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Adiabatic perturbation theory of electronic stopping in insulators
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A model able to explain the complicated structure of electronic stopping at low velocities in insulating materials
is presented. It is shown to be in good agreement with results obtained from time-dependent density-functional
theory for the stopping of a channeling Si atom in a Si crystal. If we define the repeat frequency f = v/λ, where
λ is the periodic repeat length of the crystal along the direction the channeling atom is traveling, and v is the
velocity of the channeling atom, we find that electrons experience a perturbing force that varies in time at integer
multiples l of f . This enables electronic excitations at low atom velocity, but their contributions diminish rapidly
with increasing values of l. The expressions for stopping power are derived using adiabatic perturbation theory
for many-electron systems, and they are then specialized to the case of independent electrons. A simple model
for the nonadiabatic matrix elements is described, along with the procedure for determining its parameters.
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I. INTRODUCTION

There are several situations in which electronic devices
are subject to impacts from high-energy particles. These
include electronic devices in satellites subjected to cosmic
radiation, and those in nuclear power plants where high-energy
reaction products can reach them [1–3]. The damage created
by collisions with these particles depends on how they interact
with the semiconductor crystals: collisions with nuclei are
generally more important at low velocity, while collisions with
electrons can dominate at high velocity [4].

Because so many low-velocity particles can be generated
at the end of a collision cascade, an important question is
as follows: what is the nature of electronic stopping at low
velocities? The answer is well known for metallic systems, but
much less well understood for insulators. One view has been
that, for a material with a gap, there is a threshold velocity
vth below which there is no electronic stopping [5–7]. This
velocity can be estimated for the case of a channeling atom. If
we view it as applying a periodic driving force to the electrons
in the semiconductor crystal as it travels down a channel, then
the frequency of the driving force is f = v/λ, where λ is the
periodic repeat length of the crystal along the direction the
projectile is traveling, and v is the velocity of the channeling
atom. The threshold velocity is then given by vth = λ�/h,
where � is the electron energy gap and h is Planck’s constant.

Because of the importance of having a proper understanding
of the effect of radiation on semiconductors, the stopping of a
Si atom by electrons in a silicon crystal was studied recently
using time-dependent density-functional theory (TDDFT) [8].
The local density approximation was used for exchange and
correlation, so the simulated system had a band gap of
about 0.6 eV. For channeling along the [100] direction, the
corresponding threshold velocity is 0.2 Å fs−1 [8]. We note that
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a similar value, namely v′
th = ( 2π

3 )
1
3 λ�/h, can be obtained

by a different argument based on momentum and energy
conservation using a dielectric stopping theory [9]. The main
discovery of [8] was that there is significant stopping well
below the proposed threshold velocity. This is attributed to
a gap state whose energy undulates within the gap as the
channeling atom travels through the crystal. As the state
approaches the valence band, it is able to collect electronic
charge from the filled states. Similarly, as it approaches the
conduction band, it is able to deposit charge into the empty
conduction states. This process was termed the “electron
elevator”. This interpretation was supported by simple coupled
rate equations that were able to reproduce the variation in the
populations of the gap and conduction states [8].

We note that there are similarities between our electron
elevator model and the electron promotion model [10,11].
Foremost, they both look at charge transfer by considering
the adiabatic states that form when an incident atom or ion
interacts with a bulk. However, there is also an important
difference, namely the explicit emphasis put on the importance
of nonadiabatic processes in our electron elevator model.

The purpose of this paper is to provide a mechanistic
description of how the elevator works that can be related
directly to the underlying quantum-mechanical description
of the electrons. As the adiabatic description of the energy
levels in the system provides a good account of most of what
is taking place, but cannot account for the small amount of
electron transfer to and from the gap state, we choose to use
adiabatic perturbation theory (APT) to describe the dynamics
of the system [12]. The small quantity in this formalism is the
nonadiabatic coupling between states, and it is proportional to
the velocity of the channeling atom; thus slow moving atoms
correspond to a weak perturbation.

In the next section, we outline the adiabatic perturbation
theory formalism that is used [13]. We then summarize
the approximations we make to obtain expressions that are
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sufficiently transparent that they can provide insight into how
the electron elevator works. Finally, we present numerical
results that we can compare with the TDDFT calculations.
We find that we can explain much of the TDDFT data with our
simplified model.

II. ADIABATIC PERTURBATION THEORY

A. General formulation

Here we present the outlines of the algebra for the pertur-
bation theory. More details about the steps in the argument can
be found in the supplemental material [14].

We assume the channeling atom can be treated as a
classical particle with a known trajectory �R(t) inside a crystal.

The velocity of the atom is then �̇R, which can vary with
time. The electrons respond to the time-varying field the
atom applies, with their dynamics being determined by the
many-electron Hamiltonian Ĥ ( �R(t)). The evolution of the
electrons is then characterized by a many-electron wave
function �(�r,t) that satisfies the time-dependent Schrödinger
equation Ĥ ( �R(t))�(�r,t) = i� ∂

∂t
�(�r,t), where �r represents all

the electronic degrees of freedom.
To construct a description of the evolution of the

electrons as a perturbation of an adiabatic representation,
we require the adiabatic states of the electrons; these
are the instantaneous eigenstates �n( �R,�r), which satisfy
the time-independent Schrödinger equation, Ĥ ( �R)�n( �R,�r) =
En( �R)�n( �R,�r), where En( �R) defines a surface of the total
energy of the electrons and nuclei, assuming the nuclei are
stationary. We now make an expansion for the wave function
as

�(�r,t) =
∑

n

Cn(t)eξn(t)/i��n( �R(t),�r), (1)

where the phase ξn is chosen such that the rate of change
of the expansion coefficient Cn, namely Ċn, does not depend
directly on Cn [hence the omission of the m = n terms in
Eq. (3) below]; this allows us to treat large diagonal terms
nonperturbatively. In the presence of degeneracies, there can
also be large off-diagonal terms; these need a careful treatment
that lies beyond the scope of what is presented here. If
we substitute our ansatz for the wave function [Eq. (1)]
into the time-dependent Schrödinger equation, we find that

ξn(t) = ∫ t

0 [En( �R(s)) + �γn( �̇R(s), �R(s))]ds with γn( �̇R, �R) =
−i �̇R · �gnn( �R), where

�gnm( �R) =
∫

�∗
n( �R) �∇�m( �R)d�r. (2)

If the nuclei are taken round a closed path, then the integral
of γn around the loop is just the well-known Berry phase.
Note that for finite systems with real wave functions, γn = 0,
a feature we make use of below. The equation of motion for
the expansion coefficients is

Ċn(t) =
∑
m�=n


nm(t)Cm(t), (3)

where the nonadiabatic coupling rate between surfaces 
nm(t)
is given by


nm(t) = −eiφnm(t) �̇R(t) · �gnm( �R(t)) (4)

and

φnm(t) = 1

�

∫ t

0
[En( �R(s)) − Em( �R(s)) + �(γn( �̇R(s), �R(s))

− γm( �̇R(s), �R(s)))]ds. (5)

We now seek a perturbative solution to the general equation of
motion, Eq. (3). If we assume that the expansion coefficients
change little over the duration of the experiment being
modeled, then a natural small quantity is the change in the
coefficient,

ζn(t) = Cn(t) − Cn(0). (6)

Restricting the change to be small may at first glance be
incompatible with allowing complete electrons to be trans-
ferred (say) from the valence band to a defect state in the
gap. However, a single electron transition can be thought of as
being made up of a series of small transitions of a fraction of
an electron. We achieve this below, once we have transformed
the many-electron formalism into an independent particle one,
by allowing the occupancy of the single-particle defect state to
vary. We then have transitions into and out of a partially filled
defect state.

If we expand the change as a series of increasing order as

ζn =
∞∑

p=1

ζ (p)
n (7)

and substitute Eqs. (6) and (7) into Eq. (3), we obtain

∞∑
p=1

ζ̇ (p)
n (t) =

∑
m(�=n)


nm(t)Cm(0) +
∑

m(�=n)


nm(t)
∞∑

p=1

ζ (p)
m (t)

(8)
from which we can make the following identifications:

ζ̇ (1)
n (t) =

∑
m(�=n)


nm(t)Cm(0),

(9)
ζ̇ (p)
n (t) =

∑
m(�=n)


nm(t)ζ (p−1)
m (t) (p > 1).

If the system starts in its ground state [�(�r,0) = �0( �R,�r)],
then Cn(0) = δn,0, and the lowest-order expression for the
expansion coefficients is

Cn(t) = δn,0 + (1 − δn,0)
∫ t

0

n0(s)ds. (10)

A quantity we use extensively below is the total excitation
energy for the electrons at a given time t . We define this by
�E(t) = 〈�(t)|Ĥ ( �R(t))|�(t)〉 − E0( �R(t)), where the angular
brackets indicate integration over the electronic degrees of
freedom. This can be written in terms of the expansion coeffi-
cients to give �E(t) = ∑

n>0 |Cn(t)|2(En( �R(t)) − E0( �R(t)));
as n = 0 is the ground state, the sum is over excited states only.
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Using the lowest-order expansion of Eq. (10) then gives

�E(t) =
∑
n>0

∣∣∣∣
∫ t

0

n0(s)ds

∣∣∣∣
2

(En( �R(t)) − E0( �R(t))). (11)

The invariance of this result with respect to the initial phases of
the adiabatic states is demonstrated in the Appendix. Note that
this result is for many-electron systems. To be able to apply
the method to systems with large numbers of electrons, as a
practical necessity we reexpress the perturbation theory in an
independent electron form in the following section.

B. Simplifying approximations

As we will be comparing our theoretical results with
TDDFT simulations, the first natural simplification to make is
to replace the full interacting many-body picture of electrons
with a noninteracting one. We thus replace the many-particle
electronic eigenfunctions with single Slater determinants
constructed from molecular orbitals φi( �Ri) with associated
eigenvalues εi( �Ri). In this case, �gnm is only nonzero if the two
Slater determinants differ by just one orbital; this is a result of
the way a derivative transforms a product of functions. Thus
we can always generate �m from �n by replacing an orbital
φi that is present in �n by an orbital φj that is not present.
Further, as we have formulated the theory so that one of the
states is always the ground state, we can replace the index for
the other state with the notation i → j to indicate the change
in determinant relative to the ground state: orbital i is removed
and replaced by orbital j . Finally, it is also convenient to define
the population of the molecular orbital φi in the ground state
to be fi ∈ {0,1}. Applying the above to Eq. (11) then gives

�E(t) ≈
∑
ij

fi(1 − fj )

∣∣∣∣
∫ t

0

i→j,0(s)ds

∣∣∣∣
2

× (εj ( �R(t)) − εi( �R(t))). (12)

To estimate 
i→j,0, we first choose the adiabatic eigenstates
to be real, so we can set γn to zero, as explained above. This
allows us to simplify Eq. (5) to

φi→j,0(t) = 1

�

∫ t

0
[εj ( �R(t)) − εi( �R(t))]ds. (13)

If we now assume that the channeling atom travels at constant

velocity �̇R through an infinite crystal, then there will be a

fundamental frequency, ω = 2π | �̇R|/λ, as discussed in the

Introduction. The single-particle eigenvalues εi( �̇Rt) will be

periodic with this frequency, so the difference εj ( �̇Rt) − εi( �̇Rt)
can be written as the sum of a constant part (εij ) and a part θij (t)

that is periodic with frequency ω, giving εj ( �̇Rt) − εi( �̇Rt) =
εij + θij (t). Similarly, the quantity �̇R · �gi→j,0 will be periodic
with frequency ω, so we can expand the nonadiabatic coupling
rate as a Fourier series,


i→j,0(t) = − 1

i�

∞∑
l=−∞

Wi→j,le
−i(lω−εij /�)t , (14)

where the coefficients are given by

Wi→j,l = ω

2π

∫ π/ω

−π/ω

exp

[
ilωt + i

�

∫ t

0
θij (s)ds

]

× ( �̇R · i��gi→j,0( �R(t)))dt. (15)

If we substitute Eq. (14) into Eq. (12), take the limit t → ∞,
use limt→∞ t sinc2(ut) = πδ(u), where δ(u) is the Dirac delta
function, and if we neglect the time dependence of εj ( �̇Rt) −
εi( �̇Rt) in the energy transfer term (it averages to zero), we
obtain the following expression for the stopping power:

S = 1

| �̇R|
lim
t→∞

�E(t)

t
= 2π

�

∑
ij

fi(1 − fj )

×
∞∑

l=−∞

l�ω

| �̇R|
|Wi→j,l|2δ(εij − l�ω). (16)

We can now see why there need not be a hard threshold at
� = �ω. From Eq. (16) we see that transitions are permitted
that involve multiples of �ω, allowing damping to occur below
the threshold velocity; this is reminiscent of multiphoton
ionization by strong fields. If we define �i→j,l to be the
transition rate from state i to state j due to an excitation of
energy l�ω, then we can recast Eq. (16) as S = 1

| �̇R|
∑

ij fi(1 −
fj )

∑∞
l=−∞ l�ω�i→j,l , where

�i→j,l = 2π

�
|Wi→j,l|2δ(εij − l�ω) (17)

is the rate at which Fourier component l excites electrons from
occupied level i to unoccupied level j .

C. Model matrix elements

To proceed further, we need a model that allows us to
estimate Wi→j,l . First we assume that the energies of all states
are independent of the position of the channeling atom, with
the exception of the defect state that appears in the gap, induced
by the channeling atom, which varies as

εd (t) = ε̄d + η cos(ωt). (18)

This assumption is based on the variation of the energy
levels computed in the density-functional theory (DFT) sim-
ulations [8]; see Fig. 3. Second, we assume that the adiabatic
coupling vector has the form

�gi→j,0 =
�̇R

| �̇R|
F sin(ωt)

εj − εi

, (19)

where F sin (ωt) is a force of amplitude F experienced by the
channeling ion. While F is independent of i and j , it has one
value for transitions between the valence band and the gap state
(Fvd ), one value for transitions between the conduction band
and the gap state (Fdc), and one value for transitions between
the valence and conduction bands (Fvc). The form is motivated
by the following identity for the many-electron case:

(Em( �R) − En( �R))〈�m( �R) | �∇�n( �R)〉 − �∇En( �R)δnm

= 〈�m( �R)|F̂ ( �R)|�n( �R)〉, (20)
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where F̂ ( �R) = −�∇Ĥ ( �R) and the gradient is taken with respect
to �R. For the case of direct transitions between the valence and
conduction bands, substituting Eq. (19) into Eq. (15) gives

Wv→c,l = −λFvc

4π
[δl,−1 + δl,1], (21)

where we have made use of the fact that the valence- and
conduction-band energy do not vary with the position of the
channeling atom (θij = 0), and that εij = l�ω on account of
the Dirac δ function in Eq. (16) or Eq. (17). Note that in
the presence of a band gap, the l = 0 term cannot contribute
because of the δ function in Eq. (16), and we just have the
l = ±1 terms. This corresponds to no electronic stopping for
channeling atom velocities below our original threshold, so
that any stopping below the threshold velocity must be due to
the defect state. The absence of any contribution from higher
multiples of ω is a consequence of our choice of form for
�gi→j,0 [Eq. (19)]; there could be additional contributions from
more sophisticated models, but we expect them to be small.

Let us now consider transitions between the valence or
conduction band, and the gap state. Substituting Eqs. (18)
and (19) into Eq. (15) gives

Wv→d,l = −λFvd

4π
Il

(
η

�ω

)
, (22)

Wd→c,l = −λFdc

4π
Il

(
− η

�ω

)
, (23)

where

Il(x) = 2

π

∫ π

0

sin(lu + x sin u)

l + x cos u
sin u du. (24)

We compute Il(x) numerically. Note that the integrand can
diverge when |x| � l: we manage this by considering the
principal part of the integral. The location of the divergence
has a physical meaning: it marks when the gap state ceases to
be bounded by the valence and conduction bands. To see this,
consider the following argument. First, since η = x�ω, the
condition |x| < l corresponds to η < l�ω. Now, for there to be
a contribution to the stopping from transitions from the valence
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FIG. 1. The variation of the integral Il with the ratio η/�ω and
the order l.

band to the defect state, we require ε̄d − ε̄v < l�ω, where ε̄v

is the valence-band edge [see Eq. (28) below]. Similarly, for
there to be a contribution from transitions from the defect
state to the conduction band, we need ε̄c − ε̄d < l�ω, where
ε̄c = ε̄v + εg is the conduction-band edge; see Eq. (29) below.
If we now observe that η is the amplitude of oscillation
of the defect state, we can combine our results to obtain
η < min(ε̄d − ε̄v,ε̄c − ε̄d ), which is the result we set out to
show. See Fig. 1 for how the integral varies with both the
order l and the ratio of η to �ω. The magnitude of the integral
decreases with increasing l for a given value of η/�ω.

D. Evaluating the sum over states

The ansatz of Eq. (19) means the matrix elements in Eq. (16)
depend on the states i and j only through the energies of these
states [see Eqs. (21), (22), and (23)]. Thus we can replace the
sums over states by integrals over densities of states (DOSs).

For direct transitions between the valence and conduction
states, we substitute Eq. (21) into Eq. (16), and we replace the
sums over valence and conduction states by an integral over
energy weighted by the valence and conduction DOS, Dv and
Dc, respectively, giving

Sv→c = λ

2
F 2

vc

∫ ε̄v+�ω

ε̄c

Dc(εc)Dv(εc − �ω)dεc. (25)

Note that a factor of 2 for spin degeneracy has been included
as the DOS is for a single spin channel only, and we are
assuming spin is conserved. In addition, we assume that the
population of the valence-band states is always 1, and that of
the conduction-band states is always 0. We use the following
forms for the densities of states:

Dv(ε) =
4∑

i=1

ai

√
c2
i − (ε − bi)2, (26)

Dc(ε) = dc

√
ε − ε̄c, (27)

where ai , bi , and ci are parameters that are adjusted to give
the best fit to the valence-band DOS found from DFT, εg is the
band gap, and dc is a parameter that is adjusted to give the best
fit to the edge of the conduction-band DOS computed from
DFT (see Fig. 2). These functional forms are chosen because
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FIG. 2. The valence density of states for Si computed from
density-functional theory (black line), and the semielliptical fit used
to compute the stopping power (blue line).
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TABLE I. The parameters used to describe the channeling of a Si
atom in Si.

Parameter Value

a1, a2, a3, a4 (eV−1) 46.727, 600, 35.525, 50
b1, b2, b3, b4 (eV) −2.808, −6.7, −9.8, −6.7
c1, c2, c3, c4 (eV) −2.808, −0.25, −2.136, −1.0

dc (eV− 3
2 ) 43.2

Fvd , Fdc, Fcv (eV Å−1) 0.168, 0.119, 0.009
η (eV) 0.1
ε̄d − ε̄v (eV) 0.26
εg (eV) 0.5
λ (Å) 1.353 225

they reproduce the correct shape of the band edges. See Table I
for the values of the parameters used.

Starting from Eq. (16), and substituting in Eqs. (22) and (23)
for the contribution to the stopping from transitions from the
valence band to the gap state, we get

Sv→d = λ

2
F 2

vd (1 − fd )
∞∑

l=−∞
l

∣∣∣∣Il

(
η

�ω

)∣∣∣∣
2

Dv(ε̄d − l�ω),

(28)
while that from transitions from the gap state to the conduction
band is given by

Sd→c = λ

2
F 2

dcfd

∞∑
l=−∞

l

∣∣∣∣Il

(−η

�ω

)∣∣∣∣
2

Dc(ε̄d + l�ω), (29)

where 0 � fd � 1 is the population of the gap state per spin.
The total stopping S is given by a sum over the three

contributions enumerated above: S = Sv→c + Sv→d + Sd→c.

E. The population of the defect state

The contributions to the stopping power that involve the
defect state require the steady-state population fd . This can
be computed directly from the net transition rates to and from
the defect state. Once the steady state has been reached, to
hold the population of the defect state fixed, the number of
electrons moving from the valence band to the defect state
must exactly equal the number moving from the defect state to
the conduction band. If we introduce the rates �v→d and �d→c

for transitions of electrons of a given spin from the valence
band to the gap state, and for the gap state to the conduction
band, respectively, we have 2(1 − fd )�v→d = 2fd�d→c. We
can rearrange this to obtain fd

fd = �v→d

�v→d + �d→c

. (30)

We can obtain the relevant rates from Eq. (17). After
introducing the relevant DOS and matrix elements [Eqs. (22)
and (23)], we obtain

�v→d = 2π

�

∣∣∣∣λFvd

4π

∣∣∣∣
2 ∞∑

l=−∞

∣∣∣∣Il

(
η

�ω

)∣∣∣∣
2

Dv(ε̄d − l�ω) (31)

and

�d→c = 2π

�

∣∣∣∣λFdc

4π

∣∣∣∣
2 ∞∑

l=−∞

∣∣∣∣Il

(−η

�ω

)∣∣∣∣
2

Dc(ε̄d + l�ω). (32)

In passing, we also note that the rate of direct transitions
between the valence and conduction bands is

�v→c = 2π

�

∣∣∣∣λFvc

4π

∣∣∣∣
2 ∫ ∞

ε̄v+εg

Dc(εc)Dv(εc − �ω)dεc. (33)

F. Estimating the parameters

We now estimate the values of the quantities required by
our model. All values can be found in Table I.

As for the DOS parameters discussed above, the band gap
(εg), valence-band edge (ε̄v), and gap state parameters (ε̄d and
η) can be obtained readily from DFT simulations; see Fig. 3.
Similarly, once we know the structure of our crystal, and the
speed and direction of the channeling atom, we can obtain λ,

v, and ω. That leaves the force magnitudes Fvd , Fdc, and Fcv .
At larger channeling velocities (�ω > εg), the electronic

stopping is dominated by direct transitions from the valence
band to the conduction band because of the large number of
states available, and thus we have S ≈ Sv→c. The high-velocity
regime corresponds to the linear region in Fig. 4. The force
magnitude Fvc can thus be obtained by equating the right-hand
side of Eq. (25) with the total stopping obtained from TDDFT
simulations, giving

Fvc =
√

2S

λ
∫

Dc(εc)Dv(εc − �ω)dεc

. (34)

At intermediate channeling velocities [min (ε̄d − ε̄v,εg −
(ε̄d − ε̄v)) < �ω < εg], the stopping is dominated by transi-
tions involving the gap state, as was shown in Ref. [8]. As
these transitions are dominated by the l = 1 contribution (see
Fig. 4), the steady-state condition 2(1 − fd )�v→d = 2fd�d→c

leads directly to Sv→d = Sd→c. Further, since direct transitions

FIG. 3. This figure shows how the gap state can operate as an
elevator that transfers an electron from the valence band to the
conduction band. The horizontal position corresponds to the location
of the channeling atom. The blue, green, and red areas show that the
energies of the states in the valence band, the gap, and the conduction
band, respectively, vary with the location of the channeling atom. The
states are adiabatic.
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FIG. 4. The breakdown into components of the stopping of the Si
atom channeling along the (001) direction in Si. The black squares are
the results from the TDDFT simulations. The magenta line is the total
stopping computed from perturbation theory (PT). The solid black
line corresponds to the PT stopping power from direct transitions
from the valence to the conduction bands. The red, blue, green, and
yellow lines correspond to the PT stopping powers mediated by the
defect state for l = 1, 2, 3, and 4, respectively. Note that the excitation
energy (�ω) can be found from the velocity (v) using �ω/eV =
3.056v/(Å fs−1), where we have used ω = 2πv

λ
and the value of λ

from Table I.

between the valence and conduction bands are not important
in this regime, we can write S ≈ 2Sv→d = 2Sd→c. Thus, using
the stopping power S from a TDDFT simulation together with
Eqs. (28) and (29), keeping l = 1 only, we obtain

Fvd = 1∣∣I1
(

η

�ω

)∣∣
√

S

λ(1 − fd )Dv(ε̄d − �ω)
(35)

and

Fdc = 1∣∣I1
( − η

�ω

)∣∣
√

S

λfeDc(εd + �ω)
. (36)

III. RESULTS

Having developed a model for the operation of the electron
elevator, as well as direct transitions across the band gap, we
now use it to interpret the electronic stopping computed for a Si
channeling along the (001) direction in a Si crystal computed
using TDDFT [8]. The main results are shown in Fig. 4.

First we note that the agreement between the results for the
total stopping from TDDFT and PT is very good, except at the
highest velocities. The high-velocity errors originate with the
rather simple approximation we make for the conduction-band
DOS; the approximation is, however, adequate for our primary
task of understanding the low-velocity regime.

The direct transitions from valence to conduction band
make a smooth contribution that only becomes important
once �ω is of the same size as the band gap (0.6 eV). This
is what we might expect based on the argument that the
channeling ion imposes an oscillating field on the electrons
in the crystal. For transitions involving the defect state, with
l = 1 we find a fairly uniform contribution (modulated by

the valence DOS) over an energy range corresponding to the
width of the valence band. This again can be understood as
originating from the oscillating field, but now the electrons
need to be excited from the valence band into the defect state.
The l = 2 contribution spans about half the energy range of
the l = 1 case, as expected, but it also drops off faster with
increasing velocity. The drop off is a result of the shape of
the integral I2, which falls away roughly linearly with 1/v

(see Fig. 1). It also is significant at velocities below those at
which l = 1 is important. This separation of the contributions
to stopping from individual values of l continues at lower
velocity for l = 3 and 4. The separation is due to the form of
the integrals I3 and I4 (see Fig. 1).

An important contributor to the stopping involving the
defect state is the population of that state. This is presented
as a function of channeling ion velocity in Fig. 5. The
shape again tracks the valence DOS, as might be expected
from Eqs. (30), (31), and (32). However, there are additional
reductions in the occupation at lower velocity over narrow
velocity windows: these are a result of the form of the
integrals Il : they drop off quickly when �ω is outside the
range η/(l − 1) < �ω < η/l (see Fig. 1).

0 0.1 0. .3
Velocity (A/fs)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
D

ef
ec

t s
ta

te
 p

op
ul

at
io

n

0 0.1 0.

2 0

2 0.3
Velocity (A/fs)

0

0.1

0.2

0.3

0.4

0.5

0.6

R
at

e 
(f

s-1
)

FIG. 5. Upper panel: population of the defect state as a function
of velocity of the channeling atom, computed from perturbation
theory. The structure follows that of the valence density of states,
with additional structure at low velocity from the integral Il . Lower
panel: the transition rates between valence and conduction bands
(red), the valence band and the defect state (green), and the defect
state and the conduction band (blue).
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FIG. 6. The occupation of the defect state (red) and conduction
band (green) as a function of channeling atom position for an atom
moving at 0.164 Å fs−1.

The defect population is related to the transition rates [see
Eq. (30)]. These rates are plotted in Fig. 5; note that the plotted
rates include a factor of 2 for spin degeneracy. The rates are not
the same as those reported in [8]; in particular, the transition
rate between the valence band and the defect state is much
larger than that between the defect state and the conduction
band (the reverse of what is reported in [8]). Given that both
sets of results were obtained by fitting to the same data, it
suggests that there is some flexibility in the fitting.

In Fig. 6, we have plotted the defect state and conduction-
band populations as a function of channeling atom position
using the rate equations from [8], but using the rates computed
using perturbation theory. While not identical with the reported
curves, they are qualitatively similar; in particular, they
reproduce the steplike features in the limit v → 0 [15].

IV. CONCLUSION

Recently, we demonstrated, by means of TDDFT simula-
tions, that electron stopping of channeling atoms can occur
even when the velocity is too low for direct excitation of
electrons across the band gap [8]. We argued that this is because
the channeling atom creates a defect state in the band gap that
is able to pick up an electron from the valence band and carry
across the gap to the conduction band, a mechanism we titled
the electron elevator. Here we use a simple model derived
from adiabatic perturbation theory to give a more detailed
account of how the elevator operates. A key finding is that
electrons experience a perturbation that oscillates in time not
only at the repeat frequency f of the channeling atom, but
also at multiples of this frequency, characterized by the integer
order l. The larger the value of l, the lower the velocity of the
channeling atom needs to be to induce electronic excitations.
In the case of Si channeling in Si, for the transitions that occur

by means of the defect state, the contribution drops off rapidly
with increasing l, but it remains significant up to l = 4. For
other systems, the number of significant values of l could be
different. For direct transitions across the band gap, only l = 1
contributes.
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APPENDIX : GAUGE INVARIANCE OF THE
STOPPING POWER

The choice of phase for the eigenstates is arbitrary; here
we show that the final result is independent of this choice.
Consider two families of solutions �n( �R) and �̃n( �R) =
eiχn( �R)�n( �R). Setting �v(t) = �̇R(t), the corresponding expec-
tation values of the gradient operator are

γn(t) = −i�v(t) ·
∫

�∗
n( �R(t)) �∇�n( �R(t))d�r, (A1)

γ̃n(t) = γn(t) + �v(t) · �∇χn( �R). (A2)

The corresponding wave-function expansions [see Eq. (1)] are

�(t) =
∑

n

Cn(t) exp

(
1

i�

∫ t

0
[En( �R(s)) + �γn(s)]ds

)

×�n( �R(t)), (A3)

�̃(t) =
∑

n

C̃n(t)eiχn( �R(t)) exp

(
1

i�

∫ t

0
[En( �R(s)) + �γn(s)

+ ��v(t) · �∇χn( �R)]ds
)
�n( �R(t)). (A4)

Now �v(t) · �∇χn( �R(t)) = ∂
∂t

χn, so that exp( 1
i�

∫ t

0 [��v(t) ·
�∇χn( �R)]ds) = exp (−i[χn( �R(t)) − χn( �R(0))]). Substituting
into Eq. (A4) gives

�̃(t) =
∑

n

C̃n(t)eiχn( �R(0)) exp

(
1

i�

∫ t

0
[En( �R(s))

+ �γn(s)]ds)�n( �R(t)). (A5)

Comparing Eqs. (A3) and (A5), we see that �(t) = �̃(t)
provided C̃n(t)eiχn( �R(0)) = Cn(t). That is, the coefficients differ
only by a constant phase, which will have no effect on our
primary result, Eq. (11).
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