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Nonlinear optical conductivity of U(1) spin liquids with large spinon Fermi surfaces
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In this paper we study the nonlinear current response of U (1) spin liquids with large spinon Fermi surfaces
under the perturbation of a time-dependent ac electric field E(t) within the framework of an effective U (1) gauge
theory. In particular, the third-order nonlinear current response to ac electric fields is derived. We show that as
in the case of linear current response, an in-gap power-law (∼ωη) response is found for the nonlinear current
at low frequency. The nonlinear susceptibility may also induce through process of third harmonic generation
propagating EM wave with frequency 3ω inside the spin liquids.
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A quantum spin liquid state is a Mott insulator without any
long-range magnetic order down to the lowest temperatures
[1,2]. For a long time, this exotic state exists only in
the theorists’ models. Recent experimental progress on the
organic compound κ − (ET)2Cu2(CN)3 [3–7] and a few other
candidate materials [8–14] have changed the situation. In the
case of κ − (ET)2Cu2(CN)3, the system is described by a
nearly isotropic spin-1/2 Hubbard model on the triangular
lattice, and it is believed that the insulator state is near the
Mott transition, where the charge excitations are gapped and
the spin-1/2 spinons form a Fermi surface. The dynamics of the
spin liquid state is described by an effective U (1) gauge
theory [15,16]. Several experimental results have confirmed
the Fermi-liquid-like behavior like the linear temperature
dependence of the specific heat [7], the Pauli-like spin
susceptibility [3], the nearly unity Wilson ratio, etc. [7,17].
These experiments suggest a deep relationship between the
unfamiliar spin liquid state and the well-studied Fermi
liquids.

The key feature of the U (1) spin liquids is the emergence
of an internal gauge field, which leads to unusual properties
of the spin liquid system [15]. As shown in Ng and Lee
[16], although the spinons are neutral and cannot respond
to the external gauge field directly, the emergent internal
gauge field will indirectly couple the external gauge field to
the chargeless spinons, yielding a power-law linear optical
conductivity inside the Mott gap. In the continuum limit,
existing theoretical studies suggested that these spin liquids are
described by an effective U (1) gauge theory Lagrangian [18]:

Leff = L(ψ†
σ ,ψσ ,a0,a) + Lg(a0,a),

L = ψ†
σ (i∂t − a0 − A0)ψσ − 1

2m0
|(∇ − ia − iA)ψσ |2,

(1)

Lg = 1

2g

[
1

v2
a

(
∂a
∂t

)2

− (∇ × a)2

]
+ L(2)

l (a0) + L(4)
g (a0,a).

Here ψ†
σ (ψσ ) are spin-σ fermion creation (annihilation) op-

erators, Aμ = (A0,A) is the external applied electromagnetic
field, and g and va are the coupling constant and effective ve-
locity of the internal gauge field aμ = (a0,a), respectively. We
set � = c = 1 in Eq. (1). L(2)

l is the effective (quadratic) action
for the longitudinal gauge field a0. The dynamics of the internal
gauge field can be derived from, for example, integrating out

the charge degree of the system in the slave-rotor approach [15]
or from an effective Landau Fermi-liquid-like approach [18],
typically to second order in fμν = ∂μaν − ∂νaμ. The Landau
Fermi liquid theory approach can be understood most easily
by neglecting L(4)

g and integrating out the internal gauge field
a in Leff . It is easy to see that an effective current-current
interaction between fermion fields ψ is obtained, which can
be identified with the Landau interaction F s

1 (q,ω) in the small
q,ω limit [18].

The charge current carried by quasiparticles in Lan-
dau Fermi liquid theory is given by j = (m/m∗)(1 +
F s

1 (0,0)/d)j(0), where j(0) is the charge current carried by the
corresponding noninteracting fermions. Zhou and Ng [18]
note that the current-current interaction derived from the
gauge theory Lagrangian Leff corresponds to the special point
1 + F s

1 (0,0)/d → 0, suggesting that the fermionic system is
in a special state where spin-1/2 quasiparticles do not carry
charge current in the long wavelength, low frequency limit,
which is exactly what we expect for spinons in quantum spin
liquids.

In this paper we keep also the fourth order terms in Lg ,

L(4)
g (a0,a) ∼ b1(e · e)2 + b2(b · b)2

+ b3(e · e)(b · b) + b4(e · b)2,

where e = −v−1
a ∂ta − ∇a0 and b = ∇ × a are the internal

electric and magnetic fields associated with the internal gauge
field aμ, respectively. These terms arises naturally in a lattice
gauge theory model [15] that respects time-reversal, inversion,
and rotational symmetry. The dynamics of internal gauge field
are all expressed in terms of the field strengths e and b because
of gauge invariance associated with internal gauge field in the
insulator state [15].

Previous studies in the electrodynamic properties of spin
liquid states mainly focused on the linear response of the
system, i.e., the conductivity tensor and dielectric function
[16,19]. In this paper we study the nonlinear response of U (1)
spin liquids with large Fermi surface to external EM fields. We
shall focus on the q → 0, ω �= 0 responses in this paper and
shall derive the third-order electric conductivity σ (3)(ω) for the
spin liquid state. In particular, we are interested in examining
whether a nonlinear I − V relation I ∼ V 1+β(β > 0) may
exist in spin liquid states. This is driven by the predicted
existence of power-law linear conductivity σ (1)(ω) ∼ ω2+α

in U (1) spin liquids [16]. The power-law conductivity leads
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to nonlinear I -V relation in many one-dimensional Luttinger
liquid systems [20].

Our approach consists of two steps: First we derive an
equation of motion for the fermion (spinon) current under
the perturbation of a time-dependent but spatially uniform
electric field E(t) from which the nonlinear responses of the
spinons to the total electric field can be computed. The equation
of motion is supplemented by an equation determining the
internal electric field e, and the two equations of motion are
solved self-consistently to determine the nonlinear responses
of the spin liquids to external electric fields.

I. EQUATION OF MOTION FOR FERMION
(SPINON) CURRENT

We first consider the equation of motion for the fermion cur-
rent under a time-dependent but spatially uniform electric field.
The time-dependent center-of-mass position vector R(t) ≡
1/N

∑
i〈ri(t)〉 (N = total number of fermions) satisfies the

equation of motion:

m0R̈(t) = 1

N

∫
ddr n(r,t)E(r,t) − 1

N

∫
ddr n(r,t)∇U (r)

+ 1

N

∫
ddr j(r,t) × B(r,t), (2)

where n(r,t) = 〈∑i δ(r − ri)〉 is the time dependent particle
density distribution function, and

j(r,t) = j0(r,t) − n(r,t)
m0

(A(r,t) + a(r,t))

is the total current density where j0(r,t) = 〈∑i[
pi

2m0
δ(r −

ri) + δ(r − ri)
pi

2m0
]〉 is the canonical current density, p =

canonical momentum. E = E + e and B = B + b are the total
electric and magnetic fields (E and B are the external electric
and magnetic fields, respectively), and U (r) is a background
disordered scalar potential the fermions see. The meaning of
this equation is clear: The first term on the right hand side is
just the electric force, the second term comes from disordered
potential, and the last term corresponds to the Lorentz force
contribution. The equation can be analyzed most conveniently
by performing a transformation to the center of the mass frame
of the spin liquid system [21] where the background disorder
potential becomes time dependent, i.e., U (r) → U (r − R(t)).

In the CM frame where n(r,t) = nCM (r − R(t),t) ≡
nCM (r′,t), we obtain for small λ from linear response
theory:

nCM (r′,t) = n
(0)
CM (r′) + λ

∫
ddr′′

∫
dt ′′ χd (r′,r′′,t − t ′′)

× u(r′′ − R(t ′′)),

where χd is the density-density response function for the
system in the absence of impurities. Putting this into Eq. (2)
and considering as usual disordered potentials U (r) = λu(r)
that satisfy

〈u(r)〉 = 0, 〈u(r)u(r′)〉 = |u|2δ(r − r′). (3)

We obtain after average over disorder [21]:

− 1

N

∫
ddr n(r,t)∇U (r)

� λ2|u|2
N

∫
dd r

∫
dt ′ ∇rχd (r − R(t),r − R(t ′),t − t ′),

= λ2|u|2
n

∫
dt ′ ∇R(t)χd (R(t) − R(t ′),t − t ′), (4)

where n = N/V and we have used the translational invariance
of the (clean) system in the last step. The result is valid to
second order in λ.

The expression can be simplified further if the applied
electric field E(t) ∼ E0e

−iωt is weak and its frequency ω

is small. In this limit R(t) is slowly varying and we may
approximate R(t) − R(t ′) ∼ Ṙ(t)(t − t ′) + (1/2)R̈(t)(t − t ′)2

and neglect higher order time-derivative terms. Then for a
system with inversion symmetry χd (−q,ω) = χd (q,ω), the
right hand side of Eq. (4) is related to the density-density
response function through [21]:

∫
dt ′ ∇R(t)χd (R(t) − R(t ′),t − t ′)

=
∑

q

iq
(

1 − i

2
q · R̈(t)

∂2

∂ω′2

)
χd (q,ω′)|ω′=q·Ṙ(t). (5)

Putting together Eqs. (2), (4), and (5), we obtain the equation
of motion:

m · R̈(t) = 1

N

∫
ddr n(r,t)E(r,t)

− λ2|u|2
n

∑
q

q Imχd (q,q · Ṙ(t))

+ 1

N

∫
ddr j(r,t) × B(r,t), (6)

where the effective mass is given by:

m = m0 − λ2|u|2
2n

∑
q

q2

d

∂2

∂ω′2 Reχd (q,ω′)|ω′=q·Ṙ(t), (7)

where d = system dimension. Notice that the second order
term R̈(t)(t − t ′)2 only leads to a weak mass renormalization
that is proportional to the strength of disorder λ2. For simplicity
we shall ignore this mass renormalization in the following and
shall use m = m0 to denote the mass of the fermions.

As Imχd (q,ω) �= 0 only at |ω/qvF | < 1, the leading order
contributions to the imaginary part of the density-density
response function is given by:

Imχd (q,ω) ∼ α1(q)
ω

qvF

+ α2(q)

(
ω

qvF

)3

+ · · · , (8)

where even order terms are zero, α1(q) and α2(q) are ω-
independent parameters. In 2D, we obtain for noninteracting
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fermions [20]

α1(q) = N (0)

[
1 + 1

2

(
q

2kF

)2

+ O((q/2kF )4)

]
,

α2(q) = N (0)

[
1

2
+ 5

4

(
q

2kF

)3

+ O((q/2kF )5)

]
,

and we obtain

λ2|u|2
n

∫
dt ′ ∇R(t)χd (R(t) − R(t ′),t − t ′)

= −m

τ
Ṙ(t) + γm3Ṙ(t)Ṙ(t)2, (9)

in the small ω limit where τ and γ are related to α1(q) and
α2(q) by

1

τ
= λ2|u|2

nkF

∫
dqd�qdα1(q) cos2 θ,

γ = −λ2|u|2
nk3

F

∫
dqd�qdα2(q) cos4 θ. (10)

Therefore in the absence of external magnetic field, the
equation of motion for the charge current j(t) ≡ n0eṘ(t) in
the weak field limit is:

mj̇(t) = n0e
2E(t) − m

τ
j(t) + n0e

2
∫

ddr [n0 + δn(r,t)]e(r,t)

+ γm3

(n0e)2
j(t)[j(t) · j(t)] + e

V

∫
ddr j(r,t) × b(r,t),

(11)

where we have decomposed the particle density n(r,t) into
a constant part n0 and a time-dependent part δn(r,t). The
varying part can be determined by the continuity equation
∂t δn + ∇ · j = 0, or after Fourier transformation, −ωδn + q ·
j = 0. Therefore, in the q → 0, ω �= 0 limit we consider in this
paper, δn(r,t) → 0. Similarly we can show usingLg(a0,a) that
b → 0 in this limit. In particular, Eq. (11) reproduces the usual
Drude conductivity if the nonlinear j3 term and the internal
electric field e = −v−1

a ∂ta − ∇a0 are neglected.

II. THIRD ORDER NONLINEAR CURRENT RESPONSE

To solve the above equation we need to determine the
internal gauge field a. Assuming that the internal gauge fields
are in the weak-coupling phase where charges are not confined,
the internal gauge field a can be determined to leading order in
g by the Lagrangian equation of motion δLeff/δa = 0, which
leads to the classical equation of motion (in the Coulomb gauge
and in the limit q → 0):

1

v2
a

∂2

∂t2
a(r,t) + 4b1

∂

∂t
[(∂ta(r,t))2∂ta(r,t)] = gj(r,t). (12)

Equations (11) and (12) together determine the current
response under the time-dependent electric field E(t), which
contain nonlinear effects up to third order in E. To solve
the equations, we first Fourier transform Eq. (12) in the
limit q → 0,

iω

v2
a

e(ω) + 4b1iω
∑
(lmn)

e(ωl)[e(ωm) · e(ωn)] = gj(ω),

where
∑

(lmn) ≡ ∑
ωl,ωm,ωn

δ(ω − ωl − ωm − ωn). Therefore
up to third order, the internal electric field e(ω) is related
to the total current j(ω) by

e(ω) = gv2
a

iω
j(ω) + ib

∑
(lmn)

j(ωl)[j(ωm) · j(ωn)]

ωlωmωn

,

where b = 4b1g
3v8

a . Lastly, we insert this result into Eq. (11),
obtaining

m(−iω)j(ω) = n0e
2E(ω) + n0e

2gv2
a

j(ω)

iω
− m

τ
j(ω)

+ γm3

(n0e)2

∑
(lmn)

[
1 + ib̄

ωlωmωn

]

× j(ωl)[j(ωm) · j(ωn)]. (13)

where b̄ = n3
0e

4b/γm3.
It is easy to see that up to third order in the external electric

field E the total current is given by:

j(ω) = σ (1)(ω)E(ω) + γ̄ σ (1)(ω)
∑
(lmn)

[
1 + ib̄

ωlωmωn

]

× σ (1)(ωl)σ
(1)(ωm)σ (1)(ωn)E(ωl)(E(ωm) · E(ωn)),

(14)

where γ̄ = γm3/n3
0e

4 and σ (1)(ω) is the linear conductivity
given by:

σ (1)(ω) = ωσ0(ω)

ω + iβσ0(ω)
, (15)

where σ0(ω) is the ac Drude conductivity σ0(ω) = σ0/(1 −
iωτ ) and β = gv2

a . We note that there is no distinction
between longitudinal and transverse currents in the limit
q → 0. The linear conductivity σ (1)(ω) is consistent with
the result obtained through Ioffe-Larkin composition rule in
the framework of U (1) gauge theory [16,18], which leads
to the power-law optical conductivity in the Mott gap. The
nonlinear terms are results of nonlinearity in the quasiparticle
scattering (Imχd ) and the presence of L(4)

g . In the small-ω
limit, σ (1)(ω) ∼ ω/(iβ), and the nonlinear response reduces to
a simple form:

j(3)(ω) ∼ − γ̄ b̄

β3
σ (1)(ω)

∑
(lmn)

E(ωl)(E(ωm) · E(ωn)). (16)

Therefore our theory predicts that in the low frequency
limit, there is a third-order correction to the current, i.e.,

j(ω) = σ (1)(ω)E(ω) +
∑
(lmn)

σ (3)(ωl + ωm + ωn)E(ωl)

× (E(ωm) · E(ωn)), (17)

with σ (3)(ω) proportional to σ (1)(ω). In particular, we do not
find any instabilities in our nonlinear equations, suggesting
that there is no nonlinear I -V relation in the spin liquid state.

III. NONLINEAR OPTICAL WAVE GENERATION

The nonlinear conductivity leads to another interesting
consequence when the optical response of the system is
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considered. We note that the spin liquid system can be treated
as a nonlinear medium, where the linear electric susceptibility
χ (1) and the third-order nonlinear electric susceptibility χ (3)

are given by:

χ (1)(ω; ωn) = iσ0(ω)

ω + iβσ0(ω)
, (18a)

χ (3)(ω; ωl,ωm,ωn) = γ̄ χ (1)(ω)

[
1 + ib̄

ωlωmωn

]

× σ (1)(ωl)σ
(1)(ωm)σ (1)(ωn). (18b)

As shown in Ma and Ng [19], the complex linear sus-
ceptibility leads to surface plasmon modes propagating along
the interface between a linear medium and the spin liquids
in the linear response regime. Assuming a boundary along
the y direction at x = 0, the surface mode has a form
ES(r,t) = A1(ω)eik1·r−iωt + c.c., where k1 = (k1s ,k,0) is the
wave vector, and A1(ω) is the amplitude of the electric field.
The components of the wave vector k1 are given by [22]:

k2 = ω2

c2

ε0ε
(1)(ω)

ε0 + ε(1)(ω)
, (19a)

k2
1s = ω2

c2

[ε(1)(ω)]2

ε0 + ε(1)(ω)
, (19b)

where ε0 is the dielectric constant of the linear medium
(the vacuum), and ε(1)(ω) = 1 + 4πχ (1)(ω) is the dielectric
function of the nonlinear medium (the spin liquids). We are
interested at surface modes where k is nearly real and k1s

is nearly imaginary. It was shown in Ma and Ng [19] that a
sizable frequency range where this condition is met is found
in spin liquids (with large spinon Fermi surfaces) close to
metal-insulator transition.

The surface wave will induce a nonlinear electric polariza-
tion:

P3(3ω) = e3χ
(3)(3ω; ω,ω,ω)A3

1(ω)eik3s ·r−i3ωt , (20)

where e3 is the direction of the polarization vector, and
k3s = 3k1. The nonlinear polarization P3(3ω) acts as a source
term in the nonlinear wave equation

∇ × ∇ × Es(3ω) − (3ω)2

c2
ε(1)(3ω) · Es(3ω)

= 4π (3ω)2

c2
e3P3(3ω)eik3s ·r (21a)

and generates radiation with frequency 3ω [23,24]. The
solution of the nonlinear wave equation contains a particular
part with wave vector k3s and a homogeneous part with wave
vector k3 where k2

3 = (3ω)2

c2 ε(1)(3ω), i.e.,

Es(3ω) = A3P (3ω)eik3s ·r + A3H (3ω)eik3·r. (21b)

In the presence of boundary, the particular and homoge-
neous solutions are coupled. Solving the wave equations with
an incoming wave with frequency ω at angle θI upon the
boundary at x = 0 (see Fig. 1), we find that the particular

3,

3
3

FIG. 1. The surface modes (with frequency ω) supported by the
linear complex susceptibility ε(1) (Here the Otto configuration has
been used to excite the surface modes: The three layers (1|2|3)
are prism, linear medium (e.g., the vacuum), and the spin liquids,
respectively.) will induce the waves with frequency 3ω that can
propagate in the spin liquids. If the propagation angle θ3 � π/2,
it can be distinguished from other surface waves and is detectable.

solution can be chosen as [23,24]:

A3P (3ω) = 4πP3(3ω)

εs(3ω) − ε(1)(3ω)

(
e3 − k3s(k3s · e3)

k2
3

)
,

where εs(3ω) ≡ c2

(3ω)2 k
2
3s . Matching the phase factors at the

boundary leads to Snell’s law:

k3,y = k3s,y = 3k, (22)

and the amplitude of the homogenous part is found to be:

A3H = − 4πP3(3ω)

εs(3ω) − ε(1)(3ω)

√
ε0 cos θ3s + √

εs(3ω) cos θI√
ε0 cos θ3 +

√
ε(1)(3ω) cos θI

,

where θ3s and θ3 are the propagation directions of the particular
part and the homogenous part, respectively. θ3s is related to θI

and ω through Snell’s law:
√

ε0 sin θI =
√

ε(1)(ω) sin θ3s . (23)

The particular part (with wave vector k3s = 3k1 =
(3k1s ,3k,0)) decays rapidly in the nonlinear medium as
k1s is nearly pure imaginary when k is real. However the
homogeneous part decays rather slowly and can propagate
in the nonlinear medium [19]. The propagation direction of
the waves is given by

tan θ3 = k3,y

k3,x

= 3k√
(3ω)2

c2 ε(1)(3ω) − (3k)2
. (24)

For θ3 � π/2, the wave will propagate away from the
boundary and can be distinguished from the other surface
waves as shown schematically in Fig. 1.
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FIG. 2. Real and imaginary parts of the propagation angle θ3 of
the waves with frequency 3ω. We take τ−1 = 0.1ω in the calculation
[19]. It clearly shows that in some frequency region, the angle is
nearly real θ3 � π/2. If we choose ε(∞) = 2.5, for incident wave
with frequency ω = 0.4ωP , the propagation angle is about θ3 ≈ 52◦.

For the U (1) spin liquids, the linear dielectric function can
be written as [19],

ε(1)(ω) = ε(∞) − ω2
P

ω2 − ω2
g + iωτ−1

, (25)

where ε(∞) is the background dielectric constant, and ω2
g =

βω2
P /4π with ωP the plasma frequency. With Eq. (24), it is

straightforward to show that in the limit τ → ∞, θ3 < π/2 if

1

ε(1)(3ω)
− 1

ε(1)(ω)
<

1

ε0
, (26)

where we choose ε(1)(3ω) > 0. For nonzero τ this condition
is satisfied in a narrower frequency region. The real and
imaginary parts of θ3 is shown in Fig. 2 for τ = 0.1ω with
a background dielectric constant ε(∞) = 2.5. We see that
there is a finite frequency range where Imθ3 is small and
Reθ3 < π/2. In particular, the propagation angle of the waves
in third harmonics generation with frequency 3ω is θ ≈ 52◦,
generated by an incident wave with frequency ω = 0.4ωP ,
which also lies in the frequency range where the surface
plasmon mode exists.

Lastly we estimate the magnitude of the nonlinear effect.
We consider the nonlinear susceptibility

χ (3)(3ω; ω,ω,ω) = γ̄ χ (1)(3ω)

[
1 + ib̄

ω3

]
[σ (1)(ω)]3.

In the typical frequency scale ωP ∼ 1012s−1 where the
surface plasmon emerges, the linear conductivity lies in the
scale σ (1)(ω) ∼ �−1cm−1 [19], and the magnitude of the
linear susceptibility is of order χ (1)(3ω) ∼ σ (1)(3ω)/3ω ∼
10−10 �−1m−1s. From Eq. (10), we also find γ ∼ 1/(k2

F τ ) ∼
τ−1/(2mεF ), where εF ≈ 10 meV is the Fermi energy. Choos-
ing τ ∼ 10−12s and σ (1)(ω)/σ0 ∼ 1 and γ̄ = γm3/n3

0e
4 =

γ e2τ 3/σ 3
0 . The first term of the nonlinear susceptibility is thus

of order:

χ (3)(3ω) ∼ e2τ 2

2mεF

χ (1)(3ω)

[
σ (1)(ω)

σ0

]3

∼ 10−21 m2/V2.

For the second term, g is a dimensionless coupling constant of
order unity [15], and a simple dimension analysis gives b1 ∼
1/gv2

aE
2
c , where Ec is a microscopic energy scale for charge

fluctuation. For system close to metal-insulator transition,
Ec ∼ εF , and va ∼ vF ∼ 10−4c. Thus, as a rough estimation,
the second term is of order

χ (3)(3ω) ∼ b[χ (1)(ω)]4 ∼ g3v8
a

gv2
aε

2
F

[χ (1)(ω)]4 ∼ 10−22 m2/V2,

which is smaller than the first term in the frequency scale
considered. We can see the magnitude of the nonlinear
susceptibility is comparable with the typical value χ (3) ∼
10−20 m2/V2 [24]. Thus we expect the third harmonic gen-
eration process can be observed experimentally in the U (1)
spin liquids.

IV. CONCLUSION

Summarizing, we study in this paper the nonlinear response
of U (1) spin liquids under the perturbation of a time-dependent
but spatially uniform electric field within the framework of a
U (1) spin liquid theory. The third-order optical conductivity
σ (3)(ω) is determined where we show that it has the same low
energy power-law structure as the linear optical conductivity
σ (1)(ω). We show that the nonlinear optical conductivity leads
to an interesting, observable phenomenon where the surface
modes with frequency ω supported by the complex linear
susceptibility generates through the third-order process an
EM wave with frequency 3ω which can propagate inside the
nonlinear medium. This excited mode can be detected in an
Otto configuration.
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