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Grand canonical Peierls transition in In/Si(111)
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Starting from a Su-Schrieffer-Heeger-like model inferred from first-principles simulations, we show that the
metal-insulator transition in In/Si(111) is a first-order grand canonical Peierls transition in which the substrate
acts as an electron reservoir for the wires. This model explains naturally the existence of a metastable metallic
phase over a wide temperature range below the critical temperature and the sensitivity of the transition to doping.
Raman scattering experiments corroborate the softening of the two Peierls deformation modes close to the
transition.
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A Peierls-like transition in indium wires on the Si(111)
surface was first reported 16 years ago [1]. Since then
this transition has been studied extensively [2–21], both
experimentally and theoretically. The occurrence of both a
metal-insulator transition around Tc = 130 K and a structural
transition of the In wires from a 4×1 structure at room
temperature to a 8×2 structure at low temperature are well
established. Yet, the nature of the transition is still poorly
understood and the relevance of the Peierls theory remains
controversial [8,9,11,12,14,19,22].

The generic theory of Peierls systems is essentially based
on effective models for the low-energy degrees of freedom in
purely one-dimensional (1D) or strongly anisotropic three-
dimensional (3D) crystals, such as the Ginzburg-Landau
theory of 1D charge-density waves (CDW) [23] or the
Su-Schrieffer-Heeger (SSH) model for conjugated polymers
[24–28]. Hitherto it has been used without adaptation to
discuss the relevance of the Peierls physics for experiments and
first-principles simulations in In/Si(111). Thus a fundamental
issue with previous interpretations based on these generic
theories is that they do not consider how the 3D substrate
affects the Peierls physics in a 1D atomic wire.

In this Rapid Communication, we investigate the phase
transition in In/Si(111) theoretically using first-principles
simulations and 1D model calculations, and experimentally
with Raman spectroscopy. We show that it can be interpreted
as a grand canonical Peierls transition, in which the substrate
acts as a charge reservoir for the wire subsystem. The
two Peierls distortion modes are essentially made of shear
and rotary modes. The main difference with the usual (i.e.,
canonical) Peierls theory is that in the grand canonical theory
the high-temperature phase can remain thermodynamically
metastable below the critical temperature Tc and that the
phase transition can become first order. This agrees with
the interpretation of recent experiments and first-principles
simulations in In/Si(111) [16–18,20,21].

First, we construct an effective 1D model for In/Si(111)
in the spirit of the SSH model [24–27]. Our goal is a
qualitative description of the phenomena with reasonable order
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of magnitudes for physical quantities because we think that
a quantitative description of this complex material can only
be achieved with first-principles simulations [29]. For the
same reason, we neglect correlation effects [27,28,30,31].
The accepted structural model for the uniform phase (i.e.,
the 4×1 phase) consists of parallel pairs of zigzag indium
chains [32,33]. We consider a single wire made of four parallel
chains of indium atoms arranged on a triangular lattice as
shown in Fig. 1. One (Wannier) orbital per indium atom is
taken into account, yielding four bands in the uniform phase.
Density-functional theory (DFT) calculations actually show
four bands corresponding to indium-related surface states [34].
Other electronic degrees of freedom, e.g., in the substrate, are
not considered explicitly.

We use a tight-binding Hamiltonian model for the electronic
degrees of freedom and assume that the only relevant hopping
terms are between nearest-neighbor sites, i.e.,

H =
∑

i,σ

εic
†
iσ ciσ −

∑

〈i,j〉,σ
tij (c†iσ cjσ + c

†
jσ ciσ ), (1)

where the indices i,j number the indium atoms, σ = ↑,↓
designs the electron spin, the second sum runs over every
pair 〈i,j 〉 of nearest-neighbor sites, and the operator c

†
iσ

(ciσ ) creates (annihilates) an electron with spin σ on site
j . In the uniform phase the Hamiltonian is translationally
invariant and the single-electron dispersions can be calculated
analytically [29]. Thus we can determine parameters εi and tij
to mimic the DFT band structure [17,34] shown in Fig. 2(a).

FIG. 1. 1D lattice model for an indium wire in the uniform
configuration. Open and full circles represent outer and inner In
atoms, respectively. The line widths are proportional to the hopping
terms tij . The blue and red bonds define the central zigzag chain and
the two outer linear chains, respectively.
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FIG. 2. DFT-LDA electronic band structure of In/Si(111) (a) in
the 4×1 phase, (b) after a shear distortion, and (c) after a rotary
distortion in the surface Brillouin zone of the 4×2 configuration
shown in panel (d). Gaps (b) open at � between two red bands and
(c) close to X between four blue bands.

We obtain three metallic bands and one full band if we assume
that the 1D system is close to half filling (i.e., one electron per
orbital on average).

The strength of the hopping terms tij is shown in Fig. 1.
Clearly, the apparent structures are a central zigzag chain and
two outer linear chains. The bond order (electronic density
in the bonds between atoms) exhibits a similar structure [29].
This is quite different from the usual representation of the
4×1 configuration by two zigzag chains. Our effective 1D
model focuses on the metallic bands and thus reveals the bonds
responsible for the Peierls instability.

In the hexamer structural model for the low-temperature
phase, the deformation from the uniform to the dimerized
(i.e., 8×2 or 4×2) phase corresponds essentially to the su-
perposition of two rotary and one shear modes [8,9,11,15,17].
Therefore, we investigate the changes in the lattice structure,
electronic band structure, and electronic density caused by
each mode separately using first-principles frozen-phonon
and deformation-potential calculations based on DFT within
the local density approximation (LDA). The technical details
correspond to earlier calculations by some of the present
authors [14,17]. A very recent hybrid DFT calculation [22]
largely agrees with the DFT-LDA results presented here.
We use distortion amplitudes close to the ones necessary
to transform the zigzag structure into the hexagon struc-
ture. The predicted vibration modes agree well with Raman
spectroscopy measurements presented here and in previous
works [4,12,15].

This study reveals, on the one hand, that the main effects
of the shear distortion are to dimerize the central zigzag chain,
as shown by the alternating density and bond lengths between
inner In atoms in Fig. 3(a), and to open or enlarge a gap between
two metallic bands close to the � point as seen in Fig. 2(b).
On the other hand, the main effects of the rotary modes are to
dimerize the outer chains, as shown by the alternating density
and bond lengths between outer atoms in Fig. 3(b), and to
open a gap between two metallic bands close to the X point,
as seen in Fig. 2(c). These results confirm the central role
of the structures seen in Fig. 1 (i.e., one inner zigzag chain
and two outer linear chains) in the transition of In/Si(111).
Moreover, the negligible length and density variation for the

FIG. 3. Changes in the DFT-LDA electronic densities (red for an
increase, blue for a reduction) with respect to the 4×1 phase caused
by (a) a shear distortion and (b) a rotary distortion. The isosurfaces

for density changes ±0.02 eÅ
−3

are shown. Arrows show the atom
displacements for both distortion modes.

bonds between inner and outer indium atoms in first-principles
calculations, both for shear and rotation distortions, confirm
that they are very strong covalent bonds and do not play any
direct role in the transition.

The SSH model [24–27] is the standard model for the CDW
on bonds caused by a Peierls distortion seen in Fig. 3. The
bond length changes determined with first-principles methods
can also be used to determine the hopping terms of the 1D
model (1) for distorted lattice configurations. For this purpose,
we assume that the hopping term between two orbitals i and
j depends only on the distance dij between both atoms and
choose the exponential form [35,36]

tij (dij ) = tij exp
[−αij

(
dij − d0

ij

)]
, (2)

where tij and d0
ij are the hopping terms and bond lengths

in the uniform configuration. Using reasonable values for
the electron-lattice couplings tijαij (i.e., α−1

ij is of the order
of the covalent radius of an In atom), we find a qualitative
agreement between first-principles and 1D model predictions
for the changes in the band structure and density caused by
shear and rotary modes [29].

The mechanism of the Peierls transition can be understood
even better by focusing on the main features of the 1D
model. Keeping only the most important hopping terms (thick
lines in Fig. 1) and couplings to lattice distortions, the 1D
model decouples into three independent chains with SSH-type
Hamiltonians [24–27] and electron-lattice couplings (2): the
inner zigzag chain, which couples only to the shear mode,
and two identical outer linear chains, which couple only to
one of the two rotary modes each. To complete the SSH-type
Hamiltonians we add an elastic potential energy for the lattice
deformation. The free energy of each chain (l = 1,2,3) is then
given by

Fl(xl) = Fe
l (xl) + Kl

2
x2

l , (3)

where Fe
l is the electronic free energy [23]. Within this mean-

field and semiclassical approach, the stable configurations are
given by the minima of the total free energy F = ∑

l Fl

of the 1D model with respect to the amplitudes xl of the
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three independent distortion modes. The bare elastic constants
Kl can be estimated using the distortion amplitudes xl

necessary to form the hexamer structure in first-principles
calculations [29].

This generalization of the SSH model includes more
degrees of freedom than the generalized SSH model used very
recently to investigate chiral solitons in indium wires [37].
Yet the model of Ref. [37] corresponds essentially to the
restriction of our model to outer chains and rotary distortions.
Furthermore, the model parameters found in Ref. [37] also
agree quantitatively with our parameters for outer chains and
rotary distortions [29]. In Ref. [22] Kim and Cho compare
their DFT results to the two-chain SSH model of Ref. [37]
and conclude that the transition in In/Si(111) is not a Peierls
transition. However, their DFT results seem to agree largely
with our three-chain SSH model and thus support the Peierls
transition scenario presented here.

We can now analyze the 1D model in the mean-field
approximation using known results for one-band–one-mode
SSH-type models [24–27]. At half filling the outer chains
have Fermi wave number kF = π/2 and thus are unstable
with respect to rotary distortions with the nesting wave number
Q = 2kF = π [corresponding to the X point of the Brillouin
zone in the 4×1 configuration of In/Si(111)]. As the zigzag
chain has two orbitals per unit cell, its Fermi wave number is
kF = π and thus it is unstable against a shear distortion with
the nesting wave number Q = 2kF = 2π (corresponding to
the � point). Therefore, if the system is exactly half filled,
the twofold degenerate ground state of each chain is a band
insulator with a dimerized lattice structure. The corresponding
theoretical collective vibrational modes agree with the Raman
spectroscopy results presented below.

This corresponds to an eightfold degenerate and insulating
phase in the full 1D model. The neglected couplings between
the three chains reduce the Peierls deformation modes to two
linear combinations of the shear and rotary modes and the
degeneracy to four states corresponding to the four hexamer
structures of the 4×2 phase. The Peierls gap in the electronic
band of the inner chain is at k = 0 while Peierls gaps for
the outer chains are at k = π/2 (i.e., the X point of the
4×2 configuration). Typically, the electronic gap of the full
1D model is indirect and smaller than the Peierls gaps. Thus
there is no obvious relation between critical temperature and
electronic gap in this many-band Peierls system. The structural
transition to the high-temperature uniform phase is continuous
but may exhibit distinct critical temperatures for shear and
rotary modes. The metal-insulator transition occurs at the
lowest one.

This conventional Peierls scenario assumes a fixed band
filling. The low-temperature insulating electronic structures
found in DFT computations [8,17,34] correspond to half
filling in the 1D model (1). However, for substrate-stabilized
atomic chains, the electron chemical potential μ is determined
by the substrate and may be modified by temperature and
adatoms [38–40]. Therefore, we must investigate the 1D
model in the grand canonical ensemble with μ set by an
external electron reservoir, i.e., the rest of the In/Si(111)
system. Focusing again on the decoupled 1D model, the free
energies (3) are replaced by corresponding grand canonical
potentials φl and φ.
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FIG. 4. Grand canonical potential φ1 of the inner zigzag chain as a
function of the amplitude of the shear distortion x1 at low temperature
for several values of the chemical potential μ from the middle of the
gap (bottom) to the band edge (top). The dashed line corresponds to
the critical μc between dimerized and uniform phases. Inset: Enlarged
view close to μc. The shift of μ between upper and lower bands
corresponds to 7% of the Peierls gap.

We find that the grand canonical Peierls physics is much
richer than the canonical one. Figure 4 shows the grand
canonical potential of the inner chain at very low temperature
as a function of the distortion amplitude for several values of μ.
If μ lies at or close to the middle of the Peierls gap, we see the
usual double well, indicating a stable and doubly degenerate
dimerized state. When μ deviates slightly from the middle of
the gap, a local minimum appears at x = 0 indicating that the
uniform state is metastable. This case agrees qualitatively with
the energetics of the phase transition in In/Si(111) calculated
from first principles [18]. When μ moves even further toward
the band edge, the uniform state becomes thermodynamically
stable while two local minima for x �= 0 show that the
dimerized states are metastable. Finally, when μ approaches
the band edge, we find a single-well potential, indicating
that the Peierls instability is suppressed. The variation of the
grand canonical potential with μ explains the sensitivity of the
transition in indium wires to chemical doping [21,38–41] and
to optical excitations [18,41]. In particular, the observation that
the uniform phase is stabilized in n-doped samples [21,41] as
well as by alkali-adsorption-induced charge transfer [38,39] is
naturally explained by the occurrence of a metastable uniform
state in the grand canonical potential in Fig. 4.

If the temperature is raised without varying μ, the grand
canonical potential changes its shape progressively into a
single well but the uniform and dimerized states never
exchange their relative energy positions [29]. Therefore, if
we assume that μ deviates slightly from the middle of the
gap, the uniform state is metastable at low temperature but
the structural transition remains continuous as in the canonical
ensemble. Yet the actual electronic gap closes when one of the
band edges reaches μ and thus the metal-insulator transition
occurs discontinuously and at a lower temperature than the
structural transition.

In the 1D model, however, μ represents the influence of the
substrate and thus it is a function of temperature rather than an
independent parameter. (Equivalently, the dependence of the
electron number on μ could change with temperature [29].)
Moreover, a small change in μ is sufficient to change the
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FIG. 5. Temperature dependence of the normalized frequencies
of Raman modes and sketches of the assigned eigenmodes. The shear
and rotary modes (red and blue symbols) at 20 and 28 cm−1 are Peierls
amplitude modes and exhibit a significant softening, while the mode
at 42 cm−1 (black symbols) remains at constant frequency and the
one at 55 cm−1 (gray symbols) shows only a moderate decrease due
to the lattice expansion.

shape of the grand canonical potential (see the inset of
Fig. 4) and thus to cause a discontinuous transition [29]. This
scenario is compatible with recent first-principles simulations
and experiments [16–18,20,21]. Note that the dimerized
configuration could be unstable toward the formation of
domain walls (solitons) [37,42,43] but the study of spatial
and thermal fluctuation effects is beyond the scope of this
paper [26,27,30,31,44]. The finding of a first-order transition
with a small reduction of the order parameter in the critical
region (see Fig. 6 in Ref. [29]) justifies the neglect of
fluctuations in first approximation.

The Peierls/CDW theory predicts the existence of collec-
tive excitations (amplitude modes) which are Raman active
[23,45–47]. For the Peierls wave number Q their frequency
vanishes as ω(T ) ∝ √|T − Tc| when approaching Tc in a
continuous transition (phonon softening) [23,47]. As the
Peierls amplitude modes in In/Si(111) are essentially the shear
and rotary modes, they should appear in the Raman spectrum
at the � point below Tc and show significant (but incomplete)
softening close to the first-order transition [29].

Figure 5 shows the temperature dependence of the normal-
ized frequencies of some Raman spectra resonances measured
for In/Si(111). The resonances observed experimentally were

assigned to specific vibrational modes by comparison to
first-principles computations [4,12,15]. Here we discuss the
low-frequency modes at 20, 28, 42 cm−1 in the (8×2) phase
and the 55 cm−1 mode observed for both phases, which all
involve displacements of In atoms. The resonances at 20 and
28 cm−1 (as measured at 44 K) are assigned to the shear
and rotary modes. They exhibit a partial phonon softening
when approaching the phase transition temperature and vanish
above it. The mode at 42 cm−1, in contrast, is at constant
frequency with temperature while the mode at 55 cm−1 exhibits
only moderate temperature shift. These observations agree
qualitatively with our theoretical analysis but not with an
order-disorder transition [9,13]. The rotary and shear modes
are strongly coupled to the CDW by the lateral displacements
of the In atoms and show the expected softening for Peierls
amplitude modes; however, this softening remains only partial
because the transition is discontinuous. The 42 and 55 cm−1

modes, in contrast, are related to vertical displacements of
In atoms. Hence they are weakly coupled to the in-plane
CDW and display a behavior related to the lattice expansion
with temperature increase. Remarkably, the 42 cm−1 mode
shows no frequency shift at all, i.e., the lattice expansion is
compensated for by a stiffening of the involved In bonds. The
55 cm−1 mode displays a side-effect drop in eigenfrequency
at the phase transition.

In summary, we have shown that the transition observed
in In/Si(111) is a grand canonical Peierls transition. We think
that the ongoing controversy about the nature of this transition
can be solved by interpreting experiments and first-principles
simulations [2,3,5–10,13–21] within a grand canonical Peierls
theory. In particular, it explains the observation of a metastable
metallic phase at low temperature and the sensitivity of the
critical temperature to the substrate doping. Grand canonical
theories could explain other charge-donation-related phe-
nomena in atomic wires such as the reversible structural
transitions in Au/Si(553) upon electron injection [48,49]. The
present work suggests that variations of the substrate-induced
chemical potential (e.g., with temperature or upon doping) is a
key mechanism for understanding the realization of quasi-1D
physics in atomic wires.
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