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The theory of flexoelectricity and that of nonlocal elasticity are closely related, and are often considered together
when modeling strain-gradient effects in solids. Here I show, based on a first-principles lattice-dynamical analysis,
that their relationship is much more intimate than previously thought, and their consistent simultaneous treatment
is crucial for obtaining correct physical answers. In particular, I identify a gauge invariance in the theory, whereby
the energies associated to strain-gradient elasticity and flexoelectrically induced electric fields are individually
reference dependent, and only when summed up they yield a well-defined result. To illustrate this, I construct a
minimal thermodynamic functional incorporating strain-gradient effects, and establish a formal link between the
continuum description and ab initio phonon dispersion curves to calculate the relevant tensor quantities. As a
practical demonstration, I apply such a formalism to bulk SrTiO3, where I find an unusually strong contribution
of nonlocal elasticity, mediated by the interaction between the ferroelectric soft mode and the transverse acoustic
branches. These results have important implications towards the construction of well-defined thermodynamic
theories where flexoelectricity and ferroelectricity coexist. More generally, they open exciting new avenues for
the implementation of hierarchical multiscale concepts in the first-principles simulation of crystalline insulators.

DOI: 10.1103/PhysRevB.93.245107

I. INTRODUCTION

Flexoelectricity, the polarization response of an insulating
material to a strain gradient, has sparked widespread interest
in the past few years as a viable route towards novel
electromechanical device concepts [1–3]. Flexoelectricity is a
close relative of piezoelectricity, which describes the coupling
between strain and polarization. Unlike the latter, which is
present only in crystals that break inversion symmetry, it is a
universal property of all insulators. The main drawback is that
flexoelectricity is negligibly small in macroscopic samples,
and this has limited its practical interest until very recently. The
realization that, by downscaling the sample, one can enhance
the effect in a proportion that is roughly inverse with its size,
has motivated the current “revival.” A number of interesting
functionalities and potential device applications have been
reported recently, including the possibility of rotating [4]
or switching [5] the ferroelectric polarization by mechanical
means or of obtaining a pseudopiezoelectric effect that is
comparable in magnitude to the existing commercial units [6].

Prior to practical exploitation it is crucial, however, to
improve our understanding of how flexoelectricity works at the
nanoscale. It being a higher-order effect, both the theoretical
analysis and the interpretation of the experimental results are
highly nontrivial, calling for advanced simulation techniques
to cope with the many existing subtleties. While both first-
principles and continuum modeling of flexoelectricity have
undergone impressive progress in the past few years, there are
strengths and limitations to either approach, suggesting that
only a combined effort will eventually prove itself effective.
Continuum treatments, for example, are best suited at captur-
ing the complexity and length scales of a typical flexoelectric
measurement, which often involve nontrivial experimental
setups and boundary conditions. Their main disadvantage
is that the quantitative values of the model parameters, and
sometimes even the specific form of the coupling terms, are
not always obvious to infer from the existing data, physical

common sense, or basic symmetry considerations. This is
precisely the area where electronic-structure techniques could
help immensely, by providing a solid microscopic foundation
to the higher-level description; yet, the cross fertilization
between the two research areas has remained very limited
to date. Identifying the obstacles that have prevented such
an exchange until now, and devising concrete avenues for
overcoming them, appears crucial for future progress.

At the most basic level, flexoelectricity can be studied
via a three-step procedure: first, classical elasticity is used
to solve for the equilibrium strain field in the sample; next,
the polarization due to the strain gradients is computed, and
finally the Poisson equation of electrostatics is used to compute
the electric potential in some specified electrical boundary
conditions. This approach is ideally suited, for example, to
studying the direct flexoelectric effect, i.e., the electrical
response to a well-defined mechanical perturbation of the
sample. Providing quantitative first-principles support to such
a working strategy is now well within reach, as methods
[7,8] for computing the materials-specific values of the bulk
flexoelectric coefficients [9–11] and of the relevant surface
contributions [11] have been convincingly demonstrated.

Recent works, however, have emphasized the interest of
estimating not only the electrical potential, but also the
energy that is associated with flexoelectric phenomena. This
is necessary, for example, for understanding the impact of
flexoelectricity on the toughness of materials [12] (strain
gradients are huge in the proximity of a crack tip, suggesting
that they may be crucial for a correct estimation of the energy
release rate), or more generally for performing a self-consistent
solution of the electromechanical problem [13]. This goal
is much more challenging to achieve, and presents several
potential difficulties that need to be carefully considered prior
to practical implementation.

The first concern is, of course, ensuring that a bulk
thermodynamic functional is well defined, e.g., it should be
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immune to the known reference potential dependence [7,14]
that characterizes the flexoelectric tensor components. In a
nutshell, the loss of periodicity that a strain gradient entails
forces us to abandon the notion of a “universal” macroscopic
electric field, and replace it with the more elusive concept of
deformation potential [15]; the latter depends on the (arbitrary)
choice of the band feature that is taken as a reference, and is
therefore nonunique. Such an ambiguity constitutes a clear
problem at the moment of incorporating flexoelectric effects
in a thermodynamic functional: An obvious consequence, for
example, is that the Maxwell energy of the electric fields
generated by a strain gradient is no longer a well-defined
physical quantity.

A second source of concern is making sure that the thermo-
dynamic functional contains all the necessary ingredients for
a realistic description of the physical properties of interest.
In this context, several independent groups [13,16] have
advocated the inclusion of strain-gradient elasticity [17,18]
(SGE) in flexoelectric models. SGE has gained increasing
popularity in recent years as a nonlocal correction to classical
elasticity that is, in principle, able to capture mechanical size
effects at the nanoscale. Its dependence on the strain gradient
squared is of the same order as the Maxwell energy of the
flexoelectrically generated electric fields (the latter are linear
in the strain gradient, and the electrostatic energy depends
quadratically on them), suggesting that these two terms should
indeed be treated together. Unfortunately, the fundamental
knowledge of SGE is to date very limited. Its practical use
in continuum models involving flexoelectricity has mostly
been motivated by stability concerns [12], while comparatively
little has been done towards implementing a materials-specific
treatment of the corresponding physical constants.

To gain a quantitatively accurate description of SGE, ex-
tracting the relevant coefficients from ab initio electronic struc-
ture simulations appears to be an excellent idea, particularly in
light of the experimental difficulties at estimating their values
with an acceptable degree of accuracy. In this context, the
pioneering work of Maranganti and Sharma [19,20] deserves a
special mention. These authors developed a lattice-dynamical
framework to compute the SGE tensor components from first
principles, and reported results for a reasonably wide range
of materials including metals, semiconductors, and insulators.
While their conclusions were skeptical regarding the relevance
of SGE for nanotechnologies in general, there are several
good reasons to revisit the problem in a more fundamental
framework. Indeed, there are many convincing indications that
SGE may be strongly enhanced by flexoelectric couplings: Axe
et al. [21] demonstrated long ago that the presence of a “soft”
optical phonon (as is typical in ferroelectric materials) may
produce an anomalous dispersion of the transverse acoustic
branch, and similar arguments were recently invoked to explain
the antiferroelectric transition in PbZrO3 [22]. Since SGE
is associated precisely with the dispersion of the acoustic
branches, it is reasonable to expect that nonlocal elastic effects
may be particularly strong in such materials. Unfortunately, the
database of crystalline solids that was considered in Ref. [19]
did not contain any ferroelectric perovskite, thus, a quantitative
verification of these speculations is still missing. Even at
the qualitative level, there is a clear need to establish a
sound theoretical formalism describing both flexoelectricity

and SGE from a fundamental perspective, and clearly relating
either macroscopic property to the microscopic physics of the
insulating crystal.

Here, I propose a general strategy to address the afore-
mentioned questions by constructing a continuum theory,
incorporating flexoelectricity and other strain-gradient effects,
directly from first principles, via a number of well-defined,
controlled approximations. A long-wave expansion of the
dynamical matrix of the crystal around the Brillouin zone
center, where the continuum fields are associated with the
transverse lattice modes therein, naturally provides such a
framework. By appropriately choosing the order (in powers of
the wave vector q) at which the Taylor expansion is truncated,
one can readily decide, in an unbiased manner, what physical
properties to include or exclude from the model, and yet rest
assured that the higher-level description is still exact (i.e., of
full ab initio accuracy) and well defined at the targeted length
scales.

To demonstrate these ideas in practice, I will show that
bulk SrTiO3 is an excellent model system, and will use it
to discuss a number of key topics, including the relationship
between flexoelectric and nonlocal elastic effects; the role of
the long-range electrostatic interactions, especially in light
of the aforementioned reference-potential dependence; some
peculiarities of (incipient) ferroelectric materials, where strain-
gradient effects are expected to be particularly strong. I find
the following: (i) The energies associated to strain-gradient
elasticity and flexoelectricity are both reference dependent
in the sense specified in Ref. [14], but their respective
arbitrariness cancels out when the two terms are summed
up; explicit inclusion of both is therefore crucial for ensuring
that the functional is well defined. (ii) The flexoelectric
contribution to the SGE energy is systematically negative,
i.e., it results in a softening of the elastic response at short
length scales. (iii) The SGE energy diverges in a vicinity
of a ferroelectric transition, where the coupling between the
transverse acoustic and optical soft-mode branch may lead to
a markedly nonlocal elastic response.

To substantiate the above statements, I introduce the
concept of energy flexocoupling tensor, which describes
the coupling between a macroscopic strain gradient and an
arbitrary zone-center optical mode, and report a complete
calculation of its independent entries in bulk SrTiO3. This,
together with the “frozen-ion” [9] flexoelectric and strain-
gradient elasticity tensors, provides complete information to
describe both flexoelectric and SGE effects in bulk SrTiO3,
both at the electronic and lattice-mediated levels. In addition,
I use the formalism developed here to address a number
of related subtleties, regarding, for example, the static or
dynamic nature of the SGE and flexocoupling constants, and
whether both coexist as separately measurable contributions
[23]. I will show that, in this respect, the strain-gradient
elasticity tensor behaves similarly to the flexoelectric [7]
tensor: it is an intrinsically dynamic object, and hence its
individual components generally depend on how the mass
density of the crystal is distributed among the basis atoms
of the primitive cell. Yet, for any deformation field at rest,
such mass dependence cancels out due to the mechanical
equilibrium condition, yielding “effective” SGE coefficients
that are static quantities, as one would expect [7]. Finally, I
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shall briefly discuss the thermodynamic stability of continuum
models involving strain-gradient effects, demonstrating how
the formalism developed here naturally provides alternative
routes to addressing some long-standing [18] issues in this
context.

This work is organized as follows: In Sec. II, I shall
introduce some general concepts regarding the continuum
energy functional and its mapping onto the discrete lattice
model. In Sec. III, I shall explicitly derive the coupling terms
via a long-wave perturbative expansion of the harmonic force
constants. In Sec. IV, I shall present the numerical results for
SrTiO3. In Secs. V and VI, I shall discuss the aforementioned
stability issues and draw some general conclusions.

II. GENERAL BACKGROUND

A. Continuum thermodynamic functional

Classical elasticity is commonly described in terms of the
following Lagrangian density:

L(u,u̇) = ρM

2
|u̇|2 − 1

2
ε · C · ε, (1)

where ε is the symmetrized strain tensor, C is the fourth-rank
elastic tensor, u(r) is the displacement field, and ρM is the mass
density of the crystal. In order to describe nonlocal effects,
which may become important at very short length scales,
strain-gradient corrections have been proposed, typically in
the following form:

ESGE = 1
2∇ε · H · ∇ε, (2)

where H is the sixth-order strain-gradient elasticity (SGE)
tensor, also known as “hyperelastic” tensor. This formulation
is good enough for a metal, but necessarily incomplete for an
arbitrary insulator: Flexoelectricity states that strain gradients
are universally associated with an electric polarization

Pα = μII
αλ,βγ

∂εβγ

∂rλ

, (3)

where μII is the total type-II [7] flexoelectric tensor (including
electronic and lattice-mediated contributions). This means
that, when dealing with strain-gradient elasticity, additional
electrostatic terms are necessary to account for the Maxwell
energy of the macroscopic longitudinal fields

EM = 1

2

|P‖|2
ε0ε

, (4)

where P‖ stands for the irrotational component of P, ε is
the static dielectric constant (assuming it to be isotropic
for simplicity), and ε0 is the permittivity of vacuum. As P
is linear in the strain-gradient amplitude, EM goes like the
strain gradient squared, i.e., it is of the same order as ESGE.
In a way, the relationship between strain-gradient elasticity
and flexoelectricity parallels that existing between classical
elasticity and piezoelectricity. In both cases, the stiffness
to a mechanical deformation is influenced by the electrical
boundary conditions, and such dependence boils down to the
Maxwell energy associated to the open-circuit electric fields.
The “flexoelectric energy,” from this perspective, is just one
of the contributions to the SGE energy, pretty much the same
way as the “piezoelectric energy” (i.e.. the direct coupling of

the zone-center optical modes to the strain) contributes to the
elastic tensor. Thus, just like in the case of the elastic tensor in
a piezoelectric material [24], one can define different versions
of the SGE tensor depending on the electrical boundary
conditions that are applied to the crystal. In the remainder
of this work, unless otherwise specified, I shall assume that
H is defined under short-circuit boundary conditions; this is
important for reasons that shall become clear shortly.

The above functional contains the minimal amount of phys-
ical ingredients to describe, at the same time, flexoelectricity
and strain-gradient elasticity, provided that the deformations
are smooth enough (i.e., that higher-order gradients of ε

can be neglected) and their amplitude is small (linear limit).
Of course, more sophisticated choices are possible, e.g., by
explicitly treating additional fields (together with the mechan-
ical deformation) as independent dynamical variables in the
Lagrangian density. The most obvious strategy in this context
would be to explicitly treat the ferroelectric “soft mode,” which
might be unavoidable in most systems of practical interest.
(Ferroelectric perovskites are, among crystalline materials, the
most promising and well studied from the point of view of
flexoelectricity.) As we shall see, the specific choice of the
target functional is largely irrelevant to our scopes: This work
will mostly focus on how to extract the basic ingredients (in
the form of coupling coefficients) from an ab initio model;
these can easily be incorporated later in a variety of continuum
Lagrangians. To avoid unnecessary complications, I shall stick
to the formulation described above throughout this work, and
briefly discuss some useful alternatives in Sec. V.

B. Reciprocal-space formulation

In order to bring the continuum functional into a form that
is directly compatible with ab initio lattice dynamics, it is
convenient to Fourier transform the displacement field u as
follows:

u(r) = 1√
(2π )3

∫
d3q U(q)eiq·r. (5)

The Lagrangian density can be then written in reciprocal
space as (for clarity, I use Latin indices for the wave-vector
components and Greek indices otherwise)

L̃(U,U̇) = ρM

2
|U̇|2 − 1

2
UαUβqiqj cαβ,ij

− 1

2
UαUβqiqjqkqlhαβ,ijkl − 1

2

|q · P|2
ε0εq2

, (6)

where

Pα = −μI
αβ,jkUβqjqk, (7)

and the reciprocal-space coupling tensors are related to the
real-space ones via a symmetrization of the indices

cαβ,ij = sym(ij ) Cαi,βj , (8)

μI
αβ,ij = sym(ij ) μ

II
αi,βj , (9)

hαβ,ijkl = sym(ijkl) Hαij,βkl . (10)
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The first thing that one can note from the above formulas is that
classical elasticity is an O(q2) effect, while both the electro-
static and SGE energy terms are O(q4). This is consistent with
the observation that I have made in the previous section that
the Maxwell energy of the flexoelectric fields and the energy
associated with SGE effects should be regarded as intimately
related and of comparable importance. From the technical
point of view, this implies that some specific precautions need
to be taken when calculating h from first principles. Given
the nonanalytic character of electrostatic interactions (due to
the q2 factor at the denominator), it is of primary importance
to define (and calculate) h in short-circuit electrical boundary
conditions, otherwise a tensorial expression such as that of
Eq. (2) would not be possible.1 At first sight, this observation
appears to be problematic to implement here, as the notion of
macroscopic electric field is ambiguous in presence of strain
gradients [14]. As we shall see in the following, however,
such arbitrariness in the definition of h is necessary in order
to guarantee that the functional as a whole be well defined,
as it exactly cancels with the equal (and opposite) reference
dependence that is implicit in the Maxwell term.

1. Gauge invariance

To understand the origin of the reference dependence,
note that one can always rewrite the flexoelectric tensor by
separating an isotropic contribution from the remainder μ′ (I
shall assume in the next few equations that μ is represented in
type-I form and omit the corresponding superscript):

μαβ,γ λ = V0ε0ε

2
(δαλδβγ + δαγ δβλ) + μ′

αβ,γ λ. (11)

V0 has the dimension of a potential, and is used here to em-
phasize the physical meaning of the new term in Eq. (11): this
is essentially a relative deformation potential that modifies the
definition of the macroscopic electric field. The longitudinal
polarization then reads as

q · P = −V0ε0εq
2q · U − μ′

iβ,jkUβqiqjqk. (12)

As a result, the original Maxwell energy can be rewritten as

1

2

|q · P|2
ε0εq2

= 1

2

|q · P′|2
ε0εq2

+ �E, (13)

where the polarization has been redefined as

P ′
i = −μ′

iβ,jkUβqjqk, (14)

and the remaining term is

�E = ε0ε

2
V 2

0 q2(q · U)2 − V0(q · U)μ′
iβ,jkUβqiqjqk. (15)

A key point here is that �E is an analytic function of
q, and therefore can be readily reabsorbed into the SGE
energy via a redefinition of the h tensor. This leads to one
of the main results of this work: There is a sort of gauge
invariance in the combined theory of flexoelectricity and
strain-gradient elasticity in insulators, whereby the SGE and

1Issues of this kind are, again, well known in the piezoelectric case,
where the elastic coefficients need to be defined under short-circuit
electrical boundary conditions for C to behave as a tensor [24].

electrostatic energies are separately ill defined, but their sum is
invariant with respect to a simultaneous gauge transformation
of both the μ and h tensors. In other words, the arbitrariness
of the reference, which can be conveniently rationalized
within the theory of deformation potentials [14,25,26], only
affects the way the total energy is partitioned between the
electrostatic and SGE parts, without affecting the physical
answers that one extracts from the functional as a whole. Note
that the expression “gauge invariance” is loosely borrowed
from electromagnetism, where there also exists a freedom
in the choice of the potentials (scalar and vector) that enter
the governing equations, and yet the physically measurable
quantities are not sensitive to such a choice. The analogy, for
the purposes of this work, stops here: for example, it is not
obvious how to identify a counterpart of the magnetic field in
the context of the electromechanical effects under study.

An interesting consequence of the above considerations is
that in an isotropic medium the electrostatic energy becomes an
analytic function of q, and therefore can be reabsorbed into the
strain-gradient squared term. This implies that the long-ranged
part of the flexoelectrically generated electric fields is, in fact,
entirely related to the anisotropy of the electromechanical
response.

2. Symmetrization of the indices

The symmetrization of the tensor indices that we have
performed when moving from real space to reciprocal space
has no consequences regarding the flexoelectric and elastic
tensors: In both cases, symmetrization preserves the number
of independent entries, and the relationship between the
symmetrized and unsymmetrized representations is readily
invertible. (In the flexoelectric case, the two forms of the
tensor have been indicated as “type-I” and “type-II” in earlier
works [7]; I shall follow the same convention here.) Things
differ in the SGE case: In the lowest-symmetry material, the h
tensor has 6 × 15 = 90 independent entries, after taking into
account the invariance of hαβ,ijkl under either αβ exchange
or ijkl permutation. This is much smaller than the total
number of entries of the real-space H tensor, which is 171
(the strain-gradient tensor has 18 components, and H can be
regarded as a symmetric square matrix). Thus, contrary to
the cases of standard elasticity and flexoelectricity, one cannot
invert the relationship between reciprocal- and real-space SGE
coefficients.

This fact has sometimes been regarded as a limitation of the
lattice-dynamical method at computing the SGE coefficients.
(A reciprocal-space representation of the Lagrangian density
is typically performed in the context of lattice-dynamical
studies.) To emphasize this apparent difficulty, it has become
common practice to indicate H as the static SGE tensor and h
as the dynamic one. Such an appellation is, however, prone to
confusion2: A strain gradient is an inherently dynamic object

2The terms “static” and “dynamic” may refer to the physical nature
of a given effect, or to the procedure that one uses to measure or
calculate it. In this work, I shall use the former meaning. Static
properties can be studied by dynamical means and vice versa, so the
two categories do not always overlap.
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(for example, a purely longitudinal gradient of the type ε11,1

cannot be sustained by any conceivable combination of static
surface loads [7]), so even the purportedly static H-tensor com-
ponents have, in fact, a dynamic nature. (I shall come back to
this important point in Sec. III J.) To avoid misunderstandings,
in the remainder of this work I shall refer to H as the “type-II”
SGE tensor (it is associated to strain gradients in type-II form)
and to h as the “symmetrized” SGE tensor.

In order to better understand the relationship between H
and h, and the physical nature of the information that has
been lost upon symmetrization of the indices, it is useful
to go back to real space, and write the SGE energy in
type-I form (i.e., replace ∇ε with the second gradient of
the displacement field u). Via two subsequent integrations
by parts, one can rewrite the energy as a function of u and
its fourth gradient, plus a number of surface terms. One can
then show that the volume contribution only depends on the
h-tensor components; in other words, by replacing H with h
one leaves the governing bulk equations unaltered; only the
boundary conditions change. Thus, the distinction between H
and h is rooted, rather than in their static or dynamic nature,
in the fact that the latter is a purely bulk property, while the
former contains additional surface-specific information.

Surface contributions are, of course, important for the
description of flexoelectric effects in a finite object, even in
the thermodynamic limit of a macroscopically thick sample.
We expect that the local piezoelectric and elastic properties of
the boundary, which might markedly differ from those of the
homogeneous bulk material, will affect the SGE response of a
finite sample in a qualitatively similar way. However, because
of their surface-specific nature, one cannot generally estimate
the corresponding physical constants in the context of bulk
calculations. In this work, we shall restrict our analysis to the
bulk part of the energy functional, and on physical phenomena
(acoustic phonons) where surface contributions play no role.
One must keep in mind, however, that to attack a more general
class of deformations, as for example the response of a slab to
bending, careful considerations of the aforementioned surface
terms are unavoidable; we shall defer their treatment to a
future publication.

C. From discrete to continuum

I shall illustrate in the following how the continuum theory
that has been outlined in the previous section can be derived
via a well-defined approximation of the discrete lattice model.
The Lagrangian of a crystalline system can be written as

L(u,u̇) = T (u̇) − V (u), (16)

where u represents the displacements of the atoms from their
equilibrium locations. Within the harmonic approximation, the
kinetic and potential terms, respectively, read as

T (u̇) = 1

2

∑
lκα

mκ

(
u̇l

κα

)2
, (17)

V (u) = 1

2

∑
lκl′κ ′

ul
κ · �ll′

κκ ′ · ul′
κ ′ . (18)

I shall use the convention from now on that l and l′ are cell
indices, κ and κ ′ are sublattice indices, and α, β, etc., are

Cartesian directions. mκ is the atomic mass of specie κ , and
�ll′

κκ ′ is the real-space force-constant matrix of the periodic
crystal.

As above, we move to reciprocal space via the following
definition:

ul
κ = �

(2π )3

∫
BZ

d3q uq
κ eiq·Rl , (19)

where Rl is a Bravais lattice vector indicating the location of
the lth cell. One obtains the Lagrangian density in reciprocal
space:

L = �

(2π )3

∫
BZ

d3q Lq, (20)

Lq(u,u̇) = T q(u̇) − V q(u), (21)

T q(u̇) = 1

2

∑
κ

mκ u̇q
κ · u̇q

κ , (22)

V q(u) = 1

2

∑
κκ ′

uq
κ · �

q
κκ ′ · uq

κ ′ . (23)

We can now move to a normal-mode representation, where
the (mutually coupled) atomic displacements are replaced by
a set of independent harmonic oscillators, whose amplitudes
vj are the new independent variables of the problem:

Lq(v,v̇) = M

2

(
v̇2

jq − v2
jqω

2
jq

)
. (24)

Here, ω2
jq are the eigenvalues of the dynamical matrix, which

can be conveniently represented in an operator form

D̂(q)|jq〉 = ω2
jq|jq〉, (25)

〈ακ|D̂(q)|βκ ′〉 = 1√
mκmκ ′

�
q
ακ,βκ ′ . (26)

(|jq〉 is the j th mode eigenvector at q; |ακ〉 indicates a
hypothetical mode where the atom κ displaces along rα while
the other sublattices remain still; all bras and kets are assumed
to be normalized to unity.) Note that the mass factor M is,
in principle, arbitrary, but is most appropriately set as the
total mass of the unit cell: As we shall see shortly, such a
choice leads to a direct identification of the mode amplitudes
vjq with the continuum deformation field. The normal-mode
amplitudes are related to the atomic displacements via

uq
κα = vjq

√
M

mκ

〈κα|jq〉. (27)

As such, a linear relationship between the u
q
κα and the vjq

variables exists; what we have done so far is simply a change of
variables, but we really have not made any explicit assumption
about the static or dynamic nature of the theory.

At this point, we are ready to operate an adiabatic
approximation by supposing that, at the energy and time scale
of the phenomena under study, the optical modes are infinitely
fast and can be considered as separated from the acoustic
branches. In other words, the optical modes are always in
their equilibrium state in the instantaneous deformation field
provided by the “heavy” acoustic modes. This implies that
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the required information on the continuum-theory tensors has
to be sought in the long-wave behavior of the lowest three
eigenvalues of the dynamical matrix, i.e., those describing
the acoustic phonon branches. In particular, the corresponding
tensor components are trivially related to the long-wave
expansion terms of the squared eigenfrequencies by a factor of
ρmass = M/�, i.e., the mass density of the crystal. (This is the
total mass of the unit cell M = ∑

κ mκ divided by its volume
�.) How to expand the dynamical matrix eigenvalues will be
explained in the next section.

III. LATTICE-DYNAMICAL THEORY

A. Variational formulation

Consider an acoustic phonon mode with wave vector q =
qq̂, where the direction q̂ shall be kept fixed for the time being,
in a vicinity of the � point (center) of the Brillouin zone. Its
squared frequency can be written as a constrained variational
functional of the eigendisplacements vector |v(q)〉,

G(q) = 〈v(q)|D̂(q)|v(q)〉 − X(q)[〈v(q)|v(q)〉 − 1], (28)

where the dynamical matrix operator D̂(q) is related to the
force-constant matrix �q, as specified in Eq. (26). [Note
that the nonanalytic terms related to long-range interactions
are included in D̂(q), i.e., this is the full dynamical matrix.]
X(q) is a Lagrange multiplier taking care of the normalization
constraint [at the variational minimum it corresponds to the
lowest eigenvalue of D̂(q)]

X(q) = E(q), D̂(q)|v(q)〉 = E(q)|v(q)〉. (29)

This, in turn, relates to the phonon frequency as E(q) = ω2(q).
Before going through the analytical derivations, it is useful

to introduce here the concept of “mixed electrical boundary
conditions” (MEBC), which was originally proposed, in the
context of flexoelectricity, by Hong and Vanderbilt [9,10]. It
consists in imposing open-circuit conditions along a given
spatial direction (which translates in constraining the cor-
responding component of the electric displacement field D
to zero), and short circuit (that is, a vanishing projection
of the electric field vector E) in the normal plane. This
regime is crucially important to understand in the context of a
long-wavelength phonon, where MEBC naturally arise along
the propagation direction q̂. (Other physical contexts where
MEBCs occur are, e.g., an unsupported slab in vacuum, or a
parallel-plate capacitor in open circuit [27].) In fact, MEBCs
are responsible for the strongly nonanalytic behavior of the
phonon response functions in a vicinity of q = 0; conversely,
if we fix the direction q̂, the electrical boundary conditions
remain fixed as well, which implies that the response becomes
a smooth function of the one-dimensional parameter q.

B. 2n + 1 theorem and long-wave expansion

The dynamical matrix and its eigenvectors can be then
expanded as a perturbation series in the small parameter q:

D̂(q) = D̂(0) + qD̂(1) + q2D̂(2) + · · · , (30)

|v(q)〉 = |v(0)〉 + q|v(1)〉 + q2|v(2)〉 + · · · . (31)

By plugging these expansions into the eigenvalue problem
of Eq. (29), one can readily compute |v(n)〉 for an arbitrary
n. Such a procedure has been pushed in earlier works
[7,10,28,29] up to O(q2), which is enough to describe both
piezoelectricity (n = 1) and flexoelectricity (n = 2). Here
we are interested, rather than in the eigenvectors, in the q

expansion of the dynamical matrix eigenvalues. This can be
conveniently obtained by expanding the constrained functional
G(q) rather than directly E(q). The advantage is that, by means
of the 2n + 1 theorem [30], one can systematically construct
even-order G(2n) functionals (odd-order terms are forbidden by
time-reversal symmetry, which is assumed to hold throughout
this work) that are variational in the eigendisplacements |v(n)〉.
As the strain and strain-gradient effects show up, respectively,
at the first and second order in q, one needs to push the
expansion of the energy to second and fourth order if one
wishes to describe the same effects in a variational context.

Before going through the derivations, it is useful to make
contact with earlier work on flexoelectricity by recalling
the expansion of the force-constant matrix that was used in
Ref. [7]:

�̃q = �̃(0,q̂) − iq�̃(1,q̂) − q2

2
�̃(2,q̂)

+ i
q3

3!
�̃(3,q̂) + q4

4!
�̃(4,q̂) + · · · . (32)

The symbol q̂, appearing next to the perturbative order,
highlights that all the above expansion terms depend on the
direction along which the differentiation is taken. (I stress that
this dependence cannot be expressed in a tensorial form, as the
macroscopic electric fields contribution is nonanalytic in q.) I
shall drop this symbol henceforth, keeping it implicit to avoid
overburdening the notation. We have, at a given order n,

D
(n)
κα,κ ′β = (−i)n

n!

1√
mκmκ ′

�̃
(n)
κα,κ ′β. (33)

C. Order zero

At the lowest order, the functional reads as

G(0) = 〈v(0)|D̂(0)|v(0)〉. (34)

Since we are considering an acoustic phonon, we have

v(0)
κα = Ûα

√
mκ

M
, (35)

where Ûα is a real-space vector of unit length and M = ∑
κ mκ

is the total mass of the cell. This clarifies the motivation for
our choice of M as the mass factor in Eq. (24): via Eq. (27)
it is trivial to check that the atomic sublattice displacements
associated with |v(0)〉 are simply ul

κ = Û, i.e., the amplitudes of
the |v(q)〉 modes can be directly interpreted as a deformation
field in reciprocal space.

Because of translational invariance, of course, G(0) = 0.
There is, at first sight, a difficulty here as the ground state at
q = 0 is threefold degenerate. Such a degeneracy reflects the
arbitrariness in choosing the acoustic phonon branch that one
wishes to study (among one longitudinal and two transverse).
This is simply fixed by choosing a displacement direction
Û to define the q = 0 state via Eq. (35) once and for all,
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and then sticking to it throughout the subsequent derivations;
such a procedure uniquely determines the higher-order G(n)

expansion terms.

D. Order two

At second order, we have

G(2) = 〈v(1)|D̂(0)|v(1)〉 + 〈v(1)|D̂(1)|v(0)〉
+〈v(0)|D̂(1)|v(1)〉 + 〈v(0)|D̂(2)|v(0)〉. (36)

By differentiating with respect to 〈v(1)|, and by imposing that
we are at a stationary point, we obtain the variational minimum
condition for |v(1)〉:

D̂(0)|v(1)〉 = −D̂(1)|v(0)〉. (37)

By replacing the dynamical matrix expansion terms with their
explicit expression in terms of the force-constant matrix, we
obtain ∑

κ ′β

�
(0)
κα,κ ′β

√
M

mκ ′
v

(1)
κ ′β = i

∑
κ ′β

�
(1)
κα,κ ′βÛβ, (38)

where we could remove the tilde on the � expansion terms
after observing that the crystal is not piezoelectric. We obtain

v(1)
κα = iÛβ q̂γ

√
mκ

M
�κ

α,βγ , (39)

where �κ
α,βγ is the internal-strain response [7,31] of the cell,

describing the displacement of the atom κ along α that is
induced by a uniform strain of the type εβγ .

By inserting Eq. (37) into (36) we can achieve a simpler
expression for the second-order functional

G(2) = 〈v(0)|D̂(2)|v(0)〉 − 〈v(1)|D̂(0)|v(1)〉. (40)

Finally, by replacing again D̂(n) with �(n), we have

G(2) = 1

M
Û ·

[
−1

2
�(2) − �T · �(0) · �

]
· Û. (41)

It is straightforward to show [7,28] that the above formula can
be, in turn, rewritten as

G(2) = Cαλ,βγ q̂λq̂γ ÛαÛβ

ρmass
, (42)

where C is the relaxed-ion elastic tensor and ρmass is the mass
density, thus recovering the well-known result of classical
elasticity. Note that the �-dependent part in Eq. (41) is the
internal-strain relaxation contribution to the elastic constant,
which is negative definite. (�(0) has only positive or zero
eigenvalues, given the requirement of lattice stability.)

Based on the considerations of Sec. II C, one can readily
write the corresponding potential energy density (to be
incorporated in the continuum Lagrangian density of Sec. II A)
as

Eelas = ρmass

2
U 2q2G(2) = 1

2
cαβ,ijUαUβqiqj , (43)

consistent with Eq. (6). The fact that the elastic energy of
Eq. (43) enjoys an analytic expression in a tensorial form
rests on our assumption of a nonpiezoelectric crystal. As we
shall see in the following sections, a careful consideration of

electrostatic long-range effects is necessary in order to achieve
a closed expression at higher orders.

E. Order four

At the fourth order, the functional reads as

G(4) = 〈ṽ(2)|D̂(0)|ṽ(2)〉 + 〈v(1)|D̂(1)|ṽ(2)〉 + 〈ṽ(2)|D̂(1)|v(1)〉
+ 〈v(1)|D̂(2)|v(1)〉 + 〈ṽ(2)|D̂(2)|v(0)〉 + 〈v(0)|D̂(2)|ṽ(2)〉
+ 〈v(1)|D̂(3)|v(0)〉 + 〈v(0)|D̂(3)|v(1)〉 + 〈v(0)|D̂(4)|v(0)〉,

(44)

to be minimized with the condition that |ṽ(2)〉 be orthogonal
to the subspace spanned by the three acoustic (A) branches at
the zone center, i.e., 〈ṽ(2)|v(0)

A 〉 = 0. The tilde sign is meant
to emphasize that |ṽ(2)〉, unlike |v(0,1)〉, has a nonanalytic
dependence on the wave-vector direction q̂. This is due to
the fact that the electrical boundary conditions are themselves
a consequence of q̂: the longitudinal component of the electric
displacement field must vanish, whereas the electric field must
vanish in the transversal plane. Thus, one should keep in
mind that all tilded quantities are defined in “mixed electrical
boundary conditions” [9] (MEBC), i.e., they implicitly contain
the electrostatic contribution of the longitudinal fields along
the propagation direction. If q̂ is fixed, as we have insofar
assumed while performing the q expansions, one does not
really need to worry about this issue, whose detailed treatment
is deferred to Sec. III F.

Differentiation of G(4) with respect to 〈ṽ(2)| leads to

D̂(0)|ṽ(2)〉 = −Q̂(D̂(1)|v(1)〉 + D̂(2)|v(0)〉), (45)

where the operator Q̂ is a projector on the optical modes
manifold. By introducing the optical-phonon eigenmodes at
the zone center |ṽ(0)

l 〉 (again, I use a tilde to remind the reader
that these are eigenvectors of the dynamical matrix with the
electrostatic terms included, i.e., they correspond to the correct
longitudinal and transverse optical modes in the q → 0 limit),
one can expand |ṽ(2)〉 as follows:

|ṽ(2)〉 = −
∑

l

∣∣ṽ(0)
l

〉 f̃l

Mω̃2
l

, (46)

where I have introduced the energy flexocoupling coefficients
in MEBC along q̂:

f̃l = M
〈
ṽ

(0)
l

∣∣(D̂(1)|v(1)〉 + D̂(2)|ṽ(0)〉). (47)

(A more in-depth discussion of these important quantities is
deferred to Sec. III G.) Based on this expression, one can
simplify the fourth-order energy as

G(4) = −
∑

l

f̃ 2
l

M2ω̃2
l

+ 〈v(1)|D̂(2)|v(1)〉 + 〈v(1)|D̂(3)|v(0)〉

+ 〈v(0)|D̂(3)|v(1)〉 + 〈v(0)|D̂(4)|v(0)〉. (48)

Remarkably, just like the flexoelectric tensor, one can decom-
pose the strain-gradient contribution to the acoustic frequency
dispersion into three parts. The first term at the rhs of Eq. (48)
describes the contribution of lattice-mediated effects, i.e.,
is related to the (adiabatic) relaxation of the optical modes
(internal strains) within the deformation field produced by the
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acoustic phonon. The second to fourth terms are a “mixed”
(lattice and electronic) contribution, due to the dispersion of
the (nonpolar) optical modes that couple directly to the strain,
and is absent in materials like SrTiO3 (see Sec. IV). The last
term is the purely electronic (“frozen-ion”) contribution; it is
sometimes referred to as the “self-dispersion” of the acoustic
branch, and is always present even in the simplest monoatomic
model.

The functional G(4) can be readily interpreted as the
hyperelastic coefficient in MEBC, referred to the propagation
direction q̂ and to the polarization Û of the branch,

G(4) = h̃

ρmass
. (49)

One would be tempted, at this point, to establish a direct link
between the coefficients h̃ and the h tensor, similarly to what
we have done in Sec. III D for the classical elasticity case
at O(q2). Before doing this, however, we need to stop for a
second and deal with the electrostatic energy. This, as I said, is
implicitly contained in the D̂(n) operators, which implies that h̃
contains both the SGE and Maxwell energy (see Sec. II A). We
need to separate the two in order to achieve a proper tensorial
representation as that of Eq. (6).

F. Electrostatic energy

The formulas derived insofar work equally well for a longi-
tudinal or transversal phonon, but one must keep in mind that
the electrical boundary conditions, hard-wired in the definition
of the |ṽ(2)〉 eigenmodes, differ depending on the wave-vector
direction and on the transverse versus longitudinal regime. For
this reason, this theory cannot be directly transformed into an
energy functional of the system. Before taking such a step, one
needs to separate the electrostatics from the other interactions,
and describe them explicitly in a physically consistent form.

The macroscopic fields concern each of the expansion terms
D(0), D(1), and D(2), whose behavior is nonanalytic [7,32].
Such a direction dependence is famously responsible, in the
case of optical phonons, for the LO-TO splitting at the zone
center. In the acoustic case under consideration here, the
eigenvectors at lower (n = 0,1) orders are not affected (at
order n = 0 this is an obvious consequence of the acoustic
sum rule; at n = 1 this follows our assumption that the crystal
is nonpiezoelectric). It is then convenient, first of all, to rewrite
the G(4) functional of Eq. (44) by eliminating its explicit
dependence on |ṽ(2)〉. To this end, we combine Eqs. (37) and
(45) to write

|ṽ(2)〉 = −D̃(0) D̄(2) |v(0)〉,
where

D̄(2) = D(2) − (D(1)D̃(0)D(1)), (50)

and D̃(0) is the pseudoinverse3 of the zone-center dynamical
matrix. (I have dropped the hat symbols starting from this
section, as it should be clear by now that the D(n) represent

3The matrix inversion is performed only on the optical modes
subspace, leaving a null eigenvalue on the translational part.

Hermitian operators.) After substituting |ṽ(2)〉 in Eq. (44), we
obtain

G(4) = −〈v(0)| D̄(2) D̃(0) D̄(2) |v(0)〉 + 〈v(1)|D(2)|v(1)〉
+ 〈v(1)|D(3)|v(0)〉 + 〈v(0)|D(3)|v(1)〉 + 〈v(0)|D(4)|v(0)〉.

(51)

We have thus achieved an expression for G(4) where the
nonanalyticity is only carried by the operators, and not by
the eigenvectors.

We shall proceed by separating such nonanalytic (NA)
multipolar interactions from the dynamical matrix, i.e., write

D(n) = D(n) + D(n),NA, (52)

where D(n) represents the expansion terms of the dynamical
matrix without macroscopic fields, and D(n),NA are the analo-
gous expansion terms of

〈ακ|Dq,NA|βκ ′〉 = 1√
mκmκ ′

�
q,NA
ακ,βκ ′ . (53)

The explicit expression of �q,NA, as derived in Ref. [7],
consists in the electrostatic interaction between the multipoles
induced by atomic displacements. This can be expressed in the
present context as

Dq,NA = 4π

�M

|Q(q)〉〈Q(q)|
ξ (q)

, (54)

where

Q(q)
κβ =

√
M

mκ

(
−iqQ

(1,q̂)
κβ − q2

2
Q

(2,q̂)
κβ + i

q3

3!
Q

(3,q̂)
κβ + · · ·

)
(55)

and

ξ (q) = q2ε(2,q̂)
∞ + q4ε(4,q̂)

∞ + · · · . (56)

Here, Q
(n,q̂)
κβ are the longitudinal (along q̂) components of the

dynamical multipole tensors associated to the displacement of
an atom κ along β; for example,

Q
(1,q̂)
κβ = Z∗

κ,αβ q̂α (57)

is the longitudinal component of the dynamical dipole tensor
Z∗

κ,αβ , more commonly known as the Born effective charge

tensor. ε
(2,q̂)
∞ is the corresponding element of the electronic

(high-frequency) dielectric tensor

ε(2,q̂)
∞ = q̂ · ε∞ · q̂, (58)

and ε
(4,q̂)
∞ is related to the (purely electronic) dielectric

dispersion. (The latter quantity is irrelevant in the context of
this work, and I will not discuss it any further.) At the lowest
(zero) order we have the usual [32,33] dipole-dipole term,
which is responsible for the LO-TO splitting in polar crystals

D(0,NA) = 4π

�M

|Z(q̂)〉〈Z(q̂)|
q̂ · ε∞ · q̂

, (59)

where

Z
(q̂)
κβ =

√
M

mκ

Z∗
κ,αβ q̂α, (60)
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while at higher orders in q quadrupoles, octupoles and higher-
order multipoles are also involved.

After rewriting the pseudoinverse of the zone-center dy-
namical matrix by means of the Sherman-Morrison formula

D̃(0) = D̃(0) − 4π

M�

D̃(0)|Z(q̂)〉〈Z(q̂)|D̃(0)

q̂ · εstatic · q̂
, (61)

some cumbersome but otherwise straightforward algebra leads
to the following result for the fourth-order energy:

G(4) = −〈v(0)| D̄(2) D̃(0) D̄(2) |v(0)〉 + 〈v(1)|D(2)|v(1)〉 (62)

+〈v(1)|D(3)|v(0)〉 + 〈v(0)|D(3)|v(1)〉 + 〈v(0)|D(4)|v(0)〉

+ 4π�

M

μ2
q̂

q̂ · εstatic · q̂
. (63)

Here, μq̂ is the longitudinal (along q̂) component of the total
(electronic and ionic) flexoelectric polarization induced by the
strain gradient that is associated to the phonon eigenmode

μq̂ = −q̂αÛβ q̂γ q̂λμ
I
αβ,γ λ, (64)

where

μI
αβ,γ λ = dPα

dηβ,γ λ

(65)

is the type-I [7] flexoelectric tensor [ηβ,γ λ is the mixed partial
derivative along rγ and rλ of the displacement field uβ(r)].

The above derivation has led to a simple and physically
transparent result: the nonanalytic contribution to G(4),

G(4,NA) = 4π�

M

μ2

εstatic
, (66)

simply corresponds to the Maxwell energy density of the
flexoelectrically induced electric fields

EMax = ρmass

2
U 2q4G(4,NA), (67)

as I anticipated in Sec. II A. The remainder of G(4) is analytic,
i.e., it can be expressed in a tensorial form, and can be directly
associated with the strain-gradient elasticity term of Eq. (6):

ESGE = ρmass

2
U 2q4(G(4) − G(4,NA)). (68)

Thus, the above derivation provides us with a comforting
proof that our fourth-order energy functional is indeed correct,
and physically consistent with the continuum formulation of
Sec. II A.

Before moving on, it is useful to emphasize two further
facts regarding the connection between the lattice-dynamical
result of Eq. (63) and the continuum functional of Eq. (6). First,
the decomposition of the dynamical matrix into analytic and
nonanalytic contributions is nonunique, which relates to the
arbitrariness, discussed in Sec. II B, in the separation between
flexoelectrostatic and strain-gradient elasticity contributions
to the energy. As I said, this can be readily interpreted as a
gauge freedom of the theory. (In Sec. IV, I shall quantitatively
assess how different choices of the reference potential affect
the partition between ESGE and EMax in some selected
cases.) Second, it should be noted that each of the different
contributions (lattice-mediated, mixed, and electronic) to ESGE

[as inferred from Eqs. (63) and (68)] enjoys a slightly different
tensorial representation. Leaving aside the mixed term (which
in any case is absent from the calculations presented in
Sec. IV), the electronic term can be directly mapped into a
symmetrized form

ESGE,el = 1

2
UαUβqiqjqkqlh̄αβ,ijkl, (69)

h̄αβ,ijkl = 1

4!

∑
κκ ′

�
(4,ijkl)
κα,κ ′β , (70)

where the overbar symbol is a reminder that lattice-mediated
effects are not included. The short-circuit h̄ coefficient along
a given direction is related to the corresponding MEBC
coefficient h̃el = 〈v(0)|D(4)|v(0)〉 by

h̃el = h̄ + 4π
μ̄2

q̂

ε∞
, (71)

where the second term on the right-hand side is the electrostatic
energy due to the purely electronic flexoelectric effect. (Note
that the longitudinal flexoelectric coefficient μ̄q̂ can be inferred
from the dynamical octupole tensor [7,9,34].) As we shall
demonstrate shortly, the lattice-mediated contribution is most
naturally written, instead, in a separable type-II representation

ESGE,LM = 1
2∇ε · HLM · ∇ε. (72)

G. Energy flexocoupling tensor

Assuming that we have suppressed the macroscopic electric
fields (after associating them with a given energy reference that
we choose once and for all), the strain-gradient elastic energy
associated with the deformation field reads as

G(4,SGE) = −
∑

l

f 2
l

M2ω2
l

+ 〈v(1)|D(2)|v(1)〉 + 〈v(1)|D(3)|v(0)〉

+ 〈v(0)|D̂(3)|v(1)〉 + 〈v(0)|D(4)|v(0)〉. (73)

Here, I have introduced the short-circuit energy flexocoupling
coefficients

fl = M
〈
v

(0)
l

∣∣(D(1)|v(1)〉 + D(2)|v(0)〉), (74)

which describe the coupling between an arbitrary strain-
gradient component and the transverse optical (TO) modes
at �; consistently, ωl now stands for the frequency of the lth
TO mode. It is convenient to express the dependence on q̂ and
U explicitly, which leads to a (type-I) tensor representation for
the fl coefficients:

fl = −Ûβ q̂γ q̂λf
I
lβ,γ λ. (75)

Just like for the flexoelectric tensor, one can readily switch
back and forth from a type-I to a type-II representation [7]
(recall that the former is associated to second gradients of the
displacement, while the latter is associated to first gradients of
the symmetric strain) of the flexocoupling tensor via

f I
lβ,γ λ = sym(γ λ) f

II
lλ,βγ . (76)

This allows us to write the lattice-mediated contribution to the
SGE energy directly in a separable type-II form, as required
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by Eq. (2),

H LM
ββ ′,γ γ ′λλ′ = − 1

M�

∑
l

f II
lβ,γ λf

II
lβ ′,γ ′λ′

ω2
l

. (77)

This also shows that the lattice-mediated contribution is always
negative, as expected.

The f tensor introduced here bears a close resemblance to
the flexocoupling coefficients described, e.g., by Yudin and
Tagantsev [3] (YT), with the important difference that the
former have the physical dimension of an energy, while the
latter are expressed as a voltage. In a simple cubic material we
can trace an exact link between the two by writing

f YT
l = fl

Z∗
l

, (78)

i.e., by dividing the energy coefficient by the dynamical
charge associated to the mode l. Based on such arguments,
one could be tempted to rewrite our expressions for the
strain-gradient energy by using the voltage coefficients as
defined in Eq. (78). This, however, would only be applicable
to a very restricted range of materials: First, the energy
coefficients (unlike the voltage ones) can be used to describe
the coupling between a strain gradient and a nonpolar optical
mode; these, of course, do not contribute to the polarization,
but they do contribute to the energetics (we shall see a
concrete example in Sec. IV). Second, the mode effective
charge appearing at the denominator in Eq. (78) is generally a
three-dimensional vector, not a scalar (such a formula can only
be effectively applied to cubic crystals, while its adaptation
to less symmetric material classes remains unclear). Clearly,
our present formalism based on the energy coefficients fl is
more general without entailing any additional burden in the
formulas, and therefore preferable.

We can now use the above derivations to connect to earlier
ab initio works on flexoelectricity. For example, one can
express the O(q2) contribution to the acoustic eigenmode
(under short-circuit EBC) |v(2)〉 in two different tensorial
forms: either based on flβ,γ λ,

|v(2)〉 = −
∑

l

∣∣v(0)
l

〉 fl

Mω2
l

= −
∑

l

∣∣v(0)
l

〉Uβq̂γ q̂λflβ,γ λ

Mω2
l

, (79)

or in terms of the flexoelectric internal-strain tensorLκ
αλ,βγ ,

that was introduced in Ref. [7],

v(2)
κα = −Ûβ q̂γ q̂λ

√
mκ

M
Lκ

αλ,βγ . (80)

[By comparing Eqs. (79) and (80), one trivially obtains L as
a function of flβ,γ λ and the optical-mode eigendisplacements
and frequencies.]

It is useful in this context to express the lattice-mediated
(LM) contribution to the flexoelectric tensor as

μ
I,LM
ξβ,γ λ = 1

�

∑
l

Z∗
lξ flβ,γ λ

Mω2
l

, (81)

where we have introduced the dynamical charge associated to
the lth polar mode

Z∗
lα =

∑
κρ

Z∗
κ,αρ

√
M

mκ

〈
κρ

∣∣v(0)
l

〉
. (82)

(Usually the mass factor M is assumed to be arbitrary; for
the above formulas to be valid, it is necessary to choose it
as the total mass of the unit cell.) The above formulas nicely
parallel the known expression for the lattice contribution to the
dielectric permittivity, which in the present notation reads as

εion
αβ =

∑
l

4π

M�

Z∗
lαZ∗

lβ

ω2
l

. (83)

As we shall see shortly, the presence of ω2
l at the denominator

in the expressions for the hyperelastic (SGE) energy, flexo-
electric polarization, and dielectric permittivity has important
implications in materials like SrTiO3: these are characterized
by a “soft” polar mode with small frequency, which means that
its contributions to the above physical quantities can be very
large.

H. Special case: Cubic perovskites

Since the � tensor (referring to the internal atomic relax-
ations induced by a uniform strain) identically vanishes in the
cubic perovskite structure, the expression for the fourth-order
functional simplifies to

G(4,SGE) = −
∑

l

f 2
l

M2ω2
l

+ 〈v(0)|D(4)|v(0)〉. (84)

In other words, the “mixed” contribution to the SGE energy
vanishes, leaving only the electronic and lattice-mediated
terms behind. Thanks to the symmetry, the 15 normal modes
of the crystal can then be grouped together as five vector
fields, by breaking up the index l = 1, . . . ,15 into a mode
index j = 1, . . . ,5 and a Cartesian index α. Correspondingly,
the flexocoupling tensor can be written in a form that more
closely resembles that of the flexoelectric tensor

flβ,γ λ = f
j

αβ,γ λ. (85)

This form is particularly convenient, as for a given j the
tensor f

j

αβ,γ λ has the same symmetries as the flexoelectric
tensor, e.g., in cubic materials there are only three independent
components.

Most importantly, in incipient ferroelectrics like SrTiO3

the lowest polar mode has a small frequency, and is therefore
expected to dominate the energetics (given the ω−2 prefactor
in ESGE), provided that the flexocoupling coefficients f

j

αβ,γ λ

are all comparable in magnitude. Under such conditions one
can, therefore, neglect the contributions from the stiff polar
modes, and retain only the soft mode, with frequency ω1,
that we describe as a three-dimensional vector. In order
to avoid overburdening of the indices, we can choose a
specific propagation (q̂) and displacement (Û) direction. The
relevant components of the flexocoupling tensor can be then
represented by a vector quantity f1, where the subscript refers
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to the lowest TO1 mode, and is related to the full tensor as

f1α = f
j=1
αβ,γ λÛβ q̂γ q̂λ. (86)

One can then perform the following approximations:

ESGE

U 2q4
≈ − 1

2M�

|f1|2
ω2

1

, (87)

μq̂ ≈ 1

�

Z∗
1 (q̂ · f1)

Mω2
1

, (88)

εstatic ≈ 4π

M�

(Z∗
1 )2

ω2
1

. (89)

Based on the above, we readily obtain the dominant contribu-
tion to the electrostatic energy

EMax

U 2q4
= 4π

2

μ2
q̂

εstatic
≈ 1

2M�

(q̂ · f1)2

ω2
1

. (90)

Summarizing, the overall strain-gradient-related contributions
to the total energy go like

Etot

U 2q4
≈ 1

2M�

(q̂ · f1)2 − |f1|2
ω2

1

. (91)

This means that the soft-mode contribution is irrelevant along
the longitudinal direction, but can be large for phonons that
produce a transverse flexoelectric polarization, where it may
lead to a considerable softening of the elastic response at
short length scales. (Such a length scale, in fact, diverges
as ω1 → 0.) This is fully consistent with the observation of
Refs. [21,23] that the dominant source of dispersive behavior
in the acoustic phonon branch is due to the interaction with
a low-energy optical mode; LO modes lie higher in energy,
and therefore contribute comparatively less to the anomalous
acoustic dispersion described in the above works.

I. Experimental determination of f

Based on the conclusion of the previous section that the
dispersion of transversal acoustic (TA) modes is dominated
by their interaction with the soft polar branch, Kvasov and
Tagantsev [23] proposed that the experimentally measured
phonon frequencies may be used to infer the value of the
corresponding flexocoupling tensor components f 1

αβ,γ λ. (Our
numerical results of Sec. IV provide quantitative support to
this statement.) The authors correctly observed that the values
of the coefficients determined this way are inherently dynamic
quantities (i.e., directly depend on the atomic masses). This
fully agrees with the conclusions of this work: one can easily
show that f

j

αβ,γ λ as defined here coincide with Eqs. (42) and
(43) of Ref. [7], where the mass dependence is explicit.

A related question that has been raised recently consists
in whether or not two separately measurable contributions
to f exist, one of static and the other of dynamic nature.
Reference [23] claims that the answer is positive: the dynamic
and static effects would manifest themselves differently once
the expansion of the TA frequency is pushed to higher orders
in the wave vector q, allowing in principle for an experimental
separation of the two.

By using the theoretical formalism developed in this work,
it is not difficult to verify this statement: it suffices to apply
the 2n + 1 theorem to higher perturbative orders in q, and
look for any signature of the “flexodynamic” tensor introduced
in Ref. [23]. Specializing to the case of cubic SrTiO3, the
sixth-order functional reads as

G(6) = 〈v(2)|(D̂(2) − X(2))|v(2)〉 + 〈v(2)|D̂(4)|v(0)〉
+ 〈v(0)|D̂(4)|v(2)〉 + 〈v(0)|D̂(6)|v(0)〉, (92)

where I have used the fact that the phonon eigenmode con-
tains only even-order contributions (i.e., |v(1,3,...)〉 = 0). The
above expression, as G(4), only depends on the flexocoupling
coefficients fl via |v(2)〉, i.e., there is no direct dependence
on the “flexodynamic” effect, contrary to the arguments of
Ref. [23]. In more detail, for a TA mode the dominant term
at low temperatures is the first row of Eq. (92), which can be
written as

G(6) ≈
∑
j l

flfj

M2ω2
l ω

2
j

(〈
v

(0)
l

∣∣D̂(2)
∣∣v(0)

j

〉 − C
ρmass

δlj

)

≈ f 2
1 (g11 − C�)

M3ω4
1

. (93)

Here, C is the relevant component of the elastic tensor, M

and � are as usual the total mass and volume of the primitive
cell, and we have introduced, in analogy with the definition of
the energy flexocoupling coefficient fl , the correlation matrix
[3,23]

glj = M
〈
v

(0)
l

∣∣D̂(2)
∣∣v(0)

j

〉
. (94)

glj has the dimension of energy; it describes the quadratic
dispersion of the optical branches and their mutual interaction
at O(q2). The discrepancy between our conclusions and those
of Ref. [23] may originate from the inclusion of a kinetic cross
term between the strain and polar degrees of freedom in the
phenomenological thermodynamic functional of Refs. [3,23];
such a term is absent from our lattice-dynamical treatment,
which is based on a normal-mode representation.

This derivation corroborates the argument of Ref. [7]:
distinguishing between dynamic and static contributions to the
flexoelectric effect is somewhat artificial, as the two quantities
are not separately measurable. I stress that, even if the indi-
vidual components of the flexoelectric tensor are inherently
dynamic quantities, and therefore relevant to sound waves,
they are perfectly appropriate to address static phenomena as
well [7], thus, there is no need to consider a different tensor
for each context.

J. Static or dynamic?

In the previous section, I have questioned the dynamic or
static nature of some key quantities involved in the present
formalism, i.e., the flexocoupling coefficients. This is a natural
context to raise the same question about the SGE tensor
components: Are they static or dynamic? To answer this
question, one needs to go back to the formulas we have derived
so far, and inspect them to see whether they contain any
explicit dependence on the atomic masses: if they do, then
the corresponding physical quantity must be a dynamic one.
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I shall separately focus on two physical quantities, the
purely electronic and lattice-mediated contributions to the
SGE energy, as described, respectively, by the tensors h̄ of
Eq. (70) and HLM of Eq. (77). Clearly, the electronic tensor
h̄ is a static one: it is independent of the masses [it can
be written as a double sublattice sum of the force-constant
matrix at fourth order in q, see Eq. (70)], consistent with
its physical interpretation. (One can think, at least in the
context of a calculation, of forcing the atoms by hand into a
macroscopic strain-gradient pattern, and let the electrons relax
in such a static deformation field.) The lattice-mediated part,
on the other hand, is generally dynamic in nature, consistent
with the known [7] mass dependence of the flexoelectrically
induced internal strains. To see this, it is instructive to write
HLM in terms of zone-center force-constant matrix and the
internal-strain response tensor L,

HLM = −L · �(0) · L, (95)

which follows trivially from Eq. (80) after observing that
H LM = −ρmass〈v(2)|D(0)|v(2)〉. The individual components of
L are dynamic [7], and this characteristic directly propagates
to HLM.

The latter observation does not imply by any means that
the scopes of the present theory are limited to dynamic effects:
In fact, the present definition of HLM is perfectly suited to
describing the energy associated with static deformation fields
as well. To see this, suppose we have an inhomogeneous
deformation field at rest under the action of a static external
load (e.g., applied to a far-away portion of the crystal).
Then, due to the mechanical equilibrium condition, the mass
dependence disappears [7] from the effective internal strains
that arise at any point in the crystal and, consequently, from the
overall SGE energy. Thus, the same considerations that have
been made in the case of flexoelectricity are equally valid in the
case of strain gradient elasticity: individual tensor components
are dynamic, but their overall contribution becomes static (and
hence, mass independent) at mechanical rest.

IV. RESULTS: BULK SrTiO3

A. Computational parameters

Calculations are performed within the local-density approx-
imation [35] to density-functional theory. The interactions
between valence electrons and ionic cores are described by
separable norm-conserving pseudopotentials in the Troullier-
Martins [36] form, generated with the FHI98PP code [37]. The
reference states (the numbers in brackets indicate the core
radius in bohrs) of the isolated neutral atom used for the
generation of the pseudopotentials are 2s(1.4), 2p(1.4), and
3d(1.4) for O, 4s(1.5), 4p(1.5), and 4d(2.0) for Sr, and 3s(1.3),
3p(1.3), and 3d(1.3) for Ti. The local angular-momentum
channel is l = 2 for Sr and O, l = 0 for Ti. The cutoff
for the wave-function plane-wave basis is set to 300 Ry to
ensure optimal accuracy in the numerical differentiations in
q space. The surface Brillouin zone of the SrTiO3 primitive
cell is sampled by means of a 12 × 12 × 12 Monkhorst-Pack
mesh. The long-wave expansion of the dynamical matrix is
performed via the following procedure.

First, I calculate the full dynamical matrix, by means
of density-functional perturbation theory [38–40] as imple-

TABLE I. Lattice-dynamical properties of bulk SrTiO3. The
table shows the frequency and dynamical charge of the IR-active
zone-center optical modes. (The silent mode has a frequency of
ωS = 234.0 cm−1 and its dynamical charge is zero by symmetry.)
The calculated dielectric constants are ε∞ = 6.18, εstatic = 1846.0.
Calculations are performed at the theoretical equilibrium lattice
parameter a0 = 3.85 Å.

TO1 TO2 TO3 LO1 LO2 LO3

ωl (cm−1) 36.33 170.18 556.20 164.32 457.46 790.77
Z∗

l (e) 22.65 5.97 11.64 0.41 8.05 24.88

mented in ABINIT [41], on a regularly spaced stripe of q points
in reciprocal space. Compatibly with the chosen k-point set, I
use �-centered stripes of 12 points spanning a line in reciprocal
space, either along [100] or [110]. (The dynamical matrix at �

is corrected with the nonanalytical term that corresponds to the
direction in q space under study, which I separately calculate
by means of a standard electric field response calculation.)
Second, I operate a one-dimensional Fourier transform on
each matrix element, which provides us with the real-space
force constants along a given direction. Such force constants
decay exponentially in real space, and their moments can be
therefore calculated very accurately. The convergence of any
quantity with respect to the real-space cutoff of the interatomic
constants can be also easily monitored. These moments yield
the desired long-wave expansion terms of the D̂ matrices (i.e.,
those with the nonanalytic electrostatic terms included). Next,
parallel with the analysis of the interatomic force constants,
I perform an analogous Fourier processing of the induced
charge density, which provides us with the electronic octupolar
moments, and hence with the longitudinal components of the
flexoelectric tensor. Finally, by using the known relationships
between short-circuit and open-circuit flexoelectric response, I
appropriately combine the charge octupoles and the calculated
D̂ matrices to extract the full flexocoupling tensor components
and, in turn, all the necessary quantities to study SGE and
flexoelectricity in bulk SrTiO3.

In Table I, I report the calculated values of a few standard
lattice-dynamical and dielectric properties of bulk SrTiO3: the
optical-mode frequencies, their associated dynamical charges,
and the dielectric constant (both in the static and high-
frequency limits). These quantities are shown here both for
reference, and also because they are directly involved in the
higher-order tensors describing the strain-gradient response of
the crystal. To calculate the latter, and thereby demonstrate the
formalism developed in this work, a number of additional basic
ingredients are needed: the flexocoupling coefficients (f̃ ), the
electronic octupolar moments, and the relevant frozen-ion SGE
coefficients (h̃). Since these quantities are calculated as a real-
space moment of some Fourier-transformed lattice-dynamical
quantity, one must choose a cutoff distance beyond which the
lattice sum (or the integral) is truncated. The convergence
of each of the aforementioned quantities with respect to
such a cutoff (expressed in number of atomic monolayers) is
shown in Fig. 1. In all cases, the convergence is excellent,
e.g., it is of the order of 0.1 eV (i.e., well below 1%) in
the flexocoupling coefficients along [110], and even (much)
better in the [100] case. I shall initially report the values
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FIG. 1. Convergence of various quantities with the real-space cutoff of the interatomic force constants along a given direction. (a), (b)
Flexocoupling coefficients along [100] and [110]; solid and dashed lines refer to longitudinal and transverse modes, respectively; the reported
values are the deviations with respect to the n = 10 point. (c) Electronic octupolar moments; the converged values are Õ100 = −109.1 a.u. and
Õ110 = −115.4 a.u. (to be compared with Õ100 = −108.8 a.u. and Õ110 = −115.3 a.u., obtained in Ref. [11]). (d) Electronic contribution to
the fourth-order dispersion (h̃el).

of the aforementioned quantities as calculated under “mixed
electrical boundary conditions” (MEBC) [9] (longitudinal
modes experience an open-circuit environment, while short
circuit is naturally imposed by the periodicity of the lattice in
the transverse plane), and later discuss how to recast them in
a tensorial form by separating the electrostatic contribution.
Consequently, the octupolar moments Õq̂ reported in Fig. 1
are related to the longitudinal component of the frozen-ion
flexoelectric tensor by μq̂ = ε∞Õq̂/6�.

B. Flexocoupling coefficients in MEBC

The central quantity that one needs when dealing with either
flexoelectricity or strain-gradient elasticity is the flexocoupling
tensor; for this reason, I shall describe its calculation in detail.
The first step, which will be outlined in this section, is the
calculation of the longitudinal and transverse flexocoupling
coefficients f̃

L,T
q̂ , along the [100] or [110] direction in q space.

These are given by the second moments (along the direction q̂)
of the “bare” dynamical matrix D̂, i.e., with the electrostatic
interactions included; this means that MEBC are naturally
imposed along q̂.

One must keep in mind that the coefficients that one
obtains this way are specialized to the direction q̂ and to
the polarization (longitudinal or transverse) of the mode: For
example, some of the f̃ coefficients describe the interaction
between longitudinal acoustic (LA) and longitudinal optic
(LO) modes (f̃ L), while others couple transverse acoustic (TA)
modes to transverse optic (TO) phonons (f̃ T).4 As TO and LO
modes experience dissimilar electrical boundary conditions,
they differ even at the Brillouin zone center; this implies
that f̃ L coefficients cannot be mixed or compared to f̃ T

coefficients, let alone treated as the components of a single
tensor. (The practical procedure to extract a proper tensorial
expression will be discussed shortly.)

The calculated values of the f̃q̂ coefficients are reported in
Table II. In addition to the coupling to the IR-active modes,
which are sensitive to the above considerations on the electrical
boundary conditions, I also show the “self-coupling” of the

4Since we are dealing with high-symmetry directions, the two
subspaces of the longitudinal and transverse phonons are decoupled,
and can be treated independently.
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TABLE II. Calculated energy flexocoupling coefficients in
MEBC, corresponding to acoustic phonon modes propagating along
[100] and [110]. Labels refer to the self-coupling of the acoustic
mode (A), to the IR-active optical modes (1–3), and to the silent
mode (S). L and T indicate longitudinal and transverse polarization,
respectively. The character of the IR-active modes is consistent with
the L or T label. Values are in eV units.

[100] [110]

L T L T

A 137.13 43.46 132.02 48.59
1 −83.45 −44.53 −65.53 −27.89
2 108.45 5.84 52.15 29.92
3 −155.16 −22.87 −100.36 −89.90
S 0.00 43.70 57.33 −13.65

acoustic branch (these directly relate to the relevant component
of the elastic tensor), and the coupling to the “silent” (S) mode.
The latter, of course, does not carry a dynamical dipole and
is therefore irrelevant for flexoelectricity; still, as we shall see
in the following section, it does contribute to strain-gradient
elasticity.

C. Acoustic phonon dispersion

In Table III, I report the calculated values of the h̃

coefficients, referring to nonlocal elastic effects in MEBC.
These coefficients are further decomposed into a purely
electronic (self-dispersion) term, which I shall indicate as
“frozen-ion” (FI) hereafter, and a number of lattice-mediated
(LM) contributions, which are associated to the relaxation
of each zone-center optical mode, either IR-active or silent.
(Such a decomposition is in all respects equivalent to the
better-known case of linear elasticity, where the corresponding
material constants are also conveniently split into a FI and a
LM contribution.) It is clear from the table that all the values
are negative, i.e., both effects lead to a systematic softening
of the elastic response of the crystal at short length scales.
The physical mechanisms that lie behind this observation are
quite dissimilar in the FI and LM cases, so I shall discuss them
separately in the following, starting from the former.

TABLE III. Contributions to the dispersion of the acoustic
branches in a vicinity of �, corresponding to the h̃ coefficient defined
in the text. Longitudinal and transverse phonon modes propagating
along [100] and [110] are considered. Labels correspond to the
self-dispersion (A), IR-active optical modes (1–3), and silent mode
(S). Values are in nN.

[100] [110]

L T L T

A −2.93 −0.89 −2.03 −0.56
1 −10.76 −62.69 −6.64 −24.59
2 −2.35 −0.05 −0.54 −1.29
3 −1.61 −0.07 −0.67 −1.09
S 0.00 −1.46 −2.50 −0.14

Total −17.65 −65.16 −12.39 −27.67

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

FIG. 2. Dispersion relation of a linear chain (black curve) as
approximated by local elasticity (green dotted-dashed line) and SGE
(red dashed line).

To understand the origin of the self-dispersion of the
acoustic branches, it is instructive to consider the simple
textbook model of a linear chain of atoms interacting with
first-neighbor springs. The dispersion of the LA branch is
trivially given by

ω2(q) = 2
k

m
[1 − cos(qa)], (96)

where k is the spring constant, m is the mass, and a is the lattice
spacing. By performing a long-wave expansion to O(q4),
analogously to the procedure used in the remainder of this
work, one readily obtains a continuum energy functional for
this system

E = q2

2
C + q4

2
h̃, (97)

where the elastic and hyperelastic constants are

C = ka2

�
, (98)

h̃ = − ka4

12�
. (99)

(I have introduced the volume factor � by supposing that the
chain of atoms is, in fact, a chain of atomic planes, consistent
with the three-dimensional nature of the SrTiO3 crystal under
study.) In Fig. 2, I show a comparison of the phonon dispersion
as predicted by the continuum SGE functional with the exact
discrete reference. This analysis allows us to relate the two
elastic coefficients as

h̃ = −a2C/12. (100)

This result implies that h̃ is primarily due to the discreteness
of the lattice, and will produce measurable effects at a length
scale that is comparable to the interatomic spacing a. While
SrTiO3 is undoubtedly more complicated than this toy model,
it is interesting to compare the predictions of Eq. (100) with
the actual values of h̃ calculated from first principles to see
if, at least qualitatively, the above ideas are correct. As one
can readily appreciate from Table IV, the two sets of values
display a consistent trend, and even quantitatively they lie
within a factor of 2 in all cases, confirming that we are indeed
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TABLE IV. Frozen-ion contribution to the SGE coefficients in
MEBC (“first-principles”) compared with a rough estimation based
on the first-neighbor lattice model described in the text (“model”).
The model values were obtained by setting the a parameter to
the periodicity of the lattice along the phonon directions, i.e., a0,
a0/

√
2, and a0/

√
3, respectively, along [100], [110], and [111]. Values

are in nN.

First-principles Model

L T L T

[100] −2.93 −0.89 −4.77 −1.51
[110] −2.03 −0.56 −2.30 −0.85
[111] −1.87 −0.38 −1.51 −0.54

on the right track. Such an agreement tells us that the FI
contribution to strain-gradient elasticity is utterly small, and
becomes relevant only at a length scale that is comparable
to the interatomic spacing. (Similar conclusions were drawn
in Ref. [19].) Its inclusion in a continuum thermodynamic
functional appears therefore of limited interest, except for
guaranteeing the gauge invariance of the theory as we shall
see in Sec. IV E.

The LM contribution, related to the optical modes, is
negative by construction, and in the transverse cases is
largely dominated by the ferroelectric “soft” mode. (In the
longitudinal case, the overall value of h̃ is more equally
distributed.) That the soft mode plays a dominant role in h̃

is no surprise, given its very low transverse frequency (recall
that the squared frequency appears at the denominator in the
SGE energy) in our computational model of SrTiO3. After the
inclusion of the LM contributions, the resulting characteristic
length scales (usually defined in the literature as ξ =

√
C/|h̃|)

are significantly larger compared to the previous estimation
of ξ ∼ a/

√
12, obtained at the frozen-ion level. Still, the

value of ξ hardly reaches 1 nm in the present first-principles
model of SrTiO3, questioning again the general relevance of
the SGE (and flexoelectric) energy in continuum simulations
of macroscopic phenomena. It is important, however, to
emphasize a notable consequence of the theory presented
so far: the above length scale diverges near a ferroelectric
phase transition, i.e., when the frequency of the soft mode
tends to zero. This suggests that SGE may lead to interesting
physical effects whenever an optical phonon undergoes a
critical behavior, and that lattice-mediated flexoelectric/SGE
effects cannot a priori be neglected in such a regime.

D. Macroscopic coupling tensors

In this section, I shall proceed to extracting, from the results
presented so far, the elastic and flexocoupling coefficients in
a proper tensorial form. Regarding the elastic tensor, it can be
trivially extracted from the [100] and [110] “flexocoupling”
coefficients of the acoustic mode with itself. As there are
four calculated values and three independent entries, the
redundancy can be used as a consistency check. A second
numerical test consists in comparing the values calculated this
way to a more standard calculation of C, performed via finite
differences in the strain. As one can see from the results

TABLE V. Calculated elastic tensor of bulk SrTiO3. Values in the
upper row were obtained by using the dynamical matrix approach
described in this work. The lower row was obtained by taking finite
differences of the calculated stress tensor while varying the strain
around the equilibrium cubic configuration. Values are in GPa.

Cxx,xx Cxy,xy Cxx,yy

Dynamical matrix 386.2 122.4 112.6
Strain 386.2 122.4 112.6

reported in Table V, the two procedures show essentially
perfect agreement: deviations are smaller than 0.1 GPa in all
cases.

Recasting the f̃ coefficient into a tensorial form is more
delicate, and requires two preliminary steps: (i) the nonanalytic
electrostatic terms need to be removed from D̂(2), thereby
obtaining D(2); (ii) the basis of zone-center eigenmodes on
which D(2) is projected need to be calculated under isotropic
short-circuit conditions, rather than MEBC. Then, just like
in the elastic case, we have three independent entries and
four independent values for each optical mode; this is again a
stringent test of the overall consistency of the implementation.
(In practice, I treat the [100] values as exact, and average the
error on the [110]-related terms. The deviation is very small,
of the order of 0.1–0.2 eV.) The resulting values, which are
one of the main results of this work, are reported in Table VI.

Note, first of all, the strong reference dependence of the
individual coefficients, which can even change sign in some
cases when going from a p-type to an n-type regime. (We
use “p-type” and “n-type” as shortcuts to indicate that either
the valence band edge or the conduction band edge was chosen
as the reference potential.) What this really means physically is
that, if we think of SrTiO3 as a doped semiconductor, the cou-
pling between strain gradients and zone-center optical phonons
will strongly depend on the character of the majority carriers
(electrons or holes). If SrTiO3 is in a perfectly insulating state,
on the other hand, the choice of one or the other reference
is completely arbitrary; what changes is just the physical
meaning of the “electrostatic potential” that stems from a
self-consistent solution of the electromechanical problem.

Not all the coupling coefficients are affected by such a
reference dependence, though: the shear components f

j
xy,xy

TABLE VI. Calculated type-II energy flexocoupling coefficients
(in eV units). For the longitudinal (xx,xx) and transverse (xx,yy)
components, both the n-type and p-type values are shown, while
the shear (xy,xy) coefficient is reference independent. The three
components are often indicated in the literature as f11, f12, and f44,
respectively.

fxx,xx fxx,yy

n-type p-type n-type p-type fxy,xy

1 −51.1 −90.2 5.1 −34.0 −44.5
2 74.4 64.1 14.8 4.5 5.8
3 −181.6 −201.7 −1.4 −21.6 −22.9
S 0.0 0.0 27.3 27.3 43.7
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(also known in the literature as f44) are not sensitive to this
arbitrariness. A closer look allows us to identify an additional
linear combination of the f coefficients where the ambiguity
cancels out:

f T
110 = 1

2 (f11 − f12), (101)

which is relevant for a transversally polarized (i.e., with the
displacement vector oriented along [11̄0]) acoustic phonon
propagating along [110]. Transverse phonons along any
conceivable direction are described by a linear combination of
the f44 and f T

110 coefficients, and the reference independence
is consistent with the preservation of translational periodicity
along the displacement direction. Regarding the actual values,
in the case of the soft mode (TO1) I obtain

f TO1
44

Z∗
TO1

= −1.96 V, (102)

f TO1
11 − f TO1

12

2Z∗
TO1

= −1.24 V. (103)

(I converted the flexocoupling coefficients to voltage units by
dividing them by the mode dynamical charge for a better com-
parison with existing literature data.) These values seem to be
in overall agreement with the existing experimental estimates
(|f11 − f12| = 1.2–1.4 V, |f44| = 1.2–2.4 V) [1,3,23,42].

An independent first-principles calculation of such quan-
tities was recently reported in Ref. [23]. Our results present
significant quantitative differences, especially regarding the
[110] coefficient (a value of −0.2 V was reported by Kvasov
and Tagantsev). Such a discrepancy may be in part due to
differences in the general computational setup (e.g., exchange
and correlation functionals, pseudopotentials), but also in the
specific procedure that one uses to extract the f tensor from
the linear response data. We stress that a correct treatment
of the electrical boundary conditions, as we have extensively
discussed in the course of this work, is essential for a reliable
calculation of f. Interestingly, if we were to estimate the
transverse components of f from the TA dispersion curves
(by assuming, following Ref. [3], that TO1 is the dominant
source of curvature of the branch), we would make an error of
2% and 6%, respectively, in the [100] and [110] coefficients
(this can be easily inferred from the data of Table III).

E. Gauge invariance of LA phonons

It is useful, before closing this long section, to perform
a further consistency check of the formalism, this time by
focusing on the gauge invariance. Apart from the obvious
validation purposes, this exercise will provide a quantitative
flavor on exactly how much the reference potential ambiguity
affects the partition between SGE and Maxwell energy. As a
representative example, I will focus on the dispersive behavior
of the LA phonon branch along [100], whose analysis has
already been presented in the first column of Table III. In
Table III, however, the total h̃ coefficient was decomposed
into the contributions from the LO modes and the open-
circuit self-dispersion of the LA branch. Here I shall, instead,
decompose the same value into contributions from TO modes,
the short-circuit self-dispersion of the branch [as given by
Eq. (71)], and the Maxwell energy of the flexoelectrically

TABLE VII. Decomposition of the dispersion of the LA phonon
along [100] into self-dispersion (A), optical modes (1–3), and
electrostatic (El.) contributions. Three different assumptions for
the short-circuit boundary conditions are shown: p-type screening
(flat valence band), n-type screening (flat conduction band), and
electrostatic screening (flat macroscopic electrostatic potential ϕ).
The overall result is independent of this choice, and coincides with
the value (−17.646 nN) calculated under open-circuit conditions (see
Table III). Values are in nN.

n-type p-type ϕ

A −3.043 −2.934 −17.276
1 −257.089 −82.421 −5693.678
2 −5.926 −7.985 −0.828
3 −5.488 −4.449 −18.815
El. 253.899 80.142 5712.950

Total −17.647 −17.647 −17.647

induced electric fields. Of course, depending on the choice of
the reference potential, the individual pieces will vary but the
overall sum must remain the same.

The results of this new decomposition, performed for three
different choices of the reference potential, are shown in
Table VII. (Next to the p-type and n-type results, I also show
a decomposition performed by using the bare electrostatic
potential as a reference: the corresponding column is marked
as ϕ.) The contribution of the optical phonons, as expected, is
largely dominated by the soft mode (TO1). Such a contribution,
which is negative definite, strongly depends on the reference,
and becomes very large in the case of the bare electrostatic
reference. This negative term, however, is almost exactly can-
celed in all cases by an equally large and positive contribution
from the Maxwell energy. The overall sum, which depends on
the slight discrepancy between these two values and on the
(much smaller) residual contribution from self-dispersion and
other optical modes, is gauge independent as expected, and
accurately matches the value reported in Table III.

This analysis highlights two important facts that were
already anticipated earlier. First, a consistent description of
strain-gradient elasticity is necessary for building a well-
defined functional that incorporates flexoelectric effects. Sec-
ond, insisting on choosing the electrostatic potential as a
reference, as implicitly assumed in earlier ab initio works
[10,11], may lead to an awkward partition of the energetics
between two extremely large terms, which are opposite in sign
and almost exactly cancel. (This is unpalatable in practical
implementations of the theory, as numerical errors might affect
the two terms in a dissimilar way, and thus be artificially
amplified.) This corroborates the arguments of Ref. [14],
where the choice of the valence and conduction band edges
as a reference when modeling flexoelectric phenomena was
advocated for closely related reasons. Since calculations of
flexoelectricity are usually performed (as in this work) in the
framework of density-functional theory, adopting the valence
band edge as the energy reference appears as the most sensible
choice: This is the only band energy that is, in principle,
correctly described within “exact” DFT, while the physical
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FIG. 3. (a) Lattice-dynamical analysis of the continuum strain-gradient theory of Sec. II A, applied to the SrTiO3 case. Black solid curves
represent the dispersion of the Fourier-interpolated ab initio phonon frequencies (thin and thick correspond, respectively, to longitudinal and
transverse branches); green dotted-dashed lines correspond to the linear dispersion given by classical elasticity; red dashed curves correspond
to the continuum model. The inset indicates the paths in the 2D Brillouin zone that correspond to the reported phonon branches. (b) Revised
continuum functional of Eq. (105), either with (dotted curves) or without (dashed curves) the “background” SGE term; only transverse modes
are shown.

meaning of other single-particle eigenvalues (including the
conduction band minimum) is less clear.

V. DISCUSSION

With all the numerical data in our hands, we can now go
back to the continuum thermodynamic functional proposed
in Sec. II A, and validate its accuracy against our reference
first-principles model of SrTiO3. Given the lattice-dynamical
nature of the formalism, comparing the phonon spectrum of the
continuum Lagrangian with the corresponding first-principles
dispersion curves appears as an excellent way to assess the
quality of the approximations that have been adopted so far
[19].

In Fig. 3, I plot the transverse and longitudinal acoustic
phonon branches along [100] and [110] as predicted by the
continuum model, and the whole ab initio phonon spectrum
along the same directions in reciprocal space. The first
observation that one can make is that the continuum model
does not seem to reproduce the first-principles results very
accurately: the agreement between the two breaks down only
a short distance away from the zone center. For slightly
larger values of q, the continuum curves dip downwards and
plunge below zero. (In fact, the restoring force associated to
larger wave vectors becomes negative, leading to an imaginary

frequency and hence to an instability of the model.) This
behavior is common to both longitudinal and transverse
branches, although it is much more pronounced in the case
of the latter. The fact that, by plugging the calculated values of
the relevant coupling tensors into the strain-gradient functional
of Sec. II A, one obtains a pathological behavior (i.e., a
thermodynamically unstable model) is no big surprise: The
strain-gradient tensor h is systematically negative and enters
the Hamiltonian with the highest order in the wave vector q,
O(q4). Such a “sign” issue is well known in the literature, and
seems to be a rather ubiquitous occurrence in the physics of
many crystalline materials [19]. What is, on the other hand,
surprising is how serious the problem is in the present SrTiO3

case: Instabilities here occur unusually close to the zone center
(compared, e.g., to the cases that were reported in Ref. [19]),
which is a consequence of the strong coupling between the
transverse soft-mode and acoustic branches.

Fixing this issue appears as a daunting task if one wishes
to keep working with the simple strain-gradient functional of
Sec. II A. As we have discussed at length in the previous
section, the fourth-order dispersion of the TA branches
is dominated by the interaction with the ferroelectric soft
mode. As a consequence of this interaction, the SGE energy
acquires a negative contribution that is inversely proportional
to the square of ω, the transverse soft-mode frequency. In
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phenomenological theories of ferroelectrics, one typically
assumes that this frequency follows a critical temperature
behavior as

ω2 ∝ (T − TC), (104)

where TC is the Curie temperature; this means that the
continuum model of Sec. II A becomes unstable at a length
scale ξ that diverges as (T − TC)−1/2. This appears difficult to
fix in practical implementations; plus, the adiabatic approxi-
mation that regards optical modes as “fast” variables becomes
unjustified in a proximity of TC.

An obvious way to circumvent this issue consists in
modifying the functional of Sec. II A by promoting the
soft mode to an independent degree of freedom, as it is
commonly done in the ferroelectric literature [3]. For example,
specializing for simplicity5 to a given transverse branch along
a fixed propagation direction, one can write

L(u,u̇,φ,φ̇) = ρmass

2
(φ̇2 − φ2ω2) + ρmass

2
|u̇|2 − 1

2
C(u′)2

− 1

2�
g(φ′)2 − 1

�
f φ′u′ − 1

2
hB(u′′)2. (105)

Here, φ is the soft-mode amplitude, g its correlation energy
(see Sec. III I), f the corresponding flexocoupling coefficient,
and C the elastic constant. The contributions to the SGE
energy that are not due to the soft mode have been grouped
into the “background” SGE coefficient hB; primed symbols
refer to spatial derivatives along the propagation direction. It
is straightforward to show that the Lagrangian of Eq. (105)
reproduces, up to fourth order in q, the same dispersive
behavior of the acoustic phonon branch as the simpler
functional of Sec. II A; thus, the two formulations provide
an equally accurate description of SGE effects.

To understand why the new functional is preferable to
that of Sec. II A in the present SrTiO3 case, in Fig. 3(b) I
present a lattice-dynamical analysis of the dispersion curves
as calculated from Eq. (105), either by including (dotted
curves) or neglecting (dashed curves) the background SGE
term. In the approximate (hB = 0) version, which we shall
discuss first, the instabilities have disappeared completely;
this is a consequence of suppressing the negative O(q4) SGE
contribution due to hB. One can show that the resulting
functional is thermodynamically stable at any value of ω if the
(now highest) O(q2) term is defined positive. This requires the
following condition [3,21] to be satisfied along all directions
in q space

�Cg > f 2. (106)

In Table VIII, I report the values of the relevant parameters
calculated in the present first-principles model of SrTiO3

along [100] and [110]; the stability criterion, Eq. (106), is
clearly satisfied in both cases. Note that although there is
no explicit SGE term, the implicit contribution of the soft

5The calculation of the full correlation matrix g in a correct tensorial
form presents some additional subtleties regarding the treatment of
the long-range electrostatics and the gauge invariance; these would
require a long digression in order to be adequately clarified.

TABLE VIII. Elastic constant, soft-mode flexocoupling coef-
ficient, and correlation energy (self-correlation of the soft-mode
branch) associated to a transverse phonon propagating along the two
directions considered in this work. Values are reported in eV.

�C f g

[100] 43.46 −44.53 94.26
[110] 48.59 −27.89 199.57

mode to the SGE energy, which constitutes more than 90%
of the total, is correctly described via the flexocoupling
term. This observation explains the remarkable accuracy of
the resulting acoustic dispersion curves [dashed curves in
Fig. 3(b)], especially along the [100] direction.

For several different reasons (e.g., to ensure the gauge
invariance of the theory, or to study physical phenomena where
strain gradients are exceptionally large [12], or more simply
in nonferroelectric materials), one may be interested in a more
accurate (i.e., beyond the soft-mode approximation) treatment
of the SGE energy. If this is the case, it becomes necessary
to reincorporate the background SGE effects that have been
neglected in the last few paragraphs. The complete functional
of Eq. (105), with the correct hB coefficient included, yields
the acoustic phonon branches that are shown as dotted curves
in Fig. 3(b). While there are some improvements in the
description of the dispersion in a vicinity of the zone center,
most clearly along the [110] direction, the systematically
negative sign of hB brings us back to the stability issues that
we have already mentioned when commenting on Fig. 3(a).
[Note that the critical wave vector at which the instabili-
ties occur is much larger than in Fig. 3(a) since part of
the SGE energy has been delegated to the flexocoupling
term, and is now almost not sensitive to the soft-mode
frequency ω.]

The fact that most contributions to the SGE energy are
negative (and hence prone to instabilities when incorporated
in a continuum model) in most materials (the present results
for SrTiO3 are no exception) was observed before [19], and
several workarounds have been proposed over the years [18].
A popular strategy consists in replacing the unstable strain
gradients with stable inertia or acceleration gradients [18].
This way, the dispersion of an acoustic phonon branch along a
given direction can be, in principle, adjusted to match the
first-principles results even without introducing an explicit
SGE term. When moving to the 3D case, however, it appears
unlikely that one could replace the information contained in
the SGE tensor entirely via this trick. The SGE tensor, as we
have shown in Sec. III J, describes both static and dynamic
effects, and while inertia gradients may be used to reproduce
the latter, they cannot obviously mimic the former.

The concepts developed in this work naturally suggest two
additional strategies that could be used, as an alternative to
(or in combination with) the inertia gradients, to construct
thermodynamically stable SGE functionals. The first, which
would be ideally suited to a numerical implementation,
consists in discretizing the field equations, e.g., via “quasicon-
tinuum” methods [43]. Such techniques have been successfully
applied in the past to modeling the elastic properties of
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materials and nanostructures in a multiscale framework [44].
Discretization naturally introduces a low-pass filter in the
(spatial) frequency spectrum of the allowed solutions, and
therefore looks particularly promising in the present context,
where the problematic instabilities occur at exceptionally short
length scales. Moreover, such an approach is consistent with
the physical origin of, at least, part of the SGE energy (the
frozen-ion contribution), which is precisely related to the
discrete nature of the atomic lattice (see Sec. IV C).

A second possibility involves incorporating an auxiliary
vector field in the continuum model, whose physical param-
eters (zone-center frequency, correlation, and flexocoupling
coefficient) are such that (i) the auxiliary mode is adiabatically
separated from both the soft-mode and the acoustic branches;
(ii) its contribution to the SGE energy is equal or more negative
than any calculated hB coefficient; (iii) the stability condition
(106) is satisfied. Given (i)–(iii), one is left then with a
positive-defined hB tensor [the contribution from the auxiliary
field, in the form of Eq. (77), must be subtracted from hB in
order to keep the overall SGE energy unaltered]. This implies
that, by introducing an additional degree of freedom in the
model, and by carefully engineering its (flexo)coupling to the
deformation field, one can always obtain a stable functional,
and yet an exact (in relationship to the first-principles reference
model) treatment of all the contributions to the SGE energy.

Exploring the details of such an approach (or of the
discretization route that I have mentioned earlier) would bring
me far from the main scopes of this work, and I defer it to
a future publication. Still, the above discussion highlights the
advantages of the strategy used in this work, i.e., of approach-
ing continuum problems with a fundamental lattice-dynamical
mindset. This way, one can not only extract realistic material-
specific values of the coefficients, but also provide firm mi-
croscopic foundations to the higher-level theory, and possibly
devise effective solutions to existing mathematical puzzles.

VI. CONCLUSIONS

I have derived a unified formulation of flexoelectricity
and strain-gradient elasticity in crystalline insulators, and
discussed its implications for (incipient) ferroelectric ma-
terials. The ideas presented here are immediately relevant
to a vast range of physical phenomena involving spatial
inhomogeneities in the strain or other order parameters. Such
studies have traditionally been the almost exclusive realm of
phenomenological approaches; this work clearly demonstrates

that a fully ab initio route, via a hierarchical multiscale
framework, is a powerful (and very realistic) alternative.

In the present implementation, first-principles data have
been used as the “exact” reference on which the continuum
model is built. One should keep in mind, in this context, that
ab initio approaches are not free from limitations: on one
hand, there are the well-known accuracy concerns related to the
approximate treatment of the exchange and correlation energy;
on the other hand, direct electronic structure methods are only
practical at zero temperature, which at first sight thwarts their
applicability to the accurate study of ferroelectric materials.
Neither of the above two issues is, in fact, a drawback of
the method described here. The present multiscale strategy
is completely general, and readily applicable to an arbitrary
microscopic model. (This can be either an ab initio or a
classical atomistic description.) Furthermore, the long-wave
approximation, combined with the quasicontinuum approach
that I have mentioned in Sec. V, can be regarded as a powerful,
systematic tool to construct effective Hamiltonian [45–47]
models. The latter have been successfully used during the
past two decades as a means to exploring finite-temperature
and other effects in complex ferroelectric systems. In this
respect, this work may open interesting new avenues towards
overcoming the stringent time- and length-scale limitations of
direct ab initio approaches; exploring these opportunities will
be an interesting topic for future studies.

Based on the above considerations, I expect this work to
promote a closer synergy between condensed-matter theorists
that are active in the field of continuum modeling with
those in the first-principles community, with many exciting
opportunities for future collaboration. Apart from the obvious
application to flexoelectricity, the methodologies developed
here are directly relevant to ferroelectrics at large, and
more generally to any physical system where electrical and
mechanical degrees of freedom couple in nontrivial ways.
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