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4Departamento de Fı́sica Teórica de la Materia Condensada, Condensed Matter Physics Center (IFIMAC)
and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid 28049, Spain

5Institute of Physics and Astrophysics, University of Würzburg, Würzburg, Germany
6Russian Quantum Center, Novaya street, 100, Skolkovo, Moscow region 143025, Russia

(Received 9 April 2016; revised manuscript received 12 May 2016; published 1 June 2016)

The parquet decomposition of the self-energy into classes of diagrams, those associated with specific scattering
processes, can be exploited for different scopes. In this work, the parquet decomposition is used to unravel the
underlying physics of nonperturbative numerical calculations. We show the specific example of dynamical mean
field theory and its cluster extensions [dynamical cluster approximation (DCA)] applied to the Hubbard model
at half-filling and with hole doping: These techniques allow for a simultaneous determination of two-particle
vertex functions and self-energies and, hence, for an essentially “exact” parquet decomposition at the single-site
or at the cluster level. Our calculations show that the self-energies in the underdoped regime are dominated
by spin-scattering processes, consistent with the conclusions obtained by means of the fluctuation diagnostics
approach [O. Gunnarsson et al., Phys. Rev. Lett. 114, 236402 (2015)]. However, differently from the latter
approach, the parquet procedure displays important changes with increasing interaction: Even for relatively
moderate couplings, well before the Mott transition, singularities appear in different terms, with the notable
exception of the predominant spin channel. We explain precisely how these singularities, which partly limit the
utility of the parquet decomposition and, more generally, of parquet-based algorithms, are never found in the
fluctuation diagnostics procedure. Finally, by a more refined analysis, we link the occurrence of the parquet
singularities in our calculations to a progressive suppression of charge fluctuations and the formation of a
resonance valence bond state, which are typical hallmarks of a pseudogap state in DCA.
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I. INTRODUCTION

Traditionally, the electron self-energy is often determined
via diagram expansion methods [1,2]. Diagrams to low order
in the interaction strength can be calculated in perturbation
theory. It may also be possible to sum certain classes of dia-
grams to infinite order. For instance, the lowest-order diagram
in the screened Coulomb interaction, the GW method [3], gives
reasonable results for moderately correlated systems, such as
free-electron-like metals and semiconductors [4,5]. Even in
the case of a strongly correlated system like NiO, certain
aspects are described reasonably well, but, still, important parts
of the physics are believed to be missing [6]. Including the
next-order terms in such an expansion can even lead to wrong
analytical behavior [7]. Improving further in this respect would
require the consideration of the contributions to the electron
self-energy of different channels simultaneously, as it is done in
FLEX [8], functional renormalization group [9], or the parquet
approximation [10–12]. Despite the ever increasing numerical
workload of these schemes, they often do not improve upon
the GW for the description of crucial aspects of correlated
systems. For instance, they also fail to capture the physics of
the Mott-Hubbard metal-insulator transition, whose nature is
intrinsically nonperturbative.

To overcome these difficulties, completely different and
nonperturbative methods, such as self-consistently embed-
ded impurity/cluster algorithms like the dynamical mean
field theory (DMFT) [13], dynamical cluster approximation
(DCA) [14,15], and cellular DMFT (CDMFT) [16] have been

introduced, and are now widely used. In such methods, a
cluster with a finite number (Nc) of atoms is embedded in
a self-consistent host of noninteracting electrons. The cluster
problem can be solved by diagonalization algorithms, but
for most cases quantum Monte Carlo (QMC) methods are
more efficient, e.g., in its Hirsch-Fye [17] or continuous
time (CT) [18] version. In this approach, the only essential
approximation is the limitation to a finite cluster and the
convergence of the results with Nc can be checked system-
atically [19]. In cases where the Monte Carlo sign problem is
not serious, these methods can provide very reliable results for
the electron self-energy. In the last years, also calculations of
two-particle vertex functions [20–26] became possible. This
technical progress has a very high impact because two-particle
vertex functions are a crucial ingredient for calculating [13,14]
momentum- and frequency-dependent response functions in
DMFT and DCA, and also represent the building blocks for
all multiscale extensions of DMFT [27–32] and DCA [33,34],
aiming at including spatial correlations on all length
scales [35–41].

The purpose of this paper is, however, not to obtain new
results for the self-energy with these novel schemes. In fact,
at least within DMFT and DCA, the self-energy can be
directly computed without the time-consuming calculation of
the two-particle vertices. Our aims, here, are different: (i) to
develop methods that improve our physical interpretation of
the self-energy results in strongly correlated systems, and (ii)
to understand how the correlated physics is actually captured
by diagrammatic approaches beyond the perturbative regime.
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We do this by applying a parquet-based diagrammatic
decomposition to the self-energy. Specifically, we use the
DMFT and DCA results for this parquet decomposition, thus
avoiding any perturbative approximation for the vertex. We
apply the method to the Hubbard model on cubic [three-
dimensional (3D)] and square [two-dimensional (2D)] lattices.
In these cases, quite a bit is already known about the
physics, which, to some extent, allows for a check of our
methodology.

We recall briefly here that in the parquet schemes two-
particle diagrams are classified according to whether they are
two-particle reducible (2PR) in a certain channel, i.e., whether
a diagram can be split in two parts by only cutting two Green’s
functions, or are fully irreducible at the two-particle level
(2PI). Diagrams reducible in a particular channel can then be
related to specific physical processes. Specifically, we obtain
three classes of reducible diagrams, longitudinal (ph) and
transverse (p̄h) particle-hole diagrams and particle-particle
(pp) diagrams. Because of the electronic spin, the particle-hole
diagrams can be rearranged, more physically, in terms of spin
(magnetic) and charge (density) contributions, while for pp

the ↑↓ term (essential for the singlet pairing) will be explicitly
kept.

In this work, we compute explicitly the parquet equations,
Bethe-Salpeter equations, and the equation of motion (EOM)
which relate the vertices in the different channels to each other
and to the self-energy, by using the 2PR and 2PI vertices of
the DMFT and DCA calculations. Hence, apart from statistical
errors, we get an “exact” diagrammatic expansion of the
self-energy of our DMFT (Nc = 1) or DCA (Nc > 1) clusters.
Since, within the parquet formalism, the physical processes are
automatically associated to the different scattering channels,
our calculations can be exploited to extract an unbiased
physical interpretation of our DMFT and DCA self-energies
and to investigate the structure of the Feynman diagrammatics
beyond the perturbative regime. We note here that, from the
merely conceptual point of view, the parquet decomposition
is the most “natural” route to disentangle the physical
information encoded in self-energies and correlated spectral
functions. The parquet procedure can be compared, e.g., to
the recently introduced fluctuation diagnostics [42] approach,
which also aims at extracting the underlying physics of a given
self-energy: In the fluctuation diagnostics, the quantitative
information about the role played by the different physical
processes is extracted by studying the different representations
(e.g., charge, spin, or particle-particle), in which the EOM for
the self-energy, and specifically the full two-particle scattering
amplitude, can be written. Hence, in this respect, the parquet
decomposition provides a more direct procedure because it
does not require any further change of representation for the
momentum, frequency, spin variables, and can be readily
analyzed at once, provided that the vertex functions have
been calculated in a channel-unbiased way. However, as we
will discuss in this work, the parquet decomposition presents
also disadvantages w.r.t. the fluctuation diagnostics because
(i) it requires working with 2PI vertices, which makes the
procedure somewhat harder from a numerical point of view,
and (ii) it faces intrinsic instabilities for increasing interaction
values.

By applying this procedure to the 2D Hubbard model at
intermediate values of U (of the order of half the bandwidth),
we find large contributions from spin fluctuations. This is
consistent with a common belief that Q = (π,π ) spin fluc-
tuations are very important for the physics, as well as with the
fluctuation diagnostics results [42]. For the 3D Hubbard model,
similar physics was first proposed by Berk-Schrieffer [43].
Later, spin fluctuations have been proposed to be important
for the 2D Hubbard model and similar models by many
groups [44–47]. We note, however, that the contributions of the
other channels to the parquet decomposition are not small by
themselves. Rather, the other (nonspin) channel contributions
to �(k,iν) appear to play the role of “screening” the electronic
scattering originated by the purely spin processes. The latter
would lead, otherwise, to a significant overestimation of the
electronic scattering rate. At larger values of U , the parquet
decomposition starts displaying strong oscillation at low fre-
quencies in all its terms, but the spin contribution. Physically,
this might be an indication that the spin fluctuations also
predominate in the nonperturbative regime, where, however,
the parquet distinction among the remaining (secondary)
channels loses its physical meaning. The reason for this can be
traced back to the occurrence of singularities in the generalized
susceptibilities of these (secondary) channels. Such singular-
ities are reflected in the corresponding divergencies of the
two-particle-irreducible vertex functions, recently discovered
in the DMFT solution of the Hubbard and Falicov-Kimball
models [34,48–53]. Here, we extend the study of their origin
and generalize earlier results [48] to DCA. We discuss the
relation of these singularities to the resonance valence bond
(RVB) [54] character of the ground state, the pseudogap,
and the suppression of charge fluctuations for large values
of U .

Our results are relevant also beyond the specific problem
of the physical interpretation of the self-energy. In fact, the
parquet decomposition can be also used to develop new
quantum many-body schemes. Wherein, some simple approx-
imation might be introduced for the irreducible diagrams that
are considered to be particularly fundamental. The parquet
equations are then used to calculate the reducible diagrams.
In our results, however, for strongly correlated systems the
contribution to the self-energy from the irreducible diagrams
diverges for certain values of U both in DMFT and DCA.
This makes the derivation of good approximations for these
diagrams for strongly correlated systems rather challenging.
It remains, however, an interesting question if the parquet
decomposition can be modified in such a way that these
problems are avoided.

The scheme of the paper is the following. In Sec. II,
we present the formalism relating the vertex function to
generalized two-particle response functions as well as the
parquet decomposition of the vertex function. We also briefly
describe the model and the calculation method. In Sec. III, we
show results from the parquet decomposition and its behavior
for intermediate and large U . In Sec. IV, the behavior of
the generalized susceptibility is discussed, and the origin of
singularities in the generalized charge response function is
shown. In Sec. V, we discuss the relation of these singularities
to the RVB character of the system, the pseudogap, and the
suppression of charge fluctuations. Section VI is devoted to
our conclusions.
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II. FORMALISM, MODEL, AND METHOD

We first discuss the vertex function, following the notations
of Rohringer et al. [23] and Gunnarsson et al. [42]. We
introduce the generalized susceptibility for finite temperature
T = 1/β, using the Matsubara formalism

χσσ ′(k; k′; q) =
∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3e

−i[ντ1−(ω+ν)τ2+(ω+ν ′)τ3]

×〈Tτ [c†kσ (τ1)ck+qσ (τ2)c†k′+qσ ′(τ3)ck′σ ′]〉
−β gσ (k)gσ ′(k′) δq=0. (1)

Here, we use the condensed notations q = (Q,ω) and k =
(K,ν), where Q and K are (cluster) wave vectors and
ω and ν are Matsubara boson and fermion frequencies,
respectively. We have also introduced a Green’s function
gσ (k) ≡ gσ (K,ν):

gσ (k) = −
∫ β

0
dτ eiντ 〈cKσ (τ )c†Kσ 〉, (2)

where c
†
Kσ creates an electron with the wave vector K and

spin σ and 〈. . .〉 is the thermodynamical average. From χ ,
and specifically from its connected part, we obtain the full
two-particle vertex F :

χσσ ′(k; k′; q) = −βgσ (k)gσ (k + q)δkk′δσσ ′

−gσ (k)gσ (k + q)Fσσ ′(k; k′; q)gσ ′(k′)gσ ′(k′ + q). (3)

The vertex function F is shown diagrammatically in Fig. 1,
and it can be interpreted, physically, as the scattering rate
amplitude between two added/removed electrons. Within
the parquet formalism, all diagrams contributing to F are
divided in two classes: either they can be split in two parts
by cutting two internal Green’s function lines (two-particle
reducibility: 2PR), or they cannot (two-particle irreducibility:
2PI).

Moreover, because we are considering two-particle pro-
cesses, whose diagrams have (altogether) four external lines, a
finer classification can be performed for the 2PR diagrams.
As exemplified by the diagrams on the right-hand side of
Fig. 1, we can further distinguish among the cases, where,
in the cutting procedure, (i) lines 1 and 3 are separated from 2
and 4, which corresponds to particle-particle (pp) reducibility,
(ii) lines 1 and 2 are separated from 3 and 4, i.e., longitudinal
particle-hole (ph) reducibility, and, eventually, (iii) lines 1 and
4 are separated from lines 2 and 3, i.e., transverse particle-hole
(p̄h) reducibility. F can then be written as a sum of these types

of contribution

F = � + �pp + �ph + �p̄h, (4)

where � contains the pure 2PI contributions and the functions
� describe the 2PR contributions in all different channels,
as diagrammatically represented in Fig. 1: this is the parquet
decomposition of the scattering amplitude F .

Finally, because of the electron spin, it is convenient to
treat the ph channel by introducing generalized charge (ch)
and spin (sp) susceptibilities

χch(k; k′; q) = χ↑↑(k; k′; q) + χ↑↓(k; k′; q),

χsp(k; k′; q) = χ↑↑(k; k′; q) − χ↑↓(k; k′; q). (5)

We then define the quantities 
d and 
m which contain
the diagrams of F which are irreducible in the density and
magnetic channels, respectively,


ch,sp = β2(χ−1
ch,sp − χ−1

0 ), (6)

where χ0 is the generalized bare susceptibility, being a product
of two interacting Green’s function. The χ ’s are treated as
matrices in k and k′ and 
 can be calculated for one q at a
time. We also define the reducible quantities �ch,sp via the
Bethe-Salpeter equations

�ch,sp = Fch,sp − 
ch,sp,

�ph↑↓ = F↑↓ − 1

2
(
ch − 
sp), (7)

and the parquet equations [23]

�↑↓(k,k′,q) = 1

2
[
ch(k,k′,q) − 
sp(k,k′,q)]

+�sp(k,k + q,k′ − k) − �pp(k,k′,k + k′ + q). (8)

By using the (Schwinger-Dyson) equation of motion, the
electronic self-energy � can be expressed in terms of two-
particle vertex function:

�(k) − Un

2

= − U

β2Nc

∑
k′,q

F↑↓(k,k′,q)g(k′)g(k′ + q)g(k + q), (9)

where g = g↑ = g↓ [because of SU(2) symmetry], Nc is
the number of K points. This is shown schematically in
Fig. 2.

F kk q
σσ

k + q, σ k + q, σ

k, σ k , σ

2

1

3

4 1 4

2 3

e.g.

F Λ= + +Φpp Φph +

2 3 33 22

1 114 44

Φph

FIG. 1. Two-particle vertex function F (left) and its diagrammatic parquet decomposition (right), exemplified by the corresponding
lowest-order diagrams beyond the bare U . The (two-particle) cutting procedure indicating the two-particle reducibility of the last three terms
is shown by the dashed lines.
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k, kσ , σ

k ,−σ

k + q,−σ

k + q, σ

F kk q
σσ

FIG. 2. Diagrammatic representation of the self-energy � in
terms of the two-particle vertex function (Schwinger-Dyson equation
of motion).

The equation of motion for � is a well-known, general
relation of many-body theory with a two-particle interaction.
However, valuable information may be obtained by inserting in
Eq. (9) the parquet decomposition of Eq. (4) and, in particular,
its specific expression for F↑↓(k,k′,q):

F↑↓(k,k′,q) = �↑↓(k,k′,q)+�pp,↑↓(k,k′,k+k′+q)

+ 1
2�ch(k,k′,q) − 1

2�sp(k,k′,q)

−�sp(k,k + q,k′ − k). (10)

This way, after all internal summations are performed, the
expression for � is naturally split in four terms:

� = �̃� + �̃pp + �̃ch + �̃sp (11)

evidently matching the corresponding 2PI and 2PR terms of
Eq. (10): this represents the parquet decomposition of the
self-energy. In fact, the four terms in Eq. (11) describe the
contribution of the different channels (pp, charge, spin), as
well as of the 2PI scattering processes, to the self-energy. Since
each scattering channel is associated with definite physical
processes, Eq. (11) can be exploited, in principle, for gaining
a better understanding of the physics underlying a given
self-energy calculation.

In the following section, we will apply this idea to specific
cases of interest. In particular, we will test the performance
of a parquet decomposition of the self-energy in the case of
the three- and two-dimensional Hubbard model on a simple
cubic/square lattice, whose Hamiltonian reads as

H = t
∑
ij,σ

(c†iσ cjσ + c
†
jσ ciσ ) + U

∑
i

ni↑ni↓, (12)

where niσ = c
†
iσ ciσ , t is the hopping integral, and U is the

onsite Coulomb interaction. For the sake of definiteness, t =
−0.25 eV for the 2D case, and t = − 1

2
√

6
	 −0.204 eV for the

3D case. This choice ensures that the standard deviation (D)

of the noninteracting DOS of the square and the cubic lattices
considered is exactly the same (D = 1 eV), and thus allows
for a direct comparison of the U values used in the two cases,
provided they are expressed in units of D.

This Hamiltonian constitutes an important testbed case
for applying the idea of a parquet decomposition since
Eq. (12) provides a quintessential representation of a strongly
correlated system. Moreover, in the 2D case, Eq. (12) is
frequently adopted, e.g., to study the still controversial physics
of cuprate superconductors [55,56]. In this framework, we
note that typical values for U are about U = 8|t | = 2 eV, i.e.,
U is equal to the noninteracting bandwidth W = 8|t |. This
choice corresponds to a rather strong correlation regime, as it
is clearly seen even in a purely DMFT context [57]. In this
work, however, we will also consider smaller values of U , of
the order of half bandwidth, corresponding to a regime of more
moderate correlations.

III. PARQUET DECOMPOSITION CALCULATIONS

In this section, we study the parquet decomposition of an
electron self-energy computed by DMFT and DCA. In these
nonperturbative methods, a cluster with Nc sites is embedded
in a self-consistent electronic bath [14,15]. The calculation
of a generalized susceptibility is rather time consuming when
compared against computing only single-particle quantities.
For this reason, we restrict our calculations to the tractable
values of Nc = 1 (DMFT), 4, and 8 (DCA). The results
are therefore not fully converged with respect to Nc, but,
nevertheless, will illustrate well the specific points we make
in the following sections. The cluster problem has been
solved [14,15] using both Hirsch-Fye [17] and continuous
time (CT) [18] methods.

Consistent with the discussion of the previous section,
we will use Eq. (9), illustrated diagrammatically in Fig. 2,
and Eqs. (4) and (10) to express the self-energy in terms
of contributions from the different parquet channels. As for
the latter, in Fig. 3 we show some typical diagrams, and
their classifications according to the parquet decomposition.
Using the definitions in Sec. II, Figs. 3(a) and 3(b) show
longitudinal and transverse particle-hole reducible diagrams,
respectively, and Fig. 3(c) shows a particle-particle reducible
diagram. In fact, the vertex diagram in Fig. 3(a) contains
contributions to the random phase approximation for the
longitudinal charge and spin susceptibilities, reducible in
spin and charge channels. In the same way, the diagram
in Fig. 3(b) contains a contribution to the transverse spin

k, kσ , σ

k ,−σ

k + q

k + q

(a)

k, kσ , σ

k ,−σ

k + q

k + q

(b)

k, kσ , σ

k ,−σ

k + q

k + q

(c)

FIG. 3. Examples of diagrams for the self-energy, with some explicit representations of the two-particle vertex function, enclosed by a
dashed line. The dashed line shows how the vertex can be separated in two parts by cutting two Green’s functions. According to the rules in
Sec. II, the diagrams are ph (a), p̄h (b), and pp (c) diagrams.
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susceptibility and Fig. 3(c) displays a particle-particle ladder
diagram.

A. DMFT results

We start by applying the parquet decomposition to the
easier case of the DMFT self-energy. In particular, we will
focus on one of the most studied cases in DMFT, the
half-filled Hubbard model in 3D, where DMFT describes a
Mott-Hubbard metal-insulator transition at a finite U = UMIT.
The specific parameters in Eq. (12) have been chosen in this
case as follows: n = 1 (half-filling) and β = 26 eV−1. The
results of the parquet decomposition of the DMFT self-energy
are shown in Fig. 4 in the weak-to-intermediate coupling
regime U 
 UMIT ∼ 3 eV. The plots show the imaginary part
of the DMFT self-energy (solid black line) as a function of the
Matsubara frequencies iν and for two different values of U (we
recall that � does not depend on momentum in DMFT, and
that in a particle-hole symmetric case, as the one we consider
here, it does not have any real part beyond the constant Hartree
term).

By computing the DMFT generalized local (Nc = 1) sus-
ceptibility of the associated impurity problem, and proceeding
as described in the previous section, we could actually
decompose Im �(iν) into the four contributions from terms
in Eq. (11), depicted by different colors/symbols in the plots.
Before analyzing their specific behaviors, we note that their
sum (gray dashed line) does reproduce precisely the value
of Im � directly computed in the DMFT algorithm. Since
all the four terms of Eq. (11) are calculated independently
from the parquet-decomposed equation of motion, this result
represents indeed a stringent test of the numerical stability and
the algorithmic correctness of our parquet decomposition pro-
cedure. Given the number of steps involved in the algorithm,
illustrated in the previous section, the fulfillment of such a
self-consistency test is particularly significant, and, indeed, it
has been verified for all the parquet decomposition calculations
presented in this work.

By considering the most weak-coupling data first (U =
0.5 eV, left panel of Fig. 4), we note that the 2PI contribution
[�� in Eq. (11), plum-colored open squares in the figure]
lies almost on top of the “exact” DMFT self-energy. At
weak coupling, this is not particularly surprising because
�↑↓ 	 U + O(U 4), while all the 2PR contributions are at
least O(U 2). Hence, when the 2PI vertex is inserted into
the equation of motion, �̃� simply reduces to the usual
second-order perturbative diagram. In this situation [i.e.,
Im �(iν) 	 �̃�], it is interesting to observe that the other
subleading contributions (spin, particle-particle scattering, and
charge channel) are not fully negligible. Rather, they almost
exactly compensate each other: the extra increase of the
scattering rate [i.e., Im �(iν → 0)] due to the spin channel
is compensated (or “screened”) almost perfectly by the charge
and the particle-particle channels.

Not surprisingly, the validity of this cancellation is gradu-
ally lost by increasing U . At U = 1.0 (right panel of Fig. 4),
which is still much lower than UMIT, one observes that the
2PI contribution no longer provides so accurate values for Im
�(iν). At the same time, the contributions of all scattering
channels increase: the low-frequency behavior of the spin
channel now would provide, taken on its own, a scattering
rate even larger than the true one of DMFT. Consistently,
a correspondingly larger compensation of the charge and
the particle-scattering channels contribution is observed. At
higher frequency, these changes w.r.t. the previous case are
mitigated, matching the intrinsic perturbative nature of the
high-frequency/high-T expansions [22,58,59].

The situation described above, which suggests an impor-
tant role of spin fluctuations, partially screened by charge
and particle-particle scattering processes, displays important
changes at intermediate-to-strong coupling U . This is well
exemplified by the data reported in Fig. 5 (left panel). Despite
the DMFT self-energy still displays a low-frequency metallic
bending (U = 2.0 is on the metallic side of the DMFT MIT),
in the low-frequency region one observes the appearance of a
huge oscillatory behavior in the parquet decomposition of �:

-0.04

-0.02

 0

 0.02

 0.04

 0  0.5  1  1.5  2

Im
Σ(

iν
) 

[e
V

]

ν [eV]

exact
sum

Λ

pp
charge

spin

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  0.5  1  1.5  2

Im
Σ(

iν
) 

[e
V

]

ν [eV]

exact
sum

Λ

pp
charge

spin

FIG. 4. Parquet decomposition of the DMFT self-energy �(iν) of the 3D Hubbard model at half-filling (n = 1). The full (black, “exact”)
and dashed (gray, “sum”) lines show � as computed in DMFT, and as the sum of the parquet contributions, respectively. The colored symbols
display the different contributions to �(iν) according to Eq. (11). The parameters of the calculation are Nc = 1 (DMFT), t = − 1

2
√

6
	

−0.204 eV, β = 26 eV−1 with two different values of the Hubbard interaction: U = 0.5 eV (left panel), U = 1 eV (right panel).
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-4

-3

-2

-1

 0

 1

 2

 3

 4

 0  0.5  1  1.5  2

Im
Σ(

iν
) 

[e
V

]

ν [eV]

exact
sum

Λ

pp
charge

spin

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

Im
Σ(

iν
) 

[e
V

]

ν [eV]

exact
sum

Λ + charge + pp
spin

FIG. 5. Left panel: parquet decomposition of the DMFT self-energy �(iν) as in Fig. 4, but with U = 2 eV. Right panel: Bethe-Salpeter
decomposition in the spin channel of the same DMFT self-energy.

all contributions to Im �, but the spin term (see below), are
way larger than the self-energy itself and fluctuate so strongly
in frequency, that several changes of sign are observed. This
makes it obviously very hard to define any kind of hierarchy
for the impact of the corresponding scattering channels on the
final self-energy result.

Hence, at these intermediate-to-strong values of U the
parquet decomposition procedure appears to be no longer
able to fully disentangle the physics underlying a given (here,
DMFT) self-energy. At the same time, we should stress that
the strong oscillations visible in the parquet decomposition
of Fig. 5 can not be ascribed to numerical accuracy issues.
In fact, one observes, that, also in this problematic case, the
self-consistency test works as well as for the other data sets:
the total sum of such oscillating contributions still reproduces
the Im �(iν) from DMFT in the whole frequency range
considered. The reason of such behavior has to be traced
back, instead, to the divergencies of the 2PI vertices recently
reported in DMFT work [48,49,50,58,60]. While the relation
with such divergencies will be extensively discussed in Sec. IV,
it is worth stressing already here that there is only one
contribution to �(iν), which never displays wild oscillation,
even for intermediate-to-strong U : the spin channel. This
means that even when the parquet decomposition displays a
strong oscillatory behavior, a Bethe-Salpeter decomposition in
this specific (spin) channel will always remain well behaved
and meaningful. This is explicitly shown in Fig. 5 (right
panel), where all the contributions to �(iν), but �̃sp (i.e.,
formally, all the contributions 2PI in the spin channel) are
summed together: here, no oscillation is visible. The results
of such Bethe-Salpeter decomposition of �(iν) in the spin
channel suggest then again an interpretation of a physics
dominated by this scattering channel, although this time in
the nonperturbative regime: strong (local) spin fluctuations,
originated by the progressive formation of localized magnetic
moments, are responsible for the major part of the electronic
self-energy and scattering rate. Their effect is, as before, partly
reduced, or screened, by the scattering processes in the other
channels (opposite sign contribution to Im �). Differently as
before, however, the specific role of the “secondary” channels
can no longer be disentangled via our parquet decomposition.

B. DCA results

In this section, we discuss the numerical results for the
parquet decomposition of self-energy data computed in DCA.
Different from DMFT, the DCA self-energy provides a more
accurate description of finite-dimensional systems, as it is also
explicitly dependent on the momenta of the discretized Bril-
louin zone (i.e., a cluster of Nc patches in momentum space)
of the DCA. We will present here parquet decomposition
results for the self-energy of the two-dimensional Hubbard
model with hopping parameter t = −0.25 eV for different
values of the density n and of the interaction U . In particular,
we will mostly focus on the self-energy at the so-called
anti-nodal point K = (π,0) because it usually displays the
strongest correlation effects for this model and also because
the vector K = (π,0) is always present in both clusters we used
(Nc = 4,8) in our DCA calculation. We note, however, that
the results of the parquet decomposition for the other relevant
momenta of this system, i.e., the nodal one K = (π/2,π/2)
(for Nc = 8 where it is available), are qualitatively similar.

As for the DMFT case, we start by considering a couple of
significant cases at fixed density (here, n = 0.85, correspond-
ing to the typical 15% of hole doping of the optimally doped
high-Tc cuprates), and perform the parquet decomposition for
different U . In the left panel of Fig. 6, we show the calculations
performed at a moderate U = 4|t | = 1 eV (interaction equal
to the semibandwidth). As one sees the results are qualitatively
similar to the DMFT one at intermediate coupling (right
panel of Fig. 4), which one could indeed interpret in terms
of predominant spin-scattering processes, partially screened
by the other channels. However, also in DCA, extracting
such information from the parquet decomposition becomes
rather problematic for larger values of U . At U = 8|t | = 2 eV
(interaction equal to the bandwidth, Fig. 6 right panel), the
parquet decomposition appears dominated by contributions
from the 2PI and the pp channels: these become an order
of magnitude larger than the spin-channel contribution and
of the total DCA self-energy. This finding, in turn, indicates
the occurrence of large cancellation effects in the parquet-
decomposed basis, making quite hard any further physical
interpretation.
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FIG. 6. Parquet decomposition of the DCA self-energy �[K = (π,0),iν]. The same convention of Fig. 4 is adopted. The parameters of
the calculations are Nc = 8, t = −0.25 eV, β = 12 eV−1 and the filling is n = 0.85 with two different values of the Hubbard interaction:
U = 1.0 eV (left panel), U = 2.0 eV (right panel).

It is also instructive to look at the effect of a change
in the level of hole doping on the parquet decomposition
calculations. This is done in Fig. 7: in the left panel of the
figure, results for the highly doped case n = 0.75 (25% hole
doping) are shown. Despite the large value of the interaction
U = 2 eV, this parquet decomposition looks qualitatively
similar to the one at moderate coupling of the less doped
case Fig. 6 (left panel). Conversely, at half-filling (n = 1,
right panel of Fig. 7), although we chose a lower value of
U = 1.4 eV, the parquet decomposition displays the very
same large oscillations among different channel contributions
observed in the DMFT data (Fig. 5, left panel). Hence, our
parquet decomposition procedure applied to the DCA results
allows us to extend the considerations drawn from the DMFT
analysis of the previous section: For a large enough value of
U and moderate or no doping, the parquet decomposition of
the self-energy becomes rather problematic, as some channel
contributions (supposed to be secondary) become abruptly
quite large, or even strongly oscillating, with large cancellation
between different terms. The inclusion of nonlocal correlations

within the DCA allows us to demonstrate that this is not a
special aspect of the peculiar, purely local, DMFT physics,
but it survives also in presence of nonlocal correlations.
Actually, as we will discuss in the next sections, the nonlocal
correlations do favor the occurrence of singularities in the
parquet decomposition, which is observed for DCA in a
correspondingly larger parameter region (at lower U and hole
doping) than in DMFT.

In this perspective, it is interesting to investigate whether
the singularities in the parquet decomposition, with their in-
trinsically nonperturbative nature, already occur in a parameter
region where the DCA self-energy displays a strong momen-
tum differentiation, with pseudogap features. As discussed
in Ref. [42], such a case is achieved in a Nc = 8 DCA
calculation for, e.g., n = 0.94 (6% hole doping), U = 1.75 eV,
β = 60 eV−1 (with the additional inclusion of a realistic
next-to-nearest hopping term t ′ = 0.0375 eV). In the left
panels of Fig. 8, the DCA self-energy for the antinodal and
the nodal momenta is shown, together with its corresponding
parquet decomposition. We note, as it was also stated in
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FIG. 7. Parquet decomposition of the DCA self-energy �[K = (π,0),iν] (Nc = 8) at different dopings. Left panel: high hole-doped case
(n = 0.75) for the same interaction/temperature values as in right panel of Fig. 6 (U = 2 eV and β = 12 eV−1). Right panel: undoped case
(n = 1), at intermediate-to-strong coupling (U = 1.4 eV and β = 10 eV−1), calculated for a Nc = 4 DCA cluster.
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Ref. [42], that the positive (i.e., non-Fermi-liquid) slope of
Im�(K,iν) in the lowest-frequency region for K = (π,0)
indicates a pseudogap spectral weight suppression at the
antinode. The parquet decomposition of the two self-energies
is, however, very similar: The strong oscillations of the
various channels clearly demonstrate that in the parameter
region where a pseudogap behavior is found in DCA, the
parquet decomposition displays already strong oscillations.
It is also interesting to notice that, similarly as we discussed
in the previous section, also in this case, the spin-channel
contribution of the parquet decomposition is the only one
displaying a well-behaved shape, with values of the order of
the self-energy and no frequency oscillations. Consequently,
also for the DCA self-energy in the pseudogap regime, a
Bethe-Salpeter decomposition in the spin channel of the
self-energy remains valid (see right panel of Fig. 8). As
discussed in the previous section, this might be interpreted as a
hallmark of the predominance of the spin-scattering processes
in a nonperturbative regime, where a well-behaved parquet
decomposition is no longer possible. In this perspective, the
physical interpretation would match very well the conclusions
derived about the origin for the pseudogap self-energy of DCA
by means of the recently introduced fluctuation diagnostics

method [42]. At present, hence, the post processing of a given
numerical self-energy provided by the fluctuation diagnostics
procedure appears the most performant because, differently
from the parquet decomposition, it remains applicable, without
any change, also to nonperturbative cases.

After discussing our parquet decomposition calculations,
their proposed physical interpretation, and their limitation in
applicability, it is natural to wonder where such limitations
arise from. This analysis is, in fact, very important also beyond
the calculations presented in this work because the parquet
equations represent the base-camp of several novel quantum
many-body schemes aiming at the description of strongly
correlated electron beyond the perturbative regime.

As we anticipated before, the reason for the occurrence
of strong low-frequency oscillations in the parquet decom-
position can be traced to the divergence of the 2PI vertex
functions observed by increasing U [48] or, equivalently,
to the occurrence of singularities in the generalized ph

charge (χch) and pp (↑↓ and/or singlet) (χpp) susceptibilities.
The investigation of the exact relation between the peculiar
behavior of the parquet decomposition by increasing U and the
singularities of the corresponding generalized susceptibility
matrix will be explicitly addressed below.
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FIG. 8. Parquet decomposition of the DCA self-energy �[K,iν] with Nc = 8 for the low-T , underdoped case n = 0.94 with U = 1.75 eV
and β = 60 eV−1 (see text). Left upper panel: parquet decomposition for the antinodal DCA self-energy [K = (π,0)]; right upper panel:
Bethe-Salpeter decomposition of the antinodal DCA self-energy. Left lower panel: parquet decomposition of the nodal [K = ( π

2 , π

2 )] DCA
self-energy. Right lower panel: Bethe-Salpeter decomposition of the nodal DCA self-energy.
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IV. SINGULARITIES OF GENERALIZED
SUSCEPTIBILITIES

In this section, we aim at clarifying why some contributions
of the parquet decomposition start displaying singularities
and strong oscillatory behaviors upon increasing U . From
a general perspective, since the singularities observed in
the previous section always affect �̃�, the contribution
stemming from the 2PI vertex, a clear relation must exist with
corresponding divergencies of the 2PI vertices. In fact, the
occurrence of divergences in the 2PI vertices of the Hubbard
and Falicov-Kimball models has been recently demonstrated
by means of analytic and DMFT calculations [48,49]. In
particular, we recall that such singularities show up si-
multaneously in the fully 2PI vertex � as well as in the
irreducible vertices 
r in the charge (r = ch) and particle-
particle channels (r = pp, ↑↓), while the full vertex F and
the self-energy remain always well behaved. Evidently, this
perfectly matches the problematic channels of our parquet
decomposition.

As discussed in Ref. [48], a divergence of a 
r must be
associated to a noninvertibility of its corresponding Bethe-
Salpeter equation and, hence, according to Eq. (6), to the
occurrence of singular (= 0) eigenvalue in the generalized
susceptibility matrix χr (k; k′; q). In fact, when an eigenvalue
goes through zero, the irreducible vertex functions change
qualitatively. In particular, one observes that second-order
perturbation theory breaks down, failing to reproduce even
the sign of the vertex functions at low frequencies. In this
sense, the system is then in the truly strong-coupling limit.
In Ref. [48], χch(k; k′; q) was computed in DMFT (Nc = 1),
treating χch as a matrix in k and k′ for fixed q. For the case
when the frequency transfer ω is zero, we showed that the
lowest eigenvalue of this matrix becomes negative as U is
increased. A similar behavior was found for χpp in the ↑↓
sector (or in the singlet channel) for a somewhat larger U .

In the following, we will analyze in more detail such
divergencies by extending the previous DMFT (Nc = 1)
results [48] to DCA (Nc = 4), and by investigating in details
how singularities develop in the generalized susceptibility
matrices and how they affect the parquet decomposition of
the self-energy.

A. Nc = 1 case

For the sake of clarity, we start by analyzing the generalized
charge susceptibility in the Nc = 1 (DMFT) case, focusing on
the most-correlated case of half-filling. In particular, we will
mainly study the most singular case of ω = 0. In fact, ω = 0
represents the largest contribution to the parquet decomposi-
tion for the values of T studied here, and, thus, its behavior is
particularly significant. The case ω 
= 0, nonetheless, will be
also discussed briefly afterwards.

For a very small value of U , where no problem in the
parquet decomposition is observed, we can approximate the
generalized charge susceptibility with the noninteracting one,
i.e., with a product of two Green’s functions χch(ν,ν ′,ω =
0) 	 χ0(ν,ν ′,ω = 0)δν,ν ′ . In addition, we can use noninteract-
ing Green’s functions. The corresponding diagonal elements

are given by

χch(ν; ν; ω = 0) 	 − β

N2
k

∑
k,k′

1

(iν + μ − εk)(iν + μ − εk′)
,

(13)
where Nk is the number of k points and εk is the corresponding
single-particle energy eigenvalue. Off-diagonal elements will
obviously appear at finite U , remaining however much smaller
than the diagonal ones in the perturbative regime. If we now
consider the limit of very large ν, the diagonal elements behave
as β/ν2 and, hence, also become very small. In the numerical
calculations, we limit the range of |ν| to some maximum value
νmax. Hence, in the perturbative regime, the lowest eigenvalue
of χch will correspond roughly to the value of the diagonal
element for ν = νmax, and its eigenvector will have weight for
ν = ±νmax.

As U is increased, however, the off-diagonal elements
ν ′ 
= ν become gradually more important until, at a certain
point (e.g., at U = Ū ∼ 1.27 eV for the temperature we
considered) this picture changes radically: the off-diagonal
component of χch(ν,ν ′,ω = 0) for small frequencies becomes
comparable or larger than the corresponding diagonal ones.
As a consequence (see Appendix B), the lowest eigenvalue
of χch(ν,ν ′,ω = 0) crosses zero and, for large interaction,
a negative eigenvalue appears. In contrast to the small U

case, the corresponding vector has most of its weight for
ν = ±π/β: for these parameters, the total weight of two
elements for ν = ±π/β is about 0.85. This indicates that
a crossing of energy levels has occurred between a lowest
eigenvector having most of the weight at large frequencies to
the one having most of the weight for small frequencies [61].

In this situation, the most significant piece of information
can be extracted by restricting the analysis to the matrix
elements for ±π/β, i.e., to a 2 × 2 matrix in frequency space.
Then, the lowest eigenvalue of χch is

ε2×2 = χch

(
π

β
;
π

β

)
−

∣∣∣∣χch

(
π

β
; −π

β

)∣∣∣∣. (14)

This approximation is compared with the exact eigenvalue
in Fig. 9. It provides a good approximation after the level
crossing has occurred, i.e., where the lowest eigenvalue
of χch has become negative. Figure 9 also shows the el-
ements χch(π/β; π/β) and χch(π/β; −π/β). The diagonal
element decreases and the off-diagonal element increases
as U is increased. Approximately as they cross, the lowest
eigenvalue goes negative (the minor deviation of 	 0.02U
reflects the corresponding small difference between ε2×2

and εmin).
As the lowest eigenvalue εmin of χch(ν,ν ′,ω = 0) goes

through zero, χ−1
ch becomes infinite. For the cases we

have studied, the diagonal and off-diagonal matrix elements
of the 2 × 2 matrix have the same sign when this hap-
pens. Consequently, for the corresponding (singular) eigen-
vector, the elements for ν = ±π/β then have opposite
signs. It then follows from Eq. (A1) that the diagonal
and off-diagonal parts χ−1

ch (π/β; π/β) and χ−1
ch (π/β; −π/β)

also have opposite signs. Inserting χ−1
ch in the expression

needed for the parquet decomposition, we then find that
a cancellation of the singular contributions does occur
(see Appendix B).
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FIG. 9. Plot of the lowest eigenvalue of χch(ν,ν ′,ω = 0) as a
function of U . The parameters of the calculation are t = −0.25 eV,
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marks the (perturbative) parameter region (U < Ū ), where the level
crossing of the lowest eigenvalue has not yet occurred (see text). The
numerical values of εmin are then compared with the approximation
in Eq. (14). Finally, the corresponding diagonal and off-diagonal
elements of χch for ν = ±π/β are also plotted.

However, as one can easily infer from the right side of
Fig. 9, at larger values of U , the sign of the diagonal matrix
element changes, and then the (now nonsingular) contributions
add constructively. Hence, when a second eigenvalue of
χch(ν,ν ′,ω = 0) crosses zero, no cancellation will occur and
the singularity will show up in the corresponding terms of the
parquet decomposition of �(iν).

In particular, from Ref. [48] we know that a second diver-
gence takes place at a slightly larger value of U than the range
of Fig. 9. In particular, for U > 1.6 eV, a second eigenvalue
of χch(ν,ν ′,ω = 0) vanishes, simultaneously with the first
one of χpp,↑↓(ν,ν ′,ω = 0). As discussed above, now, the sign
of the matrix elements is such that the singular contributions to
the parquet decomposition no longer cancel. Then, the parquet
decomposition, in its corresponding counterparts (�̃ch, �̃pp,
and, consequently, �̃�), blows up at low frequencies. Hence,
for somewhat larger values of U , results similar to Fig. 5
are obtained. At the same time we find, consistent with the
findings of Ref. [48], that no vanishing eigenvalue occurs
in χsp(ν,ν ′,ω = 0) even at larger U and �̃sp remains well
behaved also at strong coupling.

A more physical elaboration of the meaning of such
a selective appearance of singularities in the differ-
ent channels will be given in the last section of the
paper.

Until now, we have discussed the case ω = 0. For ω 
= 0
there are negative diagonal matrix elements of χch even for
small values of U . For instance, already in a generalization
of Eq. (13), negative diagonal matrix elements can appear.
These elements are particularly small for large ν and ω. Hence,
inverting such a matrix gives large matrix elements for large
ν and ω, which are rather unimportant for the self-energy
and, thus, not very interesting in the light of the parquet
decomposition.

B. Nc = 4 case

We will now extend the previous DMFT analysis of the
singularities to the DCA calculations for Nc = 4. In this case,
χch is also momentum dependent and, in general, a complex
function. However, at half-filling, for Q = (π,π ) and ω = 0
it remains purely real [62]. We therefore mostly focus on this
case, which gives an important contribution to �. As in the
previous section, we use the parameters t = −0.25 eV and β =
10 eV−1, and study the occurrence of vanishing eigenvalues in
χch.

Since, as discussed at the beginning of the last section,
we are not interested in the high-frequency (perturbative)
eigenvalues of χch, we choose an interaction value, where
the most important fermion frequencies have already become
the lowest ones: ν,ν ′ = ±π/β. In particular, Table I shows
some of these matrix elements for, e.g., U = 1.5 eV. Here,
one sees that the dominating off-diagonal matrix elements
are obtained for ν = ν ′ = ±π/β and K 
= K′ taking values
(π,0) or (0,π ). Based on the size of the different matrix
elements in Table I, it is then natural to focus on the 4 × 4
matrix containing the K vectors (π,0) and (0,π ) as well as
the frequencies ν,ν ′ = ±π/β for Q = (π,π ) and ω = 0. The
lowest eigenvalue of this matrix is defined as ε4×4. We also
calculate the lowest eigenvalue εK×K, corresponding to the
2 × 2 matrix containing the two K vectors at the Fermi level,
(π,0) and (0,π ), for one frequency, i.e., ν = π/β. Finally,
we calculate the lowest eigenvalue εν×ν , corresponding to the
2 × 2 matrix containing two frequencies ν,ν ′ = ±π/β and
one K = (π,0).

TABLE I. Important matrix elements of χch(K,ν; K′,ν ′; Q,ω) for Q = (π,π ) and ω = 0. The parameters are Nc = 4, t = −0.25 eV,
U = 1.5 eV, and β = 10 eV−1.

ν ′ = −π/β ν ′ = π/β

ν K (π,π ) (π,0) (0,π ) (0,0) (π,π ) (π,0) (0,π ) (0,0)

−π/β (π,π ) 7.4 − 1.7 − 1.7 − 4.0 0.4 0.6 0.6 − 0.0
−π/β (π,0) − 1.7 4.8 − 16.0 − 1.7 0.6 3.9 2.3 0.6
−π/β (0,π ) − 1.7 − 16.0 4.8 − 1.7 0.6 2.3 3.9 0.6
−π/β (0,0) − 3.9 − 1.7 − 1.7 7.4 0.0 0.6 0.6 0.4
π/β (π,π ) 0.4 0.6 0.6 0.0 7.4 − 1.7 − 1.7 − 4.0
π/β (π,0) 0.6 3.9 2.3 0.6 − 1.7 4.8 − 16.0 − 1.7
π/β (0,π ) 0.6 2.3 3.9 0.6 − 1.7 − 16.0 4.8 − 1.7
π/β (0,0) 0.0 0.6 0.6 0.4 − 3.9 − 1.7 − 1.7 7.4
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The results of our analysis, for different values of U , are
shown in Fig. 10. We see that the eigenvalue ε4×4 provides a
quite accurate approximation to the exact minimal eigenvalue
εmin of the full generalized charge susceptibility for values
of U (U > 1.05) where εmin < 0. This illustrates that the
matrix elements discussed above are really the dominating
ones. Furthermore, we find that the “Fermi-level”-momentum
approximation εK×K is also reasonably accurate, while the low
frequency εν×ν is less accurate.

Figure 10 (right panel) shows the dependence on U for some
of these matrix elements. The diagonal element for K = K′ =
(π,0) and ν = ν ′ = π/β rapidly decreases with U , while the
absolute value of the off-diagonal element in K for K = (π,0),
K′ = (0,π ), and ν = ν ′ = π/β is large and slowly increases
with U . This matrix element is, in particular, due to the unequal
spin contribution. In Sec. V, we show how, in the case of Nc =
4 cluster, this evolution is linked to the progressive stabilization
of a RVB-dominated ground state. The off-diagonal element
in frequency for K = K′ = (π,0), ν = π/β, and ν ′ = −π/β,
instead, remains rather small.

The minimal eigenvalue εK×K of the 2 × 2 matrix in K is
given by

εK×K =χch

[
(π,0),

π

β
; (π,0),

π

β

]
−

∣∣∣∣χch

[
(π,0),

π

β
; (0,π ),

π

β

]∣∣∣∣
=χ

diag
K − tK. (15)

Evidently, when the absolute value of the off-diagonal element
(tK) becomes larger than the diagonal element (χdiag

K ), the
lowest eigenvalue εK×K goes negative (see Fig. 11). The
(opposite) signs of the matrix elements in the 2 × 2 matrix are
such that the two components of the corresponding eigenvector
have the same sign.

We extend our analysis by considering the 4 × 4 matrix. Its
two lowest eigenvalues are shown in Fig. 12. The eigenvalue
εK×K is further split into two by the small off-diagonal
matrix elements for ν 
= ν ′ (tν in Fig. 11), in a bonding
and antibonding state. Similarly to the Nc = 1 case, the
components of the eigenvector corresponding to the lowest
eigenvalue (εK×K − tν) have different signs for ν = −π/β and
π/β. Then, the eigenvector corresponding to the second lowest
eigenvalue, which vanishes at a larger U ∼ 1.35, will have the
two lowest-frequency components (ν = ±π/β) with the same
sign.

Eventually, combining all the eigenvector signs, we obtain
that the lowest eigenvalue is associated to an eigenvector with
opposite sign components, while the second lowest is not.
This evidently depends on the specific signs in Table I. Hence,
similar to the Nc = 1 case, also for Nc = 4, the singularities
occurring in χch will be actually responsible for the blowing
up of the parquet decomposition (see Appendix A), with the
significant exception of the first one encountered from weak
coupling.

If one considered also the generalized susceptibility in the
particle-particle channel χpp,↑↓, one would find an analogous
trend. For the case considered here where χpp is real for Q =
(0,0), it would show an eigenvalue going through zero slightly
below U = 1.3 eV. Similarly, the complex χpp for Q = (π,π )
has a real eigenvalue going through zero slightly below U =
1.25 eV. In such cases, the signs of the corresponding singular

eigenvector components do not compensate, which yields the
strong low-frequency oscillations of the �̃pp data, presented in
the previous section. Moreover, in the same parameter regime
(U ∼ 1.3), also the singularities of the lowest real eigenvalue
of χch for Q = (π,0) or for (0,π ) crossing zero do not cancel,
leaving the spin channel as the only contribution of the parquet
decomposition unaffected by singularities.

In summary, we find that the singularities in the generalized
susceptibilities are actually reflected in a blowing up of
the parquet decomposition in the corresponding channel(s).
Due to the possible occurrence of compensating signs in
the frequency components of the singular eigenvector of χ ,
however, the correspondence is not complete. In fact, we find
that the parquet decomposition remains well behaved in all
channels even beyond the value of U , where the first singularity
appears in the Bethe-Salpeter equation for the charge channel
(i.e., at U ∼ 1.05 for β = 10 eV−1 in DCA with Nc = 4),
because of the compensating signs of the singular eigenvector.
However, this is no longer the case for larger values of
U , where the singular parts of χ−1

ch and/ or χ−1
pp add up

in the parquet decomposition of the self-energy, making a
separate (parquet) treatment of the corresponding scattering
channels quite problematic. More specifically, in this regime,
the absolute contribution from the totally irreducible diagrams
to the self-energy at low frequencies tends to be very large,
and to a substantial extent, to be canceled by a very large
particle-particle contribution. Beyond these compensations, it
is also interesting to note that in Fig. 6, a sign crossing is
observed between the anomalous low-frequency contributions
of the irreducible and the pp channel to the self-energy
and their more conventionally behaved counterparts at high
frequency. Hence, since the high-frequency behavior of the
self-energy can be related to the lowest-order perturbation
theory, the sign crossings of the pp and fully irreducible
contribution at intermediate frequency represent an evident
manifestation of the breakdown of the perturbative description.

In order to go beyond this mostly formal interpretation
of the singularities in the generalized susceptibilities (and of
their effects on the parquet decomposition), in the next section
we will improve our understanding of the underlying physics
by a comparison with simplified model cases, where such
singularities also appear.

V. PHYSICAL INTERPRETATION OF THE
SINGULARITIES

A. Two-level model

To improve our physical insight on the occurrence of the
singularities, we start by considering one of the most basic
cases, where they appear, i.e., a simple two-level (impurity)
model: this model has a Coulomb interaction U on the (Nc =
1) cluster site and no interaction on the bath site b and an
intersite hopping V . Specifically, we use V = 0.5 eV, β =
5 eV−1, and we consider the half-filled case.

Figure 13 shows the lowest eigenvalue εmin of χch for ω = 0
and the corresponding lowest eigenvalue ε2×2 in Eq. (14) of
the 2 × 2 matrix containing matrix elements for ν = ±π/β.
More specifically, we also note that increasing U increases
the off-diagonal matrix element χch(π/β; −π/β). Similarly
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FIG. 10. Lowest eigenvalue εmin of χch compared with the approximations ε4×4, εK×K, and ενn×νn
. Right panel: matrix elements of χch for

Q = (π,π ) K = (π,0), and ω = 0 as a function of U . The parameters are Nc = 4, t = −0.25 eV, and β = 10 eV−1.

as for the DMFT calculations of the previous section, when
this element becomes equal to the diagonal element, ε2×2 goes
negative [Eq. (14)]. At this point, ε2×2 becomes a rather good
approximation to εmin, as it was also the case in Fig. 14. Hence,
in this parameter range, we can limit our analysis to the lowest-
frequency sector (ν = ±π/β).

From the above discussion, we notice that the overall prop-
erties of the singularity of χch in the two-level model appear
qualitatively similar to the one of the DMFT calculations of
the Hubbard model in Sec. IV A. Differently from the latter
case, however, in the two-level model, we have access to more
intrinsic information, such as the exact ground state of the
systems. This allows for a deeper investigation of the physical
evolution associated with the singularities. In particular, we
show how large the overlap of the ground state of the system
with the singlet state

1√
2

(|c ↑ b ↓〉 − |c ↓ b ↑〉) (16)

is, where two electrons, one on each site, form a valence bond:
in the inset of Fig. 13, by increasing U , we clearly observe a
monotonously enhanced weight of the singlet state of Eq. (16)
in the ground state of the system.

In particular, the progressive change in the ground state is
responsible of the (increasing/decreasing) trends of the (off-

[ ] 

χ

χ
ε ν

ε ν

ε4 4 ε 

FIG. 11. Schematic representation of the main diagonalization
steps, determining the lowest (first, dashed red box, and second)
negative eigenvalues of χch, after the first/second level crossing has
occurred.

diagonal/diagonal) elements of χch(±π/β; ±π/β), driving,
eventually, the sign change of εmin.

Following, we will continue by discussing the more
significant Nc = 4 case, and show in more detail how the
formation of a negative eigenvalue of χch is, in that case,
associated with the formation of a resonance valence bond
(RVB).

B. RVB state and pseudogap

In this section, we will show how the analysis of properties
of the ground state of the system can be extended to the
case of Nc = 4. Here, instead of the two-level model, we
will exploit a preceding study of the pseudogap in the
Hubbard model using a very different approach [63]. In fact,
due to the relevance for the cuprate physics, the general
problem of the pseudogap formation in the Hubbard model
on a square lattice has been intensively investigated for
embedded clusters, e.g., in DCA [64,65]. Based on studies
for Nc = 4 and 8, it has recently been argued that, for a
sufficiently large U , a localized state |ψloc〉 is formed on the
cluster [63], leading to pseudogap features. More specifically,
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FIG. 12. Calculated and approximate (ε4×4) lowest two eigenval-
ues. The parameters are Nc = 4, t = −0.25 eV, and β = 10 eV−1.
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by comparing correlation functions of the DCA calculation and
for |ψloc〉, this state was identified [63] with a singlet, which,
for Nc = 4 we are considering here, takes the approximate
form

|ψloc〉= 1√
2

(c†(π,0)↑c
†
(π,0)↓ − c

†
(0,π)↑c

†
(0,π)↓)c†(0,0)↑c

†
(0,0)↓|vac〉.

(17)
Here, the K = (0,0) level is doubly occupied, while the
levels K = (π,0) and (0,π ) are each doubly occupied with a
probability of 1

2 . We now want to show that this state is closely
related to the resonance valence bond (RVB) state [54]. Since
the RVB state has no double occupancy (U → ∞), we can
make this connection explicit in two steps. First, we compare
with a calculation for an isolated cluster with t = −0.25 eV
and a finite, intermediate value of U = 1.25 eV, relevant for the
discussion here. Afterwards, we compare these calculations
for the isolated cluster with U = 1.25 eV and U = ∞. We
find a very large overlap (∼0.92) between |ψloc〉 of Eq. (17)
and the ground state of the isolated U = 1.25 eV cluster.
Second, we find that the overlap of the ground state for the
isolated cluster with U = 1.25 eV to the U = ∞ RVB state
is also large (∼0.85), the difference arising mainly from the
double occupancies. In fact, all configurations in real space
with nonzero weight for the RVB state have similar weights
also in the calculation for U = 1.25 eV. In summary, |ψloc〉 in
Eq. (17) is closely related to the ground state of the isolated
cluster at finite U and, hence, apart from some residual double
occupancy, to the RVB state.

We now want to show that the state in Eq. (17) is indeed
formed and to relate this to the divergence of χch. We focus
on the case Nc = 4. As discussed in the context of Fig. 12,
an important reason for the divergence is the behavior of χch

and in particular of χ↑↓(k,k′,q) for Q = (π,π ) and K and K′
equal to (π,0) or (0,π ) at the lowest Matsubara frequencies.
As U is increased, the element for K = K′ is reduced while
the element for K 
= K′ becomes large and negative. To make
the connection between the formation of an RVB state and the
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FIG. 13. Diagonal and off-diagonal elements of χ−1
ch for ν =

±π/β of the two-level model as a function of U . The lowest
eigenvalue is compared with the approximation in Eq. (14) for the
eigenvalue. The weight of the singlet component in Eq. (16) is shown
in the inset as a function of U . The parameters are V = 0.5 eV and
β = 5 eV−1.
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K,K,Q
↑↓ /χ

K,K′,Q
↑↓ for K = (0,π ) and K′ =

(π,0) and Q = (π,π ). The figure also shows the ratio
C[K,K,Q]/C[K,K′,Q] [Eq. (18)]. Matsubara labels have been
suppressed; all Matsubara frequencies have their n = 0 values. The
parameters are t = −0.25 eV, β = 10 eV−1, and Nc = 4.

divergence, we introduce

C(K,K′,Q) =
∑
νν ′ω

χ↑↓(K,ν; K′,ν ′; Q,ω). (18)

Figure 14 shows that the ratio between C for K′ = K and
K′ 
= K behaves in a very similar way as the corresponding
ratio for χ↑↓(K,π/β; K′,π/β; Q,0) at the lowest Matsubara
frequencies. The difference between the two curves is that
C contains a sum over all Matsubara frequencies. It is then
not surprising that the two curves are similar. The quantity in
Eq. (18) is easier to analyze. We use that (1/β)

∑
ν eiτν = δ(τ ),

where the summation is over fermion or boson frequencies.
Then,

1

β3
C(K,K′,Q) = 〈c†K↑cK+Q↑c

†
K′+Q↓cK′↓〉. (19)

It is then easy to check that for the ground state (17), the
matrix element on the r.h.s of Eq. (19) for Q = (π,π ), K =
K′ = (π,0) is zero, while it is − 1

2 for K′ = (0,π ). This would
lead to a vanishing ratio in Fig. 14, in qualitative agreement
with the actual calculation.

The second lowest state on the cluster is a triplet of the form

1√
2

(c†(π,0)↑c
†
(0,π)↓ + c

†
(0,π)↑c

†
(π,0)↓)c†(0,0)↑c

†
(0,0)↓|vac〉. (20)

It should be emphasized here that if this had been the lowest
state, we would have gotten exactly the opposite result to
above, i.e., a large matrix element for K = K′ and a small
matrix element for K′ = (0,π ).

Our analysis of the Nc = 4 DCA results demonstrate thus
that in the regime, where a pseudogap is observed [63]
for sufficiently large U , (i) the essential physics can be
traced back to a state of RVB character, and (ii) that the
hallmark of such RVB character is directly reflected in large
off-diagonal elements of χ in the Fermi-momentum subspace
[(0,π ),(π,0)]. The latter result is quite important for discussing
the interpretation of the observed singularities in the parquet
decomposition of the DCA results. At large enough U , in
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fact, an underlying RVB state has also been related to the
formation of a pseudogap [63]. Thus, in this regime, the
trends towards a RVB ground state would be the common
underlying reason behind onset of a pseudogap and the
formation of negative eigenvalues of χch and the associated
strong frequency oscillations of the parquet decomposition.

We note, finally, that the considerations discussed here are
rigorously valid for the parquet singularities of the Nc = 4
data. They will remain largely applicable to the cases of small
DCA clusters discussed in this work. Modifications might be
possible, instead, in the cases of extended clusters, where a
pseudogap spectral weight suppression can be induced also at
much weaker coupling by long-ranged (spin) correlations [38].
For such larger DCA clusters, the parquet decomposition is still
numerically challenging.

C. Charge susceptibility and closeness to Mott transition

Some further physical insight into this problem can be
gained starting from the general observation that, when U

is increased, the charge susceptibility is suppressed, while the
spin susceptibility becomes large. It is then not surprising that
we find rather different behavior of χch and χsp. The charge
susceptibility can be expressed in terms of the generalized
charge susceptibility

χch(q) = 1

Ncβ2

∑
kk′

χch(k; k′; q). (21)

We now use Eq. (A1) to rewrite the susceptibility as

χch =
∑

i

∑
kk′

〈k|i〉εi〈i|k′〉 =
∑

i

εi |
∑

k

〈k|i〉|2, (22)

where εi and |i〉 are the eigenvalues and eigenvectors,
respectively, of χch. The q dependence is not shown explicitly.
We find

∑
i

∣∣∣∣∣
∑

k

〈k|i〉
∣∣∣∣∣
2

=
∑
kk′

∑
i

〈k|i〉〈i|k′〉 = Nk, (23)

where Nk is the number of k values and thereby the number
of eigenvalues. Thus, except “pathological” cases of strongly
varying overlaps 〈k|i〉 occur [66], | ∑k〈k|i〉|2 will be in general
not small. This, together with χd being small, puts then
constraints on the eigenvalues.

For Nc = 1, it has been shown that all eigenvalues of
χch(k,k′,q = 0) are positive for small U [48]. For large U ,
a small χch(q = 0) can be obtained if all eigenvalues are
small (and possibly all positive) or if some eigenvalues are
negative. Since individual matrix elements are large, the
former could not be the case. Then, the strong suppression
of χch(q = 0) for large U is expected to require that some
eigenvalues are negative, although pathological cases may be
found where this is not the case. Similar arguments apply
for larger clusters for values of q where the eigenvalues are
real and positive for small U . The appearance of negative
eigenvalues as U is increased and, hence, of the huge low-
frequency oscillations in the parquet decomposition, should be
a consequence of a gradual suppression of charge fluctuation
as the system approaches a Mott transition. This supports an
earlier preliminary interpretation (within DMFT) of a negative

eigenvalue as a precursor effect of the Mott transition [48].
The DCA results, suggesting an intrinsic connection with the
RVB physics and the pseudogap formation, implies a more
profound, and highly nonperturbative, picture of the electronic
correlations in two-dimensional lattice systems.

VI. CONCLUSIONS

We have calculated the two-particle vertex function in
DMFT and DCA for the Hubbard model. The vertex function
was then exploited to perform a parquet decomposition of the
DCA self-energy. The purpose of such decomposition was
similar as for the recently introduced fluctuation diagnostic
approach [42], i.e., to improve our understanding of the
physical origin of the numerical results for the self-energy. In
comparison to the latter approach, the parquet decomposition
allows, in principle, for a more direct formulation, which does
not require any representation change in the equation of motion
for the self-energy. However, as we discussed in this work, as
opposed to the fluctuation diagnostics procedure, its usage
poses also important new challenges.

While the parquet decomposition works relatively smoothly
in the perturbative regime and allows one to evaluate quanti-
tatively the role played by the different channels, for larger
values of U and moderate doping, some of its terms start
to display very large oscillations at small frequencies. This
renders it impossible to disentangle the role of the channels
affected by such oscillations. We should note, however,
that in all cases considered we could always find, even
at strong coupling, at least one well-behaved term in the
parquet decomposition (which was the spin contribution �̃sp

for the 2D and 3D Hubbard model close to/at half-filling).
This has been interpreted as a specific indication emerging
from the parquet decomposition of a predominance of that
well-behaved channel. In this way, the predictions of the
parquet decomposition of � provide a qualitatively similar
outcome [42] to those of the fluctuation diagnostics. Unlike
the former, the latter approach appears not to be affected at all
by entering in the nonperturbative regime.

Beyond the physical insight in the self-energy, our results
are also relevant for the future developments of forefront
methods in quantum many-body physics. In fact, several
recently proposed computational schemes have been based
on the parquet decomposition, introducing approximations
for the totally irreducible diagrams, and then calculating the
reducible diagrams via the parquet equations [12,27,33,34].
The results above, however, show that the contribution from
the irreducible diagrams becomes highly complicated for
strongly correlated systems, even diverging for certain values
of U . This suggests that all schemes based on the parquet
decomposition above might encounter unforeseen problems
in the intermediate-to-strong correlated regime. However, we
should recall that the generalized susceptibilities in Matsubara
space are not directly measurable quantities. Hence, one
may wonder whether alternatives to the conventional parquet
decomposition for classifying the Feynman diagrams could
be found, in order to improve the description of electronic
correlations in the intermediate coupling regimes and avoid
the singularities.
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FIG. 15. DMFT results illustrating the change of sign of the eigenvalues of χch for the parameters t = −0.25 eV, β = 10 eV−1, n = 1, and
Nc = 1. Left panel: the lowest eigenvalue of χch(ν,ν ′ω = 0) and the elements of the corresponding eigenvector for ν = ±π/β and ν = ±νmax

are compared [see also text below Eq. (13)]. Right panel: diagonal and off-diagonal elements of χ−1
ch for ν = ±π/β. χ−1

ch,apx is an approximation
to χ−1

ch , using only the lowest eigenvalue in Eq. (A1).

In the specific context of our DMFT and DCA analysis, we
have demonstrated that the singularities of some terms of the
parquet decomposition of the self-energy are directly related to
the divergencies of χ−1

ch and χ−1
pp at intermediate U values. In

particular, we showed that the divergence of χ−1
ch is related to

the suppression of charge fluctuations. This represents an early,
nonperturbative, manifestation of the Mott-Hubbard physics.
The relation of such singularities to a RVB state and to the
formation of a pseudogap has also been investigated for the
case of the Nc = 4 DCA clusters, making progress towards a
theoretical understanding of the highly nontrivial physics of
strong electron correlations in two dimensions.
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APPENDIX A: FORMATION OF NEGATIVE EIGENSTATE
AT ω = 0

In this Appendix, we further elaborate on the divergence of
χ−1

ch at ω = 0 in Sec. IV and the corresponding evolution of
the singular eigenvalue of χch. Specifically, in order to analyze
the role played by the lowest eigenvalue of the generalized
susceptibility, we express the inverse of χch in the basis of the
eigenvalues (εi) and the eigenvectors (|i〉) of χch:

χ−1
ch =

∑
i

|i〉ε−1
i 〈i|. (A1)

An approximate expression, χ−1
ch,apx, can then be ob-

tained by restricting the sum to the lowest eigenvalue
of χch.

We now illustrate the usefulness of the representation (A1)
by applying it first to the case of DMFT (Nc = 1). In Fig. 15,
the evolution of the exact and approximate eigenvalues with
interaction strength U is shown for t = −0.25 eV, n = 1, and
β = 10 eV−1. For U < 1.275, where the lowest eigenvalue
is positive, the contribution for ν = ±π/β is approximately
zero because the corresponding (weak-coupling) eigenvector
has almost no weight for these frequencies. χ−1

ch becomes
large already for U slightly smaller than 1.275, where the
approximate eigenvalue is small but positive. Here, a low-lying
“resonance” gives a large contribution. When the resonance
goes through zero and becomes a “bound state” (negative
eigenvalue) for the matrix of the generalized susceptibility,
the sign of χ−1

ch (and hence also that of 
ch) changes. For
U � 1.275, χ−1

ch,apx provides a quite good approximation of

χ−1
ch , showing that the large values of χ−1

ch are mainly due
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to this bound state. As U is increased further, the lowest
eigenvalue gets more negative, and the matrix elements
of χ−1

ch are reduced. The basic character of χch, however,
remains qualitatively different compared with smaller values
of U .

This analysis can also be extended to the case of DCA.
Figure 16 shows matrix elements of the DCA χ−1

ch (at
half-filling and β = 10.0) compared with the approximation
χ−1

ch,apx where only negative eigenvalues are considered in
the inversion in Eq. (A1). For U < 1.05, all eigenvalues are
positive and χ−1

ch,apx is zero. However, there is a resonance for
U close to 1.05, as is also indicated by the small value of ε4×4

(see Sec. IV for the corresponding definitions). This leads to
a large contribution to χ−1

ch for U close to 1.05. As the lowest
eigenvalue goes negative at U = 1.05, the signs of some large
matrix elements of χ−1

ch change [see Eq. (A1)]. At the same
time, χ−1

ch,apx becomes a rather good approximation to χ−1
ch .

Increasing U further, a second resonance forms, as is also
seen by the small value of the second lowest eigenvalue in the
4 × 4 space. This leads to very large values of χ−1

ch for U > 1.2,
which are missed by χ−1

ch,apx. For U > 1.35, this resonance is
converted to a negative eigenvalue, signs of matrix elements of
χ−1

ch change, and χ−1
ch,apx again becomes a good approximation

of χ−1
ch .

APPENDIX B: GENERAL STRUCTURE OF THE 2 × 2
SINGULAR MATRIX

The following generic matrix is related to the discussion
in the main text:

M =
(

a b

b a

)
, (B1)

where a,b ∈ R and b > 0. The eigenvalues and eigenvectors
are given by λ∓ = a ∓ b and v∓ = (∓1,1)/

√
2. Hence, the

spectral representation of the inverse of M reads as

M−1 = 1

2(a − b)

(
1 −1

−1 1

)
+ 1

2(a + b)

(
1 1
1 1

)
. (B2)

When the first eigenvalue vanishes (a = b), the first term
of the matrix M−1 diverges, while the sum over all its matrix
elements stays finite because the sum over the matrix elements
in the first term exactly vanishes due to the antisymmetry of
the corresponding eigenvector. Hence, the sum over all matrix
elements, originating from the second term in Eq. (B2), yields
the finite result 1/a. For a = −b, however, one encounters the
divergence of the second eigenvalue. In this case, also the sum
over all matrix elements diverges, as the (equal) signs of the
corresponding eigenvector no longer cancel it.
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[49] V. Janiš and V. Pokorny, Phys. Rev. B 90, 045143 (2014).
[50] E. Kozik, M. Ferrero, and A. Georges, Phys. Rev. Lett. 114,

156402 (2015).

[51] A. Stan, P. Romaniello, S. Rigamonti, L. Reining, and J. A.
Berger, New J. Phys. 17, 093045 (2015).

[52] R. Rossi and F. Werner, J. Phys. A: Math. Theor. 48, 485202
(2015).

[53] T. Ribic, G. Rohringer, and K. Held, Phys. Rev. B 93, 195105
(2016).

[54] P. W. Anderson, Science 235, 1196 (1987); S. Liang, B. Doucot,
and P. W. Anderson, Phys. Rev. Lett. 61, 365 (1988).

[55] E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).
[56] D. J. Scalapino, J. Supercond. Novel Magnetism 19, 195 (2006).
[57] See, e.g., A. Toschi, M. Capone, and C. Castellani, Phys. Rev.

B 72, 235118 (2005); D. Nicoletti, O. Limaj, P. Calvani, G.
Rohringer, A. Toschi, G. Sangiovanni, M. Capone, K. Held, S.
Ono, Yoichi Ando, and S. Lupi, Phys. Rev. Lett. 105, 077002
(2010).

[58] G. Rohringer, New routes toward a theoretical treatment of
nonlocal electronic correlations, Ph.D. thesis, TU Vienna, 2014.

[59] S. Hummel, Asymptotic behavior of two-particle vertex func-
tions in dynamical mean-field theory, Master thesis, TU Vienna,
2014.
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