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Static transport properties of random alloys: Vertex corrections in conserving approximations
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The theoretical formulation and numerical evaluation of the vertex corrections in multiorbital techniques of
theories of electronic properties of random alloys are analyzed. It is shown that current approaches to static
transport properties within the so-called conserving approximations lead to the inversion of a singular matrix as a
direct consequence of the Ward identity relating the vertex corrections to one-particle self-energies. We propose
a simple removal of the singularity for quantities (operators) with vanishing average values for electron states
at the Fermi energy, such as the velocity or the spin torque; the proposed scheme is worked out in detail in the
self-consistent Born approximation and the coherent-potential approximation. Applications involve calculations
of the residual resistivity for various random alloys, including spin-polarized and relativistic systems, treated on
an ab initio level, with particular attention paid to the role of different symmetries (inversion of space and time).
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I. INTRODUCTION

Vertex corrections, encountered in modern Green’s function
approaches to interacting electrons [1] and to electrons in
disordered systems [2], proved indispensable in many branches
of solid-state theory and its applications in materials science.
As an example, let us mention the important role of vertex
corrections in extensions of the dynamical mean-field theory
for the Hubbard model [3]. With regard to transport properties
of random alloys, the disorder-induced vertex corrections rep-
resent the dominating extrinsic contribution to the anomalous
and spin Hall conductivities of diluted alloys [4,5] and they
are essential for the residual resistivity of concentrated binary
alloys involving noble and simple metals [6]. Recent ab initio
studies revealed that vertex corrections are significant both
for reliable calculations of the Gilbert damping parameters in
disordered magnetic systems [7,8], and for the equivalence of
different spin-torque operators employed in the theory [8,9].
Let us note that the vertex corrections for transport properties
correspond to the scattering-in term in the linearized Boltz-
mann equation [10,11].

Basic concepts of the above-mentioned approaches for
systems in equilibrium are one-particle propagators (Green’s
functions) G(z) and self-energy operators �(z), where z

denotes a complex energy argument. The vertex corrections
refer to two-particle quantities; their relation to the one-particle
quantities is provided by the well-known Ward identity [12].
This identity is exactly satisfied in exact theories; for approx-
imate treatments, it represents a check of internal consistency
and it guarantees the conservation of particle number and
energy in the so-called conserving approximations. General
reasons for the validity of the Ward identity can be traced
back to the gauge invariance of the theory both for systems in
equilibrium [13,14] and far from it [15].

In the case of noninteracting electrons in random crystalline
alloys, the self-energy �(z) is related to the configuration aver-
age of the Green’s function 〈G(z)〉 = Ḡ(z). The configuration
average of a product of two propagators can then be written
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as [16]

〈G(z1)CG(z2)〉 = Ḡ(z1)CḠ(z2) + Ḡ(z1)�Ḡ(z2), (1)

where C denotes an arbitrary nonrandom operator (indepen-
dent of the particular configuration of the random alloy),
the first term on the right-hand side denotes the coherent
contribution, and the second term defines the vertex correction
(incoherent part) with the operator � depending on C and on
both energy arguments, � = �(z1,C,z2). The corresponding
Ward identity refers to the special case of unit operator C

(C = 1), and it has the form

�(z1,1,z2) = −(z1 − z2)−1[�(z1) − �(z2)]. (2)

The Ward identity is satisfied, e.g., in the self-consistent Born
approximation (SCBA) [15,17] and in the coherent-potential
approximation (CPA) [16,18,19]; the former is suitable for
weak static fluctuations of the random one-particle Hamilto-
nian, while the latter can be applied even to strong fluctuations
but with uncorrelated contributions of different lattice sites.

The dependence of the vertex correction �(z1,C,z2) on
the operator C is linear, and finding the � for a given
C is equivalent to solving a Bethe-Salpeter equation [16].
Corresponding numerical procedures have been developed for
systems featured by a finite number of orbitals per lattice site,
and they have also been worked out in ab initio techniques,
such as the Korringa-Kohn-Rostoker (KKR) method [2,10]
or the tight-binding linear muffin-tin orbital (TB-LMTO)
method [20]. For zero-temperature static transport properties,
the energy arguments z1 and z2 in Eq. (1) acquire values
EF ± i0, where EF denotes the alloy Fermi energy. For
z1 = EF + i0 (retarded propagator and self-energy) and z2 =
EF − i0 (advanced quantities), the denominator in Eq. (2)
approaches zero, whereas the difference of the self-energies
remains finite as long as the Fermi energy lies inside the
spectrum, i.e., for metallic alloys. The divergence of the
right-hand side of Eq. (2) in this case proves that the linear
relation between C and � is singular.

The singular behavior of the vertex corrections for small
energy and momentum transfers has been discussed by a num-
ber of authors for systems with electron interactions [14,21]
as well as for noninteracting electrons in disordered alloys,
especially in the context of Anderson localization [22,23].
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Existing first-principles calculations of transport properties
of random alloys often employ a finite imaginary part
added to both energy arguments, z1,2 = EF ± iη, where η

is a small positive quantity [8,9] that can be interpreted
as an additional broadening of electron energy levels due
to unspecified mechanisms ignored in the theory (structural
defects, phonons) [24,25]. From a numerical point of view,
the use of a finite η removes the singularity in the vertex
corrections. However, with recent progress in the realistic
inclusion of temperature-induced phonons and magnons in
transport properties [26], the introduction of any artificial
broadening mechanism does not seem desirable, and the
problem of reliable calculations for η = 0 should thus be
solved in a different way. It is the purpose of this paper to
propose a practical scheme in this direction and to show its
efficiency in calculations of the residual resistivity of random
metallic alloys. Since the removal of the general singularity
due to the Ward identity (2) can be simplified (or complicated)
by the symmetries of the considered system, such as its
invariance with respect to space and time inversion, their
relevance will also be discussed in the text.

II. THEORETICAL FORMALISM

In the following, we consider random alloys on a non-
random crystal lattice with sites labeled by an index R.
The effective one-electron Hamiltonian H is represented in
an orthonormal orbital basis |RL〉 by a matrix HR1L1,R2L2 ,
where L, L1, and L2 label the atomiclike orbitals. The
random Hamiltonian can be written as H = H0 + D, where
H0 denotes the nonrandom part, while the random part D can
be written as a lattice sum of individual site contributions,
D = ∑

R DR. We assume that each term DR depends only on
the atomic species occupying the site R and that its average
value vanishes, 〈DR〉 = 0, and we neglect any correlations of
occupations of different lattice sites. Moreover, we assume
that each contribution DR is localized to its own site:
(DR)R1L1,R2L2 = δR1RδR2RDR,L1L2 . The configuration average
of the Green’s function G(z) = (z − H )−1 can be written in
terms of the self-energy �(z) as Ḡ(z) = [z − H0 − �(z)]−1.

In the SCBA [17], the self-energy is defined by the condition
�(z) = 〈DḠ(z)D〉. Under the above assumptions, the total
self-energy �(z) reduces to a lattice sum �(z) = ∑

R �R(z),
where the site contributions �R(z) are localized, given explic-
itly by �R(z) = 〈DRḠ(z)DR〉. The SCBA-vertex correction
�(z1,C,z2) in Eq. (1) can be found from the condition [15,17]

� = 〈DḠ(z1)(C + �)Ḡ(z2)D〉, (3)

which implies that the complete � reduces again to a lattice
sum, � = ∑

R �R, of localized site contributions �R. To
convert Eq. (3) into an explicit set of linear equations for the
quantities �R in multiorbital techniques, one can introduce
composed orbital indices � = (L,L′), �1 = (L1,L

′
1), etc.

together with vector components �R� = �R,LL′ and ζR� =
[Ḡ(z1)CḠ(z2)]RL,RL′ and with matrix elements

ψR1�1,R2�2 = ḠR1L1,R2L2 (z1)ḠR2L
′
2,R1L

′
1
(z2),

LR1�1,R2�2 = δR1R2〈DR1,L1L2DR1,L
′
2L

′
1
〉. (4)

The condition (3) can then be written in an obvious matrix
notation as � = L(ζ + ψ�), or

	� = ζ, 	 = L−1 − ψ. (5)

If the matrix 	R1�1,R2�2 is nonsingular, the vertex corrections
�R� can easily be obtained. The techniques for solving
Eq. (5) in the case of translationally invariant operators C

and extended systems can be found elsewhere [10,20].
Let us consider the matrix 	 (5) for z1 = EF + i0 and z2 =

EF − i0, and let us denote by 	̃ the same matrix for z1 = EF −
i0 and z2 = EF + i0. As mentioned in Sec. I, these matrices
are singular: as a consequence of the Ward identity (2), it
holds that 	N = 0 and 	̃N = 0, where the nonzero vector
N = {NR�} has components

NR� = �R,LL′(EF + i0) − �R,LL′(EF − i0). (6)

If we introduce �̃ = (L′,L) for � = (L,L′), then one can
prove easily 	̃R1�1,R2�2 = 	R2�̃2,R1�̃1

, and the condition
	̃N = 0 can be rewritten as

∑

R1�1

NR1�̃1
	R1�1,R2�2 = 0. (7)

This relation yields immediately a necessary condition for the
existence of the solution of Eq. (5):

∑

R�

NR�̃ζR� = 0. (8)

The last rule can be reformulated as follows. If we abbreviate
�± = �(EF ± i0) and Ḡ± = Ḡ(EF ± i0) and denote the trace
by Tr, then Eq. (8) is equivalent to

0 = Tr{(�+ − �−)Ḡ+CḠ−}
= Tr{Ḡ−(�+ − �−)Ḡ+C}
= Tr{(Ḡ+ − Ḡ−)C}, (9)

where in the last step the Dyson equation relating mutually
both propagators Ḡ± = (EF − H0 − �±)−1 has been used.
The obtained condition (9) has a transparent physical inter-
pretation: it means that the average value of the operator C for
electron states at the Fermi energy vanishes. The condition (8)
for the existence of the solution of Eq. (5) is thus satisfied
by usual velocity operators entering the Kubo formula for
the conductivity tensor. Another operator C satisfying this
condition is the spin-torque operator in ferromagnets with
the magnetization vector in an equilibrium direction, i.e.,
pointing along the easy or hard axis. It should be noted that
NR�̃ = −N∗

R�, which means that the condition (8) represents
an orthogonality relation between the vectors ζ = {ζR�}
and N = {NR�}. The solution of Eq. (5) for the vertex
corrections � = {�R�} can be now performed in the vector
space orthogonal to the vector N = {NR�} (6), which removes
the effect of singularity of the matrix 	 due to the relation
	N = 0. This solution can be written formally as

� = (
/	)ζ, (10)

where 
 denotes the projection operator on the vector space
orthogonal to the vector N and where Löwdin’s symbol
(
/	) for the restricted inverse has been used [27]. This
restriction of the vector space for the vertex corrections is
an analogy to the restriction due to the conservation of the
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number of particles encountered in exact solutions of integral
equations of the linearized Boltzmann theory [28]. Let us
note for completeness that the solution of Eq. (5) for the
unknown vector � is not unique (in the considered case of
z1 = EF + i0 and z2 = EF − i0), but it is defined up to a
term parallel to the vector N . This ambiguity can be removed
by evaluating the limit of �(EF + iη,C,EF − iη) for η → 0.
However, the additional contribution to � (parallel to N )
has no effect on values of typical linear-response coefficients
Tr〈G(z1)CG(z2)C ′〉, where z1 = EF + i0 and z2 = EF − i0
and where both nonrandom operators C and C ′ satisfy the
condition (9).

The above approach removes the divergence of the vertex
corrections due to the Ward identity and the conservation of the
number of particles of the whole system. However, particular
systems and models can have special properties that call for
more sophisticated treatments or offer simpler solutions of the
problem. A detailed analysis of these special cases goes beyond
the scope of this work; let us mention only two examples here.
First, let us consider the case of a random ferromagnetic alloy
in models without spin-orbit interaction. The two spin channels
are decoupled from each other, and, consequently, there exist
two linearly independent vectors N (6), N↑ and N↓, satisfying
the relation 	N = 0. The removal of the singularity of 	 leads
naturally to a subspace orthogonal to both vectors N↑ and N↓,
whereas a simpler solution would be a separate treatment of
both spin channels in the spirit of the two-channel model of
electron transport [29]. Second, let us consider the conductivity
tensor of random systems invariant to space inversion, such
as homogeneous solid solutions on bcc or fcc lattices. Since
the unperturbed Hamiltonian H0, the random perturbations
DR, the average Green’s functions Ḡ(z), and the self-energies
�R(z) are even quantities with respect to space inversion,
whereas the velocity operator C and the corresponding vertex
corrections �R are odd, an elementary group theory [30] can
be applied to Eq. (5). The singular behavior due to the Ward
identity (2) is then confined to the even subspace that is
decoupled from the odd subspace, which leads automatically
to nonsingular vertex corrections to the conductivity tensor.

Let us illustrate the developed formalism by a simple
example, namely by the application to a hypothetical one-
dimensional tight-binding model of a random alloy treated
in the SCBA. A similar model was studied by Butler using
the KKR-CPA theory [10], which, however, was limited to
the case of symmetric potentials of both atomic species, i.e.,
to the case with space-inversion symmetry mentioned above.
Here we consider a model with two atomiclike orbitals per
site, featured by a symmetric (s orbital) and an antisymmetric
(p orbital) shape. The lattice sites occupy a one-dimensional
Bravais lattice with a lattice parameter a = 1; the unperturbed
Hamiltonian H0 and the nonrandom velocity operator are
defined in terms of on-site atomic levels (εs = −0.1, εp =
−0.2, both values given with respect to the Fermi energy)
and the nearest-neighbor hopping integrals (Wss = 0.6, Wsp =
−0.25, Wpp = 0.4). The matrix elements of the random on-site
perturbations have been chosen to describe nonsymmetric
potentials (Dss = ±0.15, Dsp = ±0.3, Dpp = ±0.2), where
the two signs refer to two atomic species with equal concen-
trations. The evaluation of the residual conductivity using the
Kubo-Greenwood formula [2,31,32] has been carried out with
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FIG. 1. Quantities related to the one-dimensional tight-binding
model in the SCBA as functions of the imaginary part η of the energy:
(a) the norm of matrices 	 and 	−1; (b) the relative deviations of
the coherent and incoherent (vertex) contributions to the residual
conductivity σ with respect to their values for η = 0.

complex energies z1,2 = EF ± iη (η > 0) without any modifi-
cation in solving the vertex corrections according to Eq. (5) as
well as with real energy arguments z1,2 = EF ± i0 according
to the developed general regularization procedure (10). The
results are shown in Fig. 1. This simple case leads to a 4 × 4
matrix 	; its Frobenius (Hilbert-Schmidt) matrix norm ||	||
together with ||	−1|| are displayed in Fig. 1(a) as functions
of η. The diverging trend of ||	−1|| for η → 0 proves the
singularity mentioned above. The calculation of the incoherent
(vertex) part of the conductivity for η = 0 with the help
of Eq. (10) involves inversion of a 3 × 3 matrix. Its matrix
norm coincides with that of the original 4 × 4 matrix 	, but
the norm of its inverse is finite, ||
/	|| ≈ 7 × 10−2 in the
present case, which is much smaller than the big values of
||	−1|| for the positive values of η shown in Fig. 1. The
regularization procedure based on Eq. (10) thus allows one
not only to obtain directly the conductivity for η = 0, but
also to improve substantially the numerical stability of the
original linear problem (5). The relation of the coherent (σ coh)
and vertex (σ vc) parts of the conductivity for nonzero η to
their limiting values for η = 0 (σ coh

0 = 38.8, σ vc
0 = 0.87) is

depicted in Fig. 1(b); it documents a quick convergence of
both contributions.
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The presented removal of the singularity is not confined to
the SCBA; its generalization to the CPA is straightforward,
since the linear condition (5) for the vertex corrections has
the same form with a slightly modified matrix 	 [20]. Let
us mention for completeness that the underlying idea is
independent of the specific approximation used as well as
of details of the potential fluctuations, so that even delocalized
perturbations DR with arbitrary correlations among different
lattice sites are allowed. This follows from the identity

Tr〈G(z1)CG(z2)〉 = Tr〈G(z2)G(z1)C〉, (11)

valid for any nonrandom C and arbitrary arguments z1,2 due
to the cyclic property of trace. By writing the left-hand side
in terms of the vertex corrections � (1) and using the Ward
identity (2) on the right-hand side, one obtains easily a relation

(z2 − z1)Tr{Ḡ(z1)�Ḡ(z2)}
= Tr{Ḡ(z2)[�(z1) − �(z2)]Ḡ(z1)C}. (12)

The requirement of a nonsingular � in the limit z1 → EF + i0
and z2 → EF − i0 yields immediately the condition (9) for
the vanishing average of C at the Fermi energy.

Let us conclude this section with several remarks. First,
the above-discussed singularity is always present in the matrix
	 (for z1 = EF + i0, z2 = EF − i0), which prevents its direct
inverse. This matrix depends only on the Hamiltonian H of
the random alloy. This singularity, however, is suppressed
in the incoherent part of a particular transport coefficient
Tr〈G+CG−C ′〉, where G± = G(EF ± i0), if both nonrandom
operators C and C ′ satisfy the condition (9). The developed
scheme based on Eq. (10) enables one to avoid the singularity
of 	 in obtaining the incoherent part of the transport coeffi-
cient. Second, the applicability of the presented formalism
is not confined to zero-temperature properties where the
Fermi energy plays the central role, but it can easily be
extended to finite temperatures. In the latter case, the Fermi
energy EF has to be replaced by a real energy variable,
and the resulting transport coefficients (e.g., conductivity
or Seebeck coefficient) are obtained by the corresponding
energy integration according to the Mott formula. Third,
the singularity of the matrix 	 is in general encountered
only for the complex arguments z1 and z2 approaching the
same real energy (inside the alloy spectrum) from opposite
sides. In particular, the treatment of the so-called Fermi-sea
term [33,34] appearing in the Bastin formula [35], where both
complex arguments lie simultaneously in the upper or lower
half-plane, does not lead to the discussed singularity. Similarly,
the case of various frequency-dependent quantities (dynamical
susceptibilities, optical conductivities) for a finite frequency
ω, where both energy arguments are separated by �ω [2],
does not require any special care in evaluation of the vertex
corrections.

III. APPLICATIONS TO REALISTIC MODELS

Let us turn finally to applications of the developed pro-
cedure in ab initio studies of transport properties of random
metallic alloys performed in the CPA. In the following, we
will discuss the calculation of the residual resistivity as a
basic transport property for fcc Ag0.5Pd0.5 and bcc Fe0.8Al0.2

solid solutions and for a diluted magnetic semiconductor,
namely GaAs doped by 8% Mn atoms substituting Ga atoms.
This limited choice of systems includes both nonmagnetic
(Ag-Pd) and ferromagnetic (Fe-Al, Mn-doped GaAs) alloys as
well as systems with (Ag-Pd, Fe-Al) and without (Mn-doped
GaAs) space inversion symmetry. Moreover, we applied both
scalar-relativistic [36,37] and fully relativistic [38] versions
of the transport theory in the TB-LMTO method; in all
cases, the valence basis is comprised of s-, p-, and d-like
orbitals. The site-diagonal self-energy �R,LL′(z) has been
replaced by the coherent-potential functions PR,LL′ (z), and
other quantities of Sec. II have been replaced by their
LMTO counterparts according to the Appendix of Ref. [20].
The very small Fermi-sea contribution to the conductivity
tensor [33] has been omitted here. Note that the presence of
spin-orbit interaction allows one to distinguish systems with
(Ag-Pd) and without (Fe-Al, Mn-doped GaAs) time-inversion
symmetry.

The most detailed analysis has been performed for the
scalar-relativistic calculation of the Ag0.5Pd0.5 alloy. Since
the norm of matrices 	 and 	−1 represents incomplete
information about the stability of the set of linear equations (5),
we have studied also the determinant of the matrix 	 and
its eigenvalues. The matrix 	 (for z1 = EF + iη and z2 =
EF − iη) is not Hermitian; however, for a system without spin
polarization and spin-orbit interaction (and with the orbital
index L labeling real spherical harmonics), the matrix M with
elements MR1�1,R2�2 = 	R1�̃1,R2�2

is Hermitian, so that all
of its eigenvalues μi are real and they can be obtained by
standard means. (In fact, only the lattice Fourier transform of
both matrices M and 	 for the zero reciprocal-space vector
has to be considered; see Ref. [20].) Note that the matrices
M and 	 differ only by a permutation of their rows, hence
the numerical stability of the system (5) can be assessed
equally well by inspecting any of them. Selected eigenvalues
μi of the matrix M as functions of the imaginary part η

of energy arguments z1,2 are displayed in Fig. 2(a). The
spectrum of M contains a nondegenerate eigenvalue with the
magnitude roughly proportional η (marked by full circles).
The other eigenvalues are essentially independent of η; only the
lowest (highest) negative [full (open) down-triangles] and the
lowest (highest) positive [open (full) up-triangles] eigenvalues
are shown in Fig. 2(a). The degeneracies of all eigenvalues
equal 1, 2, or 3, in agreement with dimensions of irreducible
representations of the full cubic point group [30,39]. The
nondegenerate eigenvalue approaching zero for η → 0 (full
circles) proves the existence of a single linearly independent
vector N satisfying 	N = 0 for η = 0, so that the restricted
inversion in Eq. (10) can be performed.

As a consequence of the above trends of the eigenvalues
μi , the absolute value of the determinant of matrix 	 is
proportional to η, as shown in Fig. 2(b), and it vanishes
for η = 0. The values of the residual resistivity ρ for finite
values of η converge rapidly to the limiting value obtained
for η = 0 with the help of Eq. (10). Moreover, the absolute
magnitude of the determinant of the restricted matrix 	 is
several orders of magnitude larger than that of the original ma-
trices 	 [see Fig. 2(b)], which indicates improved numerical
stability in analogy to the model case (Sec. II). Qualitatively
identical results have also been obtained for the conducting
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FIG. 2. Analysis of the case of the fcc Ag0.5Pd0.5 alloy in the
scalar-relativistic approximation: (a) Absolute values of selected
eigenvalues μi of the matrix M as functions of the imaginary part η

of energy; see text for details. The degeneracies of the eigenvalues
are given in parentheses. (b) Absolute value of the determinant of
the matrix 	 (left scale, full squares) and of the residual resistivity ρ

(right scale, open circles) as functions of η. The dotted horizontal line
marks the absolute value of the determinant of the restricted matrix
	, and the dashed horizontal line denotes the value of ρ for η = 0.

majority-spin channel of Mn-doped GaAs in the absence of
spin-orbit interaction as a system without space-inversion
symmetry (not shown here).

Results of calculations for systems with spin-orbit interac-
tion are summarized in Fig. 3. The nonmagnetic random fcc
Ag0.5Pd0.5 alloy [Fig. 3(a)] represents a case with full cubic
and time-inversion symmetry. All one-electron eigenvalues of
pure crystals of such systems have even degeneracies [30,39];
the order of singularity of the matrix 	 for η → 0 requires
thus special attention. The data displayed in Fig. 3(a) prove
a proportionality between |det(	)| and η, which means that
the restricted inverse in Eq. (10) is nonsingular and it can
be performed similarly with the previous spinless case. The
convergence of the residual resistivity ρ for η → 0 and the
improvement of numerical stability due to the restricted inverse
are also independent of spin-orbit interaction; see Figs. 2(b)
and 3(a).

The ferromagnetic Mn-doped GaAs with magnetization
pointing along the z axis [Fig. 3(b)] represents an opposite
case, namely a system without the time-inversion symmetry
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FIG. 3. The same as in Fig. 2(b) for the fully relativistic treatment
of fcc Ag0.5Pd0.5 (a) and (Ga0.92Mn0.08)As (b).

and with the point group reduced to S4. The proportionality
between |det(	)| and η can again be seen in Fig. 3(b), which
proves the applicability of Eq. (10) also in this case, as con-
firmed by the calculated resistivities ρ and their convergence.
Let us mention that qualitatively identical behavior has been
obtained for the random ferromagnetic bcc Fe0.8Al0.2 alloy
with spin-orbit interaction and with magnetization pointing
along the [100], [110], and [111] directions (not shown here).

The results of calculations for the selected systems allow
one to conclude that the simple restricted inverse (10) is
generally applicable for realistic models of random systems
irrespective of their geometrical and time-inversion symme-
tries; the only exceptions seem to be cases with very special
symmetries, such as, e.g., ferromagnets with omitted spin-orbit
interaction (see Sec. II).

IV. CONCLUSIONS

This study addressed the problem of removing a singularity
in the vertex corrections that is encountered in the case of
zero energy and momentum transfer, which is relevant for
the static response of random alloys to homogeneous external
perturbations. The singularity reflects basic conservation laws
as expressed by the Ward identity satisfied by standard
conserving approximations (SCBA, CPA). This identity also
provides a key for a simple solution of the problem for transport
properties, which involve operators (velocity, spin torque) with
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zero average values for electron states at the Fermi energy. The
developed formalism, worked out in multiorbital techniques
applicable to realistic models of random alloys, is based on a
restriction of the vector space for the vertex corrections; the
dimension of the original vector space has to be reduced by
unity, which leads as a rule to a regular matrix inversion. In
principle, one cannot exclude more complex situations, which
require more sophisticated solutions, especially for systems
possessing very special symmetries. A complete solution to
this problem (if it exists at all) goes beyond the scope of
this work; however, usual symmetry operations of most alloy
systems, such as inversion of time and space as well as

rotations and reflections, do not call for any modification
of the suggested approach. The illustrating examples in
this work have been confined to electrical resistivity, but
extensions to other transport quantities, such as, e.g., the
Gilbert damping parameters [8] or spin-orbit torques induced
by external electric fields [40], can be done in a straightforward
manner.
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[22] D. Vollhardt and P. Wölfle, Phys. Rev. B 22, 4666 (1980).
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[36] I. Turek, J. Kudrnovský, V. Drchal, L. Szunyogh, and P.

Weinberger, Phys. Rev. B 65, 125101 (2002).
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