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Signatures of Majorana fermions in an elliptical quantum ring
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We have investigated the signatures of zero-energy Majorana fermions in an anisotropic semiconductor
quantum ring that contains a few electrons, has a strong spin-orbit interaction, and proximity coupled to an
s-wave superconductor. We have found that for rings with sizes of few hundred angstroms and for certain range
of values of the chemical potential and an applied magnetic field, the system is very likely in a topological
phase with possible indications of the presence of Majorana fermions. In particular, the ground-state energies and
the average electron numbers for the states with even and odd electron numbers are almost identical. We have
analyzed the wave functions of Majorana fermions in the ring and have shown that Majorana fermions are well
separated from each other in the angular coordinates. We have also determined the charge-density jumps due
to the presence of the Majoranas, that are found to be uniformly distributed along the ring and can perhaps be
detected by scanning charge measurements. While a definitive proof of the existence of these exotic particles in a
ring has not been provided here, our study indicates the likelihood of the presence of these objects in our chosen
system. As the semiconductor quantum rings with a few interacting electrons are available in the laboratories,
we believe that the long sought-after Majorana fermions could perhaps be observed in such a system.
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I. INTRODUCTION

Search for Majorana fermions (MFs), the particles that are
their own antiparticles [1,2] has intensified in recent years.
This is fueled by the possibility to observe the analogs of
MFs in condensed matter systems, where they are expected to
materialize in the form of zero-energy Majorana quasiparticles
[3–5]. These MFs are governed by the non-Abelian exchange
statistics. The proposed hybrid semiconductor-superconductor
nanostructured systems [4–6] are believed to be the most
likely construct hosting such exotic excitations [7], and have
naturally received considerable attention by various experi-
mental groups [8–12]. Experimental efforts have also focused
on ferromagnetic atomic chains [13] that are in close proximity
to a conventional superconductor. A promising route for
realization of the MFs [6] is the observation of the topological
superconducting phase in a one-dimensional semiconductor
quantum wire with large Rashba spin-orbit (SO) coupling [14],
proximity coupled to an s-wave superconductor. By tuning the
chemical potential of the system in the gap region created by
an applied magnetic field, the system is effectively rendered
spinless and the MFs are expected to reside at the two ends
of the wire, akin to Kitaev’s original p-wave superconductor
chain model [15].

Here we show that, semiconductor quantum rings (QR)
with their doubly connected geometry and consequent unique
quantum properties could perhaps reveal the unique signatures
of MFs in such a system. Observation of the Aharonov-Bohm
oscillations [16] and the persistent current [17] in small semi-
conductor QRs, and the recent experimental realization of QRs
with only a few electrons [18,19] have made QRs an attractive
topic for experimental studies and a unique playground for
various many-body effects in these quasi-one-dimensional
systems [20]. Although almost circular or slightly oval-shaped
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QRs have been fabricated by various experimental groups
[21–23], anisotropic QRs are the ones most commonly ob-
tained during the growth process [23–26]. Elongated InAs/InP
QRs were fabricated by several groups [25,26]. Our studies
indicate that an elongated InAs semiconductor QR containing a
few electrons, proximity coupled to an s-wave superconductor
could be an excellent candidate for detecting signatures of MFs
since the energy spectrum of this system contains a lot of level
crossings due to Aharonov-Bohm oscillations. This periodic
energy spectrum for a few interacting electrons entails the
suitable conditions required, in particular, with the help of
the applied magnetic field we can bring two energy levels
with even and odd number parity close to each other thereby
facilitating the existence of MFs in such a QR.

II. THEORETICAL FRAMEWORK

In the following, we consider a two-dimensional elliptical
QR with strong Rashba SO coupling [14], proximity coupled to
an s-wave superconductor. In order to model the elliptical ring,
we use the procedure outlined previously [27]. In particular,
we define the coordinate system in the form x = ar cos θ, y =
br sin θ, where a and b are constants (which are chosen to
have the dimension of length), which define the ellipticity of
the QR, while r is the dimensionless radius used to define the
size of the QR. We choose the confinement potential of the
QR with infinitely high borders: Vconf(r) = 0, if R1 � r � R2

and infinity otherwise. Clearly, for a = b, the QR is circular,
while for a �= b, the QR has elliptical boundaries with the
eccentricity defined as ε =

√
1 − b2/a2.

In the absence of a superconducting pairing potential, the
Hamiltonian of our system is

H =
Ne∑
i

Hi
SP + 1

2

Ne∑
i �=j

Vij , (1)
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where Ne is the number of electrons in the QR,

Vij = e2e−λ|ri−rj |

ε|ri − rj | (2)

is the Yukawa-type screened Coulomb interaction term with
screening parameter λ [28], and ε is the background dielectric
constant. Finally, HSP is the single-particle Hamiltonian in the
presence of an external perpendicular magnetic field and with
the SOI included

HSP = H0 + HSO = 1

2me

�2 − μ + Vconf(r)

+ 1

2
gμBBσz + HSO, (3)

where � = p + e
c
A, A = B/2(−y,x,0) is the vector potential

of the applied magnetic field along the z axis in the symmetric
gauge, and μ is the chemical potential. The third term on the
right-hand side of (3) is the Zeeman splitting. The last term
describes the Rashba SOI [14]

HSO = α

�
[σ × �]z, (4)

with α being the SOI parameter, which depends on the asym-
metry in the z direction, generated either by the confinement or
by the electric field. We take as basis states the eigenfunctions
of H0 with B = 0 when the ring is circular (a = b). The
eigenfunctions of this Hamiltonian then have the form [29]

φnl(r,θ ) = C

2π
eilθ

(
Jl(γnlr) − Jl(γnlR1)

Yl(γnlR1)
Yl(γnlr)

)

= 1

2π
eilθχnl(r), (5)

where Jl(r) and Yl(r) are Bessel functions of the first and
second kind respectively, γnl = 2mea

2Enl/�
2, where Enl are

the eigenstates defined from the boundary conditions, and
the constant C is determined from the normalization integral∫ 2π

0 dθ
∫ R2

R1
dra2r|φnl(r,θ )|2 = 1. For convenience, we choose

the following orthonormal basis states for the elliptical ring:

nl(r,θ ) = 1

2π

√
a

b
eilθχnl(r) =

√
a

b
ψnl(r,θ ), (6)

where the
√

a/b term is included so that the basis states are
normalized as

∫ 2π

0 dθ
∫ R2

R1
rdr ab|nl(r,θ )|2 = 1.

The second-quantized form of the many-body Hamilto-
nian (1) is

H =
∑
n′l′nl

(∑
s

〈n′l′|H0|nl〉c†n′l′scnls + iα

�
〈n′l′|�−|nl〉

× c
†
n′l′↑cnl↓ − iα

�
〈n′l′|�+|nl〉c†n′l′↓cnl↑

)

+ 1

2

∑
n′

1l
′
1,n

′
2l

′
2

∑
nl1,n2l2

∑
s1s2

〈n′
1l

′
1,n

′
2l

′
2|V12|n1l1,n2l2〉

× c
†
n′

1l
′
1s2

c
†
n′

2l
′
2s1

cn1l1s1cn2l2s2 , (7)

where c
†
nls and cnls are creation and annihilation operators

and �± = �x ± i�y . The nonzero matrix elements for the

noninteracting term are (i) for l′ = l,

〈n′l|H0|nl〉 = Enl

2

(
1 + a2

b2

)
δn′n + �ωBl

4

(
a

b
+ b

a

)
δn′n

+ e2B2

16mc2
(a2 + b2)�(3)

n′l,nl,

(ii) for l′ = l + 2,

〈n′l′|H0|nl〉 = Enl

4

(
1 − a2

b2

)
�

(1)
n′l′,nl

− �
2γnl(l + 1)

4me

(
1

a2
− 1

b2

)
�

(0)
n′l′,nl

+ �ωBγnl

8

(
a

b
− b

a

)
�

(2)
n′l′,nl

+ e2B2

32mec2
(a2 − b2)�(3)

n′l′,nl

= 〈nl|H0|n′l′〉,

(iii) for l′ = l + 1,

〈n′l′|�+|nl〉 = i�γnl

2

(
1

a
+ 1

b

)
�

(1)
n′l′,nl + ieB

4c
(a + b)�(2)

n′l′,nl,

〈n′l′|�−|nl〉 = i�γnl

2

(
1

a
− 1

b

)
�

(1)
n′l′,nl − ieB

4c
(a − b)�(2)

n′l′,nl,

and (iv) for l′ = l − 1,

〈n′l′|�+|nl〉 = i�

(
γnl

2
�

(1)
n′l′,nl − l�

(0)
n′l′,nl

)(
1

a
− 1

b

)

+ ieB

4c
(a − b)�(2)

n′l′,nl,

〈n′l′|�−|nl〉 = i�

(
γnl

2
�

(1)
n′l′,nl − l�

(0)
n′l′,nl

)(
1

a
+ 1

b

)

− ieB

4c
(a + b)�(2)

n′l′,nl .

In the above equations ωB = eB/mec is the cyclotron fre-
quency and �

(m)
n′l′,nl and �

(m)
n′l′,nl are integrals defined as follows:

�
(m)
n′l′,nl =

∫ R2

R1

dra2rmχn′l′(r)χnl(r), (8)

�
(m)
n′l′,nl =

∫ R2

R1

dra2rmχn′l′ (r)Knl(r), (9)

where

Knl(r) = C(Jl+1(γnlr) − Jl(γnlR1)Yl+1(γnlr)/Yl(γnlR1)).

In order to evaluate the matrix elements for the Coulomb
interaction, we first consider the Fourier transform of the
Coulomb potential, which for the case of the Yukawa type
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screened potential is V (k) = 2πe2/ε
√

λ2 + k2. Then the matrix elements can be written as

〈n′
1l

′
1,n

′
2l

′
2|V12|n1l1,n2l2〉 = e2

2πε
(−1)l1−l′2 i(l1+l2−l′1−l′2) ×

∫ ∞

0
kdk

∫ 2π

0
dθk

ei(l1+l2−l′1−l′2)θk√
λ2a2b2 + k2b2 cos2 θk + k2a2 sin2 θk

×
∫ R2

R1

r1 dr1a
2χn′

1l
′
1
(r1)χn2l2 (r1)Jl2−l′1 (kr1) ×

∫ R2

R1

r2 dr2a
2χn′

2l
′
2
(r2)χn1l1 (r2)Jl1−l′2 (kr2). (10)

In order to derive the form of the induced superconducting
potential for the QR, we start from its general form written
with the help of the field operators [5]

HSC =
∫

d2r�↓(r)�(r)�↑(r) + H.c., (11)

where for the s-wave superconductor �(r) = �e−inθ and
n = [2/0] [30,31]. Here, � is real,  = πabR2

1B, 0 =
hc/e and [v] denotes the integer closest to v. By making a
transition from the field operators to creation and annihilation
operators defined for the basis (6): �s(r) = ∑

nl nl(r,θ )cnls ,
we write the final form for the superconducting potential as

HSC = �
∑
n′nl

�
(1)
n′(n−l),nl[cn′(n−l)↓cnl↑ + c

†
n′(n−l)↑c

†
nl↓].

(12)
In order to evaluate the eigenstates of the total Hamiltonian
HPSC = H + HSC, we use the exact diagonalization procedure
to diagonalize HPSC in even and odd sectors as reported
earlier [28]. For example, for the odd sector, we diagonalize
HPSC for a system with nonconstant number of electrons,
namely 1,3, . . . ,Ne electron number basis. A similar proce-
dure is employed for the even sector as well. This gives us the
possibility to obtain the low-lying energy states and the wave
functions both for even and odd sectors very accurately.

We employ several different approaches to identify the
signatures of well separated MFs in the system. In condensed
matter systems, isolated MFs are zero-energy quasiparticle
excitations and they do not carry a charge [4]. The fermion
number parity is a good quantum number. Therefore adding
a nonlocal electron which is comprised of two well separated
MFs in the system will not alter the total energy or the charge of
the system. Even in the case of the system without boundaries
where isolated MFs usually reside, the phase transition be-
tween the trivial and nontrivial (topological) superconducting
states results in closing of the superconducting bulk gap.
Based on this premise the first parameter which is used for
identifying the phase transition between two superconducting
phases and the appearance of isolated MFs is the energy
difference between the odd and even sector [32]

�E = |Eodd − Eeven|. (13)

This quantity is expected to vanish in the topological phase but
remains finite for the ordinary superconducting state [32]. The
next parameter is the charge difference between the even and
odd sector �N , which is equal to the mean electron number
difference between the two sectors. In order to evaluate this
parameter, we first calculate the particle densities in each sector

ρeven,odd(r) =
∫

dr2dr3 . . . |�even,odd(r,r2, . . . )|2, (14)

where �even,odd(r1,r2, . . . ) is the wave function of the system
in the odd and even sector. It is given as a superposition of
basis wave functions with different number of electrons up to
a maximum number Ne due to the cutoff used in our exact-
diagonalization scheme. Clearly, the basis wave function with
different number of electrons are orthogonal to each other
and the number of integrals in (14) should be taken equal to
the number of electrons for each basis state component of
�even,odd(r1,r2, . . . ) considered as the integrand.

It is known that for a semiconductor quantum wire in the
topological superconducting phase, changing the parameters
of the system, such as the chemical potential or the magnetic
field strength, results in a change of the ground-state parity.
For a finite size wire, this is accompanied by a jump of the total
electron number and the charge due to the jump is spread along
the wire and has an oscillating behavior [33]. Therefore we
first calculate the difference between the particle densities in
odd and even sector �ρ(r) = ρodd(r) − ρeven(r) and compare
our results for the ring with what one expects in a quantum
wire [33]. The charge difference between the odd and even
sector �N is the cumulative difference between the particle
densities, i.e., �N = ∫

dr�ρ(r). Finally, we also calculate
the MF probability distributions directly using the procedure
outlined previously [28,32]

p(j )(r,θ ) =
∑

s

∣∣∣∣∣
∑
nl

d
(j )
nls

∗
nl(r,θ )

∣∣∣∣∣
2

, (15)

where d
(j )
nls are the expansion coefficients of the linear expan-

sion of the MFs operators γa in terms of the electron creation
and annihilation operators c

†
nls and cnls . Here, j = 1 and j = 2

correspond to two Majorana states which are the constituents
of the nonlocal electron.

III. RESULTS AND DISCUSSION

For our present work, we consider the InAs semiconductor
QR with parameters: me = 0.042m0, where m0 is the bare
electron mass, g = −14, ε = 14.6 [34], and the SO coupling
strength α = 20 meV nm [35]. We take the superconducting
pairing potential strength to be � = 0.225 meV and consider
the cases when n = [2/0] or n = 0. As for the ring
geometry parameters, we take R1 = 3 and R2 = 8, a = 10
nm. For b, we have used two values b = 6 and 8 nm,
which correspond to values of eccentricities of the elliptical
boundaries ε = 0.8 and 0.6, respectively. In what follows, we
disregard the interaction between electrons, which means that
we take λ = ∞. The role of interaction in our scheme will be
addressed below.

In Fig. 1, the magnetic field dependence of the low-lying
states are presented for a single electron in an elliptical QR for
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FIG. 1. The dependence of the low-lying energy states on
magnetic field B for a single electron in an elliptical quantum ring
for (a) b = 6 nm and (b) b = 8 nm. Chemical potential is chosen to
be μ = 0.

b = 6 nm (a) and b = 8 nm (b). Reduction of the symmetry
of the ring from circular to C2 due to ellipticity results in a
separation of the low-lying two energy states (for each spin
component) from the other states. This can be clearly seen in
Fig. 1, where four energy levels are separated from the higher
excited states by more than 1 meV. For b = 6 nm, the two
states for each spin direction are so close to each other that they
cannot be distinguished in the Fig. 1(a). Further, the Aharonov-
Bohm oscillations are observed both for the low-lying group of
states and also for higher excited states. It should be noted that
observation of Aharonov-Bohm oscillations for the low-lying
states means that there is a finite probability for electrons to
transfer from one side of major axis of the QR to the other. As
will be shown below, this is essential for confining two MFs of
the nonlocal electron at the two sides. For consideration of the
topological phase, we will tune the chemical potential in the
energy range of the low-lying quadruplet. Due to the fact that
� < 1 meV, we can limit the maximum number of electrons to
four. Therefore for the odd sector we will consider the number
of electrons to be one or three. For the even sector, considering
the system size up to four electrons, results in a Hilbert space
size bigger than 700 000, which makes the calculation of the
energy levels quite challenging. In order to make the Hilbert
space smaller for the even sector, we will take the number of
electrons to be zero or two. This approximation is valid only
when the separation between the two doublets in the quadruplet
is comparable to �, which is true for B > 0.3 T.

In Fig. 2, the dependence of the ground-state energies
for the even and the odd sector is shown as a function of
(a) the magnetic field B and (b) the chemical potential μ.

FIG. 2. The dependence of the energies of the ground states of odd
and even sector on the magnetic field B (a) and the chemical potential
μ (b). Insets show the absolute difference between the energies of the
ground states. The ring parameter is b = 6 nm and n = 0.

FIG. 3. Same as in Fig. 2 but for b = 8 nm.

The ring parameter b is taken to be equal to 6 nm and
the superconducting phase n = 0. Insets show the absolute
energy difference for the same ranges. As can be seen from
Fig. 2(a) for the magnetic field range B = 0.28–0.55 T,
the two ground states come close to each other and the
energy difference is less than 0.05 meV. In a quantum wire
proximity coupled to an s-wave superconductor, the wire is
in the topological phase above certain threshold values of
the magnetic field (VZ >

√
μ2 + �2, where VZ is the Zeeman

energy) and remains so, as long as the magnetic field is not
strong enough to suppress s-wave pairing due to the spin
alignment. That is not the case here for the QR, because
the orbital effects and the Aharonov-Bohm oscillations play a
substantial role and push the states far from each other after
a certain magnetic field. Therefore, for a QR, we get only
a range of about 0.3 T when the QR is in the topological
state. Although Fig. 2 corresponds to the case when n = 0,
considering n = [2/0] does not have any effect on the
results for b = 6 nm, because in this case [2/0] = 0 up to
B = 0.6 T. A similar feature of the odd and even ground states
being close to each other is observed also for the dependence
on μ and is depicted in Fig. 2(b). The range of the topological
phase spans from μ = 4.85 to 5.2 meV. There is a crossing
inside this range between the ground-state energies of the two
sectors and therefore the absolute energy difference shows
oscillatory behavior.

In Fig. 3, the same dependence is shown as in Fig. 2 but
for the ring parameter b = 8 nm. As can be seen from Fig. 3,
similar patterns are observed for the ground states in the even
and odd sectors, just as for b = 6 nm. The magnetic field range
where the two ground states come close to each other is slightly
shifted to higher magnetic fields, namely B = 0.34–0.66 T, but
the range remains almost the same. The same is also true for
the chemical potential range, although that range is shifted
by 1 meV to the smaller values, which is the consequence
of the single-particle energy difference between b = 6 nm
and b = 8 nm as is shown in Fig. 1. This confirms that the
obtained results for the odd and even ground states coming
close to each other is not accidental, or only for the choice of
b = 6 nm, but rather a clear indication of the topological phase
which is universal for the anisotropic QR. This will result in
the observation of confined MFs inside the topological phase
region, as will be shown below. The same dependencies as
in Fig. 3, but for n = [2/0] are shown in Fig. 4. As can
be seen from the results for b = 8 nm, the transition between
n = 0 and n = 1 takes place in the topological phase region
and this has a detrimental effect on the robustness of the
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FIG. 4. Same as in Fig. 2 but for b = 8 nm and n = [2/0].

topological phase or the extent of confinement of the MFs. For
the magnetic field dependence, the topological phase range is
about 0.12 T and is considerably reduced compared to the case
of n = 0. As for the chemical potential dependence, while
the range where even and odd ground states come close to
each other is the same as for n = 0, the absolute difference
between the energies is considerably higher and reaches up to
0.1 meV for μ = 4.1 meV. This is a clear indication of the
increase of the overlap between two MFs confined at the two
sides of the major axis of the QR.

In order to confirm that the pattern observed above is related
to the phase transition between nontopological and topological
phases in Fig. 5, we present the dependence of the difference
between the first excited and the ground-state energies (�E)
of the odd and even sectors on the magnetic field B and (a) the
chemical potential μ (b), for the ring parameter b = 8 nm and
the superconducting phase n = 0. As for the magnetic field
dependence of �E, there is a minimum at B = 0.44 T for the
even sector and B = 1 T for the odd sector. The difference
is exactly zero for the odd sector at the minimum, whereas
it is 0.05 meV for the even sector. These locations where the
minima occur correspond to the closing of the superconducting
bulk gap. They are slightly shifted from the positions where the
ground states in the even and odd sectors come close to each
other and cross. This discrepancy and also the result that for
the even sector �E is not exactly zero can be attributed to the
computational limitations of our exact-diagonalization scheme
in obtaining the excited state energies with desired accuracy
because of the cutoff in the basis states necessarily used in
the calculation. In Fig. 5(b), similar results are observed for
the chemical potential (μ) dependence. The minima appear at
μ = 3.92 meV for the even sector and at μ = 4.16 meV for

FIG. 5. The difference between the first excited and the ground
state energies of odd and even sector vs the magnetic field B (a) and
the chemical potential μ (b). The ring parameter is b = 8 nm and
n = 0.

FIG. 6. The MF probability distribution inside the ring for B =
0.5 T, μ = 3.95 meV, and for ring parameter b = 8 nm. In (a) and
(b), we show the contour plots of the MF probability distribution
for the MF(1) and MF(2) as defined by (15). (c) The dependence of
MF probability distribution on angle θ for MF(1) and r = 5.5. In all
figures, n = 0.

the odd sector. Although the minimum of �E for the even
sector is again around 0.05 meV, the locations of the minimum
are in better agreement with the crossing points observed in
Fig. 3(b). This is perhaps an additional indication that the
observed pattern of even and odd sector ground-state energies
being close to each other is likely related to the topological
and nontopological phase transition in the system.

Further support for the existence of confined MFs in our
QR comes from the MF probability distribution [as defined
by (15)] in Figs. 6(a) and 6(b) with b = 8 nm, B = 0.5 T, and
μ = 3.95 meV. Here the contour plots of the MF probability
distribution are shown for MF(1) and MF(2). Clearly, each
MFs are located at one side of the major axis of the QR. In
particular, MF(1) is confined in the location of the QR with
θ = π and MF(2) in location with θ = 0, while both MFs are
mostly confined in the center of the QR along the r direction.
Similar distribution is also observed for b = 6 nm. In Fig. 6(c),
the dependence of the MF distribution on the angle θ is shown
for MF(1) and r = 5.5 (this corresponds to the center of the
QR in the r direction). The MF distribution has a Gaussian
form and the probability of the MF(1) on the other side of the
major axis of the QR is considerably smaller than at the side
where it is mostly confined. The reason why a QR with sizes of
a few hundred angstrom is enough to localize the MFs is that
the infinite central barrier of the QR prevents a direct overlap of
the MFs. The only way the MFs can overlap would be through
two narrow strips that connect the two sides of the major axis
of the QR. This property is only present in a QR and not in
other low-dimensional systems, such as the quantum wires or
quantum dots [36]. By changing the value of the parameter
b away from that of a, the transfer amplitude between the
two sides of the QR can be controlled. Further, confined MFs
appear only at the major axis of the QR, which means that the
direction at which the QR is elongated defines where the MFs
will likely be confined. Therefore it is important to note that in
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FIG. 7. (a) Contour plot of the difference between the single-
particle densities of the many-body states in odd and even sector for
b = 8 nm. The parameters are B = 0.5 T, n = 0, and μ = 3.95 meV.
(b) The dependence of the difference between the single-particle
densities on the angle θ for r = 5.5 and for the same parameters as
in (a).

a QR, both the position of the MFs and the extent by which they
are confined can be controlled by external means. This is an
important outcome for moving the Majoranas along the ring.

Finally, in Fig. 7(a), the contour plot of the difference
between the single-particle densities of the many-body states
in odd and even sectors is presented for a QR with b = 8 nm.
The magnetic field is B = 0.5 T and the chemical potential
is μ = 3.95 meV. The dependence of the same single-particle
densities on angle θ for r = 5.5 is presented in Fig. 7(b). We
have calculated the mean electron number difference for these
parameter values and have found that �N = 0.32. The mean
electron number difference being less than one indicates once
more that the MFs of the nonlocal fermion are confined at the
two sides of the major axis of the QR. Figure 7 shows how
this charge difference is distributed in the ring. In fact, these
two figures indicate that it is mostly confined in the center part
of the ring in the r direction but is spread through the whole
ring in the θ direction and has the oscillatory behavior with
maxima at the two sides of the QR. This result is in accord with
the result for a semiconductor wire [33], and as proposed in
case of the wire it can be used in the single-electron transistor
measurement as an indication of the topological phase and
confined MFs.

We have also done similar studies with the Coulomb
interaction included. As was noted earlier [28], some screening
is essential for the stability of the topological phase. Therefore
we have done the calculations using the screening parameter
value λ = 0.1 nm−1. While a detailed study of the complete
phase diagram is needed to understand the comprehensive
effect of interaction on the obtained results, our results for
some points in the diagram indicate that in most cases the
interaction does not, in any way, improve either the stability
of the topological phase or confinement of the MFs in a
QR. Therefore superconducting materials with high level of

screening for electrons in the semiconductor QR will perhaps
be most suitable for detecting the Majoranas.

In conclusion, we have studied here the electronic states
in a few-electron semiconductor quantum ring with a strong
SOI and proximity coupled to an s-wave superconductor.
Although we have not proven rigorously the existence of MFs
in a quantum ring, our present study indicates the likelihood
of the presence of MF states in such a system. We have
shown that for the ranges of the chemical potential and
the magnetic field considered here, the difference between
the ground-state energies of even and odd electron number
system is close to zero and has the oscillatory behavior.
This observation is not specific to special ring parameters
as was shown by considering two anisotropic quantum rings
with elliptical barriers and different eccentricities. From the
Majorana fermion probability distribution, we have shown
that the Majorana fermions could be located at the two sides
of the major axis of the quantum ring. Both the position
and the extent of the MF confinement can be controlled
externally by choosing the direction of elongation and the
eccentricity of the elliptical barriers. Due to these reasons,
we believe that few-electron quantum rings are perhaps
appropriate for locating the MFs. Optical spectroscopy [18]
or magnetotransport measurements [19] of quantum rings
are known to provide important information on the energy
spectrum that will be crucial in determining the appropriate
�E and �N . Observation of various important properties
discussed above, such as the MF probability distribution,
charge jumping, etc., would establish the MF signatures
in a quantum ring. There were some theoretical studies
of Majorana fermions and topological phase transitions in
“superconducting” rings [30,31,37,38], and various other ring
configurations [39]. However, finding appropriate materials
in these cases would be a major challenge. On the other
hand, semiconductor quantum rings containing a few electrons
are in fact, available in the laboratories, and we believe that
signatures of Majorana fermions can perhaps be observed in
such a system. Interestingly, it is also possible to envision
adiabatic manipulations of the MFs in a quantum ring without
resorting to any complicated networks as is essential in a
quantum wire [40].
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[17] M. Büttiker, Y. Imry, and R. Landauer, Phys. Lett. A 96, 365

(1983).
[18] A. Lorke, R. J. Luyken, A. O. Govorov, J. P. Kotthaus, J.

M. Garcia, and P. M. Petroff, Phys. Rev. Lett. 84, 2223
(2000).

[19] U. F. Keyser, C. Fühner, S. Borck, R. J. Haug, M. Bichler, G.
Abstreiter, and W. Wegscheider, Phys. Rev. Lett. 90, 196601
(2003); A. Fuhrer, S. Lüscher, T. Ihn, T. Heinzel1, K. Ensslin,
W. Wegscheider, and M. Bichler, Nature (London) 413, 822
(2001).

[20] T. Chakraborty, Adv. Solid State Phys. 43, 79 (2003); D. S.
L Abergel, V. M. Apalkov, and T. Chakraborty, Phys. Rev. B
78, 193405 (2008); S. Viefers, P. Koskinen, P. Singha Deo,
M. Manninen, Physica E 21, 1 (2004); P. Pietiläinen and T.
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[31] B. Scharf and I. Žutić, Phys. Rev. B 91, 144505 (2015).
[32] E. M. Stoudenmire, J. Alicea, O. A. Starykh, and M. P. A. Fisher,

Phys. Rev. B 84, 014503 (2011).
[33] G. Ben-Shach, A. Haim, I. Appelbaum, Y. Oreg, A. Yacoby, and

B. I. Halperin, Phys. Rev. B 91, 045403 (2015).
[34] T. Chakraborty and P. Pietiläinen, Phys. Rev. Lett. 95, 136603
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