iεm + i�n), fermionic Matsubara frequency
εm = 2πT (m + 1

2 ), and the reducible four-point ver-

tex function in Matsubara-frequency representation �
{s1}
{A}

(k̃,k̃′; q,i�n) ≡ �
s1s2s3s4
ABCD (k + q,iεm+n,k,iεm,k′ + q,iεm′+n,

k′,iεm′ ). In principle, we can calculate Gss ′
ab (k̃) from Dyson’s

equation using the self-energy

Gss ′
ab (k̃) = G

(0)ss ′
ab (k̃)

+
∑
c,d

∑
s ′′,s ′′′

G(0)ss ′′
ac (k̃)�(0)s ′′s ′′′

cd (k̃)Gs ′′′s ′
db (k̃), (22)

with the noninteracting single-particle Green’s function
G

(0)ss ′
ab (k̃) and �

{s1}
{a} (k̃,k̃′; q,i�n) from the Bethe-Salpeter equa-

tion using the irreducible four-point vertex function [51,52]

�
{s1}
{a} (k̃,k̃′; q,i�n)

= �
(1){s1}
{a} (k̃,k̃′; q,i�n) + T

N

∑
k′′

∑
m′′

∑
{A}

×
∑
{s ′

1}
�

(1)s1s2s
′
3s

′
4

abCD (k̃,k̃′′; q,i�n)G
s ′

3s
′
1

CA (k̃′′ + q̃)G
s ′

2s
′
4

BD (k̃′′)

×�
s ′

1s
′
2s3s4

ABcd (k̃′′,k̃′; q,i�n). (23)

The second step is to carry out the analytic continuation of
K̃C

xy(i�n). This procedure is the same for σ C
xx [52] with Ĥ0 and

Ĥint without ĤLS and Ĥimp because the relevant parameters in
this procedure are only frequencies [49] and spin indices are
irrelevant. In this procedure, we use the analytic properties [49]
of the single-particle Green’s function and reducible four-point
vertex function and rewrite the sum of the Matsubara frequency
by the corresponding contour integral; Gss ′

ab (k,ε) is singular on
the horizontal line Imε = 0; �

{s1}
{a} (k,ε,k′,ε′; 0,ω) is singular

on the horizontal lines Imε = 0, Im(ε + ω) = 0, Imε′ =
0, Im(ε′ + ω) = 0, Im(ε + ε′ + ω) = 0, and Im(ε − ε′) = 0,
where the horizontal line Imω = 0 is excluded because we
consider Imω > 0 [see Eq. (12)]. As derived in Appendix B,
we obtain

K̃C(R)
xy (ω) = − (−e)2

2i

∑
k

∑
k′

∑
{a}

∑
{s}

δs ′,s(vkx)ssba

× δs ′′,s ′′′ (vk′y)s
′′s ′′

cd

3∑
l=1

Tl(ε,ω)Kss ′′
l;abcd (k,k′; ε; ω),

(24)

where

∑
k

≡ 1

N

∑
k

∫ ∞

−∞

dε

2π
, (25)

T1(ε,ω) = tanh
ε

2T
, (26)

T2(ε,ω) = tanh
ε + ω

2T
− tanh

ε

2T
, (27)

T3(ε,ω) = − tanh
ε + ω

2T
, (28)
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and

Kss ′′
l;abcd (k,k′; ε; ω) = δk,k′gss ′′s ′′s

l;acdb (k; ω)

+ 1

N

∫ ∞

−∞

dε′

4πi

∑
{A}

∑
{s1}

g
ss1s2s
l;aABb(k; ω)

×
3∑

l′=1

J {s1}
ll′;{A}(k,k′; ω)gs3s

′′s ′′s4
l′;CcdD(k′; ω),

(29)

with

gss ′′s ′′′s ′
1;acdb (k; ω) = G(R)ss ′′

ac (k,ε + ω)G(R)s ′′′s ′
db (k,ε), (30)

gss ′′s ′′′s ′
2;acdb (k; ω) = G(R)ss ′′

ac (k,ε + ω)G(A)s ′′′s ′
db (k,ε), (31)

gss ′′s ′′′s ′
3;acdb (k; ω) = G(A)ss ′′

ac (k,ε + ω)G(A)s ′′′s ′
db (k,ε), (32)

and J {s1}
ll′;{a}(k,k′; ω), connected with J (1){s1}

ll′;{a} (k,k′; ω) by the
Bethe-Salpeter equation

J {s1}
ll′;{a}(k,k′; ω) = J (1){s1}

ll′;{a} (k,k′; ω) + 1

2i

∑
k′′

∑
{A}

∑
{s ′

1}

3∑
l′′=1

×J (1)s1s2s
′
3s

′
4

ll′′;abCD (k,k′′; ω)g
s ′

3s
′
1s

′
2s

′
4

l′′;CABD(k′′; ω)

×J s ′
1s

′
2s

′
3s

′
4

l′′l′;ABcd (k′′,k′; ω). (33)

Here, J {s1}
ll′;{a}(k,k′; ω) is connected with �

{s1}
ll′;{a}(k,k′; ω), the

reducible four-point vertex function in real-frequency repre-
sentation, as shown in Eqs. (B3)–(B11); for the connections
between J (1){s1}

ll′;{a} (k,k′; ω) and �
(1){s1}
ll′;{a} (k,k′; ω), we should add

the superscript (1) to J {s1}
ll′;{a}(k,k′; ω) and �

{s1}
ll′;{a}(k,k′; ω) in

those equations.
The third step is to rewrite K̃C(R)

xy (ω) in a more compact form
by using the vertex function of the charge current. The vertex
function of the charge current in Matsubara-frequency rep-
resentation �

C;s ′s ′′
ν;AB (k̃; q̃) ≡ �

C;s ′s ′′
ν;AB (k + q,iωm+n,k,iωm) (ν =

x,y) is defined as follows [53]:∑
A,B,s ′,s ′′

Gss ′
aA(k̃ + q̃)�C;s ′s ′′

ν;AB (k̃; q̃)Gs ′′s
Bb (k̃)

=
∫ T −1

0
dτ eiωm+nτ

∫ T −1

0
dτ ′e−i�nτ

′ 〈
Tτ ĉk+qas(τ )Ĵ C

−qν(τ ′)ĉ†kbs

〉
.

(34)

Thus, �
C;s ′s ′′
ν;AB (k̃; q̃) is connected with �

s ′s ′′s3s4
ABC ′D′(k̃,k̃′; q,i�n)

through the Bethe-Salpeter equation

�
C;s ′s ′′
ν;AB (k̃; q̃) = δs ′,s ′′ (vkν)s

′s ′
AB

+ T

N

∑
k′

∑
m′

∑
{A′}

∑
{s1}

�
s ′s ′′s3s4
ABC ′D′(k̃,k̃′; q,i�n)

×G
s3s1
C ′A′(k̃′ + q̃)Gs2s4

B ′D′(k̃′)δs1,s2 (vk′ν)s1s2
A′B ′ .

(35)

Then, to convert this relation into the relation in real-frequency
representation, we should carry out the analytic continuation

of �
C;s ′s ′′
ν;AB (k̃; q̃). Since this procedure is similar for the second

term of Eq. (21), we can carry out this procedure in the similar
way. As a result, we obtain that connection

�
C;s ′′s ′′′
ν;l;cd (k; ω) = δs ′′,s ′′′ (vky)s

′′s ′′′
cd

+
∑
k′

∑
A,B,s1,s2

α
s ′′s ′′′s1s2
l;cdAB (k,k′; ω)δs1,s2 (vk′y)s1s1

AB ,

(36)

with �
C;s ′′s ′′′
y;l;cd (k; ω) ≡ �

C;s ′′s ′′′
y;l;cd (k,ε + ω,k,ε) and

α
s ′′s ′′′s1s2
l;cdAB (k,k′; ω) = 1

2i

∑
C,D,s3,s4

3∑
l′=1

J s ′′s ′′′s3s4
ll′;cdCD (k,k′; ω)

× g
s3s1s2s4
l′;CABD(k′; ω). (37)

These equations with Eq. (33) show that the correction terms
to the noninteracting charge current come from the multiple
electron-hole scattering, described by the reducible four-point
vertex function [51]. Furthermore, we can show that the
correction term arising from Ĥimp disappears for even-parity
systems because we can rewrite Eq. (36) as

�
C;s ′′s ′′′
ν;l;cd (k; ω) = δs ′′,s ′′′ (vky)s

′′s ′′′
cd

+ 1

2i

∑
k′

∑
{A}

∑
{s1}

3∑
l′=1

J (1)s ′′s ′′′s3s4
ll′;cdCD (k,k′; ω)

× g
s3s1s2s4
l′;CABD(k′; ω)�C;s1s2

ν;l′;AB(k′; ω), (38)

and because part of the above second term arising from Ĥimp

exactly vanishes in even-parity systems due to the combination
of the momentum-independent irreducible four-point vertex
function in the Born approximation [17,19] [see Eq. (10)], the
even-parity symmetry of the single-particle Green’s functions,
and the odd-parity symmetry of the noninteracting group
velocity, which results in the odd-parity symmetry of the vertex
function of the charge current. Namely, for even-parity systems
with the weak onsite scattering potential of the impurities,
the correction terms in �

C;s ′′s ′′′
ν;l;cd (k; ω) arise from only Ĥint.

Rewriting part of Eq. (24) by using the relation

∑
k′

∑
c,d,s ′′,s ′′′

Kss ′′
l;abcd (k,k′; ε; ω)δs ′′,s ′′′ (vk′y)s

′′s ′′
cd

=
∑

c,d,s ′′,s ′′′
gss ′′s ′′s

l;acdb (k; ω)δs ′′,s ′′′ (vky)s
′′s ′′

cd

+
∑

c,d,s ′′,s ′′′

∑
A,B,s1,s2

g
ss1s2s
l;aABb(k; ω)

1

2i

∑
k′

∑
C,D,s3,s4

3∑
l′=1

×J {s1}
ll′;{A}(k,k′; ω)gs3s

′′s ′′′s4
l′;CcdD (k′; ω)δs ′′,s ′′′ (vk′y)s

′′s ′′
cd

=
∑

c,d,s ′′,s ′′′
gss ′′s ′′′s

l;acdb (k; ω)�C;s ′′s ′′′
y;l;cd (k; ω), (39)
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we can rewrite K̃C(R)
xy (ω) as follows:

K̃C(R)
xy (ω) = − (−e)2

2i

∑
k

∑
{a}

∑
{s}

δs ′,s(vkx)ssba

3∑
l=1

Tl(ε,ω)

× gss ′′s ′′′s ′
l;acdb (k; ω)�C;s ′′s ′′′

y;l;cd (k; ω). (40)

A set of Eqs. (11), (26)–(32), (36), and (37) provides a
framework to obtain an exact expression of σ C

xy within the
linear response of an external electric field.

We also obtain an exact framework for σ S
xy by replacing

(−e)δs ′,s(vkx)ssba in σ C
xy by 1

2 sgn(s)δs ′,s(vkx)ssba . Namely, instead
of Eqs. (11) and (40), we use Eq. (18) and

K̃S(R)
xy (ω) = − (−e)

22i

∑
k

∑
{a}

∑
{s}

δs ′,ssgn(s)(vkx)ssba

3∑
l=1

× Tl(ε,ω)gss ′′s ′′′s ′
l;acdb (k; ω)�C;s ′′s ′′′

y;l;cd (k; ω). (41)

III. RESULTS

Since it is difficult to solve the exact expressions of
σ C

xy and σ S
xy in the linear response theory, we adopt the

approximation appropriate for an interacting metal to these
expressions, and analyze the interaction effects on σ C

xy and
σ S

xy . First, we derive the approximate expressions of σ C
xy

and σ S
xy in Éliashberg’s approximation [49]; in part of this

derivation, we use Appendix C. This approximation is usually
used to derive transport coefficients of an interacting metal
microscopically [43,48,49,52,54], and its result [49] can re-
produce the phenomenological transport equation in the Fermi
liquid [42,51,55]; thus, this approximation may be appropriate
if the terms included remain considerable. Comparing the de-
rived σ C

xy or σ S
xy with the corresponding noninteracting result,

we analyze the interaction effects on the derived σ C
xy or σ S

xy .
Second, we address the applicability of this approximation,
and show its limit in clean and low-T case. The correct
understanding of this applicability is important to understand
the difference between σ C

xy and σ C
xx . Third, we introduce an

approximation beyond Éliashberg’s approximation in order to
describe the outside of the applicable region of Éliashberg’s
approximation, and derive the approximate expressions of σ C

xy

and σ S
xy . We also analyze how the additional terms are affected

by the electron-electron interaction.

A. Éliashberg’s approximation

After reviewing the singular property of a retarded-
advanced product of two single-particle Green’s functions
in the presence of the Fermi surface with several long-lived
QPs, we derive the approximate expressions of σ C

xy and σ S
xy by

utilizing this property. Then, let us argue the interaction effects
due to the modifications from the noninteracting result.

1. Formulation

We begin with the singular properties [42,51] of a retarded-
advanced product of two single-particle Green’s functions
such as G(R)s1s3

ac (k + q

2 )G(A)s4s2
db (k − q

2 ) in the limits q → 0 and
γ ∗

α (kF)/T → 0 in the presence of the Fermi surface. In the

presence of the Fermi surface, we can well define QPs with the
long-lived lifetime for at least several Fermi momenta [56–58].
These QPs are well described by the coherent part of the
single-particle Green’s function [42,46,51], given by

G
(R)ss ′
coh;ab(k) =

∑
α

(Uk)saα

zα(k)

ε − ξ ∗
α (k) + iγ ∗

α (k)
(U †

k)s
′

αb, (42)

where (Uk)saα is the unitary matrix used to obtain ξ ∗
α (k). Then,

for analyses of the limiting properties of the products of two
single-particle Green’s functions, it is sufficient to consider
only the coherent parts [51]. This is because in the limits under
consideration, the incoherent part [i.e., G(R)ss ′

ab (k) − G
(R)ss ′
coh;ab(k)]

is well defined and only the product of the coherent parts can be
singular due to the merging of their poles [51]. Such singular
behavior is obtained only for a retarded-advanced product
because the poles of the coherent parts merge only if one
of the poles crosses over the Fermi surface and because such
crossing occurs only for a retarded-advanced product [51].
As a result, a retarded-advanced product gives the leading
dependence on external momentum and frequency and the
QP damping, and the dependence of a retarded-retarded or an
advanced-advanced product is approximately negligible [49].
This treatment remains reasonable even for finite γ ∗

α (kF)/T

if γ ∗
α (kF)/T satisfies γ ∗

α (kF)/T < 1 because this treatment is
regarded as a lowest-order expansion in terms of γ ∗

α (kF)/T .
Utilizing the singular property of a retarded-advanced

product of two single-particle Green’s functions, we derive
approximate expressions of σ C

xy and σ S
xy in Éliashberg’s

approximation. (Because of the same reason for the exact
formulation in the linear response theory, we explain the
derivation for σ C

xy in detail.) To utilize the singular property,

we introduce two quantities J (0){s1}
ll′;{a} (k,k′; ω) and �

C(0)ss ′
ν;l;ab (k; ω):

J (0){s1}
ll′;{a} (k,k′; ω) = J (1){s1}

ll′;{a} (k,k′; ω)

+ 1

2i

∑
k′′

∑
{A}

∑
{s ′

1}

∑
l′=1,3

J (1)s1s2s
′
3s

′
4

ll′′;abCD (k,k′′; ω)

× g
s ′

3s
′
1s

′
2s

′
4

l′′;CABD(k′′; ω)J (0)s ′
1s

′
2s3s4

l′′l′;ABcd (k′′,k′; ω)

(43)

and

�
C(0)ss ′
ν;l;ab (k; ω) = δs,s ′ (vkν)ssab

+
∑
k′

∑
A,B,s1,s2

α
(0)ss ′s1s2
l;abAB (k,k′; ω)δs1,s2 (vk′ν)s1s1

AB ,

(44)

where α
(0)ss ′s1s2
l;abAB (k,k′; ω) is

α
(0)ss ′s1s2
l;abAB (k,k′; ω) = 1

2i

∑
C,D,s3,s4

∑
l′=1,3

J (0)ss ′s3s4
ll′;abCD (k,k′; ω)

× g
s3s1s2s4
l′;CABD(k′; ω). (45)

Equations (43) and (44) show that J (0){s1}
ll′;{a} (k,k′; ω) and

�
C(0)ss ′
ν;l;ab (k; ω) do not include a retarded-advanced product of

two single-particle Green’s functions. Thus, those quantities
can be used to exclude the terms including at least a

245128-7



NAOYA ARAKAWA PHYSICAL REVIEW B 93, 245128 (2016)

retarded-advanced product from the terms of K̃C(R)
xy (ω) in

Eq. (40). Among those terms, we need to decompose the terms
for l = 1 and 3 in K̃C(R)

xy (ω) into the terms without and with

the retarded-advanced product. This is because �
C(0)ss ′
ν;l;ab (k; ω)

is connected with �
C;ss ′
ν;l;ab(k; ω) through the Bethe-Salpeter

equation

�
C;ss ′
ν;l;ab(k; ω) = �

C(0)ss ′
ν;l;ab (k; ω)

+ 1

2i

∑
k′

∑
{A}

∑
{s1}

J (0)ss ′s3s4
l2;abCD (k,k′; ω)

× g
s3s1s2s4
2;CABD(k′; ω)�C;s1s2

ν;2;AB(k′; ω). (46)

After the decomposition of the terms for l = 1 and 3 in
K̃C(R)

xy (ω) in Eq. (40), explained in Appendix C, we obtain

K̃C(R)
xy (ω) = − (−e)2

2i

∑
k

∑
{a}

∑
{s}

δs ′,s(vkx)ssba

∑
l=1,3

× sgn(2 − l)Tl(ε,ω)gss ′′s ′′′s ′
l;acdb (k; ω)�C(0)s ′′s ′′′

y;l;cd (k; ω)

− (−e)2

2i

∑
k

∑
{a}

∑
{s}

�
C(0)s ′s
x;2;ba (k,ε,k,ε + ω)

× T2(ε,ω)gss ′′s ′′′s ′
2;acdb (k; ω)�C;s ′′s ′′′

y;2;cd (k; ω). (47)

This equation shows that only the second term includes
a retarded-advanced product of two single-particle Green’s
functions. Since we assume in Éliashberg’s approximation [49]
that the leading terms of K̃C(R)

xy (ω) come from the most
divergent terms in q → 0 and γ ∗

α (kF)/T → 0, we obtain σ C
xy

in this approximation σ C
xy = σ C(I)

xy ,

σ C(I)
xy = (−e)2

∑
k

∑
{a}

∑
{s}

(
−∂f (ε)

∂ε

)
�

C(0)s ′s
x;2;ba (k; 0)

×G(R)ss ′′
ac (k)G(A)s ′′′s ′

db (k)�C;s ′′s ′′′
y;2;cd (k; 0), (48)

where f (ε) is the Fermi distribution function. We also obtain
σ S

xy in this approximation σ S
xy = σ S(I)

xy ,

σ S(I)
xy = (−e)

2

∑
k

∑
{a}

∑
{s}

(
−∂f (ε)

∂ε

)
�

S(0)s ′s
x;2;ba (k; 0)

×G(R)ss ′′
ac (k)G(A)s ′′′s ′

db (k)�C;s ′′s ′′′
y;2;cd (k; 0), (49)

by adopting the same argument to Eqs. (18) and (41) and
introducing the vertex function of the spin current,

�
S(0)ss ′
ν;l;ab (k; ω)

= δs,s ′sgn(s)(vkν)ssab +
∑
k′

∑
A,B,s1,s2

α
(0)ss ′s1s2
l;abAB (k,k′; ω)

× δs1,s2 sgn(s1)(vk′ν)s1s1
AB . (50)

By using that vertex function, K̃S(R)
xy (ω) can be exactly

rewritten as follows:

K̃S(R)
xy (ω) = − (−e)

22i

∑
k

∑
{a}

∑
{s}

δs ′,ssgn(s)(vkx)ssba

×
∑
l=1,3

sgn(2 − l)Tl(ε,ω)gss ′′s ′′′s ′
l;acdb (k; ω)

×�
C(0)s ′′s ′′′
y;l;cd (k; ω)

− (−e)

22i

∑
k

∑
{a}

∑
{s}

�
S(0)s ′s
x;2;ba (k,ε,k,ε + ω)

× T2(ε,ω)gss ′′s ′′′s ′
2;acdb (k; ω)�C;s ′′s ′′′

y;2;cd (k; ω). (51)

Because of the same reason for �
C;s ′′s ′′′
y;2;cd (k; ω), �

C(0)s ′s
x;2;ba (k; ω)

and �
S(0)s ′s
x;2;ba (k; ω) include the corrections to the noninteracting

charge and spin currents, respectively, due to the multiple
electron-hole scattering arising from Ĥint and such corrections
arising from Ĥimp completely vanish in even-parity systems
for the weak onsite scattering potential of dilute nonmagnetic
impurities. Note that in the similar way for �

C;s ′′s ′′′
y;2;cd (k; ω), we

can rewrite Eqs. (44) and (50) using Eq. (43) as follows:

�
C(0)ss ′
ν;l;ab (k; ω) = δs,s ′ (vkν)ssab

+ 1

2i

∑
k′

∑
{A}

∑
{s1}

∑
l′=1,3

J (1)ss ′s3s4
ll′;abCD (k,k′; ω)

× g
s3s1s2s4
l′;CABD(k′; ω)�C(0)s1s2

ν;l′;AB (k′; ω) (52)

and

�
S(0)ss ′
ν;l;ab (k; ω) = δs,s ′sgn(s)(vkν)ssab

+ 1

2i

∑
k′

∑
{A}

∑
{s1}

∑
l′=1,3

J (1)ss ′s3s4
ll′;abCD (k,k′; ω)

× g
s3s1s2s4
l′;CABD(k′; ω)�S(0)s1s2

ν;l′;AB (k′; ω). (53)

2. Interaction effects

Since the comparison between the derived Fermi surface
term and the noninteracting Fermi surface term is useful to
deduce the interaction effects on the Fermi surface term, we
show the noninteracting Fermi surface terms [17,19] of the
intrinsic AHE and SHE, σ C(0;I)

xy and σ S(0;I)
xy :

σ C(0;I)
xy = (−e)2

∑
k

∑
{a}

∑
{s}

(
−∂f (ε)

∂ε

)
δs ′,s(vkx)ssba

×G(0;R)ss ′′
ac (k)G(0;A)s ′′′s ′

db (k)δs ′′,s ′′′ (vk′y)s
′′s ′′

cd (54)

and

σ S(0;I)
xy = (−e)

2

∑
k

∑
{a}

∑
{s}

(
−∂f (ε)

∂ε

)
δs ′,s(vkx)ssba

×G(0;R)ss ′′
ac (k)G(0;A)s ′′′s ′

db (k)δs ′′,s ′′′ (vk′y)s
′′s ′′

cd . (55)

Comparing Eq. (48) or (49) with Eq. (54) or (55), respec-
tively, we see the electron-electron interaction causes three
modifications. First, the x component of the noninteracting
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charge or spin current becomes, respectively, (−e)�C(0)s ′s
x;2;ba (k; 0)

in σ C(I)
xy or 1

2�
S(0)s ′s
x;2;ba (k; 0) in σ S(I)

xy . Second, the two single-
particle Green’s functions change from noninteracting to
interacting. Third, the y component of the noninteracting
charge current becomes (−e)�C;s ′′s ′′′

y;2;cd (k; 0).
Let us begin with the interaction effect due to the re-

placement of the single-particle Green’s functions. Since the
interaction effects on the single-particle Green’s function
arise from the self-energy [Eq. (22)] and the self-energy
causes the QP damping [Eq. (8)], we analyze the damping
dependence of σ C(I)

xy or σ S(I)
xy . For that purpose, we need to

analyze the damping dependence of gss ′′s ′′′s ′
2;acdb (k; 0) in σ C(I)

xy or
σ S(I)

xy because the others are O(γ 0), where γ is of the order of

magnitude the QP damping [49]. As explained, gss ′′s ′′′s ′
2;acdb (k; 0)

has the leading damping dependence among several products
of two single-particle Green’s functions because of the limiting
property of the product of the coherent parts of the retarded and
the advanced single-particle Green’s function. That leading
damping dependence is given by [46]

gss ′′s ′′′s ′
2;acdb (k; 0) ≈ i2π

∑
α,β

uss ′′s ′′′s ′
aαc;dβb(k)zα(k)zβ(k)

× δ[ε − ξ ∗
α (k)]

�ξ ∗
βα(k) + i[γ ∗

α (k) + γ ∗
β (k)]

, (56)

with �ξ ∗
βα(k) ≡ ξ ∗

β (k) − ξ ∗
α (k) and uss ′′s ′′′s ′

aαc;dβb(k) ≡
(Uk)saα(U †

k)s
′′′

αc(Uk)s
′′′

dβ(U †
k)s

′
βb. In deriving Eq. (56), we

have used Eq. (42) and the identity

lim
δ→0+

[
1

z − X + iδ
− 1

z − X − iδ

]
= −2πiδ(z − X). (57)

Equation (56) can be also rewritten as

gss ′′s ′′′s ′
2;acdb (k; 0) ≈ iπ

∑
α,β

uss ′′s ′′′s ′
aαc;dβb(k)zα(k)zβ(k)

× [δ(ε − ξ ∗
α (k)) + δ(ε − ξ ∗

β (k))]

× �ξ ∗
βα(k) − i[γ ∗

α (k) + γ ∗
β (k)]

�ξ ∗
βα(k)2 + [γ ∗

α (k) + γ ∗
β (k)]2

(58)

by using two equalities

G
(R)ss ′
ab (k) = G

(A)s ′s
ba (k)∗ (59)

and

uss ′′s ′′′s ′
aαc;dβb(k) = us ′s ′′′s ′′s

bβd;cαa(k)∗. (60)

To see the finite components of gss ′′s ′′′s ′
2;acdb (k; 0) in σ C(I)

xy or σ S(I)
xy ,

we should detect the terms odd with respect to kx and ky .

This is because �
C(0)s ′s
x;2;ba (k; 0) and �

S(0)s ′s
x;2;ba (k; 0) are odd with

respect to kx due to the kx derivative in (vkx)ssba [see Eqs. (44)
and (50)] and �

C;s ′′s ′′′
y;2;cd (k; 0) is odd with respect to ky due to

the ky derivative in (vky)ssba [see Eq. (36)], i.e., the terms

other than �
C(0)s ′s
x;2;ba (k; 0) [�S(0)s ′s

x;2;ba (k; 0)] and �
C;s ′′s ′′′
y;2;cd (k; 0) in

σ C(I)
xy (σ S(I)

xy ) should be odd with respect to kx and ky to
obtain finite terms after taking the k summation. Note that
an integrand of the k summation should be even about each
kη to obtain the finite value. Since such odd terms arise

from the terms proportional to uss ′′s ′′′s ′
aαc;dβb(k)�ξ ∗

βα(k) (α �= β)
in Eq. (56), the dominant multiband excitations for σ C(I)

xy

or σ S(I)
xy are interband; to obtain finite odd terms arising

from those terms, the hopping integral with the odd mirror
symmetry is necessary. For further argument, let us consider
a simple but sufficient situation: the finite terms of σ C

xy or
σ S

xy come from the interband excitations only at k = k0. In

this situation, the leading terms of gss ′′s ′′′s ′
2;acdb (k; 0) in σ C(I)

xy or
σ S(I)

xy become O(γ −2) in |�ξ ∗
βα(k0)| � [γ ∗

α (k0) + γ ∗
β (k0)], and

O(γ 0) in |�ξ ∗
βα(k0)| � [γ ∗

α (k0) + γ ∗
β (k0)]. As a result, σ C

xy or
σ S

xy becomes O(γ −2) in the former limit and O(γ 0) in the
latter limit. More precisely, the leading terms of σ C(I)

xy and σ S(I)
xy

in |�ξ ∗
βα(k0)| � [γ ∗

α (k0) + γ ∗
β (k0)] are given by

σ C(I)
xy ≈ −(−e)2

2N

∑
α

∑
β �=α

�ξ ∗
βα(k0)

[γ ∗
α (k0) + γ ∗

β (k0)]2

× {
Im

[
�̃

C(0)
x;2;βα(k0,ξ

∗
α (k0))�̃C

y;2;αβ (k0,ξ
∗
α (k0))

]
+ Im

[
�̃

C(0)
x;2;βα(k0,ξ

∗
β (k0))�̃C

y;2;αβ (k0,ξ
∗
β (k0))

]}
(61)

and

σ S(I)
xy ≈ −(−e)

22N

∑
α

∑
β �=α

�ξ ∗
βα(k0)

[γ ∗
α (k0) + γ ∗

β (k0)]2

× {
Im

[
�̃

S(0)
x;2;βα(k0,ξ

∗
α (k0))�̃C

y;2;αβ (k0,ξ
∗
α (k0))

]
+ Im

[
�̃

S(0)
x;2;βα(k0,ξ

∗
β (k0))�̃C

y;2;αβ (k0,ξ
∗
β (k0))

]}
, (62)

respectively; in |�ξ ∗
βα(k0)| � [γ ∗

α (k0) + γ ∗
β (k0)], σ C(I)

xy and
σ S(I)

xy are given by

σ C(I)
xy ≈ −(−e)2

2N

∑
α

∑
β �=α

1

�ξ ∗
βα(k0)

× {
Im

[
�̃

C(0)
x;2;βα(k0,ξ

∗
α (k0))�̃C

y;2;αβ (k0,ξ
∗
α (k0))

]
+ Im

[
�̃

C(0)
x;2;βα(k0,ξ

∗
β (k0))�̃C

y;2;αβ (k0,ξ
∗
β (k0))

]}
(63)

and

σ S(I)
xy ≈ −(−e)

22N

∑
α

∑
β �=α

1

�ξ ∗
βα(k0)

×{
Im

[
�̃

S(0)
x;2;βα(k0,ξ

∗
α (k0))�̃C

y;2;αβ (k0,ξ
∗
α (k0))

]
+ Im

[
�̃

S(0)
x;2;βα(k0,ξ

∗
β (k0))�̃C

y;2;αβ (k0,ξ
∗
β (k0))

]}
, (64)

respectively. In those equations, we have introduced three
quantities:

�̃
C(0)
ν;2;βα(k,ε) =

√
zβ(k)zα(k)

×
∑

a,b,s,s ′
(U †

k)s
′

βb�
C(0)s ′s
ν;2;ba (k; 0)(Uk)saα, (65)

�̃C
ν;2;αβ (k,ε) =

√
zα(k)zβ(k)

×
∑

c,d,s ′′,s ′′′
(U †

k)s
′′

αc�
C;s ′′s ′′′
ν;2;cd (k; 0)(Uk)s

′′′
dβ, (66)
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and

�̃
S(0)
ν;2;βα(k,ε) =

√
zβ(k)zα(k)

×
∑

a,b,s,s ′
(U †

k)s
′

βb�
S(0)s ′s
ν;2;ba (k; 0)(Uk)saα. (67)

For more complex situations with the interband excitations at
k = k0, k1,. . . , kK−1, we need to apply the above argument for
the simple situation to each term of the interband excitations
at kj and combine each other’s damping dependence: if at
least one of the interband excitations satisfies |�ξ ∗

βα(kj )| �
[γ ∗

α (kj ) + γ ∗
β (kj )], σ C(I)

xy or σ S(I)
xy becomes damping dependent;

on the other hand, if all the interband excitations satisfy
|�ξ ∗

βα(kj )| � [γ ∗
α (kj ) + γ ∗

β (kj )], σ C(I)
xy or σ S(I)

xy is damping
independent. Thus, the electron-electron interaction causes
the finite damping dependence of σ C

xy and σ S
xy at high

temperatures even without impurities. Furthermore, since the
interaction-induced QP damping decreases with decreasing
temperature [42], the electron-electron interaction causes the
emergence of the temperature dependence of σ C

xy and σ S
xy and

a crossover from damping dependent to damping independent
σ C

xy or σ S
xy even without impurities (see Fig. 2).

Then, we see the interaction effect due to the replacement
of the spin current for σ S(I)

xy . This is related to the effects
of the SCD because the difference between σ C(I)

xy and σ S(I)
xy

comes from the difference between (−e)�C(0)s ′s
x;2;ba (k; 0) and

1
2�

S(0)s ′s
x;2;ba (k; 0) [see Eqs. (48) and (49)]. Actually, rewriting

�
S(0)s ′s
2;x;ba (k; 0) by using �

C(0)s ′s
2;x;ba (k; 0) as

�
S(0)s ′s
2;x;ba (k; 0)

= sgn(s)�C(0)s ′s
2;x;ba (k; 0) − 2 sgn(s)

×
∑
k′

∑
A,B

α
(0)s ′s−s−s
2;baAB (k,k′; 0)(vk′x)−s−s

AB , (68)

and substituting Eq. (68) into (49), we can show that the second
term of Eq. (68) leads to a SCD-induced correction of σ S(I)

xy ,

FIG. 2. Schematic diagram about the dominant term and damping
dependence of σ C

xy or σ S
xy . Our formalism is applicable outside the

gray triangle region because that region satisfies γ ∗
α (kF)/T � 1 due

to the impurity-induced QP damping. The crossovers occur at the red
and the orange dotted lines. The form of the red dotted line depends
strongly on the temperature dependence of the QP damping.

�σ (SCD)
xy :

σ S(I)
xy = 1

2(−e)

∑
{s}

sgn(s)(−e)2
∑

k

∑
{a}

(
−∂f (ε)

∂ε

)

×�
C(0)s ′s
x;2;ba (k; 0)gss ′′s ′′′s ′

2;acdb (k; 0)�C;s ′′s ′′′
y;2;cd (k; 0)

− (−e)

N

∑
{s}

sgn(s)
∑

k

∑
{a}

(
−∂f (ε)

∂ε

)

×
∑
k′

∑
A,B

α
(0)s ′s−s−s
2;baAB (k,k′; 0)(vk′x)−s−s

AB

× gss ′′s ′′′s ′
2;acdb (k; 0)�C;s ′′s ′′′

y;2;cd (k; 0)

= 1

2(−e)

∑
{s}

sgn(s)
(
σ C(I)

xy

)s ′ss ′′s ′′′ + �σ (SCD)
xy , (69)

with spin-decomposed component of σ C
xy , (σ C

xy)s
′ss ′′s ′′′

, defined
as σ C(I)

xy = ∑
{s}(σ

C(I)
xy )s

′ss ′′s ′′′
.

I believe this interpretation is appropriate because of the
following arguments. Since the SCD [33,34] affects only
spin transports, it is reasonable to suppose that the difference
between σ S(I)

xy and σ C(I)
xy is related to the effects of the SCD

on the Fermi surface term. In addition, it is consistent
with the general property of the SCD in metals to suppose
that the second term of Eq. (68) causes the correction due to
the SCD because the second term represents the correction
of the spin current due to the multiple scattering of the
electron-electron interaction between different spins (see the
second term for s ′ = s). Here, the general property is that only
such multiple scattering causes the SCD in metals because
for the onsite bare electron-electron interactions such as the
Hubbard interactions, the multiple scattering is necessary to
obtain the finite momentum transfer. Note that this general
property of metals indicates the importance of the momentum
dependence of the self-energy due to the electron-electron
interaction in discussing the SCD in metals because that
momentum dependence is necessary to obtain finite second
term of Eq. (68).

Finally, let us see the interaction effects due to the other
modifications, i.e., the replacement of the x component of
the charge current in σ C(I)

xy and the replacement of the y

component of the charge current in σ C(I)
xy or σ S(I)

xy . First, the
former replacement causes a magnitude decrease of σ C(I)

xy from
a noninteracting value. This is because the correction term
in �

C(0)s ′s
x;2;ba (k; 0), the second term of Eq. (52) for ω = 0, is

related to the kx derivative of the real part of the self-energy
due to a Ward identity [51,59] and because its effect on the
charge current, the renormalization of the group velocity,
reduces a magnitude of the charge current [49]. Then, the
latter replacement maybe changes not only the magnitude
of σ C(I)

xy or σ S(I)
xy , but also its sign in some cases near an

antiferromagnetic quantum-critical point due to the similar
mechanism for the weak-field usual Hall effect [43]. For
the weak-field usual Hall effect without the onsite SOC,
the angle change of the charge current can be induced
near the antiferromagnetic quantum-critical point due to the
momentum dependence of the irreducible four-point vertex
function, and that angle change causes the sign change of the
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usual Hall conductivity [43]. To check this possibility for the
intrinsic AHE or SHE, we need a numerical calculation for
σ C(I)

xy or σ S(I)
xy by applying an approximation appropriate near

the antiferromagnetic quantum-critical point to the particular
band structure. Since that is a next step, it remains an important
issue to clarify the interaction effects of that replacement on
σ C(I)

xy or σ S(I)
xy .

B. Applicability of Éliashberg’s approximation

We turn to applicability of Éliashberg’s approxima-
tion [46,49,52] for σ C

xy or σ S
xy . First, we should restrict

arguments to cases for γ ∗
α (kF)/T < 1 because Éliashberg’s

approximation is reasonable only for γ ∗
α (kF)/T < 1 (see

Sec. III A). Thus, the gray triangle region in Fig. 2 is the
outside of the applicable region. Then, there are two key factors
to argue whether σ C(I)

xy or σ S(I)
xy become finite or not, i.e., the

broadening of the QP spectra due to the QP damping and the
broadening of (− ∂f (ε)

∂ε
) due to temperature. This is because of

the following three facts: σ C(I)
xy or σ S(I)

xy consists of the integral of

(− ∂f (ε)
∂ε

) for interband excitations; such integral becomes finite
only for the finite overlap between the QP spectra of the two
bands; that overlap arises from the above two key factors. Thus,
in the range of γ ∗

α (kF)/T < 1, we have three distinct cases, i.e.,
high-T case, intermediate-T case, and low-T case: in the high-
T case, both of the two factors lead to a finite overlap between
the QP spectra of the two bands for at least an interband
excitation; in the intermediate-T case, the finite overlap arises
only from the broadening of (− ∂f (ε)

∂ε
); in the low-T case, the

overlap becomes negligible. For example, those three cases for
the interband excitation at k = kj are shown schematically
in Figs. 3(a), 3(b), and 3(c). As we see from Figs. 3(a)
and 3(b), Éliashberg’s approximation gives finite σ C(I)

xy or σ S(I)
xy

in the high-T case and the intermediate-T case. However,
in the low-T case, corresponding to Fig. 3(c), σ C(I)

xy or σ S(I)
xy

become very small; thus, Éliashberg’s approximation becomes
insufficient. Since the high-T case, the intermediate-T case,
and the low-T case correspond to, respectively, the upper,
the middle, and the lower regions of the left triangle of Fig. 2,
Éliashberg’s approximation is sufficient to analyze the intrinsic
AHE and SHE in the upper and the middle regions; for the

analysis in the lower region, we need to take Éliashberg’s
approximation a step further.

C. Approximation beyond Éliashberg’s approximation

Starting to explain the points missing in Éliashberg’s
approximation and being important in the low-T case, we
construct an approximation beyond Éliashberg’s approxima-
tion and derive the approximate expressions of σ C

xy and σ S
xy in

this approximation. Then, we see the damping dependence and
the effects of the SCD in this approximation. Furthermore, by
comparison with the noninteracting Fermi sea term, we deduce
how the electron-electron interaction affects the Fermi sea term
of σ C

xy or σ S
xy .

1. Formulation

As we see in Sec. III B, in the low-T case, where
temperature is low and the QP damping is small, the term
of σ C

xy or σ S
xy considered in Éliashberg’s approximation

becomes very small. For analyses in such case, we need
to use an appropriate approximation beyond Éliashberg’s
approximation. In particular, we should take account of the
terms of the interband excitations including f (ε) because
those terms remain finite even in clean and low-T case.
Since Éliashberg’s approximation has succeeded in getting
reasonable descriptions of several transports of interacting
metals (e.g., the resistivity [37,49] and the weak-field usual
Hall effect [48,54]), I suppose that Éliashberg’s approximation
is not so bad even for the description of the intrinsic AHE or
SHE, and that an approximation appropriate for analyses in
the low-T case can be obtained by extending Éliashberg’s
approximation.

On the basis of those suppositions, we construct an
approximation beyond Éliashberg’s approximation by going
back to the exact expression of K̃C(R)

xy (ω) or K̃S(R)
xy (ω) [Eq. (47)

or (51)] and taking account of not only the terms considered
in Éliashberg’s approximation, but also the terms leading
among the terms of the Fermi sea integral. Such leading terms
come from the terms proportional to the ω-linear term of
gss ′′s ′′′s ′

l;acdb (k; ω) or �
C(0)s ′′s ′′′
y;l;cd (k; ω) (l = 1,3) in the first term of

Eq. (47) or (51) because we need to take the leading ω-linear
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FIG. 3. QP spectral function Aα(k,ε) and (− ∂f (ε)
∂ε

) for the interband excitation at k = kj in (a) the high-T case, (b) the intermediate case,

and (c) the low-T case. In those panels, the QP spectral function is given by Aα(kj ,ε) = zα (k)
π

γ ∗
α (k)

[ε−ξ∗
α (k)]2+γ ∗

α (k)2 ; the parameters are chosen

as zα(kj ) = zβ (kj ) = 0.4, ξ ∗
α (kj ) = −ξ ∗

β (kj ) = 0.02 eV, and γ ∗
α (kj ) = γ ∗

β (kj ) = 40T 2; T in panels (a), (b), and (c) are 0.004, 0.01, and
0.022 (eV), respectively.
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terms to obtain σ C
xy or σ S

xy [see Eq. (11) or (18)]. Thus, the
terms leading among the terms of the Fermi sea integral lead
to additional terms of σ C

xy and σ S
xy .

As a result, σ C
xy and σ S

xy in this approximation become σ C
xy =

σ C(I)
xy + σ C(II)

xy and σ S
xy = σ S(I)

xy + σ S(II)
xy , respectively, where

σ C(II)
xy is

σ C(II)
xy = (−e)2

∑
k

∑
{a}

∑
{s}

f (ε)δs ′,s(vkx)ssba

∑
l=1,3

× sgn(l − 2) lim
ω→0

∂

∂ω

[
gss ′′s ′′′s ′

l;acdb (k; ω)�C(0)s ′′s ′′′
y;l;cd (k; ω)

]
,

(70)

and σ S(II)
xy is

σ S(II)
xy = (−e)

2

∑
k

∑
{a}

∑
{s}

f (ε)sgn(s)δs ′,s(vkx)ssba

∑
l=1,3

× sgn(l − 2) lim
ω→0

∂

∂ω

[
gss ′′s ′′′s ′

l;acdb (k; ω)�C(0)s ′′s ′′′
y;l;cd (k; ω)

]
.

(71)

For the direct comparison with the noninteracting Fermi sea
term, we rewrite part of the terms proportional to the ω

derivative of gss ′′s ′′′s ′
l;acdb (k; ω)(l = 1,3) in Eqs. (70) and (71) as

follows:

∑
l=1,3

sgn(l − 2) lim
ω→0

∂gss ′′s ′′′s ′
l;acdb (k; ω)

∂ω
�

C(0)s ′′s ′′′
y;l;cd (k; 0)

= −∂G(R)ss ′′
ac (k)

∂ε
G

(R)s ′′′s ′
db (k)�C(0)s ′′s ′′′

y;1;cd (k; 0)

+∂G(A)ss ′′
ac (k)

∂ε
G

(A)s ′′′s ′
db (k)�C(0)s ′′s ′′′

y;3;cd (k; 0), (72)

where we use the identity

lim
ω→0

∂F (ε + ω)

∂ω
= ∂F (ε)

∂ε
. (73)

Namely, Eqs. (70) and (71) become

σ C(II)
xy = −(−e)2

∑
k

∑
{a}

∑
{s}

f (ε)δs ′,s(vkx)ssba

×
[
∂G(R)ss ′′

ac (k)

∂ε
G

(R)s ′′′s ′
db (k)�C(0)s ′′s ′′′

y;1;cd (k; 0)

− ∂G(A)ss ′′
ac (k)

∂ε
G

(A)s ′′′s ′
db (k)�C(0)s ′′s ′′′

y;3;cd (k; 0)

+G(R)ss ′′
ac (k)G(R)s ′′′s ′

db (k) lim
ω→0

∂�
C(0)s ′′s ′′′
y;1;cd (k; ω)

∂ω

−G(A)ss ′′
ac (k)G(A)s ′′′s ′

db (k) lim
ω→0

∂�
C(0)s ′′s ′′′
y;3;cd (k; ω)

∂ω

]

(74)

and

σ S(II)
xy = − (−e)

2

∑
k

∑
{a}

∑
{s}

f (ε)sgn(s)δs ′,s(vkx)ssba

×
[
∂G(R)ss ′′

ac (k)

∂ε
G

(R)s ′′′s ′
db (k)�C(0)s ′′s ′′′

y;1;cd (k; 0)

− ∂G(A)ss ′′
ac (k)

∂ε
G

(A)s ′′′s ′
db (k)�C(0)s ′′s ′′′

y;3;cd (k; 0)

+G(R)ss ′′
ac (k)G(R)s ′′′s ′

db (k) lim
ω→0

∂�
C(0)s ′′s ′′′
y;1;cd (k; ω)

∂ω

−G(A)ss ′′
ac (k)G(A)s ′′′s ′

db (k) lim
ω→0

∂�
C(0)s ′′s ′′′
y;3;cd (k; ω)

∂ω

]
,

(75)

respectively.

2. Interaction effects

Before comparing the derived Fermi sea term with the
noninteracting Fermi sea term, we analyze the damping
dependence of σ C(II)

xy or σ S(II)
xy and the effects of the SCD on

σ S(II)
xy in order to clarify how the two important properties

obtained in Éliashberg’s approximation modify in the low-T
case. Those properties are the crossover from the damping
dependent to the damping independent σ C

xy or σ S
xy with

decreasing temperature and the correction term of σ S
xy , as

shown in Sec. III A 2.
First, σ C(II)

xy and σ S(II)
xy become O(γ 0) in T → 0 and

γ ∗
α (kF)/T → 0 because we can neglect the damping depen-

dence of gss ′′s ′′′s ′
1;acdb (k; 0) or gss ′′s ′′′s ′

3;acdb (k; 0) [49]. Since that result
remains qualitatively the same in the low-T case, σ C

xy and
σ S

xy become σ C
xy ≈ σ C(II)

xy = O(γ 0) and σ S
xy ≈ σ S(II)

xy = O(γ 0),
respectively. In addition, another crossover occurs at the
orange line in Fig. 2 because the dominant term changes from
the Fermi surface term to the Fermi sea term with decreasing
temperature. It should be noted that σ C(II)

xy or σ S(II)
xy becomes

negligible compared with σ C(I)
xy or σ S(I)

xy , respectively, if the QP
damping is larger than the energy of the interband excitation
which gives the finite contribution to σ C(II)

xy or σ S(II)
xy . This is

because in σ C(II)
xy or σ S(II)

xy we neglect the dependence on the
QP damping as a result of the leading-term expansion of the
products of the two single-particle Green’s functions in terms
of γ ∗

α (kF)/T → 0, while we consider the dependence on the
energy of the interband excitation. Thus, when the QP damping
is larger, σ C(II)

xy or σ S(II)
xy becomes less dominant than σ C(I)

xy or
σ S(I)

xy , respectively, because only σ C(I)
xy or σ S(I)

xy has the leading
dependence on the QP damping.

Next, since the spin current in σ S(II)
xy is the same as the nonin-

teracting one, σ S(II)
xy is not affected by the SCD. Thus, the SCD

affects σ S
xy except at low temperatures. Then, to understand

how the electron-electron interaction affects the Fermi sea
term, we compare Eqs. (74) and (75) with the noninteracting
Fermi sea terms [17,19] of σ C

xy and σ S
xy , respectively, σ C(0;II)

xy

and σ S(0;II)
xy , and deduce the interaction effects on the Fermi sea
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terms. σ C(0;II)
xy and σ S(0;II)

xy are given [17,19] by

σ C(0;II)
xy = −(−e)2

∑
k

∑
{a}

∑
{s}

f (ε)δs ′,s(vkx)ssba

×
[
∂G(0;R)ss ′′

ac (k)

∂ε
G

(0;R)s ′′′s ′
db (k)

− ∂G(0;A)ss ′′
ac (k)

∂ε
G

(0;A)s ′′′s ′
db (k)

]
δs ′′,s ′′′ (vky)s

′′s ′′
cd (76)

and

σ S(0;II)
xy = − (−e)

2

∑
k

∑
{a}

∑
{s}

f (ε)sgn(s)δs ′,s(vkx)ssba

×
[
∂G(0;R)ss ′′

ac (k)

∂ε
G

(0;R)s ′′′s ′
db (k)

− ∂G(0;A)ss ′′
ac (k)

∂ε
G

(0;A)s ′′′s ′
db (k)

]
δs ′′,s ′′′ (vky)s

′′s ′′
cd , (77)

respectively. After carrying out the ε integral in Eqs. (76)
and (77), σ C(0;II)

xy or σ S(0;II)
xy is decomposed into the Berry-

curvature term and the other part of the Fermi sea term [17,19].
Comparing Eqs. (74) and (75) with Eqs. (76) and (77),
respectively, we find that each of σ C(II)

xy and σ S(II)
xy has

three modifications due to the electron-electron interaction.
Those modifications are the replacement of the single-particle
Green’s functions by the interacting ones, the replacement of
the y component of the charge current by its vertex function,
and the appearance of the ω derivative term of the y component
of the vertex functions of the charge current.

Each of those modifications affects σ C(II)
xy and σ S(II)

xy as
follows. First, the replacement of the single-particle Green’s
functions will little affect σ C(II)

xy and σ S(II)
xy because the QP

damping of the retarded-retarded or advanced-advanced prod-
uct is negligible [49] and because the effects of zα(k) in the
numerator and the denominator of the coherent parts of that
product for finite ε nearly cancel out each other when the
band dependence of zα(k) is not strong. Second, the effects
of the replacement of the y component of the charge current
on σ C(II)

xy or σ S(II)
xy may be also not large because, as described

in Sec. III A 2, the difference between �
C(0)s ′′s ′′′
y;l;cd (k,ε; 0) and

δs ′′,s ′′′ (vky)s
′′s ′′

cd just causes the renormalization of the group
velocity. Third, the modification about the appearance of
the ω derivative term of the charge current may lead to
the finite correction term if the dynamical effects of the
electron-electron interaction are considerable. If the effects
of the electron-electron interaction can be either neglected
or treated in a mean-field approximation, the ω derivative
is exactly zero. Actual estimations of those three interaction
effects by numerical calculations are remaining issues for a
future study.

IV. DISCUSSION

In this section, we discuss the origin of the differences
between σ C

xy and σ C
xx , the differences between the present

formalism and Haldane’s formalism, and the correspondences
between our results and experiments.

Before discussing the origin of the differences between
σ C

xy and σ C
xx , we show σ C

xx in Éliashberg’s approximation

for Ĥ , and see its properties about the dominant multiband
excitations, the damping dependence, and applicability of
Éliashberg’s approximation. Since we obtain the exact ex-
pression of σ C

xx in the linear response theory by replacing
Ĵ C

−qy(0) in K̃C
xy(i�n) in Eq. (11) by Ĵ C

−qx(0), we can derive

σ C
xx in Éliashberg’s approximation in the similar way for

σ C
xy . Thus, σ C

xx in this approximation becomes σ C
xx = σ C(I)

xx

with

σ C(I)
xx = (−e)2

∑
k

∑
{a}

∑
{s}

(
− ∂f (ε)

∂ε

)
�

C(0)s ′s
x;2;ba (k; 0)

×G(0;R)ss ′′
ac (k; 0)G(0;A)s ′′′s ′

db (k; 0)�C;s ′′s ′′′
x;2;cd (k; 0). (78)

The difference between σ C(I)
xx and σ C(I)

xy is the difference

between �
C;s ′′s ′′′
x;2;cd (k; 0) and �

C;s ′′s ′′′
y;2;cd (k; 0). In addition, from the

similar argument for σ C(I)
xy , we can deduce several properties

of σ C
xx . First, because of the same reason for σ C(I)

xy , we can
determine the dominant multiband excitations and damping
dependence of σ C(I)

xx by analyzing the leading terms of
gss ′′s ′′′s ′

2;acdb (k; 0) which give the finite terms of σ C(I)
xx . Since σ C(I)

xx

includes two kx derivatives arising from the kx derivatives
of the noninteracting group velocity in �

C(0)s ′s
x;2;ba (k; 0) and

�
C;s ′′s ′′′
x;2;cd (k; 0) [see Eqs. (44) and (36)], the terms in σ C(I)

xx other
than those should be even with respect to kx and ky . Due
to this property, the terms proportional to −i[γ ∗

α (k) + γ ∗
β (k)]

in the leading terms of gss ′′s ′′′s ′
2;acdb (k; 0) give the finite terms

of σ C(I)
xx [see Eq. (58)]. In addition, since the denominator

of the leading terms of gss ′′s ′′′s ′
2;acdb (k; 0) includes �ξ ∗

βα(k)2(� 0)
[see Eq. (58)], the dominant multiband excitations become
intraband (i.e., β = α). Furthermore, due to that prop-
erty, σ C(I)

xx is always O(γ −1) because we can approximate
σ C(I)

xx as

σ C
xx ≈ (−e)2

N

∑
k

∑
α

1

2γ ∗
α (k)

× Re
[
�̃

C(0)
x;2;αα(k,ξ ∗

α (k))�̃C
x;2;αα(k,ξ ∗

α (k))
]

(79)

with Eqs. (65) and (66). Then, the dominance of the intraband
excitations for σ C(I)

xx indicates that Éliashberg’s approximation
is always applicable in the left triangle region of Fig. 2 because
for the intraband excitations the overlap between the QP
spectra is unimportant.

Combining the above properties of σ C
xx with the correspond-

ing properties of σ C
xy , we can clarify the origin of the differences

between σ C
xx and σ C

xy . Namely, the origin is the difference in
the dominant multiband excitations.

In addition, we can deduce the general principles in
formulating transport coefficients of an interacting multiorbital
metal. If the dominant multiband excitations are intraband,
we can sufficiently treat the electron-electron interaction in
Éliashberg’s approximation. If the interband excitations are
dominant, we need to use, instead of Éliashberg’s approxima-
tion, an approximation beyond it only in the low-T case.

Then, we argue the differences between the present formal-
ism and Haldane’s formalism [32]. Assuming that σ C

xy is given
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only by the Berry-curvature term, Haldane proposed that the
term of the Berry-curvature term after partial integral about
ε could describe the excitations near the Fermi level [32].
However, the exact σ C

xy includes the Fermi surface term
which qualitatively differs from the Berry-curvature term [see
Eq. (11) with Eq. (47)]; the difference arises from the effects
of a retarded-advanced product of two single-particle Green’s
functions, which are important in the resistivity [37,49] and
the weak-field usual Hall conductivity [48,54] in the Fermi
liquid. Thus, if the Fermi surface term is dominant, Haldane’s
formalism is inapplicable. Since we find the dominance of
the Fermi surface term in the high-T and the intermediate-
T regions of Fig. 2 even without impurities, the present
formalism reveals the remarkable interaction effects arising
from the non-Berry-curvature term outside the applicable
region of Haldane’s formalism [32].

Finally, we discuss the correspondences between our results
and experiments. First, we can check the interaction-driven
mechanism of the damping dependence of σ C

xy or σ S
xy and

crossover between damping dependent to damping indepen-
dent σ C

xy or σ S
xy by measuring its temperature dependence in a

clean system. This is because that temperature dependence is
induced by the temperature dependence of the interaction-
induced QP damping, as explained in Sec. III A 2. Also,
we may observe the difference of the form of the red
dotted line in Fig. 2 between weakly interacting and strongly
interacting metals because the Fermi liquid and the nearly
antiferromagnetic or nearly ferromagnetic metal show the
different temperature dependence of the QP damping [42,60].
Moreover, although it is difficult to detect the crossover
between the damping-independent Fermi surface and Fermi
sea terms only by experiments, we can check its existence by
combination of experiments and first-principle calculations
if we find the material in which the sign of σ C

xy or σ S
xy

changes at the crossover line: to find such material, we
need to systematically analyze the intrinsic AHE or SHE
on the basis of a realistic band structure in the presence of
the electron-electron interaction by using the first-principle
calculation; after the finding, we need to experimentally
analyze the sign of σ C

xy or σ S
xy as a function of temperature

around the crossover temperature. Then, the results about the
SCD indicate, first, that in a measurement of the SHE in the
low-T case, σ S

xy behaves as if the nonconservation of the spin
current is not important; second, that we may observe the
effects of the SCD on the intrinsic SHE at high or slightly
low temperatures where the Fermi surface term is dominant.
However, it remains a challenging issue to clarify how large its
effects are among several transition metals and transition-metal
oxides.

V. SUMMARY

In summary, we have constructed the general formalism
for the intrinsic AHE and SHE of the interacting multiorbital
metal by using the linear response theory with the appropriate
approximations, and have clarified the roles of the Fermi
surface term and Fermi sea term of the dc conductivity and
the effects of the SCD on these terms. In the high-T and the
intermediate-T regions of Fig. 2, we have used Éliashberg’s
approximation, and in the low-T region, we have constructed

the approximation beyond Éliashberg’s approximation. Most
importantly, we highlight the important roles of the Fermi sur-
face term, a non-Berry-curvature term, even without impurities
in the high-T and the intermediate-T regions. Actually, this
Fermi surface term leads to the interaction-driven temperature
dependence of σ C

xy or σ S
xy in the high-T region and the SCD-

induced correction of σ S
xy . These results considerably develop

our understanding of the intrinsic AHE and SHE. In addition
to those achievements, we have found that the differences
between σ C

xy and σ C
xx arise from the difference in the dominant

multiband excitations. Namely, due to the dominance of the
interband excitations in σ C

xy , the Fermi sea term such as the
Berry-curvature term becomes dominant in clean and low-T
case, while due to the dominance of the intraband excitations in
σ C

xx , the Fermi surface term is always dominant. This answers
how to construct the FL theory for the intrinsic AHE or SHE.
Moreover, we have shown the principles to construct general
formalism of transport coefficients including the interaction
effects and the multiband effects. This may be useful for further
research of charge, spin, and heat transports for an interacting
multiorbital metal.
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APPENDIX A: UNDERSTANDING OF THE INTRINSIC
AHE OR SHE AS ORBITAL AHARANOV-BOHM EFFECT

In this appendix, we see that the origin of finite terms of
σ C

xy or σ S
xy can be understood by analyzing the corresponding

motion of an electron or a QP in real space, and that the origin
of the intrinsic AHE or SHE in several metals is the orbital
Aharanov-Bohm (AB) effect [25].

First, we can obtain the intuitive insight of the origin of finite
σ C

xy or σ S
xy by expressing its finite term as the corresponding

motion of an electron or a QP in real space [21,25]. For
simplicity of arguments, let us argue noninteracting case of σ C

xy

because that argument for an electron is similarly applicable
for σ S

xy and because the similar argument holds even for a QP
in interacting case. In the linear response theory, σ C

xy has four
matrix elements, the x and the y components of the charge
current and two single-particle Green’s functions [17,30] [see
Eqs. (54) and (76)]; each term is the matrix element of the
corresponding operator. Then, the charge current operator is
single-body [see Eq. (14)], and the operator of the retarded
or advanced noninteracting single-particle Green’s function
is given by the inverse matrix of (ω1̂ − Ĥ0 − ĤLS + iδ1̂) for
δ = +0 or −0, respectively. Since we can express it in terms of
the series of Ĥ0+ĤLS

ω
, a single-body operator, we can decompose

the terms of σ C
xy into the corresponding motion of an electron in

real space [21,25]. That motion helps understand which terms
in the Hamiltonian are essential to obtain finite σ C

xy . Thus, the
analysis of that motion helps understand the origin of the finite
terms of σ C

xy [21,25].
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FIG. 4. Schematic pictures about the motion of an electron that gives a finite term of σ C
xy or σ S

xy for (a) SrRuO3 [17] or Sr2RuO4 [25], and (b)
an effective single-orbital metal [9] without the inversion symmetry at an ab plane, and (c) the schematic picture for the t2g-orbital metal [21]
whose single-orbital limit corresponds to case of (b). In those panels, ↑ and ↓ denote spin up and spin down, respectively, each black arrow
denotes each motion due to the single-body operator, and the color difference of an orbital denotes the sign difference of its wave function.
ISB-induced hopping in panel (c) denotes the hopping integral induced by the inversion-symmetry breaking at an ab plane [41]. Several
similarities in panels (c) and (a) should be noted: the two ISB-induced hoppings in panel (c) play a similar role for the next-nearest-neighbor
hopping between the dyz and dxz orbitals in panel (a); a sequence of the SOCs between the spin-down dxy and the spin-up dxz orbital and
between the spin-up dyz and the spin-down dxy orbital in panel (c) play a similar role for the SOC between the spin-up dxz and the spin-up dyz

orbital in panel (a).

Then, we consider three examples, and see the finite terms
of σ C

xy or σ S
xy arise from the acquisition of the AB-type phase

factor of an electron because of the onsite SOC and several
hopping integrals. The following arguments are applicable to
other cases of the intrinsic AHE or SHE of a metal.

The first example is case of a t2g-orbital metal on a square
lattice, corresponding to the AHE [17,18] in SrRuO3 and the
SHE [25] in Sr2RuO4. By the analysis of the motions for the
finite terms of σ C

xy or σ S
xy , we find that one of the finite terms

in this case arises from the motion shown in Fig. 4(a) [25].
This figure shows that the SOC from the spin-up dyz orbital
to the spin-up dxz orbital causes −π

2 rotation, resulting in
a complex phase factor of the wave function of an electron
exp iπlz

2 = i [25]. This phase factor is similar to the AB phase
factor [24] in the presence of an external magnetic field. Thus,
we can regard the acquisition of such phase factor using orbital
degrees of freedom as the orbital AB effect [25]. Namely, the
orbital AB effect causes the intrinsic AHE or SHE in this
case. In addition to the onsite SOC, the direct hopping integral
between the dyz and dxz orbitals is important to obtain finite
σ C

xy .
Second, we can apply the similar mechanism to case of

the intrinsic SHE in Pt [19,20]. In this case, we can acquire
the AB-type phase factor by using several hopping integrals
and the onsite SOC; e.g., the onsite SOC from the spin-up
dxy orbital to the spin-up dx2−y2 orbital leads to −π

4 rotation,
resulting in a complex phase factor exp iπlz

4 = i [19].
Third, we can similarly understand the intrinsic AHE

or SHE in an effective single-orbital metal [9] without the
inversion symmetry at an ab plane. For the explicit argument,

let us consider the situation of the dxy-orbital system on a
square lattice. (The following argument is applicable even for
other single-orbital systems without the inversion symmetry.)
Since the electronic structure in this situation may be described
by the single-orbital Rashba model [61], we can determine the
motion which gives the finite term of σ C

xy or σ S
xy in the Rashba

model [9] [see Fig. 4(b)]. Although that motion seems to be
not categorized as the orbital AB effect, that motion can also
be understood as the orbital AB effect [21]. This is because
a t2g-orbital model with the onsite SOC without the inversion
symmetry at an ab plane becomes an effective single-orbital
Rashba model for a large difference of the single-body energy
level between the dxy and dxz/yz orbitals [41]: the microscopic
origin of the Rashba-type SOC is the combination of the
transverse components of the onsite SOC and the hopping
integral induced by the inversion-symmetry breaking in the
presence of the large single-body energy difference between
the dxy and dxz/yz orbitals [see Fig. 4(c)]. Note that except the
case for the large single-body energy difference the t2g-orbital
model qualitatively differs from the effective single-orbital
Rashba model [21,41], and that the differences play important
roles in obtaining the intrinsic term, which defeats the extrinsic
term in the Born approximation [26].

APPENDIX B: DERIVATION OF EQ. (24)

In this appendix, we derive Eq. (24) by carrying out the
analytic continuations of the first and the second terms of
Eq. (21). First, we can carry out the analytic continuation of
the first term of Eq. (21) as follows:

−δk,k′T
∑
m

Gss ′′
ac (k̃+)Gs ′′s

db (k̃)

= −δk,k′

∫
C

dε

4πi
tanh

ε

2T
Gss ′′

ac (k̃+)Gs ′′s
db (k̃) → −δk,k′

∫ ∞

−∞

dε

4πi
tanh

ε

2T
G(R)ss ′′

ac (k,ε + ω)
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× [
G

(R)s ′′s
db (k,ε) − G

(A)s ′′s
db (k,ε)

] − δk,k′

∫ ∞

−∞

dε

4πi
tanh

ε + ω

2T

[
G(R)ss ′′

ac (k,ε + ω) − G(A)ss ′′
ac (k,ε + ω)

]
G

(A)s ′′s
db (k,ε)

= −δk,k′

∫ ∞

−∞

dε

4πi

3∑
l=1

Tl(ε,ω)gss ′′s ′′′s ′
l;acdb (k; ω), (B1)

where the contour C consists of the three parts into which the circle is divided by inserting two horizontal lines Im(ε + i�n) = 0
and Imε = 0, → represents taking i�n → ω + i0+, Tl(ε,ω) are given by Eqs. (26)–(28), and gss ′′s ′′′s ′

l;acdb (k; ω) are given by
Eqs. (30)–(32).

Second, we can similarly carry out the analytic continuation of the second term of Eq. (21):

−T 2

N

∑
m,m′

∑
{A}

∑
{s1}

G
ss1
aA(k̃+)Gs ′′s4

dD (k̃′)Gs3s
′′

Cc (k̃′+)Gs2s
Bb(k̃)�{s1}

{A} (k̃,k̃′,iεm′ ; 0,i�n)

= − 1

N

∫
C

dε

4πi
tanh

ε

2T

∑
{A}

∑
{s1}

G
ss1
aA(k,ε + i�n)Gs2s

Bb(k,ε)

×
[∫

C′

dε′

4πi
tanh

ε′

2T
G

s ′′s4
dD (k′,ε′)Gs3s

′′
Cc (k′,ε′ + i�n)�{s1}

{A} (k,ε,k′,ε′; 0,i�n)

+ T G
s ′′s4
dD (k′,ε)Gs3s

′′
Cc (k′,ε + i�n)�{s1}

{A} (k,ε,k′,ε; 0,i�n)

+ T G
s ′′s4
dD (k′, − ε − i�n)Gs3s

′′
Cc (k′, − ε)�{s1}

{A} (k,ε,k′, − ε − i�n; 0,i�n)

]

→ − 1

N

∑
{A}

∑
{s1}

∫ ∞

−∞

dε

4πi
P

∫ ∞

−∞

dε′

4πi
coth

ε′ − ε

2T

{(
tanh

ε + ω

2T
− tanh

ε

2T

)
g

ss1s2s
2;aABb(k; ω)gs3s

′′s ′′s4
2;CcdD (k′; ω)

× [
�

{s1}
22-II;{A}(k,k′; 0,ω) − �

{s1}
22-III;{A}(k,k′; 0,ω)

] − tanh
ε + ω

2T
g

ss1s2s
3;aABb(k; ω)gs3s

′′s ′′s4
3;CcdD (k′; ω)

[
�

{s1}
33-I;{A}(k,k′; 0,ω)

−�
{s1}
33-II;{A}(k,k′; 0,ω)

] + tanh
ε

2T
g

ss1s2s
1;aABb(k; ω)gs3s

′′s ′′s4
1;CcdD (k′; ω)

[
�

{s1}
11-II;{A}(k,k′; 0,ω) − �

{s1}
11-I;{A}(k,k′; 0,ω)

]}

− 1

N

∑
{A}

∑
{s1}

∫ ∞

−∞

dε

4πi

∫ ∞

−∞

dε′

4πi
tanh

ε′

2T

×
{(

tanh
ε + ω

2T
− tanh

ε

2T

)
g

ss1s2s
2;aABb(k; ω)

[
�

{s1}
21;{A}(k,k′; 0,ω)gs3s

′′s ′′s4
1;CcdD (k′; ω) − �

{s1}
22-II;{A}(k,k′; 0,ω)gs3s

′′s ′′s4
2;CcdD (k′; ω)

]

− tanh
ε + ω

2T
g

ss1s2s
3;aABb(k; ω)

[
�

{s1}
31-I;{A}(k,k′; 0,ω)gs3s

′′s ′′s4
1;CcdD (k′; ω) − �

{s1}
32;{A}(k,k′; 0,ω)gs3s

′′s ′′s4
2;CcdD (k′; ω)

]

+ tanh
ε

2T
g

ss1s2s
1;aABb(k; ω)

[
�

{s1}
11-I;{A}(k,k′0,ω)gs3s

′′s ′′s4
1;CcdD (k′; ω) − �

{s1}
12;{A}(k,k′; 0,ω)gs3s

′′s ′′s4
2;CcdD (k′; ω)

]}

− 1

N

∑
{A}

∑
{s1}

∫ ∞

−∞

dε

4πi

∫ ∞

−∞

dε′

4πi
tanh

ε′ + ω

2T

×
{(

tanh
ε + ω

2T
− tanh

ε

2T

)
g

ss1s2s
2;aABb(k; ω)

[
�

{s1}
22-IV;{A}(k,k′; 0,ω)gs3s

′′s ′′s4
2;CcdD (k′; ω) − �

{s1}
23;{A}(k,k′; 0,ω)gs3s

′′s ′′s4
3;CcdD (k′; ω)

]

− tanh
ε + ω

2T
g

ss1s2s
3;aABb(k; ω)

[
�

{s1}
32;{A}(k,k′; 0,ω)gs3s

′′s ′′s4
2;CcdD (k′; ω) − �

{s1}
33-I;{A}(k,k′; 0,ω)gs3s

′′s ′′s4
3;CcdD (k′; ω)

]

+ tanh
ε

2T
g

ss1s2s
1;aABb(k; ω)

[
�

{s1}
12;{A}(k,k′; 0,ω)gs3s

′′s ′′s4
2;CcdD (k′; ω) − �

{s1}
13-I;{A}(k,k′; 0,ω)gs3s

′′s ′′s4
3;CcdD (k′; ω)

]}

− 1

N

∑
{A}

∑
{s1}

∫ ∞

−∞

dε

4πi
P

∫ ∞

−∞

dε′

4πi
coth

ε′ + ε + ω

2T

×
{(

tanh
ε + ω

2T
− tanh

ε

2T

)
g

ss1s2s
2;aABb(k; ω)gs3s

′′s ′′s4
2;CcdD (k′; ω)

[
�

{s1}
22-III;{A}(k,k′; 0,ω) − �

{s1}
22-IV;{A}(k,k′; 0,ω)

]

− tanh
ε + ω

2T
g

ss1s2s
3;aABb(k; ω)gss1s2s

1;CcdD(k′; ω)
[
�

{s1}
31-II;{A}(k,k′; 0,ω) − �

{s1}
31-I;{A}(k,k′; 0,ω)

]
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+ tanh
ε

2T
g

ss1s2s
1;aABb(k; ω)gs3s

′′s ′′s4
3;CcdD (k′; ω)

[
�

{s1}
13-I;{A}(k,k′; 0,ω) − �

{s1}
13-II;{A}(k,k′; 0,ω)

]}

= − 1

N

∫ ∞

−∞

dε

4πi

∫ ∞

−∞

dε′

4πi

3∑
l=1

Tl(ε,ω)
∑
{A}

∑
{s1}

g
ss1s2s
l;aABb(k; ω)

3∑
l′=1

J {s1}
ll′;{A}(k,k′; ω)gs3s

′′s ′′s4
l′;CcdD(k′; ω). (B2)

In Eq. (B2), the contour C is the same as that used for the first term of Eq. (21), the contour C ′ consists of the five parts into which the
circle is divided by inserting four horizontal lines Im(ε′ − iεm) = 0, Imε′ = 0, Im(ε′ + i�n) = 0, and Im(ε′ + iεm + i�n) = 0,
without the terms corresponding to Imε′ = εm and Imε′ = −εm − �n, P represents taking the Cauchy principal value of the
integral, and J {s1}

ll′;{A}(k,k′; ω) is connected with the reducible four-point vertex functions in real-frequency representation as
follows:

J {s1}
11;{a}(k,k′; ω) = tanh

ε′

2T
�

{s1}
11-I;{a}(k,k′; 0,ω) + coth

ε′ − ε

2T

[
�

{s1}
11-II;{a}(k,k′; 0,ω) − �

{s1}
11-I;{a}(k,k′; 0,ω)

]
, (B3)

J {s1}
12;{a}(k,k′; ω) =

(
tanh

ε′ + ω

2T
− tanh

ε′

2T

)
�

{s1}
12;{a}(k,k′; 0,ω), (B4)

J {s1}
13;{a}(k,k′; ω) = − tanh

ε′ + ω

2T
�

{s1}
13-I;{a}(k,k′; 0,ω) − coth

ε + ε′ + ω

2T

[
�

{s1}
13-II;{a}(k,k′; 0,ω) − �

{s1}
13-I;{a}(k,k′; 0,ω)

]
, (B5)

J {s1}
21;{a}(k,k′; ω) = tanh

ε′

2T
�

{s1}
21;{a}(k,k′; 0,ω), (B6)

J {s1}
22;{a}(k,k′; ω) = coth

ε′ − ε

2T

[
�

{s1}
22-II;{a}(k,k′; 0,ω) − �

{s1}
22-III;{a}(k,k′; 0,ω)

] − tanh
ε′

2T
�

{s1}
22-II;{a}(k,k′; 0,ω)

+ coth
ε′ + ε + ω

2T

[
�

{s1}
22-III;{a}(k,k′; 0,ω) − �

{s1}
22-IV;{a}(k,k′; 0,ω)

] + tanh
ε′ + ω

2T
�

{s1}
22-IV;{a}(k,k′; 0,ω), (B7)

J {s1}
23;{a}(k,k′; ω) = − tanh

ε′ + ω

2T
�

{s1}
23;{a}(k,k′; 0,ω), (B8)

J {s1}
31;{a}(k,k′; ω) = tanh

ε′

2T
�

{s1}
31-I;{a}(k,k′; 0,ω) + coth

ε + ε′ + ω

2T

[
�

{s1}
31-II;{a}(k,k′; 0,ω) − �

{s1}
31-I;{a}(k,k′; 0,ω)

]
, (B9)

J {s1}
32;{a}(k,k′; ω) =

(
tanh

ε′ + ω

2T
− tanh

ε′

2T

)
�

{s1}
32;{a}(k,k′; 0,ω), (B10)

and

J {s1}
33;{a}(k,k′; ω) = − tanh ε′+ω

2T
�

{s1}
33-I;{a}(k,k′; ω) − coth ε′−ε

2T

[
�

{s1}
33-II;{a}(k,k′; ω) − �

{s1}
33-I;{a}(k,k′; ω)

]
, (B11)

where the subscript X in �
{s1}
X;{a}(k,k′; 0,ω) represents the inequalities about ε, ε′, and ω of the reducible four-point vertex functions

in real-frequency representation: �
{s1}
X;{a}(k,k′; 0,ω) for X = 11-I, 11-II, 21, 31-II, 31-I, 32, 33-I, 33-II, 23, 13-II, 13-I, 12, 22-III,

22-II, 22-I, and 22-IV satisfy, respectively,

Imε > 0, Imε + Imω > 0, Imε′ > 0, Imε′ + Imω > 0, Imε + Imε′ + Imω > 0, Imε − Imε′ > 0, (B12)

Imε > 0, Imε + Imω > 0, Imε′ > 0, Imε′ + Imω > 0, Imε + Imε′ + Imω > 0, Imε − Imε′ < 0, (B13)

Imε < 0, Imε + Imω > 0, Imε′ > 0, Imε′ + Imω > 0, Imε + Imε′ + Imω > 0, Imε − Imε′ < 0, (B14)

Imε < 0, Imε + Imω < 0, Imε′ > 0, Imε′ + Imω > 0, Imε + Imε′ + Imω > 0, Imε − Imε′ < 0, (B15)

Imε < 0, Imε + Imω < 0, Imε′ > 0, Imε′ + Imω > 0, Imε + Imε′ + Imω < 0, Imε − Imε′ < 0, (B16)

Imε < 0, Imε + Imω < 0, Imε′ < 0, Imε′ + Imω > 0, Imε + Imε′ + Imω < 0, Imε − Imε′ < 0, (B17)

Imε < 0, Imε + Imω < 0, Imε′ < 0, Imε′ + Imω < 0, Imε + Imε′ + Imω < 0, Imε − Imε′ < 0, (B18)

Imε < 0, Imε + Imω < 0, Imε′ < 0, Imε′ + Imω < 0, Imε + Imε′ + Imω < 0, Imε − Imε′ > 0, (B19)

Imε < 0, Imε + Imω > 0, Imε′ < 0, Imε′ + Imω < 0, Imε + Imε′ + Imω < 0, Imε − Imε′ > 0, (B20)

Imε > 0, Imε + Imω > 0, Imε′ < 0, Imε′ + Imω < 0, Imε + Imε′ + Imω < 0, Imε − Imε′ > 0, (B21)
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Imε > 0, Imε + Imω > 0, Imε′ < 0, Imε′ + Imω < 0, Imε + Imε′ + Imω > 0, Imε − Imε′ > 0, (B22)

Imε > 0, Imε + Imω > 0, Imε′ < 0, Imε′ + Imω > 0, Imε + Imε′ + Imω > 0, Imε − Imε′ > 0, (B23)

Imε < 0, Imε + Imω > 0, Imε′ < 0, Imε′ + Imω > 0, Imε + Imε′ + Imω > 0, Imε − Imε′ > 0, (B24)

Imε < 0, Imε + Imω > 0, Imε′ < 0, Imε′ + Imω > 0, Imε + Imε′ + Imω > 0, Imε − Imε′ < 0, (B25)

Imε < 0, Imε + Imω > 0, Imε′ < 0, Imε′ + Imω > 0, Imε + Imε′ + Imω < 0, Imε − Imε′ < 0, (B26)

and

Imε < 0, Imε + Imω > 0, Imε′ < 0, Imε′ + Imω > 0, Imε + Imε′ + Imω < 0, Imε − Imε′ > 0. (B27)

We also obtain the connections between J (1){s1}
ll′;{a} (k,k′; ω) and �

(1){s1}
X;{a} (k,k′; 0,ω), the irreducible four-point vertex functions in

real-frequency representation, by adding the superscript (1) in both J {s1}
ll′;{a}(k,k′; ω) and �

{s1}
X;{a}(k,k′; 0,ω) in Eqs. (B3)–(B11).

Combining Eqs. (B1) and (B2) with Eqs. (12) and (21), we obtain Eq. (24).

APPENDIX C: DERIVATION OF EQ. (47)

In this appendix, we derive Eq. (47). The derivation is in the following way: First, by using Eq. (46), we can rewrite the terms
for l = 1 and 3 in Eq. (40) as

− (−e)2

2i

∑
k

∑
{a}

∑
{s}

δs ′,s(vkx)ssba

∑
l=1,3

Tl(ε,ω)gss ′′s ′′′s ′
l;acdb (k; ω)�C;s ′′s ′′′

y;l;cd (k; ω)

= − (−e)2

2i

∑
k

∑
{a}

∑
{s}

δs ′,s(vkx)ssba tanh
ε

2T
gss ′′s ′′′s ′

1;acdb (k; ω)�C(0)s ′′s ′′′
y;1;cd (k; ω)

− (−e)2

(2i)2

∑
k

∑
{a}

∑
{s}

δs ′,s(vkx)ssba tanh
ε

2T
gss ′′s ′′′s ′

1;acdb (k; ω)
∑
k′

∑
{A}

∑
{s1}

J (0)s ′′s ′′′s3s4
12;cdCD (k,k′; ω)gs3s1s2s4

2;CABD(k′; ω)�C;s1s2
y;2;AB (k′; ω)

+ (−e)2

2i

∑
k

∑
{a}

∑
{s}

δs ′,s(vkx)ssba tanh
ε + ω

2T
gss ′′s ′′′s ′

3;acdb (k; ω)�C(0)s ′′s ′′′
y;3;cd (k; ω)

+ (−e)2

(2i)2

∑
k

∑
{a}

∑
{s}

δs ′,s(vkx)ssba tanh
ε + ω

2T
gss ′′s ′′′s ′

3;acdb (k; ω)

×
∑
k′

∑
{A}

∑
{s1}

J (0)s ′′s ′′′s3s4
32;cdCD (k,k′; ω)gs3s1s2s4

2;CABD(k′; ω)�C;s1s2
ν;2;AB(k′; ω). (C1)

Furthermore, the second and the fourth terms in Eq. (C1) can be rewritten as, respectively,

(−e)2

4

∑
k

∑
k′

∑
{a}

∑
{A}

∑
{s}

∑
{s1}

δs ′,s(vkx)ssba tanh
ε

2T
gss ′′s ′′′s ′

1;acdb (k; ω)J (0)s ′′s ′′′s3s4
12;cdCD (k,k′; ω)gs3s1s2s4

2;CABD(k′; ω)�C;s1s2
y;2;AB (k′; ω)

= (−e)2

4

∑
k′

∑
k

∑
{a}

∑
{A}

∑
{s}

∑
{s1}

δs ′,s(vk′x)ssba tanh
ε′

2T
gss ′′s ′′′s ′

1;acdb (k′; ω)

(
tanh

ε + ω

2T
− tanh

ε

2T

)
�

(0)s ′′s ′′′s3s4
12;cdCD (k′,k; 0,ω)

× g
s3s1s2s4
2;CABD(k; ω)�C;s1s2

y;2;AB (k; ω)

= (−e)2

4

∑
k

∑
k′

∑
{a}

∑
{A}

∑
{s}

∑
{s1}

J (0)s ′ss3s4
21;baCD (k,ε,k,ε + ω,k′,ε′,k′,ε′ + ω)gs3s1s2s4

1;CABD(k′,ε′,k′,ε′ + ω)δs1,s2 (vk′x)s1s1
AB

×
(

tanh
ε + ω

2T
− tanh

ε

2T

)
gss ′′s ′′′s ′

2;acdb (k; ω)�C;s ′′s ′′′
y;2;cd (k; ω) (C2)
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and

− (−e)2

4

∑
k

∑
k′

∑
{a}

∑
{A}

∑
{s}

∑
{s1}

δs ′,s(vkx)ssba tanh
ε + ω

2T
gss ′′s ′′′s ′

3;acdb (k; ω)J (0)s ′′s ′′′s3s4
32;cdCD (k,k′; ω)gs3s1s2s4

2;CABD(k′; ω)�C;s1s2
y;2;AB (k′; ω)

= − (−e)2

4

∑
k′

∑
k

∑
{a}

∑
{A}

∑
{s}

∑
{s1}

δs ′,s(vk′x)ssba tanh
ε′ + ω

2T
gss ′′s ′′′s ′

3;acdb (k′; ω)

(
tanh

ε + ω

2T
− tanh

ε

2T

)
�

(0)s ′′s ′′′s3s4
32;cdCD (k′,k; 0,ω)

× g
s3s1s2s4
2;CABD(k; ω)�C;s1s2

y;2;AB (k; ω)

= (−e)2

4

∑
k

∑
k′

∑
{a}

∑
{A}

∑
{s}

∑
{s1}

J (0)s ′ss3s4
23;baCD (k,ε,k,ε + ω,k′,ε′,k′,ε′ + ω)gs3s1s2s4

3;CABD(k′,ε′,k′,ε′ + ω)δs1,s2 (vk′x)s1s1
AB

×
(

tanh
ε + ω

2T
− tanh

ε

2T

)
gss ′′s ′′′s ′

2;acdb (k; ω)�C;s ′′s ′′′
y;2;cd (k; ω). (C3)

In deriving Eq. (C2), we have used Eqs. (B4) and (B6) and an identity [49,52]

�
(0)ss ′s ′′s ′′′
12;abcd (k′,ε′ + ω,k′,ε′,k,ε + ω,k,ε) = �

(0)s ′′′s ′′s ′s
21;dcba (k,ε,k,ε + ω,k′,ε′,k′,ε′ + ω). (C4)

In addition, to derive Eq. (C3), we have used Eqs. (B8) and (B10) and another identity [49,52]

�
(0)ss ′s ′′s ′′′
32;abcd (k′,ε′ + ω,k′,ε′,k,ε + ω,k,ε) = �

(0)s ′′′s ′′s ′s
23;dcba (k,ε,k,ε + ω,k′,ε′,k′,ε′ + ω). (C5)

Returning Eqs. (C2) and (C3) to Eq. (C1), we obtain

− (−e)2

2i

∑
k

∑
{a}

∑
{s}

δs ′,s(vkx)ssba

∑
l=1,3

Tl(ε,ω)gss ′′s ′′′s ′
l;acdb (k; ω)�C;s ′′s ′′′

y;l;cd (k′; ω)

= − (−e)2

2i

∑
k

∑
{a}

∑
{s}

δs ′,s(vkx)ssba

∑
l=1,3

Tl(ε,ω)gss ′′s ′′′s ′
l;acdb (k; ω)�C(0)s ′′s ′′′

y;l;cd (k′; ω)

− (−e)2

2i

∑
k

∑
{a}

∑
{s}

⎡
⎣ 1

2i

∑
k′

∑
{A}

∑
{s1}

∑
l′=1,3

J (0)s ′ss3s4
2l′;baCD (k,ε,k,ε + ω,k′,ε′,k′,ε′ + ω)gs3s1s2s4

l′;CABD(k′,ε′,k′,ε′ + ω)

× δs1,s2 (vk′x)s1s1
AB

⎤
⎦T2(ε,ω)gss ′′s ′′′s ′

2;acdb (k; ω)�C;s ′′s ′′′
y;2;cd (k; ω)

= − (−e)2

2i

∑
k

∑
{a}

∑
{s}

δs ′,s(vkx)ssba

∑
l=1,3

Tl(ε,ω)gss ′′s ′′′s ′
l;acdb (k; ω)�C(0)s ′′s ′′′

y;l;cd (k′; ω)

− (−e)2

2i

∑
k

∑
{a}

∑
{s}

[
�

C(0)s ′s
x;2;ba (k,ε,k,ε + ω) − δs ′,s(vkx)ssba

]
T2(ε,ω)gss ′′s ′′′s ′

2;acdb (k; ω)�C;s ′′s ′′′
y;2;cd (k; ω). (C6)

Then, combining Eq. (C6) with Eq. (40), we obtain Eq. (47). This is another exact expression of K̃C(R)
xy (ω).
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