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Inducing topological transitions by a time-periodic perturbation offers a route to controlling the properties of
materials. Here, we show that the adiabatic preparation of a nontrivial state involves a selective population of edge
states, due to exponentially small gaps preventing adiabaticity. We illustrate this by studying graphenelike ribbons
with hopping’s phases of slowly increasing amplitude, as, e.g., for a circularly polarized laser slowly turned on.
The induced currents have large periodic oscillations, but flow solely at the edges upon time averaging, and can
be controlled by focusing the laser on either edge. The bulk undergoes a nonequilibrium topological transition,
as signaled by a local Hall conductivity, the Chern marker introduced by Bianco and Resta in equilibrium. The
breakdown of this adiabatic picture in the presence of intraband resonances is discussed.
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Introduction. Recent experiments [1] have mapped the
phase diagram of the Haldane model [2], a prototypical
Chern insulator, by driving ultracold fermionic atoms in an
optical honeycomb lattice periodically modulated in time.
Since the early suggestion by Oka and Aoki [3] for a
photovoltaic Hall effect in graphene, theoretical research
aimed at studying topological transitions induced by an
external periodic perturbation—the so-called Floquet topo-
logical insulators [4]—has been intense [5–19]. Preparing a
topologically nontrivial Floquet insulator, out of a standard
band insulator, requires passing through a phase transition
point, where the bulk energy gap momentarily closes and
edge states start crossing it. It is usually assumed that this
can be done by keeping the system arbitrarily close to its
Floquet “ground state” (GS), a concept which we will clarify
later on, provided the strength of the periodic perturbation
is ramped up in an adiabatic way [7,20,21]—realizing a
generalized form of quantum annealing (QA) [22–25]. In
this Rapid Communication we study the QA dynamics of
the Haldane model across its topological transition, and that
of periodically driven graphenelike ribbons, e.g., irradiated
by a circularly polarized laser. We find that the topological
transition comes with an ingredient that makes it different
from the Kibble-Zurek (KZ) paradigm [26,27] describing the
crossing of ordinary critical points [25,28,29]: an exponen-
tially small Landau-Zener (LZ) [30,31] avoided-crossing gap
between edge states, which forbids edge-state electrons from
adiabatically following the GS, no matter how slowly the
critical point is crossed. The peculiarity of this QA dynamics
is reflected in nonequilibrium currents flowing at the edges,
which could be controlled, e.g., by a laser focusing on the
edges. We also show how the change in the topology of the
nonequilibrium state is effectively signaled by the dynamical
counterpart of a local Chern marker, introduced by Bianco
and Resta [32] as an indicator of an equilibrium nontrivial
bulk topology.

Model and idea. Graphenelike systems display remarkable
properties associated with the pseudospin- 1

2 A-B sublattice
degree of freedom of the honeycomb lattice, with relativistic
Dirac cones sitting at the two corners K± = ( 2π√

3a
, ± 2π

3a
)—a

being the lattice constant—of the hexagonal Brillouin zone

(BZ), when inversion symmetry (IS) and time-reversal symme-
try (TRS) are unbroken. A minimal single-orbital tight-binding
model, allowing for a time dependence in the nearest-neighbor
(NN) hopping phase and in the on-site energy, is given by the
following Hamiltonian (omitting spin indices),

Ĥ (t) = t1
∑

(ij )

e−i�ij (t)ĉ
†
j ĉi + �AB(t)

∑

i

(−1)i ĉ†i ĉi , (1)

where ĉ
†
i creates a particle at site i, (ij ) denotes sums over

NN, and (−1)i = +1/−1 on A/B. �AB controls IS, opens
up a trivial equilibrium gap at the Dirac points, and is in
principle controllable versus time in optical lattice exper-
iments [1]. The phases �ij (t)—generally breaking TRS—
may result from a time-periodic modulation of the optical
lattice in the neutral cold-atom experiments [1], or from
the Peierls’ substitution minimal coupling of the electrons
with the (classical) electromagnetic field of a laser �ij (t) =
e

�c

∫ j

i
dl · A(x,t). With the latter realization in mind, we

take the field monochromatic and described by a vector
potential A(x,t) = A0(x,t)[x̂ sin(ωt) + ŷ sin(ωt − ϕ)], where
ϕ describes a general elliptical polarization of the laser and
A0(x,t) is a smooth function of space and time.

For a circularly polarized (ϕ = ±π/2) spatially uni-
form laser [3,7,16,19], �ij (t) = λ(t) sin(ωt + φij ), with φij =
(±π

3 , ∓ π
3 ,π ) along the three NN directions (d1,d2,d3) con-

necting an A site to its NN B sites, and λ(t) = ed
�c

A0(t), d

being the NN distance. If the frequency ω is larger than
the unperturbed bandwidth W = 6|t1|, and λ(t) and �AB(t)
are nearly constant during a period τ = 2π/ω, the resulting
Floquet evolution operator Û (τ,0) = e−iĤF τ/� has an effective
Floquet Hamiltonian ĤF approximately given by a Haldane
model ĤH with flux φH = ±π

2 , the same on-site difference
�AB , and hoppings renormalized by Bessel functions: t1 →
t1J0(λ), t2 = −√

3[t1J1(λ)]2/(�ω) [7]. As the amplitude λ(t)
is slowly turned on—and/or �AB(t) is slowly decreased to
0—we effectively drive the Haldane model ĤH (t) across
its equilibrium critical point (�AB/t2)c = 3

√
3 [2]. In what

follows, we study zigzag strips with open boundary conditions
(OBCs) and Nx sites in the x direction, and periodic BC
(PBC) along y [see the inset in Fig. 2(b′)]. For each of the
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FIG. 1. (a) Phase diagram of the Haldane model, with three
representative zigzag strip spectra, along the path of the QA evolution
(arrow). (b), (b′) The mechanism by which right-edge states get
selectively populated as the exponentially small LZ gap sweeps to
larger values of k during the QA evolution. The (equilibrium) edge
states shown refer to �AB/t2 = 2.5 [for (b)] and �AB/t2 = 2.4 [for
(b′)]. Solid/open circles denote occupied/empty edge states. The blue
vertical arrow in (b) points to an occupied right-edge electron that
remains occupied [red vertical arrow in (b′)] after the Landau-Zener
event. (c) Residual energy (stars), separated into bulk (squares) and
edge (circles) contributions, vs the annealing time τQA. Here, data
with L = Nx = Ny = 6n from 18 to 102 were used to get εbulk/edge

for each τQA.

Ny y-momenta k, the single-particle Hamiltonian is a Nx × Nx

matrix H(k,t) whose Schrödinger dynamics is numerically
integrated with a fourth-order Runge-Kutta method, the initial
state |�(0)〉 being the Slater determinant GS of Ĥ (0) at half
filling [33].

As a warmup, let us first consider a QA of the Haldane
model. Its phase diagram [2], �AB/t2 vs φH , is shown
in Fig. 1(a), the shaded regions denoting the topologically
nontrivial phases with Chern number C = ±1. In the insets,
we show three zigzag spectra at φH = π

2 : a trivial insulator
with �AB/t2 = 4

√
3, the critical point (�AB/t2)c = 3

√
3, and

the IS-symmetric point with �AB = 0. Edge states cross the
bulk gap in the nontrivial phase; the crossing k point between
the two branches moves from the bulk-projected Dirac point
K+ = 2π/(3a) towards Kf = π/a as �AB/t2 decreases from
(�AB/t2)c to �AB = 0. Actually, this is an avoided-crossing
LZ point, with an exponentially small gap ∼e−Lx/ξ , where Lx

is the strip width and ξ the localization length of the edge states,
separating the two quasidegenerate edge states. Consider the
evolution denoted by the arrow in Fig. 1(a): �AB/t2 starts
from 4

√
3 and ends in 0 in a time τQA. In the initial part of the

evolution, the Dirac-point (bulk) gap �K± closes at criticality
as �K± ∼ 1/L, resulting in a standard KZ [26,27] nonadiabatic
excitation of electrons into the conduction band [25]. In two
dimensions (2D), the critical exponents ν = 1, z = 1 should
lead to a residual energy Eres(t) = 〈�(t)|Ĥ (t)|�(t)〉 − Egs(t),
Egs(t) being the instantaneous GS energy, scaling as εres =
Eres(t = τQA)/L2 ∼ τ−1

QA. The bare data for εres [stars in
Fig. 1(c)] depart from this KZ scaling, due to a mechanism
of selective edge-state excitation, which we now discuss.
Consider the right-edge electron sitting immediately to the
right of the LZ gap in Fig. 1(b) (here we have only Ny = 72 k

points for clarity of illustration): As the LZ gap sweeps
towards larger k, it will be unable to follow the ground state
due to the exponentially small LZ gap, and will remain in
the right-edge band [see Fig. 1(b′)], but excited, since the
equilibrium lowest-energy state sits in the left-edge band.
In essence, there cannot be any LZ tunneling across the
opposite edges of the sample. Hence, left-edge states remain,
one after the other, selectively unoccupied. If we separate the
contributions due to bulk and edges, Eres = εbulkL

2 + εedgeL,
we find that εbulk ∼ τ−1

QA [solid squares in Fig. 1(c)], while
εedge (solid circles) slowly increases, approaching the value

εLZ
edge = ∫ Kf

K+
dk
2π

[Ek,+ − Ek,−], where Ek,+/− are the right/left
final edge bands. Starting the QA evolution from negative
�AB/t2, or having φH = −π

2 , swaps the role of right and left,
and of the two Dirac points.

Adiabatic Floquet results. We now return to our Floquet
QA, Eq. (1), with a circularly polarized driving. We performed
an “adiabatic” linear turning on of λ(t) = (t/τQA)λf for a
time τQA = nQAτ , followed by an evolution with constant
λf for τf = nfτ (with τ = 2π/ω). We considered both a
time-independent �AB , and a �AB(t) switched off to 0
during the annealing of λ(t) (physically possible in the
cold-atom realization). In principle, �AB = 0 in graphene,
but the initial zigzag edge states would be pathological
symmetric/antisymmetric combinations of left-right wave
functions [34]. Hence, to describe graphene we include a very
small �AB = 0± whose value is not crucial (only the sign
matters); the results turn out to be identical to evolutions in
which �AB(t) is switched off to 0. A generalized adiabatic
theorem holds for Floquet systems [7,20,21,35,36]: A Floquet
state |ψα[λ(0)]〉 evolves remaining close to the instantaneous
Floquet state |ψα[λ(t)]〉 for sufficiently slow variations of the
driving amplitude λ(t), compared to the gaps from neighboring
states minm∈Z(|εα − εβ + m�ω|). For �ω > W , the standard
Floquet BZ [−�ω/2,�ω/2] is such that the initial Slater
determinant |�(0)〉 coincides with the Floquet ground state
|�FGS[λ(0) = 0]〉: All negative quasienergies, in [−�ω/2,0),
are occupied, and the positive ones are empty. The only
relevant gap for the adiabatic Floquet dynamics [20,21] is
that at the Dirac points. A slow increase of λ will reproduce
the QA of the Haldane case, as we verified by monitoring the
occupations nk,α of the instantaneous single-particle Floquet
modes |φk,α〉 [33]: The state |�(τQA)〉 after the annealing is
“close” to |�FGS[λ(τQA)]〉, apart from bulk KZ excitations
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FIG. 2. (a) Final Floquet quasienergy bands for a uniform driv-
ing with φ = −π/2, �ω = 7|t1| > W , �AB = 10−3|t1| (effectively
representing graphene), and λ(t) linearly ramped up to λf = 1 in
τQA = 100τ , with τ = 2π/ω. Here, the topological transition occurs
at λcr ≈ 0. Valence states (in red) are filled, conduction states (in
black) empty. Solid circles denote occupied edge states. Inset: The
initial graphene spectrum at λ(0) = 0. (a′) Time-averaged bond
currents calculated with a periodic evolution at constant λf for
τf = 100τ . The inset shows the large intraperiod oscillations. (b),
(b′) Same as (a) and (a′) for an inhomogeneous driving focused on
the right edge (xc = Lx) of width σ = 0.4Lx . In the inset, a sketch
of the zigzag strip.

near the Dirac points, and the previously discussed selective
excitation of edge states [see Fig. 2(a)].

The dynamics of the Hall current is interesting. As
customary, in a Laughlin cylinder geometry the total current in
the y direction is given by Ĵy = 1

�

∂Ĥ
∂κy

|
κy=0

, where κy = 2π
Nya

�L

φ0

is related to the flux �L, piercing the PBC cylinder along
the x axis, and φ0 is the flux quantum [37]. With PBC
along y, we can write Ĥ (t) = ∑BZy

k

∑
ii ′ Hii ′ (k,t)ĉ†i,k ĉi ′,k ,

where H(k,t) is the k-resolved strip Hamiltonian and ĉ
†
i,k

creates an electron of momentum k at site i along the
zigzag line sketched in Fig. 2(b′). Hence, bond-resolved y

currents are Ji,i+1(t) = 〈�(t)|∑BZy

k Ji,i+1(k,t)ĉ†i,k ĉi+1,k|�(t)〉
with J = 1

�

∂H
∂κy

|
κy=0

. The circles in Fig. 2(a′) denote the

time average of Ji,i+1(t) during the constant-λf evolution,
[Ji,i+1]av = 1

nfτ

∫ τQA+nfτ

τQA
dt Ji,i+1(t). Currents are concentrated

at the edges, but with large periodic oscillations, shown in the
inset: The stroboscopic averages are not representative of the
true time averages [33]. Notice that the edge currents have
left/right symmetry, while one would naively expect currents
only on the edge which is selectively occupied by the out-of-
equilibrium dynamics (the right edge, for Fig. 2). This behavior
originates from specific symmetries—previously noted in
equilibrium for the Haldane model at φH = ±π/2 [15,18]—
whereby the GS value of Ĵy is zero everywhere due to an
exact compensation between currents due to edge states and
edge-current contributions due to bulk states. Since the out-of-
equilibrium dynamics brings a lack of current-carrying edge

states [at left, in Fig. 2(a)], the corresponding bulk contribution
is uncompensated and gives rise to a left-flowing current of
the same sign and amplitude as that at the right edge. This
left/right symmetry can be removed by a space inhomogeneity
of the perturbation, e.g., a laser focused off center. Here,
we find it expedient to retain translational invariance along
y, assuming a y-independent Gaussian modulation amplitude
A0(x,t) = A0(t)e−(x−xc)2/2σ 2

, where xc is the focus center, and
σ the beam width. All the previous results remain valid for
a central focusing, xc = Lx/2, provided σ is not too small
(σ � 0.4Lx). But the interesting feature is the ability to control
the edge current to flow on either edge of the sample by moving
the focus off-center. Figure 2(b) illustrates the final Floquet
quasienergy bands when the laser is focused on the right edge
(xc = Lx), with σ = 0.4Lx . Notice that only the irradiated
right-edge states show a k dispersion: Unirradiated left-edge
states stay flat and carry no current. Nonequilibrium currents
flow only at the irradiated edge [see Fig. 2(b′)].

It is interesting to address the issue of an “indicator”
of nontrivial topology in a nonequilibrium translationally
noninvariant setting. For translationally invariant systems
(with PBC), it was shown that the usual Chern number C
is conserved during a unitary evolution [14,18]: It does not
“signal” the topological transition. However, since for �ω >

W the nontrivial final bulk states are adiabatically populated
in a controlled way, we would expect to be able to “see” the
topological transition by looking only at the “bulk” of the
sample. We find that the local Chern marker C(r), introduced
in Ref. [32] at equilibrium, essentially a local measure of the
Hall conductivity, works also in our nonequilibrium context: It
signals if the sample bulk is locally a topologically nontrivial
insulator, C(r) ∼ ±1. C(r) can be expressed as a physically
appealing commutator of position operators [32,33],

C(r,t) = −2πi〈r|[x̂P(t),ŷP(t)]|r〉. (2)

Here, x̂P = P x̂P and ŷP = P ŷP are position operators
projected on the occupied states, P(t) being the projector
on the time-evolved Slater determinant |�(t)〉. Figure 3
illustrates the dynamics of C(r,t), averaged over a central
“bulk” portion of the sample, Cbulk(t) = N−1

bulk

∑
r∈bulk C(r,t)

as the system evolves from a trivial insulator at λ = 0, towards
the nontrivial point with λf = 1. Upon time averaging the os-
cillations after τQA [33], we obtain a quantity Cav

bulk(L,τQA) =
1

nfτ

∫ τQA+nfτ

τQA
dt Cbulk(t) approaching the correct integer value 1

as τQA → ∞ and L → ∞ (see insets in Fig. 3).
When �ω is smaller than the bandwidth W , intraband

resonances between valence states at εα and conduction ones
at εβ ≈ εα + �ω change the physics completely, breaking the
Floquet adiabatic picture. The whole crux is, in essence,
that the starting point at λ(0) = 0—the usual Slater de-
terminant |�(0)〉—does not coincide with the Floquet GS,
|�(0)〉 �= |�FGS[λ(0) = 0]〉, for any choice of the Floquet BZ:
Upon folding the original [−W/2,W/2] spectrum in, e.g.,
[−�ω/2,�ω/2], we see that the lower Floquet quasienergy
band is only partially filled, with empty conduction-band-
originated states intermixed with filled valence-band ones.
These filled-empty pairs with small Floquet gaps [20,21]
minm∈Z(|εα − εβ + m�ω|) lead to a proliferation of bulk LZ
events as λ(t) is ramped up, with a complex redistribution
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FIG. 3. The bulk average Cbulk(t) of the local Chern marker
C(r,t) for a uniform driving with φ = −π/2, �ω = 7|t1| > W ,
�AB = 0.1|t1|, and λ(t) linearly ramped up to λf = 1 in τQA = 300τ ,
followed by a constant-λf evolution for τf = 220τ , with τ = 2π/ω.
The topological transition occurs at λcr ≈ 0.57. Here, L = Nx =
Ny = 48, and we average on a central square of size 12 × 12. The
horizontal line at ≈ 0.96 is the time average Cav

bulk, calculated from
t = τQA to t = τQA + τf . The upper inset shows the saturation of
Cav

bulk(L,τQA → ∞) to a limiting value that (see the lower inset, where
we fit points with standard power-law corrections 1 + c1/L + c2/L

2)
goes to 1 for L → ∞.

of electronic occupations of the states: The final Floquet GS
|�FGS[λ(τQA)]〉 is never reached, even for τQA → ∞. The
analysis of these issues will be the subject of a future work [38].
Figure 4 shows the final Floquet quasienergy bands, with the
corresponding population indicated by a variable-size dot, for
�ω = 4|t1| < W and λ(t) linearly ramped up to λf = 1 in
τQA = 300τ . The final state reached is a nonequilibrium metal,
rather than an insulator. This aspect is important in devising
pump-probe photoemission experiments in graphene [16].

Conclusions. We found a nonequilibrium mechanism which
selectively populates edge states when performing an adiabatic
switching on of a periodic perturbation towards a topologically
nontrivial insulating phase. It is different from the “topological
blocking” of Ref. [39], which works with PBCs and when

-2

0

2

0 2π/3 π 4π/3 2π

Ek

k a

FIG. 4. Final Floquet quasienergies Ek,α and occupations nk,α

(dot size proportional to nk,α) for φ = −π/2, �ω = 4|t1| < W ,
�AB = 0.1|t1| (constant), and λ(t) linearly ramped up to λf = 1 in
τQA = 300τ .

driving systems with symmetry-protected subspaces from
the topologically nontrivial phase to the trivial one. The
mechanism we illustrated requires edge states (hence OBC)
whose electronic occupation is unable to follow instantaneous
equilibrium as they become topologically nontrivial and cross
the bulk gap. It is general enough, and is at the root of the de-
viations from KZ scaling in one-dimensional (1D) topological
transitions, as seen in Refs. [40,41]. In the present 2D context,
it adds flexibility to the control of the edge currents flowing
at the boundaries of the sample, including the ability to have
currents flowing only at one edge, by appropriate focusing of
the ac field. Finally, we have shown that for �ω < W intraband
resonances ruin the adiabatic picture and the resulting state
is a nonequilibrium metal. Our findings should be amenable
to experimental tests both with ultracold atoms in optical
lattices [1], and with laser-irradiated electronic systems.
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