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Transport of Dirac electrons in a random magnetic field in topological heterostructures
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We consider the proximity effect between Dirac states at the surface of a topological insulator and a ferromagnet
with easy plane anisotropy, which is described by the XY model and undergoes a Berezinskii-Kosterlitz-Thouless
(BKT) phase transition. The surface states of the topological insulator interacting with classical magnetic
fluctuations of the ferromagnet can be mapped onto the problem of Dirac fermions in a random magnetic
field. However, this analogy is only partial in the presence of electron-hole asymmetry or warping of the Dirac
dispersion, which results in screening of magnetic fluctuations. Scattering at magnetic fluctuations influences the
behavior of the surface resistivity as a function of temperature. Near the BKT phase transition temperature we find
that the resistivity of surface states scales linearly with temperature and has a clear maximum which becomes
more pronounced as the Fermi energy decreases. Additionally, at low temperatures we find linear resistivity,
usually associated with non-Fermi-liquid behavior; however, here it appears entirely within the Fermi-liquid
picture.

DOI: 10.1103/PhysRevB.93.245111

I. INTRODUCTION

The discovery of topological insulators (TIs) has led to
new ways to observe exotic physics in condensed-matter
systems, including phenomena such as magnetic monopoles
and axion electrodynamics [1,2]. Many of these insights rely
on the nature of the TI surface states, which are described
by the Dirac equation for relativistic particles (see [3,4] and
references therein). The combination of TIs and magnetic
materials creates a hybrid platform to observe new physics by
exploiting the spin-momentum locking of surface states. These
dual-layer structures provide a way to experimentally realize
disordered Dirac Hamiltonians and localization phenomena in
TI systems [5,6].

Uniform out-of-plane magnetization, which can be induced
by the proximity effect or by ordered impurities deposited
at the surface of a TI, opens a gap in the surface-state
spectrum [7]. This gapped state exhibits the anomalous
quantum Hall effect, which can be directly probed in transport
or by magneto-optical Faraday and Kerr effects [8–14].
Out-of-plane magnetic textures such as domain walls and
Skyrmions host gapless chiral modes or localized states,
altering their dynamics [15–18]. As a result, the strong
interplay of magnetism and surface states can be employed
in spintronics applications.

In contrast, nonuniform in-plane magnetization can act as
an effective gauge field. Dirac fermions exposed to transverse
gauge-field disorder, or a random magnetic field (RMF),
have been studied theoretically in the context of the integer
quantum Hall transition [19], superconductivity [20–22], spin
liquids [23], and disordered graphene [24] (see [5] for a
review). RMF disorder can strongly renormalize the spectrum
and influence transport properties in both Schrödinger and
Dirac electron systems and leads to localization in the
former [25–28]. A single Dirac cone will not localize in
a short-range RMF; however, whether localization occurs,
the case of long-range RMF presently lacks a definitive
answer [29–35]. The search for new experimental systems

where the strength and spatial correlation of the magnetic field
can be tuned is essential in the effort to understand the RMF
problem.

In this work, we consider such a system via the proximity
effect between the surface of a TI and a thin-film magnet
with easy-plane anisotropy, which we describe by the XY
model. The XY model enables magnetic vortex excitations
and undergoes a Berezinskii-Kosterlitz-Thouless (BKT) phase
transition, corresponding to vortex unbinding. We have shown
that classical magnetic fluctuations of the XY model can be rep-
resented as an emergent static RMF acting on Dirac fermions,
where the range of disorder is temperature dependent. Quasi-
long-range gauge disorder below the BKT transition temper-
ature is, in general, unscreened and can strongly influence
Dirac states, making the problem intractable by the usual
perturbation methods. However, we note that this gauge field
analogy is not full in the presence of electron-hole asymmetry
or warping terms, which depend on the doping level [36].
These terms lead to screening, and the system can be tuned
from the perturbative to nonperturbative regime by doping.
We analyze transport in the doped, perturbative regime, and
we show that the resistivity has a prominent maximum near
the BKT transition temperature, where magnetic fluctuations
are the most intense.

In Sec. II we present the model and discuss the mapping
of classical magnetic fluctuations to static RMF disorder.
In Sec. III we discuss the range of applicability of the
perturbative treatment of the disorder. In Sec. IV we calculate
the temperature behavior of resistivity in the perturbative
regime. In Sec. V we conclude and relate our work to current
experiments.

II. MODEL

The purpose of this work is to show how signatures of an
effective gauge field can be observed in transport of Dirac
fermions. Coupling the Dirac states to a magnetic system with
in-plane magnetic moments that undergoes a phase transition,
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like the two-dimensional (2D) XY model, allows for a system
with tunable gauge disorder. The Dirac surface states of a
three-dimensional (3D) TI coupled to the XY model can be
described by the following action:

S = SXY + STI + SXY
TI , (1)

where

SXY = ρs

2T

∫
dr(∇θ )2, SXY

TI = �

∫ β

0
dτdrψ†n(r) · σψ,

STI =
∫ β

0
dτdrψ†{∂τ + v[p × σ ]z + αp2 − μ}ψ. (2)

The surface states are represented by a two-component spinor
ψ = (ψ↑,ψ↓)T ,σ = (σx,σ y) is the vector of Pauli matrices
representing the real electron spin, v is the Fermi velocity,
and � > 0 is the interlayer coupling between surface states
and a magnetic XY model with magnetic moments n(r) =
[cos(θ ), sin(θ )], with θ (r) describing their direction.

If electron-hole asymmetry is neglected (α = 0), the
magnetization plays the role of an emergent gauge field
a = �v−1[n × ẑ]. It can be split as a = al + at into a
transverse part, responsible for the emergent magnetic field
Bz = [∇ × at]z = �v−1(∇nl) perpendicular to the surface,
and a longitudinal part, which can generate an emergent
electric field E = −∂tal = −�v−1∂tnt. Here nl and nt are
the corresponding components of spin density. Magnetic
fluctuations are assumed to be classical, leading to zero
emergent electric field, and therefore the longitudinal gauge
field can be safely gauged away.

The XY model in 2D describes magnetic moments with
fixed magnitude and arbitrary angle in the x-y plane. Low-
energy modes are described by the continuum model SXY in
Eq. (2) with temperature T and spin-wave stiffness ρS. The
Mermin-Wagner theorem forbids long-range ordering in 2D
at all nonzero temperatures [37,38]. However, the spin-spin
correlation function exhibits unusual behavior, decaying al-
gebraically at low temperatures ∝r−η, where η(T ) = T/2πρs

is the critical exponent, which takes values from η(0) = 0 to
ηBKT(TBKT) = 1/4. The correlation function is ∝exp(−r/ξ+)
for T > TBKT. Near the transition the correlation length ξ+(T )
is given by ξ+(T ) ≈ a exp(3TBKT/2

√
T − TBKT), where a is

cutoff for the magnet of the order of the vortex core size, which
in turn is similar to the lattice constant of the magnet. ξ+(T ) is
finite only above the BKT transition and diverges exponentially
as T → T +

BKT [39,40]. The transition between these two
regimes, referred to as the BKT transition, is driven by the
unbinding of magnetic vortex-antivortex pairs and occurs at
TBKT = πρs/2. The XY model can occur in magnetic thin films
with strong in-plane anisotropy and has been realized in several
compounds, including K2CuF4, Rb2CrCl4, BaNi2(VO4)2, and
(CH3NH3)2CuCl4 [41–47].

Excitations of the magnetic XY model θ (r) = θsw(r) +
θv(r) are spin waves θsw(r), creating a smooth emer-
gent magnetic field Bz, and vortices θv(r), which gener-
ate a nonuniform magnetic field in a very nonlocal way.
For a set of vortices situated at ri , the distribution of
phase is θv(z) = ∑

i qi arg(z − zi), with z = x + iy and qi =
± for vortices and antivortices. The resulting magnetic
field is given by Bz = �v−1[cos(θ )∂yθsw − sin(θ )∂xθsw +

∑
i qi cos(θi)/|r − ri|], with θi = θsw(r) + ∑

j �=i qj arg[z −
zj ]. It diverges in the vicinity of each vortex core, and its
magnitude depends nonlocally on the position of all other
vortices and slowly decays away from the vortex cores.

The reconstruction of the local electronic structure due
to the nonuniform spin density n(r) near the vortex core
can be probed by tunneling experiments, as considered in
detail in the case of magnetic impurities [48,49]. Here we
are interested in transport of Dirac fermions due to scattering
at magnetic fluctuations where the chemical potential lies far
above the Dirac point. In this case, scattering is restricted to the
conduction band, and the vortex contribution to the effective
magnetic field leads to an effective RMF as the conduction
electrons see many vortices.

The interaction between Dirac fermions mediated by spin
fluctuations is obtained by integrating out the spin fluctuations
and expanding to the second order in �/μ. The first-order
term vanishes; the second-order term Sd, corresponding to a
disordered static magnetic field, reads

Sd = −�2

2

∫
dτ1dτ2dr1dr2W

α
1

〈
nl

α(r1)nl
β(r2)

〉
W

β

2 , (3)

where Wα
i = ψ†(ri ,τi)σαψ(ri ,τi) and 〈· · · 〉 denotes averaging

over the free XY action including spin waves and vortices. The
longitudinal part of the spin-spin correlation function is the
only relevant one, given by

〈
nl

α(r1)nl
β(r2)

〉 = 1

2

( |r1 − r2|
2a

)−η

exp

(
− r

ξ+

)
�

αβ
r1−r2

, (4)

where the matrix �
αβ
q = qαqβ/q2 ensures that only longitudi-

nal spin fluctuations are taken into account and a is the afore-
mentioned lattice cutoff. Interaction between Dirac fermions
V

αβ

0 (q) = −�2〈nl
α(q)nl

β(−q)〉 = V0(q)�αβ is connected with
the gauge-invariant correlator of the emergent magnetic field
V0(q) = −v2〈Bz(−q)Bz(q)〉/q2 and is given by

V0(q) = − πη�2ξ
2−η
+ aη

(q2ξ 2+ + 1)1−η/2
. (5)

For T < TBKT, ξ+ → ∞ and the propagator is V0(q) ∝
1/q2−η, which results in singular behavior as q → 0 and
strong temperature dependence through η. In 2D this leads
to an infrared divergence in the self-energy which cannot be
treated in a controlled manner in the absence of screening [50].
Particularly, in the random-phase approximation (RPA) the
screened interaction is given by

V −1(q) = V −1
0 − �l(q). (6)

Here �l(q) is the longitudinal spin-spin response function in
the static limit, which is given by [50]

�l = q

8πv
Re

[
2kF

q

√
1 −

(
2kF

q

)2

+ arcsin

(
2kF

q

)
− π

2

]
.

(7)

It is zero for q � 2kF, which signals the absence of screening.
Physically, vanishing �l(0) implies the absence of uniform
spin polarization in the TI in the presence of a uniform external
spin density n. Really, n can be safely gauged away through a
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transformation which shifts the position of a Dirac point qD =
�v−1[n × ez] and therefore does not lead to any response.

Above we have neglected electron-hole asymmetry (α =
0) in the Hamiltonian, describing electrons at the surface
of the topological insulator. In bismuth-based topological
insulators it is not negligible but usually does not change
the physics qualitatively (see [51,52] for an exception). Here
we point out that the presence of electron-hole asymmetry
or warping is crucial since it breaks the connection to
the emergent gauge-field picture. As a result, the spin-spin
response function at low momenta becomes finite and allows
screening. Recalling that �l(0) is the response to the uniform
spin density, corresponding to momentum shift of Dirac states
qD = �v−1[n × ez], the resulting average spin polarization of
electrons sD = 〈ψ†σψ〉 is given by

sD =
∑

p

[
ez × p − qD

2|p − qD|
]
nF(αp2 + v|p − qD| − μ), (8)

where nF(εp) is the Fermi steplike distribution at zero temper-
ature. To linear order in n and α we get sD = −ᾱnνF�/2, with
νF = μ/2π�

2v2 being the density of states of Dirac electrons
at the Fermi level and ᾱ = αμ/v2 being the dimensionless
electron-hole asymmetry strength, which leads to �l(0) =
−ᾱνF�/2. The spin polarization vanishes in the absence of
electron-hole asymmetry as expected. The screened interaction
in RPA mediated by magnetic fluctuations at T < TBKT is then
given by

V (q) = −πη�2ξ 2−η
α aη

(qξα)2−η + 1
, ξα =

(
2

ᾱνF�πηaη

) 1
2−η

. (9)

The strength of electron-hole asymmetry, which regularizes
our theory, can be characterized by the dimensionless param-
eter ᾱ, which decreases with the chemical potential μ and
vanishes in the undoped regime. As a result, by controlling the
doping level the system can be tuned from the perturbative to
nonperturbative regime. To clarify the range of applicability
of the perturbative approach, we consider the renormalization
of the single-particle spectrum.

III. SELF-ENERGY OF DIRAC ELECTRONS

In the Born approximation, the self-energy of Dirac
electrons is given by

�R(ω,p) =
∫

q

Qα
p,p−qV

αβ(q)Qβ
p−q,pG

R
0 (ω,p − q), (10)

where Qp,p′ = 〈p|σ |p′〉 = (− sin[(ϕp + ϕp′)/2], cos[(ϕp +
ϕp′)/2])T is the matrix element for scattering of electrons
from the conduction band and their Green’s function is
GR

0 = (ω − vp + μ + iδ)−1. Summation over α,β = x,y in
Eq. (10) gives the angle factor Q̄p,p−q = Qα

p,p−q�
αβ
q Qβ

p−q,p
as follows:

Q̄p,p−q = sin2

(
2ϕq − ϕp − ϕp−q

2

)
, (11)

where ϕp denotes the polar vector of a fermion with momen-
tum p. If the scattering is elastic |p| = |p − q|, trigonometry
dictates 2ϕq − ϕp − ϕp−q = π and Q̄p,p−q = 1. Re �(0,pF) at

the Fermi level leads to Fermi energy renormalization, and
it is zero for this case. Inserting the screened propagator,
Eq. (9), into (10) gives a single-particle decay rate �γ =
− Im �̂(0,pF), where

Im �̂ = −�2ηξ 1−η
α aη

2π�v
�

(
3 − η

2 − η

)
�

(
η − 1

η − 2

)
. (12)

The product of � functions is of order 1 for 0 < η < 1/4.
The single-particle lifetime diverges in the absence of

screening, where ξα → ∞ for ᾱ → 0, as expected. It cannot
be cured by using the self-consistent Born approximation and
signals the breakdown of the perturbative approach, which we
use below for a calculation of conductivity of Dirac fermions.
The apparent breakdown of perturbation theory in this model
could also signal the existence of a non-Fermi liquid state
on the TI surface, a possibility which could be explored by
including the dynamics of the BKT magnet, which is beyond
the scope of this work.

In the presence of screening, the Fermi-liquid approach
breaks down for �γ � μ. Using Eqs. (9) and (12), we find a
lower bound on the Fermi energy,

μ4−3η
c 
 �3ηv2

π2α

(
2��v3

παa

)−η

. (13)

For μ < μc this approach is no longer valid, and the system
could be tuned from the perturbative to nonperturbative regime
by doping. We estimate for Bi2Te3, v = 0.5 × 106 m/s,� =
10 meV, and α = 1/2m∗, with m∗ ∼ 0.1me. The short-
distance cutoff a is estimated by half the lattice constant of the
two-dimensional BKT magnet K2CuF4, where a ∼ 2.5 Å [42].
At T = TBKT, ηBKT = 1/4, which gives μc � 6 meV. How-
ever, it is also important to keep in mind that for μ � �

higher-order terms in the expansion (3) become important and
are not considered here. We leave the nonperturbative regime
to further investigations which could be informed by this type
of experiment.

IV. TRANSPORT OF DIRAC FERMIONS

In the doped regime at μ � �γ , the quasiparticle picture
is well defined, and the resistivity of Dirac fermions can be
approximated by the Drude formula,

ρ = h

e2

2�

μτtr
, (14)

where τtr is the transport scattering time. Different scattering
mechanisms, including impurities, phonons, and spin fluctua-
tions, additively contribute to τ−1

tr and can be easily separated.
Here we concentrate on elastic scattering due to magnetic
fluctuations, where for |q| = 2kF sin ϕ/2 the corresponding
contribution is given by

1

τtr
= 2π

�

∫
q

Q̄p,p−q|Vq|(1 − cos ϕq)δ(ξp−q − ξp)

= πη�2

4�μ

(
μ

μa

)η ∫
dϕ

π

(2kFξ+)2−η sin2
(

ϕ

2

)
[(

2kFξ+ sin
(

ϕ

2

))2 + 1
] 2−η

2

, (15)

with μa = �v/2a. In contrast to the single-particle decay rate
γ , the inverse transport time τ−1

tr does not diverge in the
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FIG. 1. Resistivity of TI surface states coupled to an XY model.
The resistivity scales linearly with temperature as T → 0 and across
the BKT transition, with a nonuniversal peak at T ∼ TBKT that
increases with increasing μ. As μ increases, the effect of the transition
is less pronounced.

absence of screening and weakly depends on screening length
ξα . Therefore in Eq. (15) we used the unscreened propagator
V0(q) given by Eq. (5). Nevertheless, we need to keep in mind
that the derivation of the Drude formula implies �γ � μ since
all diagrams with crossed impurity lines, which are important
in the opposite regime, are neglected [53]. Using Eq. (14) and
the results above, the resistivity has the form

ρ(T ,μ)

ρBKT
= η

I0ηBKT

(
μ

μa

)η−ηBKT

I(η), (16)

where I(η) is the integral in the second line of Eq. (15), ηBKT =
1/4, and I0 = I(ηBKT) ≈ 1.72. The resistivity at the transition
is given by

ρBKT = h

e2

√
π�2

4μ2

(
μ

μa

) 1
4 �(5/8)

�(9/8)
. (17)

ρ(T ,μ)/ρBKT is shown in Fig. 1 for different values of μ.
There is a clear peak near TBKT due to increased magnetic
fluctuations. As T → 0, we find the following expression:

ρ(T → 0)

ρBKT
=

√
π�(9/8)

�(5/8)

(
μ

μa

)− 1
4 T

TBKT
, (18)

where the resistivity is linear at low temperature, unlike the
usual impurity scattering. As T → T ±

BKT across the transition,
we find that

ρ(T → T +
BKT)

ρBKT
= 1 + 1

4

{
4 + ln

(
μ

μa

)}
�T

TBKT
, (19)

ρ(T → T −
BKT)

ρBKT
= 1 + 1

8

{
8 + 2 ln

(
μ

μa

)

+ψ

(
5

8

)
− ψ

(
9

8

)}
�T

TBKT
, (20)

where �T = T − TBKT and ψ is the digamma function. The
resistivity is linear in temperature in all three regimes but
has a different slope in each case. As T → 0, the dynamics
of the magnetic moments becomes important, necessitating a
fully quantum theory which is not considered here. The slope

is dictated by μ and changes significantly with doping, as
shown in Fig. 1. The temperature of maximal resistivity is
also dictated by μ; it occurs for T ∼ TBKT but is nonuniversal.
It can be solved for using the exact expression in Eq. (16).
We note that for μ < 13 meV the slope is always negative
for T > TBKT and the maximum resistivity occurs before the
transition.

In a real experiment there will be many sources of scat-
tering, including phonons and nonmagnetic impurities. The
linear temperature dependence and sharp peak near the BKT
transition enables the separation of this scattering mechanism
from others in the system. Scattering due to impurities is
temperature independent, while at low temperatures phonon
scattering leads to a different scaling law.

V. CONCLUSION AND DISCUSSION

Physical realization of Dirac fermion-gauge-field models
in TI systems relies heavily on the strength of magnetic
perturbations to the TI system. In this section we provide some
estimations of the coupling strength � and how it connects to
current experiments. For the 3D TI Bi2Te3 we use μ = 0.1 eV.
The transport lifetime in Bi2Te3 can be inferred from transport
measurements to be τ0 ∼ 10−12 s [54].

In order to observe the anomalous transport behavior
described above, the coupling between the magnetic layer and
the TI must be strong enough such that τtr � τ0. The transport
time τtr at T = TBKT is found from Eq. (15), where

τ−1
tr = π�2

16�μ

(
μ

μa

) 1
4

I0. (21)

Setting τ tr = τ 0 gives a lower bound on the coupling strength
�. For our parameters, we find � � 10 meV, which is well
within the range of the recently observed � ∼ 85 meV in
lanthanide-doped Bi2Te3 [55].

To summarize, we have considered the transport of Dirac
fermions coupled to an XY model as temperature is tuned
through the BKT transition. We claim that both short-range and
quasi-long-range disorder can be realized, and the transition
between these regimes can be tuned by both doping level
and temperature, thus determining the strength and nature of
the disorder. We have analyzed the resistivity at high doping,
and we find that it scales linearly with temperature, with
a prominent peak at the BKT transition temperature where
magnetic fluctuations are the strongest. Notably, the resistivity
also scales linearly with temperature as T → 0. The effect is
strengthened by decreasing the Fermi energy.
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Phys. Rev. B 91, 214412 (2015).
[44] L. Regnault, J. Rossat-Mignod, J. Henry, and L. De Jongh,

J. Magn. Magn. Mater. 31, 1205 (1983).
[45] S. Demokritov, N. Kreines, V. Kudinov, and S. Petrov, J. Magn.

Magn. Mater. 90, 305 (1990).
[46] C. Cornelius, P. Day, P. Fyne, M. Hutchings, and P. Walker,

J. Phys. C 19, 909 (1986).
[47] B. Sachs, T. O. Wehling, K. S. Novoselov, A. I. Lichtenstein,

and M. I. Katsnelson, Phys. Rev. B 88, 201402(R) (2013).
[48] Y. Okada, C. Dhital, W. Zhou, E. D. Huemiller, H. Lin, S. Basak,

A. Bansil, Y.-B. Huang, H. Ding, Z. Wang et al., Phys. Rev. Lett.
106, 206805 (2011).

[49] I. Lee, C. K. Kim, J. Lee, S. J. Billinge, R. Zhong, J. A.
Schneeloch, T. Liu, T. Valla, J. M. Tranquada, G. Gu et al.,
Proc. Natl. Acad. Sci. USA 112, 1316 (2015).

[50] I. Garate and M. Franz, Phys. Rev. B 81, 172408 (2010).
[51] Y. Baum and A. Stern, Phys. Rev. B 86, 195116 (2012).
[52] H. K. Pal, V. I. Yudson, and D. L. Maslov, Phys. Rev. B 85,

085439 (2012).
[53] H. Bruus and K. Flensberg, Many-Body Quantum Theory in

Condensed Matter Physics (Oxford University Press, Oxford,
2004).

[54] D.-X. Qu, Y. Hor, J. Xiong, R. Cava, and N. Ong, Science 329,
821 (2010).

[55] S. E. Harrison, L. J. Collins-McIntyre, P. Schönherr, A.
Vailionis, V. Srot, P. van Aken, A. J. Kellock, A. Pushp, S.
S. P. Parkin, J. S. Harris et al., Sci. Rep. 5, 15767 (2015).

245111-5

http://dx.doi.org/10.1038/nphys1534
http://dx.doi.org/10.1038/nphys1534
http://dx.doi.org/10.1038/nphys1534
http://dx.doi.org/10.1038/nphys1534
http://dx.doi.org/10.1126/science.1167747
http://dx.doi.org/10.1126/science.1167747
http://dx.doi.org/10.1126/science.1167747
http://dx.doi.org/10.1126/science.1167747
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.80.1355
http://dx.doi.org/10.1103/RevModPhys.80.1355
http://dx.doi.org/10.1103/RevModPhys.80.1355
http://dx.doi.org/10.1103/RevModPhys.80.1355
http://dx.doi.org/10.1103/PhysRevLett.114.216601
http://dx.doi.org/10.1103/PhysRevLett.114.216601
http://dx.doi.org/10.1103/PhysRevLett.114.216601
http://dx.doi.org/10.1103/PhysRevLett.114.216601
http://dx.doi.org/10.1126/science.1189924
http://dx.doi.org/10.1126/science.1189924
http://dx.doi.org/10.1126/science.1189924
http://dx.doi.org/10.1126/science.1189924
http://dx.doi.org/10.1126/science.1187485
http://dx.doi.org/10.1126/science.1187485
http://dx.doi.org/10.1126/science.1187485
http://dx.doi.org/10.1126/science.1187485
http://dx.doi.org/10.1126/science.1234414
http://dx.doi.org/10.1126/science.1234414
http://dx.doi.org/10.1126/science.1234414
http://dx.doi.org/10.1126/science.1234414
http://dx.doi.org/10.1038/nphys3053
http://dx.doi.org/10.1038/nphys3053
http://dx.doi.org/10.1038/nphys3053
http://dx.doi.org/10.1038/nphys3053
http://dx.doi.org/10.1103/PhysRevLett.105.057401
http://dx.doi.org/10.1103/PhysRevLett.105.057401
http://dx.doi.org/10.1103/PhysRevLett.105.057401
http://dx.doi.org/10.1103/PhysRevLett.105.057401
http://dx.doi.org/10.1103/PhysRevLett.105.166803
http://dx.doi.org/10.1103/PhysRevLett.105.166803
http://dx.doi.org/10.1103/PhysRevLett.105.166803
http://dx.doi.org/10.1103/PhysRevLett.105.166803
http://dx.doi.org/10.1103/PhysRevB.87.245416
http://dx.doi.org/10.1103/PhysRevB.87.245416
http://dx.doi.org/10.1103/PhysRevB.87.245416
http://dx.doi.org/10.1103/PhysRevB.87.245416
http://dx.doi.org/10.1103/PhysRevB.90.205432
http://dx.doi.org/10.1103/PhysRevB.90.205432
http://dx.doi.org/10.1103/PhysRevB.90.205432
http://dx.doi.org/10.1103/PhysRevB.90.205432
http://dx.doi.org/10.1103/PhysRevB.82.161401
http://dx.doi.org/10.1103/PhysRevB.82.161401
http://dx.doi.org/10.1103/PhysRevB.82.161401
http://dx.doi.org/10.1103/PhysRevB.82.161401
http://dx.doi.org/10.1103/PhysRevB.89.024413
http://dx.doi.org/10.1103/PhysRevB.89.024413
http://dx.doi.org/10.1103/PhysRevB.89.024413
http://dx.doi.org/10.1103/PhysRevB.89.024413
http://dx.doi.org/10.1103/PhysRevB.90.041412
http://dx.doi.org/10.1103/PhysRevB.90.041412
http://dx.doi.org/10.1103/PhysRevB.90.041412
http://dx.doi.org/10.1103/PhysRevB.90.041412
http://dx.doi.org/10.1103/PhysRevB.91.060401
http://dx.doi.org/10.1103/PhysRevB.91.060401
http://dx.doi.org/10.1103/PhysRevB.91.060401
http://dx.doi.org/10.1103/PhysRevB.91.060401
http://dx.doi.org/10.1103/PhysRevB.50.7526
http://dx.doi.org/10.1103/PhysRevB.50.7526
http://dx.doi.org/10.1103/PhysRevB.50.7526
http://dx.doi.org/10.1103/PhysRevB.50.7526
http://dx.doi.org/10.1103/RevModPhys.59.1001
http://dx.doi.org/10.1103/RevModPhys.59.1001
http://dx.doi.org/10.1103/RevModPhys.59.1001
http://dx.doi.org/10.1103/RevModPhys.59.1001
http://dx.doi.org/10.1134/1.567996
http://dx.doi.org/10.1134/1.567996
http://dx.doi.org/10.1134/1.567996
http://dx.doi.org/10.1134/1.567996
http://dx.doi.org/10.1016/S0921-4534(01)00950-9
http://dx.doi.org/10.1016/S0921-4534(01)00950-9
http://dx.doi.org/10.1016/S0921-4534(01)00950-9
http://dx.doi.org/10.1016/S0921-4534(01)00950-9
http://dx.doi.org/10.1103/PhysRevB.72.214201
http://dx.doi.org/10.1103/PhysRevB.72.214201
http://dx.doi.org/10.1103/PhysRevB.72.214201
http://dx.doi.org/10.1103/PhysRevB.72.214201
http://dx.doi.org/10.1016/S0375-9601(03)00212-3
http://dx.doi.org/10.1016/S0375-9601(03)00212-3
http://dx.doi.org/10.1016/S0375-9601(03)00212-3
http://dx.doi.org/10.1016/S0375-9601(03)00212-3
http://dx.doi.org/10.1103/PhysRevLett.69.2979
http://dx.doi.org/10.1103/PhysRevLett.69.2979
http://dx.doi.org/10.1103/PhysRevLett.69.2979
http://dx.doi.org/10.1103/PhysRevLett.69.2979
http://dx.doi.org/10.1103/PhysRevB.49.16609
http://dx.doi.org/10.1103/PhysRevB.49.16609
http://dx.doi.org/10.1103/PhysRevB.49.16609
http://dx.doi.org/10.1103/PhysRevB.49.16609
http://dx.doi.org/10.1209/0295-5075/29/3/009
http://dx.doi.org/10.1209/0295-5075/29/3/009
http://dx.doi.org/10.1209/0295-5075/29/3/009
http://dx.doi.org/10.1209/0295-5075/29/3/009
http://dx.doi.org/10.1103/PhysRevB.64.115301
http://dx.doi.org/10.1103/PhysRevB.64.115301
http://dx.doi.org/10.1103/PhysRevB.64.115301
http://dx.doi.org/10.1103/PhysRevB.64.115301
http://dx.doi.org/10.1103/PhysRevB.75.241406
http://dx.doi.org/10.1103/PhysRevB.75.241406
http://dx.doi.org/10.1103/PhysRevB.75.241406
http://dx.doi.org/10.1103/PhysRevB.75.241406
http://dx.doi.org/10.1103/PhysRevLett.98.256801
http://dx.doi.org/10.1103/PhysRevLett.98.256801
http://dx.doi.org/10.1103/PhysRevLett.98.256801
http://dx.doi.org/10.1103/PhysRevLett.98.256801
http://dx.doi.org/10.1209/0295-5075/82/57008
http://dx.doi.org/10.1209/0295-5075/82/57008
http://dx.doi.org/10.1209/0295-5075/82/57008
http://dx.doi.org/10.1209/0295-5075/82/57008
http://dx.doi.org/10.1103/PhysRevB.85.125437
http://dx.doi.org/10.1103/PhysRevB.85.125437
http://dx.doi.org/10.1103/PhysRevB.85.125437
http://dx.doi.org/10.1103/PhysRevB.85.125437
http://dx.doi.org/10.1103/PhysRevB.85.195130
http://dx.doi.org/10.1103/PhysRevB.85.195130
http://dx.doi.org/10.1103/PhysRevB.85.195130
http://dx.doi.org/10.1103/PhysRevB.85.195130
http://dx.doi.org/10.1103/PhysRevLett.109.246605
http://dx.doi.org/10.1103/PhysRevLett.109.246605
http://dx.doi.org/10.1103/PhysRevLett.109.246605
http://dx.doi.org/10.1103/PhysRevLett.109.246605
http://dx.doi.org/10.1088/1751-8113/48/11/11FT01
http://dx.doi.org/10.1088/1751-8113/48/11/11FT01
http://dx.doi.org/10.1088/1751-8113/48/11/11FT01
http://dx.doi.org/10.1088/1751-8113/48/11/11FT01
http://dx.doi.org/10.1103/PhysRevLett.103.266801
http://dx.doi.org/10.1103/PhysRevLett.103.266801
http://dx.doi.org/10.1103/PhysRevLett.103.266801
http://dx.doi.org/10.1103/PhysRevLett.103.266801
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1063/1.1705316
http://dx.doi.org/10.1063/1.1705316
http://dx.doi.org/10.1063/1.1705316
http://dx.doi.org/10.1063/1.1705316
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1063/1.330706
http://dx.doi.org/10.1063/1.330706
http://dx.doi.org/10.1063/1.330706
http://dx.doi.org/10.1063/1.330706
http://dx.doi.org/10.1143/JPSJ.51.2151
http://dx.doi.org/10.1143/JPSJ.51.2151
http://dx.doi.org/10.1143/JPSJ.51.2151
http://dx.doi.org/10.1143/JPSJ.51.2151
http://dx.doi.org/10.1103/PhysRevB.91.214412
http://dx.doi.org/10.1103/PhysRevB.91.214412
http://dx.doi.org/10.1103/PhysRevB.91.214412
http://dx.doi.org/10.1103/PhysRevB.91.214412
http://dx.doi.org/10.1016/0304-8853(83)90864-8
http://dx.doi.org/10.1016/0304-8853(83)90864-8
http://dx.doi.org/10.1016/0304-8853(83)90864-8
http://dx.doi.org/10.1016/0304-8853(83)90864-8
http://dx.doi.org/10.1016/S0304-8853(10)80110-6
http://dx.doi.org/10.1016/S0304-8853(10)80110-6
http://dx.doi.org/10.1016/S0304-8853(10)80110-6
http://dx.doi.org/10.1016/S0304-8853(10)80110-6
http://dx.doi.org/10.1088/0022-3719/19/6/011
http://dx.doi.org/10.1088/0022-3719/19/6/011
http://dx.doi.org/10.1088/0022-3719/19/6/011
http://dx.doi.org/10.1088/0022-3719/19/6/011
http://dx.doi.org/10.1103/PhysRevB.88.201402
http://dx.doi.org/10.1103/PhysRevB.88.201402
http://dx.doi.org/10.1103/PhysRevB.88.201402
http://dx.doi.org/10.1103/PhysRevB.88.201402
http://dx.doi.org/10.1103/PhysRevLett.106.206805
http://dx.doi.org/10.1103/PhysRevLett.106.206805
http://dx.doi.org/10.1103/PhysRevLett.106.206805
http://dx.doi.org/10.1103/PhysRevLett.106.206805
http://dx.doi.org/10.1073/pnas.1424322112
http://dx.doi.org/10.1073/pnas.1424322112
http://dx.doi.org/10.1073/pnas.1424322112
http://dx.doi.org/10.1073/pnas.1424322112
http://dx.doi.org/10.1103/PhysRevB.81.172408
http://dx.doi.org/10.1103/PhysRevB.81.172408
http://dx.doi.org/10.1103/PhysRevB.81.172408
http://dx.doi.org/10.1103/PhysRevB.81.172408
http://dx.doi.org/10.1103/PhysRevB.86.195116
http://dx.doi.org/10.1103/PhysRevB.86.195116
http://dx.doi.org/10.1103/PhysRevB.86.195116
http://dx.doi.org/10.1103/PhysRevB.86.195116
http://dx.doi.org/10.1103/PhysRevB.85.085439
http://dx.doi.org/10.1103/PhysRevB.85.085439
http://dx.doi.org/10.1103/PhysRevB.85.085439
http://dx.doi.org/10.1103/PhysRevB.85.085439
http://dx.doi.org/10.1126/science.1189792
http://dx.doi.org/10.1126/science.1189792
http://dx.doi.org/10.1126/science.1189792
http://dx.doi.org/10.1126/science.1189792
http://dx.doi.org/10.1038/srep15767
http://dx.doi.org/10.1038/srep15767
http://dx.doi.org/10.1038/srep15767
http://dx.doi.org/10.1038/srep15767



