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Tunable scattering cancellation cloak with plasmonic ellipsoids in the visible
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The scattering cancellation technique is a powerful tool to reduce the scattered field from electrically small
objects in a specific frequency window. The technique relies on covering the object of interest with a shell that
scatters light into a far field of equal strength as the object but with a phase shift of π . The resulting destructive
interference prohibits its detection in measurements that probe the scattered light. Whereas at radio or microwave
frequencies feasible designs have been proposed that allow us to tune the operational frequency upon request,
similar capabilities have not yet been explored in the visible. However, such an ability is necessary to capitalize
on the technique in many envisioned applications. Here, we solve the problem and study the use of small metallic
nanoparticles with an ellipsoidal shape as the material from which the shell is made to build an isotropic geometry.
Changing the aspect ratio of the ellipsoids allows us to change the operational frequency. The basic functionality
is explored with two complementary analytical approaches. Additionally, we present a powerful multiscattering
algorithm that can be used to perform full-wave simulations of clusters of arbitrary particles. We utilize this
method to analyze the scattering of the presented designs numerically. Herein we provide useful guidelines for
the fabrication of this cloak with self-assembly methods by investigating the effects of disorder.
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I. INTRODUCTION

With today’s possibilities in designing and fabricating
complicated nanostructures from different materials, entirely
new approaches to tame the propagation of light have been
pioneered. This brought many new and interesting appli-
cations within reach [1–5]. Hiding objects from detection
with electromagnetic radiation is potentially one of the most
fascinating aspects of modern nano-optics. The possibility to
conceal an object at a specific frequency was simultaneously
proposed by Leonhardt and Pendry and coworkers. They
suggested exploring different techniques for a coordinate
transformation to design a supporting structure, made from
materials with complicated properties, to guide an incident
electromagnetic field around a predefined spatial region [6–8].
With this approach, it is possible to hide an arbitrary object
from an observer if it is placed inside the transformed region.
Applications exist, e.g., when cloaking contact fingers and bus
bars in solar cells [9].

*martin.fruhnert@kit.edu

If a general coordinate transformation is used, metama-
terials with an anisotropic and inhomogeneous permittivity
and permeability are required to implement the supporting
structure. Since making such materials available obviously
constitutes a challenge, an eminent question has been how to
lower the constraints on the required functionality to simplify
the realization of the necessary material properties. In the
slipstream of such research, for example, carpet cloaks were
explored that hide an object that resides on a planar surface,
e.g., a metal mirror [10–13].

A completely different strategy to hide small particles
from detection led to the development of the scattering
cancellation technique [14–18]. There, the scattering response
of an electrically small object to a given illumination is
reduced by encapsulating it with a supporting shell. The shell
is designed such that the illumination induces an electric
dipole moment of the same magnitude as in the core object.
However, the dipole moment shall oscillate with a phase
difference of π with respect to the dipole moment of the
core object with the effect that the emerging destructive
interference will cancel the scattered field [19]. This renders
the object undetectable at the cloaking frequency in techniques
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that use the scattered light to detect the presence of an
object.

This reduction of the scattering cross section, as it has been
explored in the past, is a valuable ability that might find many
applications [20]. Examples are the suppression of the cross
talk between closely spaced nanoantennas [21], the suppres-
sion of the perturbation of the field to be detected by a tip in a
scanning near-field optical microscope operated in scattering
mode [22], or the manipulation of optical forces [23]. To make
these applications come true, it is of paramount importance to
be able to tune the operational frequency where the scattering
response is reduced at a predefined frequency imposed by the
specific application.

For an operational frequency in the radio or microwave
part of the spectrum, different metasurfaces have been sug-
gested for the implementation of the scattering cancellation
technique [24]. Such mantle cloaks, as they were dubbed,
can be made from different motifs, and their functionality has
been verified in pioneering experiments [25]. On the contrary,
for an application at optical frequencies, thus far only the
feasibility of the concept was demonstrated but not the ability
to tune the operational frequency. These first experiments
employed a shell made from spherical metallic nanoparticles
to cover the object from which the scattering response should
be suppressed, i.e., usually a dielectric sphere [26,27]. This
dielectric sphere has to be sufficiently small that the scattering
response is dominated by the electric dipole moment. The
restriction to spherical metallic nanoparticles eventually fixes
the operational frequency of the cloaking effect.

To mitigate this problem of low tunability, we suggest and
study here the use of metallic ellipsoidal nanoparticles as the
building blocks from which the shell is made. Changing the
aspect ratio changes the resonance frequency of the nanoparti-
cles and with that the operational frequency across an extended
spectral domain. Since the shell material is usually fabricated
by means of self-assembly techniques, an important question
is whether the scattering strength can be reduced for a random
arrangement and orientation of the ellipsoids on top of the core
object. Then, only a fraction of the ellipsoidal nanoparticles
will effectively interact with the external illumination that is
considered to have a fixed linear polarization.

Here, we study the basic design of a scattering cancellation
device where the shell is made from metallic ellipsoids by two
complementary analytical techniques. The purpose of these
techniques is to demonstrate the underlying principle that
causes the ability to tune the operational frequency and to
provide a glimpse of the possible performance. The eventual
functionality of the design is demonstrated by full-wave
numerical simulations. These simulations rely on a powerful
tool in which the scattering response of each individual
ellipsoid is expressed in terms of a T matrix [28]. The T matrix
relates the incident field expanded into spherical harmonics to
the scattered field. Afterwards, a multiple scattering formalism
is used to study the self-consistent optical response. This
allows us to study the influence of the positional and rotational
disorder on the performance of the device.

II. THEORETICAL CONSIDERATIONS

In this section, we want to study by two different analytical
means a scattering structure that consists of a dielectric sphere

(the core object) that is covered with a layer of silver ellipsoids
(the supporting shell). In the first analytical approach, the
covering shell is modeled as a thin reactive metasurface to
which a reactance is assigned based on the polarizability of the
ellipsoids. Comparing this reactance to the necessary reactance
that suppresses the scattering signal allows us to identify the
parameter region where the scattering is reduced.

In the second analytical approach, the nanoparticles form-
ing the covering shell are considered an effectively homo-
geneous medium with effective material parameters. The
effective properties of this medium are derived from basic
mixing rules in dipolar approximation. Beyond insights into
the spectral position of the operational frequency, the approach
is useful for making an educated guess about the performance
of the device.

A. Surface homogenization

At first, we want to investigate the operating frequency of
the proposed scattering cancellation and its tunability. For this
purpose, we analyze the dependence of the cloaking frequency
on the aspect ratio of the ellipsoids.

We assume that the nanoparticles are electrically very small
compared to the wavelength, e.g., λ/az ≈ 20, where az is the
major semiaxis of the ellipsoid. Therefore, the shell can be
modeled as a two-dimensional metasurface. The behavior of
the shell is then characterized by an average surface reactance.
The surface reactance corresponds to the imaginary part of
the surface impedance Zs(ω) = Rs(ω) − iXs(ω). For an array
of particles that are characterized by a polarizability α, this
surface reactance reads [29]

Xs(ω) = −d2

k
{Re[1/α(ω)] − Re[β(ω)]}. (1)

Here, β(ω) describes the interaction of the nanoparticles in
the array while being exposed to an external excitation [30], d
defines the distance of the particles, and k is the wave number
of the incident plane wave.

The polarizability α(ω) of an ellipsoid is analytically known
to be [31]

αz(ω) = εp(ω) − εh

εh + Nz[εp(ω) − εh]
, (2)

where εp(ω) is the permittivity of the ellipsoid obtained from
experimental data [32], εh = 1 is the host medium, in our case
air, and Nz is the depolarization factor along z which depends
on the aspect ratio δ = az/ax of the ellipsoid. The axes are
chosen such that the volume V = 4

3πa2
xaz stays constant.

When the ellipsoids cover a sphere, they are not in perfect
alignment like in a flat array. To account for this disorder, we
calculate an effective polarizability by taking the average of
the three components αx(ω), αy(ω), and αz(ω). This implies
that the homogeneous medium that is considered here is made
from ellipsoids that have an arbitrary orientation in space. The
filling fraction is derived from the distance of the particle and
the total surface area of the core object. Here, we assume
a distance of d = 40 nm which reflects a filling fraction of
approximately 6.5% that is assumed later on.

245127-2



TUNABLE SCATTERING CANCELLATION CLOAK WITH . . . PHYSICAL REVIEW B 93, 245127 (2016)

700 600 500 400

400 500 600 700 800
−10

−5

0

5

10

15

20

25

Frequency [THz]

X
s

[Ω
]

λ [nm]

δ=36/4
δ=23/5
δ=16/6

Xideal
s

FIG. 1. Surface reactance calculated for different aspect ratios
δ = az/ax of the constituting ellipsoids and the ideal surface reactance
that is required to cancel the scattering. Spectral positions where both
surface reactances are equal correspond to the operational frequencies
for different aspect ratios.

The surface reactance that is necessary to suppress the
scattering response from a spherical core object is given by [24]

Xideal
s (ωc) = 2[2 + εsph − γ 3(εsph − 1)]

3ωc
c
rsphγ 3(εsph − 1)

, (3)

where ωc is the desired operational frequency, εsph = 2.1 is the
relative permittivity of the core sphere, γ = rsph/rclo, rsph =
61 nm is the core radius, and rclo = 66 nm is the radius of the
mantle cloak.

Now, the surface reactance strongly depends on the polar-
izability α(ω) of the particles forming the reactive surface.
Therefore, it can be tuned by changing the aspect ratio δ =
az/ax of the ellipsoids as depicted in Fig. 1, where we calculate
the surface reactance by substituting Eq. (2) into Eq. (1) with
different values of δ. Please note that we assumed here that
the ellipsoids are prolate; hence, the x and y components of
the polarizability are the same. This is in agreement with the
assumptions further below. Elliptical nanoparticles with such
a shape can be obtained by various chemical methods [33,34].

Equating the surface reactance for a given axis ratio to the
surface reactance necessary to cancel the scattered field allows
us to identify the operational frequency for a given structure. It
can be seen that the larger the aspect ratio of the ellipsoids is,
the shorter the frequency where both reactances are the same
is. Changing the aspect ratio, therefore, is a suitable means
to adjust the operational frequency upon request. To obtain
insights into the qualitative scattering cross section of such a
system, a volumetric homogenization method is used further
below.

B. Volumetric homogenization

Next, we consider the layer of plasmonic particles as a shell
that is made from a homogeneous medium which encloses the
dielectric sphere to calculate the scattering cross section.
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FIG. 2. Effective relative permittivity of a material made of silver
ellipsoids with semiaxes ax = ay = 5 nm and az = 23 nm and a filling
fraction of f = 0.065. The dashed lines show the solutions of Eq. (5).

To assign an effective permittivity to the shell, we use the
Clausius-Mossotti relation for inclusions in a host medium
with permittivity εh,

εeff(ω) = εh + 2/3f α(ω)

1 − f α(ω)
3εh

, (4)

where f = 0.065 is the filling fraction of the particles in
the host and α(ω) is the polarizability of a single particle.
The polarizability and host medium are the same as those
considered in the previous section; that is, we took again the
spatial average of the three individual polarizabilities of the
three axes.

To reduce the scattering of the system we need to satisfy
the cloaking condition of a covered sphere [14],

γ 3 = [εeff(ω) − εb][2εeff(ω) + εsph]

[εeff(ω) − εsph[2εeff(ω) + εb]
. (5)

This equation is real valued for lossless core and background
material; thus, we only get a restriction on the real part
of the cloak permittivity. We get two solutions for the
chosen parameters: one positive, Re[εeff(ω1)] = 0.461, and
one negative, Re[εeff(ω2)] = −2.278, depicted as dashed lines
in Fig. 2. The scattering of the coated sphere will be reduced
at the positions where the real part of εeff(ω) is equal to
those values. The remaining imaginary part of the permittivity
slightly diminishes the cloaking effect, introducing absorption
that is associated with additional forward scattering, due to the
optical theorem [35].

Now, we can calculate the polarizability of the entire system
by considering a sphere coated with a shell of the effective
material. The polarizability of a coated sphere is given as [36]

αclo(ω)

=3
[εeff(ω)−1][εsph+2εeff(ω)]+γ 3[2εeff(ω)+1][εsph−εeff(ω)]

[εeff(ω)+2][εsph+2εeff(ω)]+2γ 3[εeff(ω)−1][εsph−εeff(ω)]
.

(6)

245127-3



MARTIN FRUHNERT et al. PHYSICAL REVIEW B 93, 245127 (2016)

700 600 500 400

400 500 600 700 800
10

0

10
2

10
4

10
6

Frequency [THz]

C
sc

a [n
m

2 ]
λ [nm]

Single sphere
δ=36/4
δ=23/5
δ=16/6

FIG. 3. Scattering cross section of a single dielectric sphere
with εsph = 2.1 and the sphere covered with an effective material
corresponding to different aspect ratios of the constituent ellipsoids.

This can be used to calculate the scattering cross section of the
system as [31]

Csca(ω) = k4r6
clo8π |αclo(ω)|2. (7)

As can be seen in Fig. 3, the calculated scattering cross
section of the covered sphere shows two peaks and two local
minima. The first peak corresponds to the resonance position
of the effective permittivity of the shell, and the second
corresponds to the plasmon resonance between the core and
the shell, respectively. The minima correspond to the points
where the cloaking condition of the covered sphere [Eq. (5)]
is satisfied. A possible third minimum is not observed. This
corresponds to the spectral position where εeff(ω3) = −2.278
that is directly in the resonance. There, the imaginary part of the
effective permittivity is extremely high, such that the condition
to suppress the scattering response cannot be met effectively.
In fact, also, the second (negative) solution does not lead to
cloaking because of the high losses near the resonance.

Comparable to the previous analytical method, we observe
a high tunability of the operational frequency across the entire
optical range that is considered. By changing the aspect ratio
of the ellipsoids δ = az/ax, the effective permittivity of the
shell material changes. This leads to different positions where
the cloaking condition is satisfied. Otherwise, the qualitative
response is identical for all operational frequencies.

As we see, the predicted cloaking frequency, given by the
intersection of the Xs graphs with Xideal

s , is in excellent agree-
ment with the values from the volumetric homogenization
(Fig. 3).

It is interesting to note that, as shown in Ref. [37],
volumetric homogenization provides quite accurate results
even if the shell is rather thin and made of a single layer
of nanoparticles. Further proof of the applicability of the
volumetric homogenization in such a situation will be given in
the results section.

We notice that we discussed here only the condition
necessary to meet the positive solution. As we will see further

below, this is the only solution that persists in the actual
structure, where disorder possibly causes a degradation of the
oscillator strength of the effective dispersion.

III. NUMERICAL METHOD

To be able to study the properties from an actual structure,
we have to be able to simulate its optical response using full-
wave numerical simulations. The structure itself constitutes
in that sense a challenge since it consists of a larger number
of resonant objects with fine details. We are not able to take
advantage of any periodicity or symmetry since the elliptical
nanoparticles will be considered with a random orientation on
top of the core object. This is the consequence of the bottom-up
methods that we suggest to implement such a scattering
cancellation device. To cope with these challenges, we rely
on an extension to the multiple-scattering technique [38,39].
Our approach requires only information on the T matrix
of the isolated ellipsoid and the core sphere [28,40,41].
This T matrix can be obtained using multiple full-wave
simulations of the optical response of the isolated object
for different illumination schemes [42]. The matrix contains
generally complete information on how the object interacts
with electromagnetic radiation in the far and near fields.
However, for numerical calculations we need to truncate the T

matrix and take only the information up to a chosen multipole
order into account.

We start by considering the optical response of a single
object that is illuminated by a specific external electromag-
netic field. The total field outside the object can always be
decomposed into the incident and scattered fields. With respect
to a central coordinate of the scattering object, these fields
can be expanded into vector spherical harmonics N(l)

nm(r,θ,φ)
and M(l)

nm(r,θ,φ); the functions with indices l = 1,2 contain
Bessel functions of the first and second kinds, respectively, and
indices l = 3,4 correspond to Hankel functions of the first and
second kinds, respectively. The exact choice of the function
requires further physical reasoning. For the scattered electric
field that has to satisfy the Sommerfeld radiation condition the
expansion reads

Esca(r,ω) =
∞∑

n=1

n∑
m=−n

k2Enm

[
anm(ω)N(3)

nm(r,ω)

+ bnm(ω)M(3)
nm(r,ω)

]
. (8)

For the incident field that has to be finite in the center of the
coordinate systems the expansion reads

Einc(r,ω) = −
∞∑

n=1

n∑
m=−n

k2Enm

[
pnm(ω)N(1)

nm(r,ω)

+ qnm(ω)M(1)
nm(r,ω)

]
. (9)

k2 = ε(ω)μ(ω)(ω2/c2) is the dispersion relation in the sur-
rounding medium characterized by the permittivity ε(ω) and
the permeability μ(ω), and

Enm = |Einc|in(2n + 1)
(n − m)!

(n + m)!
(10)
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is a scaling factor, with |Einc| being the magnitude of the
incident field. The expansion coefficients anm(ω) and bnm(ω)
are called scattering coefficients. The expansion coefficients
pnm(ω) and qnm(ω) describe the illumination. They are
analytically known for a plane wave or a Gaussian beam,
but they can also be kept entirely free to expand an arbitrary
illumination close to the scattering object.

The link between the scattering coefficients and the incident
coefficients is given by the T matrix of the object. This
matrix contains all the information about how a specific object
responds to an external electromagnetic field and reads(

a
b

)
= T ·

(
p
q

)
, (11)

where a and b are concatenated vectors containing the
scattering coefficients of the outgoing wave and p and q are

concatenated vectors containing the coefficients of the incident
wave. The T matrix links them.

The T matrix is analytically known only for canonical
objects, e.g., a sphere. In the case of a sphere, the T matrix
is diagonal, and the values on the diagonal are known as the
Mie coefficients. This reflects the fact that vector spherical
harmonics with different quantum numbers are orthogonal.
This orthogonality is not broken by a spherical object.
However, for an arbitrary scatterer the T matrix is dense in
general. Using Eq. (11), we can calculate the T matrix for any
given scatterer. Specifically, we use an existing full-wave code
to illuminate the scatterer with plane waves from different
directions and calculate the scattered fields. Then, we can
calculate sets of incident coefficients p,q and corresponding
scattering coefficients a,b. These are calculated by projecting
the scattered and illuminating fields onto vector spherical
harmonics

anm(ω) =
∫ 2π

0

∫ π

0 Esca(r = R,θ,φ,ω)N∗
nm(r = R,θ,φ,ω) sin θ dθdφ

k2Enm

∫ 2π

0

∫ π

0 |Nnm(r = R,θ,φ,ω)|2 sin θ dθdφ
,

bnm(ω) =
∫ 2π

0

∫ π

0 Esca(r = R,θ,φ,ω)M∗
nm(r = R,θ,φ,ω) sin θ dθdφ

k2Enm

∫ 2π

0

∫ π

0 |Mnm(r = R,θ,φ,ω)|2 sin θ dθdφ
, (12)

where R is a fixed radius of a sphere containing the object at
which the fields are evaluated [31]. Having the incident and
scattering coefficients available, the calculation of T is done by
inverting the system of equations. In order to have a solvable
system, we need to consider at least 2N (N + 2) different
illuminations, which is the dimension of the T matrix. Here
N is the multipolar order we want to take into account, where
N = 1 corresponds to dipoles, N = 2 to quadrupoles, and so
on. Using Eq. (11) we can calculate the scattering coefficients
of any particle for any given incident field, represented by
the incident field coefficients. Specifically, we apply this
procedure to quantify the exact scattering properties of the
ellipsoidal nanoparticles.

Now, instead of just a single isolated scatterer, we consider
a cluster of particles. In the multiple scattering algorithm, the
illumination of each particle is written as a superposition of
the external illumination and the scattered field from all other
spheres. The incident field on the j th sphere expanded in its
local coordinate system is given by

Ej

(inc)(r,ω) = Einc(r,ω) +
∑
i �=j

Esca(r,ω)(i,j ), (13)

where (i,j ) denotes the transformation from the ith to the
j th coordinate system. This is done by translating the vector
spherical harmonics with the translational addition theorems,

N(3)
nm(r,ω) =

∞∑
n′=1

n′∑
m′=−n′

[
A0n′m′

nm (i,j )N(1)
n′m′(r′,ω)

+B0n′m′
nm (i,j )M(1)

n′m′(r′,ω)
]
,

M(3)
nm(r,ω) =

∞∑
n′=1

n′∑
m′=−n′

[
A0n′m′

nm (i,j )M(1)
n′m′ (r′,ω)

+B0n′m′
nm (i,j )N(1)

n′m′(r′,ω)
]
. (14)

The translation coefficients A0nm
n′m′ (i,j ) and B0nm

n′m′ (i,j ) can be
found in Ref. [43]. Then the T matrix transforms as

T(j ) =
(

A B
B A

)∗
(i,j ) · T(i) ·

(
A B
B A

)
(i,j ). (15)

Here A and B form a matrix of translation coefficients that can
be obtained from

An′m′
nm = En′m′

Enm

A0n′m′
nm . (16)

For nonspherical particles, however, not only the position
but also the orientation is important for determining the
scattering. This can be accounted for by applying a rotation to
the T matrix [41],

T rot
nmn′m′ =

n∑
m1=−n

n′∑
m2=−n′

[
Dn′

m′m2
(α,β,γ )

]∗
Tnm1n′m2D

n
mm1

(α,β,γ ).

(17)

Here the Wigner D matrix

Dn
ml(α,β,γ ) = e−imαdn

ml(β)e−ilγ (18)

depends on the Euler angles α,β,γ of the rotation, and the
Wigner d function is given as

dn
ml(β) = An

ml(1 − cos β)(m−l)/2(1 + cos β)−(m+l)/2∂n−l
cos β

× [(1 − cos β)n−m(1 + cos β)n+m], (19)
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with the factor

An
ml = (−1)n−l

2n

√
(n + l)!

(n − m)!(n + m)!(n − l)!
. (20)

By combining Eqs. (11), (13), (14), and (17) we arrive at a
system of equations that can be solved self-consistently for the
scattering coefficients of all constitutive particles with index
j under the illumination of the external field and the scattered
field of all other particles

(
a
b

)(j )

= Trot ·
⎛
⎝(

p
q

)(j )

−
∑
j �=i

((
a
b

)(i)

·
(

A
B

)
(i,j )

)⎞
⎠. (21)

The scattering coefficients of the whole cluster can finally
be obtained by translating all coefficients back to the central
coordinate system and summing them together,(

a
b

)
=

J∑
j=1

(
a
b

)(j )

·
(

A
B

)
(j,1). (22)

From these scattering coefficients all further quantities can be
calculated.

This formalism speeds up considerably the calculation
of the optical response from a large ensemble of scattering
objects. To calculate the scattering coefficients of an array of
specially or randomly oriented objects, the T matrix has to be
calculated only once and can be used for each constituent
by translating and rotating it by the desired amount. This
is done using addition theorems for the vector spherical
harmonics [41,43]. With this method we are able to simulate
the electromagnetic response of ellipsoids arbitrarily arranged
at the surface of a larger dielectric sphere to investigate
the cloaking in more detail. In order to perform numerical
calculations, we have to truncate the infinite sums, e.g., in
Eq. (8) at a finite number N which represents the multipolar
order. This means contributions from orders up to N are taken
into account.

IV. RESULTS

We consider now a dielectric sphere with εsph = 2.1 and a
radius of rSph = 61 nm covered with 24 silver ellipsoids. For
the permittivity of the nanoparticles εp(ω) we use established
experimental data [32]. With the proposed T -matrix algorithm
it is possible to calculate the scattering response from different
distributions and orientations of the silver ellipsoids on the
central sphere in short time and with high precision. We
truncate the infinite sums at N = 3. This means we take
dipoles, quadrupoles, and octopoles into account; however,
already the quadrupole contribution is almost negligible due
to the small size of the structure compared to the wavelength.

In Fig. 4, three configurations are shown that will be further
investigated. Figure 4(a) shows a completely deterministic
ordering of the ellipsoids. They have defined distances and lie
tangent to the surface of the core sphere with an orientation that
maximizes the projection of the long axis onto the polarization
direction of the incident field. This was done to enhance the
polarizability of the shell. However, when this nanostructure
is fabricated with self-assembly techniques, we have no direct
control over the exact position of the ellipsoids. To reflect this

FIG. 4. Different distributions and orientations of silver ellipsoids
on a dielectric sphere. The illumination direction and polarization are
depicted on the left-hand side.

we show in Fig. 4(b) random distributions of nanoparticles
on the surface of the core sphere only adhering to a minimal
distance to ensure that the ellipsoids are not in contact with
each other. The particles are, however, still aligned with
respect to the incident field polarization like the geometry
in Fig. 4(a). This could be realized, for example, by applying
an external field during the self-assembly process to force
the particles to align [44]. Finally, Fig. 4(c) shows the same
random distribution with random orientation of the ellipsoids
on the surface of the sphere.

As shown in Fig. 5, the three different geometries result
in similar qualitative cloaking behaviors. The scattering cross
section is reduced by almost one order of magnitude around the
desired frequency of 600 THz, as anticipated by the analytic
calculations. However, there are a few notable observations.
First, as expected, the scattering cancellation is weaker for the
case of randomly oriented particles [line (c)] because fewer
ellipsoids are aligned along the polarization of the electric field
with their large semiaxis az. Furthermore, the second dip of
the scattering cross section at approximately 530 THz, which
was predicted by analytical considerations, vanishes if we
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FIG. 5. Numerically obtained scattering cross sections of dif-
ferent systems corresponding to the geometries shown in Fig. 4:
(a) Completely ordered and aligned, (b) random distribution with the
same alignment, and (c) random distribution with random alignment.
For lines (b) and (c) we display the averaged cross section of 100
simulations with different realizations of the random geometry; the
shaded region shows the standard deviation of the sample. The
ellipsoids have semiaxes of ax = ay = 5 nm and az = 23 nm.

245127-6



TUNABLE SCATTERING CANCELLATION CLOAK WITH . . . PHYSICAL REVIEW B 93, 245127 (2016)

introduce disorder. This can be attributed to the fact that the
effective permittivity of the shell shows weaker dispersion; that
is, the oscillator strength of the effective Lorentzian-like dis-
persion is reduced. The effective permittivity of the disordered
shell material no longer attains those values corresponding to
the negative solution of the cloaking condition (5). Therefore,
only the positive solution persists. Finally, the frequency of
minimal scattering is shifted towards the red part of the
spectrum when we introduce disorder. This can likewise be
explained with a lower dispersion of εeff(ω) of the shell because
the value of the positive solution of Eq. (5) is attained at a lower
frequency. This can be understood intuitively by imagining a
weaker dispersive εeff(ω) in Fig. 2.

However, because of the overall similarity of the results
at the target frequency, we can state that the design is rather
robust to uncertainties, which may arise in fabrication. We wish
to stress that similar implementations of nominal identical
geometries have nearly identical scattering responses, as is
evidenced by the small red shaded area in Fig. 5, which
shows the standard deviation for different random positions
of the ellipsoids. The exact details of the implementation of
a specific disordered structure are not important. Variation of
the orientation of the ellipsoids has a slightly larger impact on
the scattering reduction, as demonstrated by the cyan shaded
area. But the scattering cross section is still significantly
reduced; note that this means that the cloaking behavior of
the disordered geometry in Fig. 4(c) is generally independent
of the direction and polarization of the incident plane-wave
illumination.

We showed in Sec. II that the desired cloaking frequency
can be tuned across a large fraction of the visible elec-
tromagnetic spectrum. This is achieved by changing the
aspect ratio δ of the metallic ellipsoids, while keeping the
volume constant. Now, we perform full-wave calculations with
the method established in Sec. III. As can be seen in Fig. 6,
the cloaking frequency ranges from 430 to 700 THz if we
change the aspect ratio. An important point to consider is that
the aspect ratios do not reach extreme values and are entirely in
the range of what is possible to fabricate experimentally [33].
The cloaking is slightly distorted in the case of the high-
aspect-ratio ellipsoids. This is due to the fact that the particles
are very long and are almost touching. This can cause strong
coupling, which is completely excluded from the theoretical
considerations. However, the scattering cross section is still
significantly reduced.

In a final step we wish to explicitly compare the different
methods that can be used to describe the functionality of the
device. As shown in Sec. II, the cloak can be described as a
homogeneous shell with an effective permittivity εeff(ω). Now,
we not only want to do this analytically by considering the
analytical expression for the polarizability of an ellipsoid, but
we wish to do such analysis numerically. For this purpose,
we calculated the polarizability α(ω) of a single ellipsoid
numerically by using the T matrix of a single ellipsoid. The
polarizability can be obtained from the scattering coefficients
of the first order [45]. For example, for an illumination with
z-polarized light the polarizability is given as

αz(ω) = −
√

12πiZ0ka10(ω). (23)
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FIG. 6. Numerically obtained scattering cross sections of spheres
decorated with ellipsoids with different aspect ratios. All systems
have the same disordered geometry shown in Fig. 4(c). The thick
lines show the average of 100 different random realizations, and the
shaded region depicts the standard deviation.

Then, we take Eq. (4) to get the effective permittivity of
the homogenized shell and conduct a full-wave simulation
of a sphere covered with the effective material. As shown in
Fig. 7, the functional behavior of the analytical calculation
with volume homogenization and the numerical simulation
are very similar. However, the scattering reduction is weaker.
This can be attributed to the lower dispersion in the effective
permittivity. The dispersion is weaker because, additionally,
radiative losses are automatically included in the full-wave
solutions. In contrast, in the analytical discussion of the
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FIG. 7. Scattering cross section of the single sphere, analytically
obtained effective-medium coating, the numerical calculation of the
effective shell, the complete full-wave simulation of the geometry
in Fig. 4(c), and the predicted cloaking frequency of the surface
homogenization.
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polarizability of the ellipsoid [Eq. (2)] they have not been
considered. The equation remains only strictly valid in the
quasistatic regime. Additionally, the negative solution of
Eq. (5) appears at higher frequencies. This is due to a shift
in the resonance of εeff(ω) and also the weaker dispersion.
In summary and beyond all these detailed insights, we can
state that we get very good agreement in the cloaking position
predicted by the different numerical and analytic methods.
However, it is important to note that, especially in the visible,
intrinsic absorption of the constituents from which the shell is
made can be large if plasmonic particles are used. This might
lead to an enhancement of the total extinction cross section of
the particle, even though the scattering cross section is reduced
at the operational frequency [46].

V. CONCLUSION

We introduced a new design for a scattering cancellation
cloak. Instead of using plasmonic spheres or complicated
metasurfaces, we decorate a dielectric sphere with silver
ellipsoids. The main advantage is the high tunability that
makes it possible to shift the cloaking frequency across
the optical domain by changing the aspect ratio of the
ellipsoids. Additionally, the design is feasible for fabrication
with self-assembly techniques because the particles can be

fabricated chemically and the design is robust to changes of
the distribution.

Furthermore, we outlined a powerful and versatile numer-
ical method that can be used to simulate the scattering of a
large ensemble of arbitrary particles. With the procedure at
hand we just calculate the T matrix of an object once with
the help of available full-wave solvers and use it to calculate
the scattering properties of larger clusters. We calculated the
scattering of different realizations of the cloaking geometry.
It was used to validate two different approaches to describe
the scattering cancellation cloak analytically. We showed that
all methods had very good agreement, especially in predicting
the cloaking frequency. The ellipsoids that are used in the shell
are very tunable and allow for cloaking at specific frequencies
over the entire visible spectrum by changing the aspect ratio
in an isotropic geometry.
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