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By combining the tetrahedron method with the cluster perturbation theory (CPT), we present an accurate
method to numerically calculate the density of states of interacting fermions without introducing the Lorentzian
broadening parameter η or the numerical extrapolation of η → 0. The method is conceptually based on the
notion of the effective single-particle Hamiltonian which can be subtracted in the Lehmann representation of
the single-particle Green’s function within the CPT. Indeed, we show the general correspondence between the
self-energy and the effective single-particle Hamiltonian which describes exactly the single-particle excitation
energies of interacting fermions. The detailed formalism is provided for two-dimensional multiorbital systems
and a benchmark calculation is performed for the two-dimensional single-band Hubbard model. The method
can be adapted straightforwardly to symmetry-broken states, three-dimensional systems, and finite-temperature
calculations.
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I. INTRODUCTION

One of the important quantities in strongly correlated
fermion systems is the single-particle excitation gap because
the single-particle excitation gap plays the role of an “order
parameter” in, e.g., the half-filled Hubbard models, which
distinguishes the metallic state from the Mott insulating state
in the absence of a long-range order. Theoretically, the single-
particle excitation gap is usually estimated from the density
of states near the Fermi energy. To calculate the the single-
particle excitations, including the density of states, in strongly
correlated systems, the quantum cluster approaches [1] are
very often employed. These approaches require a numerical
method (a solver) to treat many-body problems within small
clusters. The numerically exact diagonalization is one of the
methods which allow us to directly calculate the single-particle
Green’s functions at an arbitrary complex frequency [2,3].

Even with the exact diagonalization, when the single-
particle excitations are calculated, a finite imaginary part η

of the complex frequency z = ω + iη has to be introduced to
avoid the poles of the single-particle Green’s function lying
on the real frequency ω axis. Here η corresponds to the half
width at half maximum of the Lorentzian broadening for a
δ-function peak [see Eq. (24)]. Since the density of states is
provided as a sum of δ-function peaks, one has to calculate
the density of states using several values of η and extrapolate
the results to η → 0 for all frequencies ω, e.g., close to the
chemical potential. The numerical extrapolation of η → 0
is indeed valuable to examine fine structures of the density
of states [4,5]. However, it is often technically cumbersome
because appropriate values of η have to be chosen to obtain
a reasonable, i.e., sharp enough and non-negative, density of
states.

The single-particle excitation gap of interacting fermions
can be evaluated not only from a direct calculation of the
single-particle excitation energies [6] but also from a jump of

the chemical potential as a function of particle density [7–10].
However, the development of a theoretical method which can
resolve fine structures of the many-body density of states is
still highly valuable because it allows us to make a direct
comparison with experiments. For example, the scanning
tunneling spectroscopy and microscopy (STS/STM) can prove
the surface density of states for strongly correlated materials
with high resolution [11–13].

In this paper, we present a method to numerically calculate
the density of states of interacting fermions by combining the
tetrahedron method [14,15], widely used for noninteracting
systems, with the cluster perturbation theory (CPT) [16–18]
in the Lehmann representation [19,20]. This method allows
us to calculate the density of states of interacting fermions
without introducing the Lorentzian broadening parameter η.
In deriving the formalism, we emphasize the notion of the
effective single-particle Hamiltonian for the single-particle
excitations of interacting fermions, which is the conceptual
basis of the method and bridges the gap between the single-
particle theory and the single-particle excitations of interacting
fermions in the many-body theory.

The rest of this paper is organized as follows. After briefly
describing the basic formulation of the CPT in Sec. II, the
Lehmann representation of the single-particle Green’s function
is introduced and the tetrahedron method for two-dimensional
(2D) interacting fermions is described in Sec. III. The effective
single-particle Hamiltonian for the single-particle excitations
of interacting fermions is also discussed. To demonstrate the
method, a benchmark calculation is performed in Sec. IV.
Several remarks are made in Sec. V to extend the method
to symmetry-broken states, three-dimensional (3D) systems,
and finite-temperature calculations, before summarizing the
paper in Sec. VI. In order to ensure the notion of the effective
single-particle Hamiltonian for the single-particle excitations
of interacting fermions, the general correspondence between
the self-energy and the effective single-particle Hamiltonian is
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established in Appendix A . An additional technical detail to
save the computational cost is provided in Appendix B .

II. CLUSTER PERTURBATION THEORY

The CPT [16–18] assumes that the Hamiltonian Ĥ on the
infinite lattice can be divided into two parts, defined on a set
of identical, disconnected finite-size clusters which cover all
sites of the infinite lattice, i.e.,

Ĥ =
∑

I

Ĥc( �RI ) +
∑
〈I,J 〉

T̂ ( �RI − �RJ ), (1)

where Ĥc( �RI ) represents the Hamiltonian of the I th finite-size
cluster located at �RI and 〈I,J 〉 denotes a pair of different
clusters at �RI and �RJ with the intercluster hopping T̂ ( �RI −
�RJ ). Hereafter the cluster Hamiltonians are assumed to be
identical, i.e., Ĥc( �RI ) = Ĥc.

In the CPT, the exact single-particle Green’s function matrix
G′(z) of Ĥc on a cluster is numerically calculated. Therefore,
the short-range correlations are taken into account exactly
in G′(z), but the longer-range correlations beyond the size
of the cluster should be approximated. Applying the strong
coupling expansion with respect to the intercluster hopping
T̂ , the single-particle Green’s function matrix G(�k,z) of the
Hamiltonian Ĥ on the infinite lattice is obtained as

Gαβ(�k,z) = 1

Lc

Lc∑
i=1

Lc∑
j=1

G̃iα,jβ (�k,z)e−i�k·(�ri−�rj ), (2)

where �ri is the position of site i (= 1,2, . . . ,Lc) inside the
cluster (Lc, the number of sites in the single cluster) and the
spin and orbital are labeled by α (=1, . . . ,Oc). Notice here
that a site in the infinite lattice is specified with the cluster to
which the site belongs and the location of the site within the
cluster, i.e., site i in the I th cluster being represented as

�Xi,I = �ri + �RI . (3)

G̃iα,jβ (�k,z) is evaluated from the single-particle Green’s
function matrix G′(z) of the cluster:

G̃(�k,z) = [G′(z)−1 − T (�k)]−1. (4)

Here T (�k) is a matrix representation of T̂ in the momentum
�k space and is given as

Tiα,jβ (�k) =
∑

J (�=I )

t
I,J
iα,jβei�k·( �RI −�RJ ), (5)

where t
I,J
iα,jβ is the hopping integral between site i in the I th

cluster located at �RI with spin-orbital α and site j in the J th
cluster located at �RJ with spin-orbital β and the sum over J

excludes I .
The single-particle Green’s function G′(z) of the cluster at

temperature T is

G′
iα,jβ (z) =

Npole∑
m=1

Qiα,mQ∗
jβ,m

z − λm

, (6)

where

Qiα,m =
√

e−Er/T + e−Es/T

Z
〈r|ĉ�riα|s〉 (7)

and

Z =
∑

r

e−Er/T (8)

is the partition function of the cluster. In the above equations,
ĉ�riα is the annihilation operator of fermion at site i with
spin orbital α, |r〉 and |s〉 are the many-body eigenstates of
the cluster Hamiltonian Ĥc with the eigenvalues Er and Er ,
respectively, λm = Er − Es , and m = (r,s) = 1,2, . . . ,Npole

labels all possible single-particle excitations [20]. The many-
body eigenstates and eigenvalues of the cluster Hamiltonian Ĥc

as well as the partition function Z of the cluster are calculated
using, e.g., the numerically exact diagonalization method.

It is apparent in Eqs. (6)–(8) that the temperature depen-
dence is carried solely through Qiα,m. Therefore, the CPT at
zero temperature is obtained simply by setting Qiα,m in Eq. (7)
in the zero-temperature limit [20], i.e.,

Qiα,m = (δr0 + δs0)〈r|ĉ�riα|s〉, (9)

where “0” in Kronecker δ’s δr0 and δs0 represents the ground
state |0〉 of the cluster Hamiltonian Ĥc. We have assumed
here that the ground state |0〉 is not degenerate. However, the
extension to the case where the ground state of the cluster
Hamiltonian Ĥc is degenerate is straightforward. Notice that
the order of Npole at zero temperature is approximately the
square root of that at finite temperatures if no truncation
approximation for higher energy excitations is employed.

III. FORMALISM

A. Lehmann representation

Following Refs. [18–20], we derive the Lehmann represen-
tation of the single-particle Green’s function G(�k,z) of Ĥ on
the infinite lattice given in Eq. (2). This formulation allows us
to calculate the spectral-weight functions and single-particle
excitation energies explicitly.

In the matrix notation, the single-particle Green’s function
G′(z) of the cluster can be written as

G′(z) = Q(z − �)−1 Q†, (10)

where Q is the LcOc × Npole matrix with the matrix elements
Qiα,m defined in Eq. (7) and � = diag(λ1,λ2, . . . ,λNpole ).
Substituting Eq. (10) into Eq. (4) yields

G̃(�k,z) = Q[z − M(�k)]−1 Q†, (11)

where we have introduced an Npole × Npole Hermitian matrix,

M(�k) = � + Q†T (�k) Q. (12)

Since M(�k) is Hermitian, this matrix is diagonalized by a
unitary matrix U(�k) as

�̃(�k) = U†(�k)M(�k)U(�k)

= diag
[
ω1(�k),ω2(�k), . . . ,ωNpole (�k)

]
. (13)
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Therefore, G̃(�k,z) in Eq. (4) is given as

G̃(�k,z) = Q̃(�k)
[
z − �̃(�k)

]−1
Q̃

†
(�k), (14)

where Q̃(�k) = QU(�k).
The Lehmann representation of the translationally invariant

single-particle Green’s function G(�k,z) of Ĥ on the infinite
lattice in Eq. (2) is thus obtained as

Gαβ(�k,z) =
Npole∑
m=1

Aαβ,m(�k)

z − ωm(�k)
, (15)

where the spectral-weight function Aαβ,m(�k) is given as

Aαβ,m(�k) = 1

Lc

Lc∑
i=1

Lc∑
j=1

Q̃iα,m(�k)Q̃∗
jβ,m(�k)e−i�k·(�ri−�rj ), (16)

and the single-particle excitation energies ωm(�k) correspond to
the eigenvalues of M(�k) in Eq. (13). Note that Aαβ,m(�k) fulfills
the spectral-weight sum rule for each momentum �k [21]; i.e.,

Npole∑
m=1

Aαβ,m(�k) = δαβ. (17)

Once the single-particle Green’s function G(�k,z) is ob-
tained, the single-particle excitation spectrum Aα,β (�k,ω) of Ĥ

on the infinite lattice is readily calculated as

Aαβ(�k,ω) = − 1

π
lim
η→0

ImGαβ(�k,ω + iη). (18)

and the density of states ραβ(ω) is simply obtained by
integrating Aαβ(�k,ω) over the momentum �k in the whole
Brillouin zone. In the practical numerical calculations, we
usually take a finite but small value of η, which corresponds
to the Lorentzian broadening factor of δ-function peaks.
The frequency-dependent broadening factor η(ω) was also
introduced to better control the high-energy structures of the
spectrum [22]. However, these procedures are not suitable
when we examine fine structures of the spectrum because they
are obscured by the tails of Lorentzian functions.

B. Effective single-particle Hamiltonian
for single-particle excitations

It is now clear from the Lehmann representation in Eq. (15)
that, apart from the spectral weight, the structure of the
single-particle Green’s function G(�k,z) of interacting fermions
is identical with that of a noninteracting many Npole-orbital
system. In this sense, the Hermitian matrix M(�k) in Eq. (12)
can be regarded as an effective single-particle Hamiltonian
since the eigenvalues of M(�k) coincide with the single-particle
excitation energies for the interacting fermions.

Figure 1 shows an example of the comparison between the
single-particle excitation spectrum of the single-band Hubbard
model and the eigenvalues of the corresponding effective
single-particle Hamiltonian M(�k). It is apparent in Fig. 1 that
the single-particle excitation energies of interacting fermions
are indeed given as the eigenvalues of the corresponding effec-
tive single-particle Hamiltonian. In Appendix A, we establish

(0,0) ( , ) ( ,0) (0,0)

 0/
t

 0

 1

 0

(0,0) ( , ) ( ,0) (0,0)

(a)

(b)

FIG. 1. (a) The single-particle excitation spectrum
−ImGαα(�k,ω + iη)/π with the Lorentzian broadening of
η/t = 0.2 and (b) the “band structure” of the corresponding effective
single-particle Hamiltonian for the single-band Hubbard model
defined in Eq. (35) on the square lattice at half-filling and T = 0 with
the on-site Coulomb repulsion U/t = 8. The results are obtained
by the CPT using a 2 × 2 cluster. Although the total number Npole

of “energy bands” ωm(�k) is 48 for this cluster (considering only
the conservation of the particle number and the z component of the
total spin), only the energy bands with nonzero spectral weight are
shown in (b), where the radius of each circle is proportional to the
spectral-weight function Aαα,m(�k). Different colors in (b) indicate
different bands, where the band connectivity is properly resolved
(see Sec. III C 3).

the general correspondence between the self-energy and the
matrix elements of the effective single-particle Hamiltonian.

It should be noted here that the notion of an effective single-
particle Hamiltonian for the single-particle excitations in the
interacting single-particle Green’s function within the CPT
has already been noticed in appendix of Ref. [19]. A similar
notion has also been introduced recently in the cofermion or
hidden-fermion description of the single-particle excitations to
construct an approximate single-particle Hamiltonian for the
single-particle excitations of the 2D Hubbard models [23–27].
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Since there exists the correspondence between the single-
particle excitation energies of interacting fermions and the
effective single-particle Hamiltonian, we can now employ
the tetrahedron method, which has been developed in the
single-particle theory [14,15], to evaluate the density of states
of interacting fermions. Namely, applying the tetrahedron
method, we can perform with high accuracy the momentum
integral of the interacting single-particle excitation spectrum
Aαβ(�k,ω) over the whole Brillouin zone.

C. Tetrahedron method

The tetrahedron method for the single-particle theory in 3D
systems has been described in details in Refs. [14,15]. Here we
describe the tetrahedron method for 2D systems since many
interesting classes of interacting fermion systems are included,
such as interacting Dirac fermions [5,8–10,28–32], high-Tc

cuprate superconductors which exhibit superconductivity as
well as pseudogap phenomena in the lightly hole doped
regime [27,33–43], and various interface electron states in
strongly correlated heterostructures [44–47].

1. Triangular partitioning of Brillouin zone

We consider a 2D Brillouin zone defined by the reciprocal
lattice vectors �G1 and �G2 and divide the Brillouin zone into
N1N2 parallelograms. Each parallelogram is defined by the
two vectors

�g1 = �G1/N1 (19)

and

�g2 = �G2/N2. (20)

We further divide each parallelogram into two triangles. The
total number NT of triangles is thus

NT = 2N1N2. (21)

The volume VG of the Brillouin zone and the volume VT of
the triangle are given as

VG = | det ( �G1, �G2)| (22)

and

VT = 1

2
| det (�g1,�g2)| = VG

NT

, (23)

respectively.

2. Density of states

Using the single-particle Green’s function G(�k,z) on the
infinite lattice in Eq. (15), the density of states ραβ(ω) per unit
cell projected onto spin orbitals α and β is obtained as

ραβ(ω) = lim
η→0

1

VG

∫
BZ

d2k

[
− 1

π
ImGαβ(�k,ω + iη)

]

= lim
η→0

Npole∑
m=1

1

VG

∫
BZ

d2k

{
1

π

Aαβ,m(�k) η

[ω − ωm(�k)]2 + η2

}

=
Npole∑
m=1

1

VG

∫
BZ

d2kAαβ,m(�k)δ[ω − ωm(�k)], (24)

where the momentum �k integral is performed over the whole
2D Brillouin zone. In the third equality, we have used the fact
that the Lorentzian function in the limit of η → 0 becomes
the δ function. In Appendix B, we show that in the CPT the
density of states can also be calculated with the integral over
the reduced Brillouin zone for the superlattice on which the
clusters are defined.

As in the tetrahedron method [14,15], we first recast the
integral over the 2D Brillouin zone in Eq. (24) to the sum
of integrals over small triangles 	τ with τ = 1,2, . . . ,NT

covering the 2D Brillouin zone, i.e.,

1

VG

∫
BZ

d2k · · · =
NT∑
τ=1

1

VG

∫
	τ

d2k · · · . (25)

To perform the �k integral analytically over each small triangle,
the single-particle excitation energies ωm(�k) and the spectral-
weight functions Aαβ,m(�k) are regarded as a linear function of
momentum �k within each triangle. The density of states is then
expressed as

ραβ(ω) =
Npole∑
m=1

NT∑
τ=1

Aαβ,m,τ (ω)Dm,τ (ω), (26)

where Dm,τ (ω) and Aαβ,m,τ (ω) are respectively the density
of states and the spectral weight of spin orbitals α and β

contributed from the mth pole at triangle τ . In the following, we
derive the analytical expressions of Dm,τ (ω) and Aαβ,m,τ (ω).

In order to derive Dm,τ (ω), we first consider the number of
states nm,τ (ω) per unit cell “occupied” in the mth band (i.e.,
pole dispersion) below ω at the τ th triangle of the Brillouin
zone. Let us define three momenta �k1, �k2, and �k3 on the corners
of the τ th triangle. Here we assume without loss of generality
that the single-particle excitation energies are in ascending
order at these momenta, i.e., ωm(�k1) � ωm(�k2) � ωm(�k3). As
depicted in Fig. 2, nm,τ (ω)VG is the volume of the “occupied”
region in the τ th triangle. It is now easy to show that

nm,τ (ω) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 (ω < ωm,1),
(ω−ωm,1)2

ωm,31ωm,21

VT

VG
(ωm,1 � ω < ωm,2),[

1 − (ωm,3−ω)2

ωm,31ωm,32

]
VT

VG
(ωm,2 � ω < ωm,3),

VT

VG
(ωm,3 � ω),

(27)

where ωm,i ≡ ωm(�ki) and ωm,ij = ωm,i − ωm,j . Since
Dm,τ (ω) = ∂nm,τ (ω)/∂ω, we find that

Dm,τ (ω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 (ω < ωm,1),
2(ω−ωm,1)
ωm,31ωm,21

VT

VG
(ωm,1 � ω < ωm,2),

2(ωm,3−ω)
ωm,31ωm,32

VT

VG
(ωm,2 � ω < ωm,3),

0 (ωm,3 � ω).

(28)

The spectral weight Aαβ,m,τ (ω) in Eq. (26) is a weighted
average of the spectral-weight function Aαβ,m( �ki) within the
τ th triangle, i.e.,

Aαβ,m,τ (ω) =
3∑

i=1

fm,τ,i(ω)Aαβ,m(�ki), (29)
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“occupied”

equienergy

region

line

FIG. 2. Illustration of the triangular partitioning (dashed lines)
of the Brillouin zone. A single triangle is highlighted by thick solid
lines for the derivation of nm,τ (ω), assuming here that ωm,1 � ω <

ωm,2 � ωm,3 [see also Eq. (27)]. For a given energy ω, the equienergy
line of ω (red solid line) is determined uniquely inside the triangle.
The cross on the equienergy line indicates the midpoint of the line.
The volume of the “occupied” region (shaded area) divided by VG is

simply given as nm,τ (ω) = 1
2VG

(ω−ωm,1)2

ωm,21ωm,31
| det (�g1,�g2)|.

where the averaging weight fm,τ,i(ω) is determined in such as
way that Aαβ,m,τ (ω) is the spectral-weight function averaged
over the equienergy line or, equivalently, the spectral-weight
function at the midpoint of the equienergy line, indicated by
the cross in Fig. 2. The averaging weight fm,τ,i(ω) is thus
obtained as

2fm,τ,1(ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 (ω < ωm,1),
ωm,2−ω

ωm,21
+ ωm,3−ω

ωm,31
(ωm,1 � ω < ωm,2),

ωm,3−ω

ωm,31
(ωm,2 � ω < ωm,3),

0 (ωm,3 � ω),

(30)

2fm,τ,2(ω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 (ω < ωm,1),
ω−ωm,1

ωm,21
(ωm,1 � ω < ωm,2),

ωm,3−ω

ωm,32
(ωm,2 � ω < ωm,3),

0 (ωm,3 � ω),

(31)

and

2fm,τ,3(ω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 (ω < ωm,1),
ω−ωm,1

ωm,31
(ωm,1 � ω < ωm,2),

ω−ωm,1

ωm,31
+ ω−ωm,2

ωm,32
(ωm,2 � ω < ωm,3),

0 (ωm,3 � ω).

(32)

Note that the averaging weight fm,τ,i(ω) fulfills that

3∑
i=1

fm,τ,i(ω) =
⎧⎨
⎩

0 (ω < ωm,1),
1 (ωm,1 � ω < ωm,3),
0 (ωm,3 � ω).

(33)

Table I summarizes the functions necessary to the tetrahedron
method for 2D systems.

Notice that the averaging weight fm,τ,i(ω) is not the 2D
analog of the “integration weight w” in Ref. [15]. This is
because fm,τ,i(ω) is introduced for the momentum integral of δ

functions over the whole Brillouin zone, while the “integration
weight w” is introduced for the momentum integral of step
functions (i.e., the Fermi distribution function in the zero-
temperature limit). The 2D analog of “w” should be the
integration weight for the average of a linearly approximated
function Xm(�k) over the occupied region. This results in the
integration weight wm,τ,i(ω) determined so as to give the value
of Xm(�k) at the center of the occupied region in the τ th triangle.
Although the integration weight wm,τ,i(ω) is not required for
the calculation of density of states, we also show wm,τ,i(ω) for
2D systems in Table I for further applications, which include
the calculation of the grand-potential functional (see Sec. V A).

3. Band connectivity

As described in Ref. [48], the tetrahedron method some-
times induces artificial spikes or gaps in the density of states
when the band crossing is not properly treated. To overcome
this difficulty, we follow the prescription described in Ref. [49]
and resolve the band connectivity.

We first define the overlap matrix

F(�k,�k′) = U †(�k)U( �k′), (34)

where �k and �k′ are two momenta close to each other.
We assume that the eigenvectors of M(�k) are sorted in
U(�k) according to the corresponding eigenenergies ordered
ascendingly at each �k [see Eq. (13)]. When no band crossing
occurs between the mth and nth bands, |Fmn(�k, �k′)| � δmn

because �k and �k′ are close to each other, where Fmn(�k, �k′) =∑Npole

l=1 [U(�k)]
∗
lm[U( �k′)]ln. When a band crossing occurs

between the mth and nth bands, |Fmn(�k, �k′)| � |Fnm(�k, �k′)| � 1
and |Fmm(�k, �k′)| � |Fnn(�k, �k′)| � 0. Therefore, we can sys-
tematically detect the band crossing from the overlap matrix
elements Fmn(�k,�k′).

In the practical calculations, we can define that the
band crossing occurs between the mth and nth bands when
|Fmn(�k,�k′)|2 > 0.5 for m �= n. If the band crossing is detected,
the excitation energies ωm(�k) and ωn( �k′) are assigned to the
mth band, and ωn(�k) and ωm( �k′) are assigned to the nth band.
An example of the connectivity-resolved band structure is
shown in Fig. 1(b). After resolving the band connectivity, we
can safely apply the tetrahedron method.

IV. BENCHMARK CALCULATION

To demonstrate the method, we calculate the density of
states of the single-band Hubbard model on the square lattice
defined by the Hamiltonian

Ĥ =
∑

〈i,j〉,σ
tij (ĉ†iσ ĉjσ + H.c.) + U

∑
i

n̂i↑n̂i↓ − μ
∑
i,σ

n̂iσ ,

(35)

where ĉ
†
iσ creates an electron on site i with spin σ (= ↑,↓)

and n̂iσ = ĉ
†
iσ ĉiσ . The sum indicated as 〈i,j 〉 runs over a pair

of sites i and j with the hopping integral tij . Here we set
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TABLE I. Functions used in the tetrahedron method combined with the CPT for 2D systems. Dm,τ (ω) and fm,τ,i(ω) are required for the
calculation of density of states, and wm,τ,i(ω) is for the grand-potential functional in the VCA.

Functions ω < ωm,1 ωm,1 � ω < ωm,2 ωm,2 � ω < ωm,3 ωm,3 � ω

nm,τ (ω) 0 (ω−ωm,1)2

ωm,31ωm,21

VT

VG
[1 − (ωm,3−ω)2

ωm,31ωm,32
] VT

VG

VT

VG

Dm,τ (ω) 0 2(ω−ωm,1)
ωm,31ωm,21

VT

VG

2(ωm,3−ω)
ωm,31ωm,32

VT

VG
0

fm,τ,1(ω) 0 1
2 ( ωm,2−ω

ωm,21
+ ωm,3−ω

ωm,31
) 1

2
ωm,3−ω

ωm,31
0

fm,τ,2(ω) 0 1
2

ω−ωm,1
ωm,21

1
2

ωm,3−ω

ωm,32
0

fm,τ,3(ω) 0 1
2

ω−ωm,1
ωm,31

1
2 ( ω−ωm,1

ωm,31
+ ω−ωm,2

ωm,32
) 0

wm,τ,1(ω) 0 nm,τ (ω)
3 (1 + ωm,2−ω

ωm,21
+ ωm,3−ω

ωm,31
) nm,τ (ω)

3
ωm,3−ω

ωm,31

nm,τ (ω)
3

wm,τ,2(ω) 0 nm,τ (ω)
3

ω−ωm,2
ωm,21

nm,τ (ω)
3

ωm,3−ω

ωm,32

nm,τ (ω)
3

wm,τ,3(ω) 0 nm,τ (ω)
3

ω−ωm,3
ωm,31

nm,τ (ω)
3 (1 + ω−ωm,1

ωm,31
+ ω−ωm,2

ωm,32
) nm,τ (ω)

3

tij = −t when site i is nearest neighbor to site j and tij = 0
otherwise. U (>0) is the on-site Coulomb interaction and μ is
the chemical potential.

Figure 3 shows the results of the density of states ρ(ω)
calculated using the tetrahedron method combined with the
CPT. The calculations are done for several values of U/t and
μ = U/2, i.e., at half-filling with the particle-hole symmetry.
Since we consider a single-band model and a paramagnetic
state, we simply drop the spin-orbital subscripts α and β from
the density of states ραβ(ω) in Eq. (26). For comparison, we
also show in Fig. 3 the density of states calculated using the
standard procedure of the CPT, i.e.,

ρη(ω) = 1

VG

∫
BZ

d2k

[
− 1

π
ImG(�k,ω + iη)

]
, (36)

with a finite value of the Lorentzian broadening η (η/t = 0.05
in Fig. 3) and the momentum integral is simply replaced by
the sum of momenta discretized uniformly over the whole
2D Brillouin zone (also see Sec. III C 1). The number of
discretized momenta taken in Eqs. (25) and (36) is N1 × N2 =
160 × 160 for all calculations shown in Fig. 3. Note that
the number NT of triangles introduced in the tetrahedron
scheme is twice as large as this number. We find that the
results are already converged at N1 × N2 = 100 × 100 for
both tetrahedron and finite-broadening schemes.

As shown in Fig. 3, the overall structures of the density
of states calculated with the finite Lorentzian broadening are
in good accordance with those obtained by the tetrahedron
method. However, the density of states calculated using the
tetrahedron method is overwhelmingly sharp and the fine peak
structures as well as small gaps can be easily distinguished.
For example, the Mott gap is rather clearly observed in the
density of states obtained by the tetrahedron method and can
be evaluated even when the gap is tiny for small U .

Two remarks are in order. First, it is observed in Fig. 3 that
there seem to exist spiky peaks in the density of states for all
values of U . These seemingly spiky peaks are not δ-function
peaks but have well defined Van-Hove-like structures. These
singularities appear where the stationary condition of the band
dispersions is satisfied, i.e., ∇�kωm(�k) = 0. For example, each
seemingly spiky peak in Fig. 3(e) well corresponds to the

stationary energy of the band dispersions shown in Fig. 1(b).
As described in Sec. III A and also in Appendix A, the many-
body interactions are responsible for the emergence of these
multiple energy bands (in principle, Npole numbers of bands).

Second, when the momentum �kF at which the gap opens is a
priori known, one can readily calculate the single-particle gap
simply by diagonalizing M(�kF). This is the case, for instance,
for the half-filled Hubbard model on the one-dimensional chain
(�kF = ±π/2) and on the honeycomb lattice (�kF: K and K ′
points). It should be noted, however, that the periodization
formula in Eq. (2) restores only the translational symmetry but
not the point-group symmetry of the underlying lattice that
is broken by the cluster partitioning. Therefore, the cluster
partitioning should be carefully chosen in order not to break the
point-group symmetry of the underlaying lattice. Otherwise,
for instance, the Dirac points can deviate from the K and K ′
points in the CPT calculation for the honeycomb lattice, and
therefore the simple diagonalization of M(�kF) is not enough
to estimate the single-particle gap.

V. DISCUSSION

In this section, we briefly discuss the extension of the
tetrahedron method combined with the CPT to symmetry-
broken states, 3D systems, and finite-temperature calculations.

A. Symmetry-broken states

Using the variational cluster approximation (VCA) [50,51],
the present method can be adapted to symmetry-broken states
straightforwardly. The VCA introduces symmetry-breaking
Weiss fields x = (x1,x2,x3, . . . ) to the system and deter-
mines the optimal value xop which satisfies the stationary
condition ∇x
(x)|x=xop = 0 for the grand-potential functional

(x) [52,53]. Once the Weiss fields are optimized, we can
easily obtain the single-particle Green’s function Gαβ(�k,z,xop)
with xop �= 0 [51]. Using this Green’s function Gαβ(�k,z,xop),
the physical quantities including the density of states can be
calculated for symmetry-broken states. Technical details of
the VCA can be found in Ref. [21] for T = 0 and Ref. [54]
for finite temperatures. Since the Lehmann representation of
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FIG. 3. Density of states ρ(ω) (purple shaded regions) of the
single-band Hubbard model at T = 0 for (a) U/t = 1, (b) U/t = 2,
(c) U/t = 4, (d) U/t = 6, and (e) U/t = 8, with μ = U/2 calculated
using the tetrahedron method combined with the CPT. A 2 × 2 site
cluster is employed in the CPT. For comparison, density of states
ρη(ω) calculated using the standard procedure of the CPT with a
finite Lorentzian broadening η/t = 0.05 is also shown by green solid
lines. The Fermi energy is indicated by dashed lines at ω = 0.

the single-particle Green’s function Gαβ(�k,z,xop) is exactly
the same form as in Eq. (15), we can apply the tetrahedron
method introduced in Sec. III to symmetry-broken states.

We should note here that in the VCA we also encounter the
momentum integral for the grand-potential functional over the
whole Brillouin zone. Indeed, the grand-potential functional

 per site in the zero-temperature limit is evaluated as


 = 
′ − 1

Lc

Npole∑
m=1

λm�(EF − λm)

+ 1

LcṼG

Npole∑
m=1

∫
RBZ

d2k̃ωm(�̃k)�[EF − ωm(�̃k)], (37)

where 
′ is the exact grand potential per site of the cluster,

� is the step function, �̃k now denotes the momentum in
the reduced Brillouin zone for the superlattice on which the
clusters are defined, and ṼG is the volume of the reduced
Brillouin zone [20,21]. Notice that, in general, λm and ωm(�̃k)
can depend on the spin-orbital index α in symmetry-broken
states and the dependencies on α are implicitly incorporated
in m. Although the Fermi energy EF is set to be zero in the
preceding sections, here we show it explicitly for clarity.

It is noticed in Eq. (37) that the third term on the
right-hand side is the momentum integral for the effective

single-particle energy ωm(�̃k) below the Fermi energy. We can
therefore apply the tetrahedron method for the calculation of
the grand-potential functional in the VCA. For this purpose,
the integration weight wm,τ,i(ω) is required because the
momentum integral involves the step function �, instead of the
δ function. Namely, we can evaluate the momentum integral
in the tetrahedron method as

1

LcṼG

∫
RBZ

d2k̃ωm(�̃k)�[EF − ωm(�̃k)]

= 1

Lc

Nτ∑
τ=1

3∑
i=1

wm,τ,i(EF)ωm(�̃ki), (38)

where the triangular partitioning should be applied for the
reduced Brillouin zone and the integration weight wm,τ,i(ω) is
provided in Table I.

B. 3D systems

Although the formulation provided in Sec. III is for 2D
interacting fermion systems, the application to 3D systems
is straightforward. Simply referring to the original papers on
the tetrahedron method in the single-particle theory [14,15],
one can easily complete Table I for 3D interacting fermion
systems. For example, the VCA has been employed recently to
investigate the competing magnetic orders and single-particle
excitations of the single-band Hubbard model on the stacked
square lattice [55] and the simple cubic lattice [56] with longer-
range hoppings.

C. Finite temperatures

The tetrahedron method introduced in Sec. III requires
diagonalizing the effective single-particle Hamiltonian matrix
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M(�k) at each momentum �k to obtain the single-particle
excitation energies and spectral-weight functions for inter-
acting fermions. At zero temperature, the dimension of
M(�k) is typically Npole ∼ O(102) and thus the numerical
diagonalization of M(�k) is computationally not expensive. On
the other hand, at finite temperatures, Npole reaches O(103)
and can become much larger [54,57,58]. This is certainly the
case even at zero temperature when the size of clusters is large.
However, M(�k) can be independently diagonalized at different
momenta and thus the �k-point parallelization is highly efficient
to reduce the elapsed time.

VI. SUMMARY

By combining the tetrahedron method with the CPT, we
have introduced a method to numerically calculate the density
of states of interacting fermions. The method removes the
Lorentzian broadening parameter η to represent δ-function
peaks and thus allows us to resolve fine structures of the density
of states and evaluate a single-particle excitation gap without
performing the extrapolation of η → 0. The formulation is
based on the Lehmann representation of the interacting single-
particle Green’s function in the CPT. We have emphasized
the notion of the effective single-particle Hamiltonian for
the single-particle excitation energies of interacting fermions,
which is the conceptual basis of the proposed method and
enables us to apply the tetrahedron method developed in the
single-particle theory. The general correspondence between
the self-energy and the effective single-particle Hamiltonian
has also been established.

The formalism has been provided in detail for 2D mul-
tiorbital interacting systems and the benchmark calculation
has been performed for the 2D single-band Hubbard model.
The method can be easily adapted to symmetry-broken states
using the VCA. We have also argued that extension of the
formalism to 3D interacting systems is straightforward. For
the finite-temperature calculation, the �k-point parallelization
to diagonalize the effective single-particle Hamiltonian M(�k)
would be required because of the rapid increase of the
dimension Npole of M(�k) with the temperature. Not only
the method itself but also the notion of the effective single-
particle Hamiltonian is a useful concept to investigate the
single-particle excitations of interacting fermions in general.
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APPENDIX A: EFFECTIVE SINGLE-PARTICLE
HAMILTONIAN AND SELF-ENERGY

In this appendix, we first construct an effective single-
particle Hamiltonian whose eigenvalues coincide with the
single-particle excitation energies of interacting fermions.

Next we establish the general correspondence between the self-
energy and the matrix elements of this effective single-particle
Hamiltonian. It should be emphasized that the formalism
developed in this appendix is not specific to the CPT but
relevant for any interacting fermions.

To simplify the notation, here we only consider a single-
orbital system in a paramagnetic state. Therefore, the single-
particle Green’s function is independent of the spin direc-
tions, i.e., G↑↑(�k,z) = G↓↓(�k,z) ≡ G(�k,z) and G↑↓(�k,z) =
G↓↑(�k,z) = 0. However, the extension to a multiorbital system
is straightforward [59].

From the Dyson equation, the inverse of the single-particle
Green’s function G(�k,z) is given as

G−1(�k,z) = G−1
0 (�k,z) − �(�k,z)

= z − ε�k − �0(�k) −
Nzero∑
ν=1

|��kν |2
z − ζ�kν

, (A1)

where ε�k and G0(�k,z) = (z − ε�k)−1 are the single-particle
energy and the single-particle Green’s function in the noninter-
acting limit, respectively. In the last equality of Eq. (A1), the
self-energy �(�k,z) is written in the Lehmann representation
and is divided into a real static part �0(�k) (such as the
Hartree potential) and a sum of poles ζ�kν on the real frequency
axis [40,54,60–62]. Notice that Nzero is the number of poles of
the self-energy �(�k,z) and is exactly the same as the number
of zeros of the single-particle Green’s function G(�k,z) [63].
Therefore, Nzero = Npole − 1, where Npole is the number of
poles of the single-particle Green’s function G(�k,z). It should
also be noted that Eq. (A1) is valid at any temperature and the
temperature dependence of G(�k,z) and �(�k,z) is implicitly
assumed.

We define the following single-particle Hermitian operator
ĥ:

ĥ =
∑

�k
ĉ†�kh�kĉ�k, (A2)

where

ĉ†�k = (
ĉ
†
�k, x̂

†
�k1

, . . . , x̂
†
�kNzero

)
(A3)

is a set of fermion creation operators and

h�k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ε�k + �0(�k) �∗
�k1

�∗
�k2

· · · �∗
�kNzero

��k1 ζ�k1 0 · · · 0

��k2 0 ζ�k2

. . .
...

...
...

. . .
. . . 0

��kNzero
0 · · · 0 ζ�kNzero

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(A4)

=
[
ε�k + �0(�k) �

†
�k

��k ζ �k

]
(A5)

is the (Nzero + 1) × (Nzero + 1) Hermitian matrix [64]. In the
above matrix representation of ĥ, the horizontal and vertical
lines are indicated to distinguish the real and auxiliary fermion
spaces (see below). We have also introduced in Eq. (A5) that
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the Nzero-dimensional row vector

�
†
�k = (

�∗
�k1

,�∗
�k2

, . . . ,�∗
�kNzero

)
(A6)

and the Nzero × Nzero diagonal matrix

ζ �k = diag
(
ζ�k1,ζ�k2, · · · ,ζ�kNzero

)
. (A7)

We can now easily show that the first diagonal component
of (z − h�k)−1 is the single-particle Green’s function G(�k,z)
given in Eq. (A1). Since the Schur’s complement of the lower
right block z − ζ �k of z − h�k is

˜(z − h�k)11 = z − εk − �0(�k) − �
†
�k(z − ζ �k)−1��k, (A8)

we indeed find that

˜(z − h�k)11 = G−1(�k,z). (A9)

Here z �= ζ�kν is assumed in order that z − ζ �k is regular.
Therefore, assuming that h�k is diagonalized by a unitary matrix
u�k as

u†
�kh�ku�k = diag

(
ω�k1, . . . ,ω�kNpole

)
, (A10)

we find that

G(�k,z) =
Npole∑
m=1

|[u�k]m1|2
z − ω�km

, (A11)

indicating that the spectral-weight function for the mth pole is
simply given by |[u�k]m1|2.

The eigenvalues of h�k are given as the roots of secular
equation det (z − h�k) = 0. From the block matrix determinant
formula

det

[
A B
C D

]
= det D · det (A − B D−1C), (A12)

we find that

det (z − h�k) = det (z − ζ �k) det ˜(z − h�k)11

= det (z − ζ �k) det G(�k,z)−1 (A13)

and thus the eigenvalues of h�k coincide with the poles
of G(�k,z), as explicitly shown in Eq. (A11). Note that
det G(�k,z) = G(�k,z) since here we consider the single-band
paramagnetic system. Therefore, the single-particle Hamilto-
nian ĥ introduced above can be considered as an effective
single-particle Hamiltonian for the single-particle excitation
energies of interacting fermions where the single-particle
Green’s function G(�k,z) is given in Eq. (A1).

In other words, the single-particle excitations of interacting
fermions are described exactly by the fermionic single-particle
Hamiltonian ĥ, where the real fermions ĉ

†
�k hybridizes to

the “auxiliary” fermions x̂
†
�kν

(ν = 1,2, . . . ,Nzero) with the
hybridization ��kν and the energy dispersions of the auxiliary
fermions x̂

†
�kν

are given by the poles ζ�kν of the self-energy

�(�k,z). It is interesting to remark that not only the low-
energy single-particle excitations, e.g., quasiparticles in the
Landau’s Fermi liquid theory [65–67], but also high-energy
single-particle excitations (even in, e.g., a Mott insulating

state) are formally described by the fermionic single-particle
Hamiltonian.

Equation (A13) indicates that the single-particle Green’s
function G(�k,z) can be written in the rational polynomial form

G(�k,z) = det (z − ζ �k)

det (z − h�k)
=

∏Nzero
ν=1 (z − ζ�kν)∏Npole

m=1(z − ω�km)
, (A14)

where ω�km are the eigenvalues of h�k [see Eq. (A10)].
Equation (A14) explicitly shows that the zeros of G(�k,z)
correspond to the poles of �(�k,z). The asymptotical behavior
of G(�k,z) ∼ 1/z for large |z| is also apparent from Eq. (A14)
because Nzero = Npole − 1, which ensures the spectral-weight
sum rule or equivalently the correct zeroth moment of the
single-particle Green’s function G(�k,z).

Although we have shown the correspondence between h�k
and �(�k,z), the “single-particle” parameters �0(�k), ��kν , and
ζ �kν in h�k are still unknown. In principle, these parame-
ters can be extracted from the numerically calculated self-
energy of interacting fermions, as, for example, in Ref. [40].
Alternatively, we can impose constraints on these parameters
by considering the moment of the single-particle Green’s
function G(�k,z) [68]. For example, the second-order moment
of the single-particle Green’s function, which guarantees the
spectral-weight sum rule of the self-energy, imposes that

�
†
�k��k = U 2n(1 − n) (A15)

for the single-band Hubbard model in a paramagnetic state,
where U is the on-site Coulomb repulsion and n is the electron
density per spin [7]. The higher-order moments of the single-
particle Green’s function may impose further constraints for
��k and other parameters [69].

Instead of extracting the “single-particle” parameters from
the self-energy �(�k,z), the CPT derives the effective single-
particle Hamiltonian M(�k) from Q, �, and T (�k), i.e., the exact
self-energy of the cluster [18,50,51,70]. However, we should
note that, generally, M(�k) is different from h�k. This is simply
because the CPT is an approximation scheme to obtain the
single-particle Green’s function G(�k,z) of interaction fermions
and thus M(�k) is considered as an approximation of h�k.

On the analogy of the mean-field theory, the spectral
weight ��kν of the self-energy �(�k,z) plays the role of
“gap function” generated by fermion correlations without
breaking any symmetry. The �k independent (dependent) ��kν

hence implies that the effect of fermion correlations is local
(nonlocal). In this regard, the presence of such a “gap
function” with dx2−y2 -wave symmetry has been reported in
the exact diagonalization studies for the t-J model on small
clusters [71,72]. As described above, the “gap function” ��kν

represents the hybridization between the real fermion and the
auxiliary fermion x̂�kν , which appears in the form of ĉ

†
�kx̂�kν .

Therefore, if the energy dispersion ζ�kν of the auxiliary fermion
is found approximately as ζ�kν � ε�k+�Q (ζ�kν � −ε−�k), then x̂�k,ν

would be characterized dominantly by ĉ�k+�Q (ĉ†−�k), indicating
the presence of excitonic (superconducting) type fluctuations
induced by fermion correlations.

Finally, we note that the single-particle Hamiltonians
considered in Refs. [26,27] to describe the single-particle
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excitations obtained by the cellular dynamical mean-field
theory (CDMFT) can be considered as the single-particle
Hamiltonian ĥ�k in Eq. (A2) with the “single-particle” parame-
ters ζ�kν and ��kν extracted from the CDMFT calculations. The
hidden fermions in Refs. [25–27] correspond to the auxiliary
fermions described by x̂

†
�kν

in Eq. (A3).

APPENDIX B: CALCULATION OF THE DENSITY OF
STATES IN THE REDUCED BRILLOUIN ZONE

In this appendix, we show that within the CPT the density
of states can also be calculated by integrating the imaginary
part of G̃(�k,z) over the reduced Brillouin zone for the
superlattice on which the clusters are defined. As shown in
the following, this is due to the fact that the periodization
formula in Eq. (2) does not change the trace of the single-
particle Green’s function [18], i.e., 1

VG

∫
BZ d2kGαβ(�k,z) =

1
LcṼG

∫
RBZ d2k̃

∑Lc
i=1 G̃iα,iβ (�̃k,z).

For this purpose, we consider the local single-particle
Green’s function

Gαβ(z) = 1

VG

∫
BZ

d2kGαβ(�k,z), (B1)

where Gαβ(�k,z) is the single-particle Green’s function of Ĥ on
the infinite lattice given in Eq. (2). Following Refs. [17,18,21],
we represent a momentum �k as

�k = �qs + �̃k, (B2)

where �qs is a reciprocal lattice vector of the superlat-
tice, specifying the location of the sth reduced Brillouin

zone (s = 1,2, . . . ,Lc), and �̃k is a momentum in the first
reduced Brillouin zone. Since exp (i�qs · �RI ) = 1 by definition,

it follows from Eqs. (4) and (5) that T (�k) = T (�̃k) and

G̃(�k,z) = G̃(�̃k,z). Therefore, the momentum integral over
the Brillouin zone in Eq. (B1) can be reduced into the
momentum integral over the first reduced Brillouin zones for
the superlattice; i.e.,

Gαβ(z) =
Lc∑
s=1

1

LcṼG

∫
RBZs

d2k̃Gαβ(�k,z)

=
Lc∑
s=1

1

L2
cṼG

∫
RBZs

d2k̃

Lc∑
i=1

Lc∑
j=1

G̃iα,jβ (�̃k,z)

× e−i �̃k·(�r i−�rj )e−i�qs ·(�r i−�rj )

= 1

LcṼG

∫
RBZ

d2k̃

Lc∑
i=1

G̃iα,iβ (�̃k,z), (B3)

where the momentum integral
∫

RBZs
d2k̃ · · · in the first and

second equations is over the sth reduced Brillouin zone, while
the momentum integral

∫
RBZ d2k̃ · · · in the last equation is

over the first reduced Brillouin zone for the superlattice. In the
last equality, we have used that

1

Lc

Lc∑
s=1

e−i�qs ·(�r i−�rj ) = δ�r i ,�rj
, (B4)

where we employ the convention given in Eq. (3) to represent
the position of a site in the infinite lattice [21].

Since the density of states ραβ(ω) is evaluated as

ραβ(ω) = − 1

π
lim
η→0

ImGαβ(ω + iη), (B5)

we find that

ραβ(ω) =
Npole∑
m=1

1

ṼG

∫
RBZ

d2k̃Ãαβ,m(�̃k)δ[ω − ωm(�̃k)], (B6)

where the spectral-weight function for the reduced Brillouin
zone is given as

Ãαβ,m(�̃k) = 1

Lc

Lc∑
i=1

Q̃iα,m(�̃k)Q̃∗
iβ,m(�̃k). (B7)

We can therefore apply the tetrahedron method combined with
the CPT in the reduced Brillouin zone simply by replacing
the spectral-weight function Aαβ,m(�k) in Eq. (24) with the

modified spectral-weight function Ãαβ,m(�̃k) given in Eq. (B7).
Since the area of the reduced Brillouin zone is Lc times

smaller than the original one, the momentum mesh in the
reduced Brillouin zone can be Lc times denser than that
in the whole Brillouin zone when the total number of meshes
is the same. In other words, adopting the momentum integral
over the reduced Brillouin zone, we can save the computational
effort by a factor of Lc to obtain the density of states with the

same accuracy. In addition, Ãαβ,m(�̃k) is rather more easily
calculated than Aαβ,m(�k).
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